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Abstract

Spatial adjustments are used to improve the estimate of plot seed yield across crops
and geographies. Moving means (MM) and P-Spline are examples of spatial adjust-
ment methods used in plant breeding trials to deal with field heterogeneity. Within the
trial, spatial variability primarily comes from soil feature gradients, such as nutrients,
but a study of the importance of various soil factors including nutrients is lacking.
We analyzed plant breeding progeny row (PR) and preliminary yield trial (PYT) data
of a public soybean breeding program across 3 years consisting of 43,545 plots. We
compared several spatial adjustment methods: unadjusted (as a control), MM adjust-
ment, P-spline adjustment, and a machine learning-based method called XGBoost.
XGBoost modeled soil features at: (a) the local field scale for each generation and per
year, and (b) all inclusive field scale spanning all generations and years. We report
the usefulness of spatial adjustments at both PR and PYT stages of field testing
and additionally provide ways to utilize interpretability insights of soil features in
spatial adjustments. Our work shows that using soil features for spatial adjustments
increased the relative efficiency by 81%, reduced the similarity of selection by 30%,
and reduced the Moran’s I from 0.13 to 0.01 on average across all experiments. These
results empower breeders to further refine selection criteria to make more accurate
selections and select for macro- and micro-nutrients stress tolerance.

Plain Language Summary

Plant breeding trials are a key component of crop improvement for yield, quality, and
stress resistance. Breeding trials typically are grown on small plots of land and are
highly affected by the area in the field where they are planted due to field trends. We

Abbreviations: ML, machine learning; MM, moving means; PYT, preliminary yield trial; PR, progeny row; XGBoost, extreme gradient boosting.
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1 | INTRODUCTION

Plant breeders make selection decisions within their programs
to advance lines with the highest genetic value for the target
population of environments (Cooper et al., 2021). Breeders
must address non-uniform field conditions (i.e., field het-
erogeneity) in the selection decision-making process. Field
trends did not account for bias selections toward the environ-
mental value and not the genetic value of a line, resulting in
an incorrect decision. These incorrect decisions cause eco-
nomic strain on the program and limits success (D. P. Singh
et al., 2021). Spatial adjustment methods have been proposed
to alleviate the challenges of non-uniform field conditions.
These methods allow breeders to make more appropriate com-
parisons of entries to each other, as well as to checks in
yield plot testing. Spatial adjustments set up an effective and
efficient selection process in the plot testing stages. Spa-
tial adjustments are particularly applicable in unreplicated
trials such as early-stage yield testing of hybrids in cross-
pollinating crop species and for pure lines in progeny row (PR)
and preliminary yield trial (PYT) stages in self-pollinating
crops.

Reducing the size of the error associated with each geno-
type (i.e., pureline) gives breeders the ability to discriminate
between yield levels of competing genotypes for more accu-
rate selections, and therefore, several methods have been
proposed. Augmented designs with replicated checks (Fed-
erer, 1961) give some form of local control within a field,
giving the breeder a reasonable estimate of the trends that
unreplicated genotypes may be experiencing. Augmented
designs offer breeders the possibility of estimating the stan-
dard errors based on the replicated check performance. Check
plot methods can be used by placing checks throughout the
field so that a breeder can adjust for field trends based
on known checks and their relative performance (Kempton,
1984). An advantage of the check plot method is that there
is no limit to the number of lines used in the trial; on the
other hand, it requires a large number of experimental plots
to be allocated to the check plots (Kempton, 1984). The grid
method was introduced for a mass selection experiment in

investigated if using the soil features in a field could explain some of the variability
in the early stages of a breeding program and used machine learning techniques to
estimate the soil effects on observed yields. We found that by using the soil features
for spatial adjustments, we could increase the accuracy of selections and improve the
outcomes of decisions made by a breeder. This could have great impacts on increas-
ing the accuracy of selection of early generation breeding trials, resulting in better
lines being selected for yield, quality, and stress resistance traits, helping to make

agricultural production more resilient and improve genetic gain.

maize [Zea mays L.] (Gardner, 1961), where small grids of 40
plants across the field were set up and the top-yielding 10% of
plants in each grid were selected to minimize the spatial trends
within the field. Another popular method is the moving means
(MM) method (Richey, 1924), where the use of an MM coef-
ficient to adjust yields resulted in a significant decrease in the
error when estimating genotypic effects. More advanced spa-
tial modeling techniques have been developed based on the
two-dimensional auto-regressive model (Cullis & Gleeson,
1991) and expanded by Gilmour et al. (1997). These methods
have been used widely in breeding programs, for example, to
aid in multi-environment trial evaluations (Smith et al., 2001),
multi-trait selections (De Faveri et al., 2017), and genomic
selection (Oakey et al., 2016). Tensor product P-splines have
also been proposed as an alternative to the two-dimensional
auto-regressive model (Velazco et al., 2017; Verbyla et al.,
2018). These methods are simple to run, and an open-source R
package has been developed (Rodriguez-Alvarez et al., 2018)
making the barrier to entry for a breeding program low. These
spatial adjustment methods correct for field trends but do not
directly quantify the soil features for each plot. Instead of
directly quantifying soil variables and their effect on yield,
the spatial adjustment methods either model the yield trends
or reduce the area of the selection into smaller homogeneous
blocks. These methods reduce the standard error of the dif-
ference between estimated genotypic values that are being
evaluated and increase the precision in which yield differences
can be compared within breeding trials (Qiao et al., 2000).

A common axiom in plant breeding trials is that spatial
adjustments reduce the effects of soil heterogeneity, thereby
facilitating an unbiased comparison of plot values. While
there is a general acceptance of this notion, limited or no
information is available that directly quantifies the effects of
different soil characteristics and use these values to adjust
plot yields. Soil is an integral feature of all breeding testing
but is not typically utilized when addressing infield vari-
ability. While the literature is scant in this area, researchers
have recently included soil features in the breeding selec-
tion model, by using principal components to reduce the
dimensions of the soil features and directly add these features
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into the linear model (Cursi et al., 2021) to aid in increased
selection accuracy.

The utilization of soil features can provide an association
between genotype, soil, and yield opening up avenues for
improvement and utilization of spatial adjustments. Despite
the use of soil characterization in production fields (Bakhsh,
Jaynes et al., 2000; Bakhsh, Colvin et al., 2000; Dodd &
Mallarino, 2005; McGrath et al., 2013; Mallarino et al.,
1991; Sénchez T et al.,, 2011), they have not been uti-
lized in breeding trials due to the resolution needed for soil
maps, as well as the complexity of parsing out environ-
mental and genotypic variance within a model. Furthermore,
in breeding trials, the scale of experiments (no. of entries,
locations, years, etc.) necessitates machine learning (ML)
approaches to generate relationships and learn trends along
with improved interpretability.

ML is a powerful tool in plant science research, with wide-
ranging trait investigations such as biotic stress identification
and quantification (Ghosal et al., 2018; Kar et al., 2023; Naga-
subramanian et al., 2019, 2018, 2020, 2022; Rairdin et al.,
2022; Singh et al., 2016, 2021, 2018; Tetila et al., 2019),
organ detection (Falk, Jubery, O’Rourke et al., 2020; Ghosal
et al., 2019; Jubery et al., 2021; Miao et al., 2020; Riera et al.,
2021), microscopic objects (Akintayo et al., 2018; Fudickar
etal., 2021), abiotic stresses (Chiranjeevi et al., 2021; Dobbels
& Lorenz, 2019; Naik et al., 2017; Zhang et al., 2017), and
crop yield (Parmley, Nagasubramanian et al., 2019; Shook,
Gangopadhyay et al., 2021; Sagan et al., 2021). These ML
methods provide an opportunity to integrate multiple vari-
ables for spatial adjustment while parsing out the trends and
role of soil features on plot yield in tests. Among the extensive
diversity of methods in ML, “Extreme Gradient Boosting”
(XGBoost) (Chen & Guestrin, 2016) is well suited for the
spatial adjustment problem since it is a hierarchical ensemble
modeling tree structure that derives its outputs utilizing classi-
fication rules. XGBoost is scalable and gives accurate models,
allows for the utilization of multiple features in prediction, and
has been shown to be very useful in regression and classifica-
tion problems (Chen & Guestrin, 2016; Herrero-Huerta et al.,
2020). XGBoost, like other decision tree methods, is an algo-
rithm that can effectively use multiple variables included in a
dataset for prediction. Decision tree structures do not assume a
linear relationship between variables, or the predicted values,
which can help to predict nonlinear multivariate problems.
This structure allows for variables to have multiple weights
depending on the values of other variables. This is particu-
larly applicable to soil plant growth interactions, as it is known
that plant growth and development are dependent on mul-
tiple interacting soil features, weather, and genetics (Shook,
Gangopadhyay et al., 2021).

The motivation for the study was to create a paradigm shift
from the current spatial adjustments of yield plot data, pri-
marily made on the plot yield values of neighbors, to a method
that includes plot yield and soil features. To achieve our goals,

cropscience JEB

Core Ideas

* Spatial adjustments utilizing soil maps perform
better than traditional methods for spatial adjust-
ments of trials.

* Soil-based spatial adjustments can be used to better
understand the spatial variability in breeding trials.

* Site-specific machine learning models for spatial
adjustments perform better than large generalized
models.

digital soil maps and ML were leveraged to model the effect
of soil features on plot yield in a soybean breeding program.
XGBoost made it possible to adjust for the growing condi-
tions experienced by each genotype. Furthermore, we present
the use of Shapley values, which can be utilized by breeders
to integrate soil features into the breeding decision-making
process. Finally, we propose the usefulness of this method
to consciously select for nutrient deficiency tolerance in field
trials that experience abiotic stresses.

2 | MATERIALS AND METHODS

2.1 | Field experiments and data collection
Soybean [Glycine max (L.) Merr.] breeding trial plot data
were collected in three growing seasons (2019, 2020, and
2021). Plot yield data were from PRs (coded as A-test;
2019, 2020, 2021) and PYTs (coded as B-test; 2019, 2020,
2021). Germplasm was sourced from crosses made within
the breeding program; original material came from cross-
ing promising Plant Introductions from the USDA collection
(Oliveiraetal., 2010), as well as shared germplasm from other
public University breeding programs, received under material
transfer agreements.

This study defines a field as a unique test, year, and loca-
tion combination. A- and B-tests define the generation of the
progeny that are being tested. A-test lines are F5 lines derived
from a single plant selection at the F, generation and were
grown in progeny tests. The B-test consists of F lines that are
the selections from the A-test and are the first year of PYTs,
which are grown in three to five locations in unreplicated tests.
These two stages of testing were chosen because the number
of yield trial plots in the program is the largest and, there-
fore, more impacted by spatial variation. Since these lines
are grown in unreplicated tests, there is a need for accurate
selections, which can be achieved by minimizing spatial vari-
ation. To minimize inter-plot competition, each field consisted
of multiple experiments that grouped lines with similar crop
maturity, phenology, and genetic background (see Figure S1
for a visual representation of experiments in a field). Experi-
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ments were set up as single replication randomized complete
block designs within each field. Selection decisions were
made within each experiment within a field. A brief descrip-
tion of each field can be found in Table 1. Data were collected
from the central Iowa research locations, centered around
the Agricultural Engineering and Agronomy research farm
(Boone, IA). No border rows were used between plots. The
centers of plots in the same row were 1.52 m apart. Plot
lengths are recorded as the harvested length of each plot;
all fields had a 0.91-m alleyway between plots in each col-
umn giving a plot to plot center distance of 3.04 and 6.09 m
for plots in the same column for the A and B tests, respec-
tively. Plots were harvested with an ALMACO (Nevada, [A)
small plot combine, and yields were adjusted to 13% moisture
and converted to kilograms/hectare (kg/ha) for each harvested
plot. Across 3 years, 238 experiments were examined across
nine individual fields. Experiment sizes ranged from 50 to
370 plots with a mean of 183.0 plots per experiment. The A-
and B-test plot number means were 209.7 and 124.9 plots,
respectively. In these 238 experiments, 282 unique breeding
populations were assessed. Breeding population sizes ranged
from 1 to 263 genotypes with a mean size of 70.6. The
average population size in the A and B test was 133.9 and
42.3, respectively. The average number of genetically distinct
checks across all fields was ~10 and the average number of
times each were replicated in the field was ~46.

2.2 | Soil data collection

Soil data were collected on a 25-m grid pattern for each field
at a coring depth of 15cm and then sent to Midwest Labs
(Omaha, NE) for analysis. Soil maps were created from the
25-m grid samples to a resolution of 3x3 m grids for soil
nutrients and particle size fractions (Calcium [Ca], cation
exchange capacity [CEC], phosphorous [P1], soil pH [PH],
magnesium [MG], potassium [K], organic matter [OM], clay,
silt, and sand), using the Cubist ML algorithm (Khaledian &
Miller, 2020). Soil values were extracted for each plot using
Esri’s ArcGIS Python library (Redland, CA), arcpy, and Zonal
Statistics toolbox. Plot areas defined were aligned with the
plots described in Section 2.1. The extracted soil values for
each plot were then used to calculate mean soil values on a
per plot basis using a 3x3 grid of neighboring plots, which
is represented by Equation (1), where E,’c is the mean soil

feature value of the rth

row and ¢ column in each field,
n is the number of neighboring plots used to calculate the
mean soil feature, j is the row value of each neighboring plot
used to calculate the mean, and k is the column value of each
neighboring plot to calculate the mean. Er’c values had higher
correlation coefficients with individual plot yields than the

raw plot-level soil values resulting in all further analysis using

Listing of A-test (i.e., progeny row tests) and B-tests (i.e., preliminary yield trials) that were used in this study.

TABLE 1

Planting

Plot area density (100k
(m?)

Plot length

Row

Experiment

count
53
21

No. of

plots per check checks

78
31

Avg. no. of

No. of

Latitude Longitude plots

seeds/hectare)

346
346
346
346
346
346
346
346
346

(m)
2.13
5.18
2.13
2.13
2.13
5.18
2.13
2.13
5.18

spacing (m)

0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76
0.76

Plot rows

Year Test Location

2019 A

325
7.90
3.25
3.25
3.25
7.90
3.25
3.25
7.90

10
10

10,870

42.010N  93.780W
42.010N 93.778W
42.015N  93.768W
42.012N  93.788W
42.015N  93.792W
42.047N  93.739W
42.011N  93.778W
42.010N 93.781W
42.015N  93.788W

Marsden

3062

Marsden
AEA

2019 B

26
25

1458
3806
2920
3272
11,644

2020 A

19
13
24
54
16
30

11

Burkey

2020 A

10
12
12

33

Burkey_CH
CAD

2020 A

34
93

2020 B
2021

Marsden_East

A

Marsden_West

60
30

3479
3034

2021 A
2021

12

Burkey

B

Note: Tests in each year, location, geographical location, and plots details are listed.
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S, . values as input.

j=r+1 k=c+1

Se=1/nY Y s, (1)

j=r—1k=c-1

2.3 | Baseline spatial adjustments

2.3.1 | Moving means

Plot seed yields were adjusted using MM with a grid size of
5X5 plots and were calculated using the R package “mvn-
Grad” (Technow, 2015). This method excluded the plot of
interest when calculating the mean for each plot. MM for
each experiment were calculated separately. The MM method
makes an assumption that neighboring plots do not exhibit
interplot competition and that the nonrandom error observed
in a field is due to field environmental trends (Bos & Caligari,
2007). Breeders can reduce the interplot competition by sub-
dividing fields into smaller experiments that are grouped by
similar maturities and genetic backgrounds. The process for
calculating MM can be found in the mvnGrad documentation
(Technow, 2015). Results from the MM model from here on
will be referred to as ADJ_S5_MM. The first step is to calcu-
late the regression coefficient of MM on the observed yield
using Equation (2) (Technow, 2015):

Pi,obs =a+ bxi’ (2)
where x; is the mean seed yield of the plots surrounding the
i plot. P, . is the observed yield of the i plot. The adjusted
yield is then calculated using Equation (3) (Technow, 2015):
— b(x; = %), 3)

1

P’,adj = Pi,obs
where b was calculated using Equation (2), X is the average of
all of the moving means, and the adjusted phenotypic yield is

P, g5

2.3.2 | P-splines

P-splines are an alternative method to MM, commonly used
in spatial adjustments for field trials. The R package “statgen-
STA” (van Rossum et al., 2021) was used to correct for field
variations using P-splines as described in Rodriguez-Alvarez
et al. (2018). For this study, genotypes were treated as a ran-
dom factor. The design was specified as a row-column design,
which treats the row and column as random effects, and used
the “SpATS” engine. Results from the P-Spline model from
here on will be referred to as Spline. The P-spline method
attempts to model both the large-scale observed spatial trends

cropscience JEB

as well as the smaller deviations that can be missed when only
row and column data are modeled directly. The large scale
trends are modeled as polynomials, and the smaller trends
are the smoothed trends, which model the deviations from
the linear trends in Equation (4) (Rodriguez-Alvarez et al.,
2018):

fw,v)=1,0y+up, + vy +u=*vps+ f,w+ f,(v)

+ux h,(v)+v* h,(u)+ [, ,(40), @)

where f, is the intercept, f, is the linear trend along the row,
p, is the linear trend along the column, and f; is the linear
interaction between the row and column. f,(u) is the smooth
trend along the rows. f,(v) is the smooth trend along the
columns, u * h,(v) is the linear row by smooth interaction
along the columns, v * A, (u) is the linear column interaction
by the smooth interaction along the rows, and f,, ,(u, v) is the
smooth by smooth interaction.

2.4 | Soil-based adjustments

2.4.1 | Statistical learning

XGBoost training process requires tuning parameter coef-
ficients, usually denoted by 8. Among all the parameters,
the number of estimators, maximum depth, learning rate,
subsample size, and minimum child weights are commonly
tuned using a greedy search algorithm. Most XGBoost mod-
els are configured using a relatively shallow depth or a small
number of trees because of their sequential characteristic,
where each new tree corrects the errors made by previous
trees, quickly reaching a point of diminishing returns. Models
were trained using the tuning parameters as listed in Table S1,
with a regression with squared loss set as the objective loss
function. Tuning parameters for the XGBoost algorithm are
previously defined in detail (Chen & Guestrin, 2016). This
training structure works well for soil-based spatial adjust-
ments, because it is able to train models quickly and model
complex data with multiple interactions. Our model used 240
estimators and a depth of 9 for training. Model parameter
tuning was done using Sklearn grid search API (Buitinck
et al., 2013) with 10-fold cross-validation. Two methods were
compared for spatial adjustments using XGBoost. Model 1,
from here on referred to as XGB_Global, combined data
from all nine fields and attempted to make a generalized
model. Model 2, from here on referred to as XGB_Local, was
trained on each field individually to create a more specific
model for each field location. Models were also assessed
using Lin’s concordance correlation coefficient, which is a
measure of repeatability that is more robust than Pearson’s
correlation coefficient (Lin, 1989).
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2.5 | Model overview
Plant breeders routinely express yield as P = G + E, where
P is the observed phenotypic value of a line, for example,
seed yield. G is the genotypic value of the line, which can
be estimated when lines are replicated and grown in multiple
locations (Tabery, 2008). Last, E is the environmental effect
that breeders try to minimize, as it can confound the estimated
genetic value of a line. Historically, E has been a macro-scale
environment effect such as a single field, and micro-scale plot
level environmental effects have been reduced using various
spatial adjustment methods (Bernardo, 2002). Furthermore,
genotypic value can be better estimated by using pheno-
typic values of related lines. If the mean of the population is
included, the new equation is represented as P = G + E + pu,
where yu is the phenotypic mean of the population. In this
context, we define the population to consist of pure lines
from the same breeding family; that is, they have the same
pedigree. Our proposed method uses soil features to estimate
the value of E for each plot and to increase the correlation
between the adjusted phenotypic values and the estimated
genotypic values.

The first step was to collect the yield data for each plot in
a given field, which was in a row and column configuration
within each field. Each experiment has multiple lines that are
from the same or related populations, and the mean of each
population within each experiment was calculated and used as
the estimate for the population mean within the experiment.
Population statistics for each field can be found in Table S2.
Equation (5) represents the basis for the soil-based adjustment
methods. P, . ;  is the seed yield of the plot in the ™ row of
the ¢ column from the j population in the k™ experiment.
H; is the mean of all plots in the j™ population of the k™
experiment. &, . is the deviation from the population mean of
each plot. Checks are unique in this study because they are
the only lines that are replicated throughout each field. They
do not share known familial relationships with each other, as
they do not have a known common pedigree. u; ; for check
varieties was calculated by taking the mean seed yield from
each plot of that variety within a field.

P’-,C,j,k = Hjk + 5r,c )

0, also referred to as the ground truth, is partially a func-
tion of the soil feature values S, .. .S, . contains all of the
soil feature values, described in Section 2.2 (Ca, CEC, P1,
PH, MG, K, OM, clay, silt, and sand). XGBoost regression
was used to predict the deviation, 6;’0, from the population
mean based on the soil features of each plot. This model is
represented by Equation (6):

8re = S(S0)- ©)

The genotypic value is not modeled in Equation (6) because
for this work the focus is on approximating the microenvi-
ronment effect of each plot (E). The observed deviation with
the model data inputs should not capture the genotypic effect
of individual lines. When the genotypes are not replicated, a
better approximation of the genetic value of the lines should
be achieved by attributing some of the unexplained deviation
from the population mean to the environmental conditions
that the genotype is experiencing.

The last step estimates the adjusted phenotypic value of
each plot by taking the observed phenotypic value and sub-

a

tracting the estimated effect of the soil, 5,’(_,, from the observed

which is represented as pY

phenotypic value, P. ek

adj

A5k
in Equation (7). Prcj . Was used for further analysis and
comparison to other spatial adjustment techniques.

~

adi  _
Pr,c,j,k - Pr,c,j,k - 6r,c (7N

2.6 | Model interpretability

“SHAP” (SHapley Additive exPlanations) (Lundberg & Lee,
2017) was used to assist interpreting the results from XGBoost
models. SHAP uses traditional Shapley values from game the-
ory, and it has shown to be very successful in explaining the
output of any ML model (Shrikumar et al., 2017, Strumbelj
& Kononenko, 2014). Shapley values estimate the features’
importance in terms of their contribution to the outcome.

2.7 | Model performance for selection

Three evaluation metrics were used to assess the performance
of the different methods. The first metric was the relative
efficiency using the average standard error of the difference
(SED) between the check lines in each field. The efficiency
of different spatial adjustment methods was calculated using
Equation (8), where SEDvj;.q is the SED using no spatial
adjustments, and SED ,y; is the SED using one of the tested
spatial adjustment methods:

100 X SEDy;.q
REcpy = ————vicld 8
SED SED ®)

In the A-test, entries are not replicated due to seed limita-
tion and in the B-test, breeders prefer to test in more than one
location in an unreplicated manner; therefore, checks were
used to estimate the standard error of difference. Previous
works evaluating the efficiency of spatial and experimen-
tal designs in plant breeding trials have used this as a
method for the evaluation of different selection methods
(Gilmour et al., 1997; Magnussen, 1990; Qiao et al., 2000).
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As the standard error of the difference decreases, more of the
observed phenotypic yield variance can be attributed to the
genotypic value.

The second metric used to evaluate the models was a sim-
ilarity coefficient called the Czekanowski (CZ) coefficient,
also known as the Sorensen Dice coefficient. This coefficient
gives the percent of lines selected by both selection methods
at a given selection intensity. The Czekanowski coefficient
was calculated according to Qiao et al. (2000), where a is the
number of lines selected by both selection methods, b is the
number of lines selected only by model 1, and ¢ is the num-
ber of lines selected only by model 2. CZ is a ratio given by
Equation (9). If CZ has a value of 1, it would mean that both
methods selected the same lines; if CZ has a value of 0, it
would mean that there was no overlap in the lines that were
selected. For our purposes, model 1 used no spatial adjust-
ment, and model 2 used the adjusted phenotypic values from
one of the listed spatial adjustment methods:

2a

CZL=—"—.
2a+b+c

€))

The last metric is the Moran’s I statistic, a measure of
the spatial autocorrelation present within a user-defined grid
(Bivand & Wong, 2018). Our implementation uses a grid of
5 X 5 plots to define the plot neighbors given the row col-
umn field design of each test. Neighbor distances used relative
coordinates to determine plot neighbors, and plot widths and
lengths were considered to have a unit of 1. Plots that were
within a distance of 24/2 of a plot were considered neighbors.
All other plots were not considered to be neighbors. Moran’s
I interpretation is similar to a regular correlation coefficient
with values ranging from approximately -1 to 1. A value of
1 is a perfect spatial autocorrelation, and a value of -1 is a
negative spatial autocorrelation. The null hypothesis expected
values for the Moran’s I statistic are close to zero but are
slightly negative. p-Values are also reported with each statis-
tic to assist in the interpretation of the significance of the
correlation. Moran’s I statistics were calculated in R version
4.0.3 with the package “spdep” (Bivand et al., 2015) and the
Moran.test function.

3 | RESULTS

3.1 | Genetic variation

Population mean seed yields ranged from 74.0 to 6032.3 kg/ha
with a mean yield of 4250.2 kg/ha. The average population
seed yields for the A and B tests were 4391.4 and 3624.8
kg/ha, respectively. While B-tests have one additional gener-
ation of selection in the previous year, the lower seed yield
is likely due to the shorter plot size in the A-test (2.3 m)
compared to the B-test (5.18 m) giving a larger plot edge

Crop Science 3141

effect (Stelling et al., 1990). Table S2 gives a more detailed
summary of the yield data across all nine fields.

3.2 | Soil variability

Soil core samples were taken for each of the nine fields with
10 soil features measured (see the Materials and Methods sec-
tion). Organic matter ranged from 1.1% to 7.4% with a mean of
3.9%. PH ranged from 3.9 to 8.5 with a mean of 6.1. Clay had
arange from 0.1% to 33.9% with a mean of 27.4%. Sand had
a range from 12.2% to 42.7% with a mean of 30.4%. Silt had
arange from 18.9% to 50.5% with a mean of 41.6%. Calcium
parts per million (ppm) ranged from 507.1 to 6360.5 with a
mean of 2774.9. CEC (meq/100 g soil) ranged from 9.8 to
36.5 with a mean of 21.1. Potassium (ppm) had a range from
85.4 t0 286.1 with a mean of 169.1. Magnesium (ppm) ranged
from 107.3 to 768.9 with a mean of 399.7. Phosphorous (ppm)
had a range from 5.5 to 73.5 with a mean of 21.7. Table S3
shows the range of each soil parameter for each field to bet-
ter represent the variation that was present across locations. It
should be noted that due to a small-sized 2020_A_AEA field
test, there was a lack of variability in the samples taken in the
clay content, and this value was constant for that test.

3.3 | XGBoost and model interpretability
XGB_Local model’s predictions, 5;’6, compared to O.c» and
the concordance correlation coefficient are shown in Figure 1.
These predictions are on the centered variables, as described
in Equation (6). The Concordance Correlation Coefficient
between the ground truth and predicted values ranged from
0.71 to 0.86. Centered values ranged from -81.5 to 48.8. When
looking at the two stages of the breeding program, that is, PR
A-test and PYT B-test, 6, . values in A-tests ranged from -
81.5 to 48.8 and in B-tests ranged from -47.7 to 32.5. This
demonstrates that the more advanced stage of testing has less
phenotypic variability. Predicted values, which were obtained
from XGB_Local model and reflect estimated effects of soil
features on seed yield, ranged from -62.7 to 36.3. These values
represent .S ; . as defined in Equation (6). The A-test predicted
values ranged from -62.7 to 36.3 and the B-test predicted
values ranged from -40.2 to 21.6.

Figure 2 shows results as an example for the
2021_A_Marsden_East test. 2021_A_Marsden_East test
was chosen because it contained the most plots of all
tests, but the figures for the other tests can be found in
Figures S2-S4. In feature selection, correlation provides
a measure of independence between input variables; the
higher the correlation, the greater the linear dependency. The
heatmap plot in Figure 2a shows the correlation between the
features, and the dendrogram on top provides a clustering
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This figure shows the XGB_Local Ground truth () versus prediction (") scatter plots with their respective concordance

correlation coefficient. These charts show how well the model learned the ground truth data distribution. The red line shows a 1:1 relationship

between predicted and observed values.

mechanism of these features according to their correlation
values. The inverse “u” shape-like links group elements
into clusters; the lower the “u” shape is in the figure, the
higher the correlation of those elements is in relation to the
others. The MM_OM and MM_CEC correlation is 0.9, the
highest between elements, and is clustered in the dendrogram
first. Then, the MM_OM MM_CEC cluster is merged with

MM_CA to form another cluster. All features were kept to

explore their outcomes using Shapley values. As described in
Equation (1), the soil features used for analysis were a result
of averaging neighboring plot soil feature values, variables
with a “MM?” preceding the soil feature indicating the moving
mean average.

Figure 2b provides a summary of the features of importance
for the model. The higher the value on the bars in this plot, the
greater the information gained by the model when performing
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(d) Shapley values waterfall plot

FIGURE 2 XGBoost (Extreme Gradient Boosting) model explainability plots using data from 2021 Marsden East Test A. The heatmap (a)

shows the correlation between the features used to train the XGBoost model and their respective clustering hierarchy by the dendrogram. The feature
importance (b) illustrates a measure of the prediction power of each feature for the model with this dataset. Each dot in the Shapley value Summary
plot (c) represents a single plot. Its colors are normalized per feature using its maximum and minimum, respectively. The summary plot helps
illustrate the relationship between the individual feature value range and their impact over the predicted yield. The Shapley values waterfall plots (d)
provide an insight into how feature values contribute to the final expected value in two plots (Identities “TA2102”) at different locations in the field
where the feature values are substantially different. Ca, calcium; CEC, cation exchange capacity; P1, phosphorous; PH, soil pH; MG, magnesium; K,
potassium; OM, organic matter.
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the tree branch split during training. In the 2021 Marsden A
test East, MM_CEC provided the most significant information
gain, and the other top four driving prediction features were
MM_P1, MM_MG, and MM_PH.

To aid in interpreting results, we investigated the use of
Shapley values. Figure 2c describes how each plot reacted
to the input features. Each dot is a plot, and its color rep-
resents the plot feature value relative to the feature’s range
scale, where red is high and blue is low. The accumulation
of the dots across the x-axis characterizes the global behavior
of the features, similar to a histogram. For the 2021 Marsden
A test East, we see that high values of MM_CEC, MM_PI,
and MM_MG tend to have positive Shapley values. However,
it is not conclusive for the other soil features, where we see
high feature values on both tails. For our model, we cannot
draw any causal inference conclusions because we suspect the
existence of many confounding factors.

The waterfall plots in Figure 2d describe the reaction of the
the check genotype (IA2102) compared to the soil composi-
tion in distinct locations of the field used on the 2021 Marsden
A test East. A check variety was used so that the comparison
is only looking at the soil features and not including additional
genetic differences between two lines. The model’s mean out-
put prediction for the entire field is 0.018. If we start from the
mean predicted value of 0.018 and add the respective Shapley
values, we obtain the model prediction of 4.275 for the right
image, which is defined as the plot in column 56 and row 26.
In the left image, which is defined as the plot in column 77
and row 19, we obtain a model prediction of -3.602. These
plots were shown to illustrate how Shapley values could be
used to understand model weights for soil features in specific
plots. The model predicted values represent the relative qual-
ity of the growing conditions for each individual plot and the
expected contribution of each soil feature, as determined by
the model.

3.4 | Spatial adjustments

Mean relative efficiencies were calculated for each model,
with mean values of 115.5%, 134.7%, 168.1%, and 181.0%
across all fields for ADJ_5_MM, XGB_Global, Spline, and
XGB_Local. Figure 3 shows the distribution of the SED
across all locations and methods. No spatial adjustments was
the base model to which all models were compared. The
models are ranked from lowest to highest relative efficiency,
where the MM method has the lowest relative efficiency and
XGB_Local has the highest average relative efficiency across
all nine fields that were tested. All of the models presented
have a higher relative efficiency than the unadjusted yields.
This indicates that XGBoost using plot-level soil fertility vari-
ables can be used to increase the precision of the genotypic
estimates of the checks. These results infer that the estimated

genotypic values for unreplicated lines will be more precise as
well. Increasing the precision of the estimates of the genetic
values of a line will lead to higher selection accuracy and
increases in genetic gain.

Similarity coefficients were calculated at three selection
intensities (0.1, 0.3, and 0.4) and the differences in the
selected lines examined based on the method used for spa-
tial adjustments. All models were compared to the unadjusted
yield. Figure 4 shows the variation in the CZ value across
different selection intensities and the methods of spatial
adjustment. The x-axis is the adjustment method, and the y-
axis is the CZ coefficient. The median CZ across all three
selection intensities was 0.82, 0.74, 0.88, and 0.70 for MM,
Spline, XGB_Global, and XGB_Local, respectively. To put
this in perspective, 18% of the lines that were selected by the
MM method were dissimilar from no-adjustment while 30%
of the lines that were selected by the XGB_Local model were
dissimilar from no-adjustment. These results show that utiliz-
ing spatial adjustments results in differences in the lines that
are selected for advancement within a breeding program. The
lowest median CZ value observed across all selection intensi-
ties was the XGB_Local model, meaning that the least amount
of overlap between selected lines with no spatial adjustment
would be achieved by using this method. However, it should
be clarified that spatial adjustments are only needed when
there is spatial autocorrelation in yield present within the
field. In the absence of yield spatial autocorrelation, the use of
unadjusted plot mean in statistical analysis will give the same
outcome as spatial adjusted means.

Within breeding trials where lines have similar genetic
backgrounds and maturities, it can be expected that there will
be similar performance among lines, and because the lines
within a trial are randomized it is highly unlikely that there
should be evidence of spatial autocorrelation if the environ-
mental effect has been accounted for. The reduction in the
spatial trends observed in trials is a good indication that spa-
tial adjustments were effective at removing non-random field
effects. Figure 5 shows an example of an experiment before
and after the yield has been adjusted using the XGB_Local
method. The Moran’s I is reduced from 0.58 to 0.09

Figure 6 shows the range of Moran’s I values across all
238 experiments that were tested. The first two methods,
ADJ_5_MM and Spline, are used by breeders for selection
decision making. The next two methods are variations of the
XGBoost method that used soil data instead of neighbor-
based adjustments. The last column labeled as Yield is the
Moran’s I values calculated based on no spatial adjustment
and serves as the baseline for all of the comparisons that are
made. All methods reduce the spatial autocorrelation within
trials, with median Moran’s I values of -0.04, -0.03, 0.04,
0.01, and 0.13 for MM, Spline, XGB_Global, XGB_Local,
and Yield spatial adjustment methods, respectively. Figure 6
shows the differing levels of spatial correlation across fields
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FIGURE 4 Czekanowski (CZ) box plots for the different methods. This graph shows the similarity in which lines would be selected between

the different models using selection intensities of 0.1, 0.3, and 0.4, in comparison to no spatial adjustment. The XGB_Global model exhibited the

highest CZ coefficient while XGB_Local the lowest. The higher the CZ is, the greater the selection overlapping between the models and the

selections made based on no spatial adjustment.

and provides strong evidence that both traditional neighbor-
based adjustments and soil-based adjustments reduced the
overall Moran’s I statistic in the majority of trials. It should
be noted that the XGB_Local method had a median Moran’s
I statistic value (0.01) that was closest to 0 compared to all
other methods. All methods were statistically different at an
alpha of 0.05 based on the least significant difference (LSD).

4 | DISCUSSION

Directly modeling the effect of soil on a plot level basis
has not been done for plant breeding field trials. The rea-

son for this is that the labor and cost required to collect
these types of data are cost prohibitive. As newer technolo-
gies arise from the combination of remote sensing and ML,
this type of data can be obtained at a much lower cost than
previously possible (Ferhatoglu & Miller, 2022; Khaledian
& Miller, 2020; Minasny et al., 2018; Minasny & McBrat-
ney, 2016). Traditional spatial adjustments in field trials have
focused on reducing the effect of environmental trends that
are evident in most large scale breeding trials. Removing or
accounting for the environmental effect of a plot will lead to
more accurate selection and an increase in genetic gain for
each breeding program (Hazel & Lush, 1942; Krause et al.,
2023; Rutkoski, 2019). Soil-based adjustments give breeders
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FIGURE 6 This figure shows the variation of the Moran’s I
statistic that was calculated for each experiment. The closer the value is
to zero the better evidence there is to suggest that there is a minimal
field trend. Letters above each boxplot shows the significant groups
differences based on the least significant difference (LSD) using an
alpha of 0.05.

additional tools when optimizing for selection of multi-
ple traits (Akdemir et al., 2019), such as yield, and biotic
stress-induced nutrient deficiencies.

Soil fertility recommendations for soybean production in
the Midwest have primarily been focused on P, K, and pH.
Optimal recommended P level is to target > 16 ppm, opti-

This figure shows the observed yield for both the unadjusted and adjusted (XGB_Local) yield in an experiment. The Moran’s I for

mal K levels are recommended to be > 161 ppm (Mallarino
& Sawyer, 2013), and optimal pH range is between 6.5 and
7.5 (McGrath et al., 2013). Based on these recommendations,
three of the nine fields had an average P level that was below
optimum, seven fields had a mean soil pH outside of the
optimal zone, and four fields had a mean K level below the
optimum. It should be noted that these recommendations are
not based on maximizing yield but based on maximizing prof-
itability. Other factors such as CEC have been reported to have
an effect on soil nutrient availability and its interactions with
plant growth and development (Brooker et al., 2017). These
soil nutrients have well-established univariate effects on soy-
bean growth and development (Dodd & Mallarino, 2005;
Mallarino et al., 1991), but when they are combined within
multiple interacting complex systems, it becomes difficult to
quantify the effect of any individual factor. Previous studies
have looked at the effects of multiple soil factors and their
effects on predicting yield using Random Forest in produc-
tion fields and found that some of the top-ranking predictor
variables were P, K, OM, and pH (Smidt et al., 2016). Our
findings show that these factors had an effect on the quality
of the growing conditions of each plot. While feature impor-
tance measurements are useful for determining how often a
variable is used to split a decision tree, it does not provide
any additional insight into the effect that a variable has on a
modeled outcome.

The three metrics we used to evaluate the different selection
methods examine the utility of different spatial adjustment
methods. Neighbor-based adjustments make an assumption
that neighboring genotypes should be phenologically similar
to reduce the effects of interplot competition (Bos & Caligari,
2007). Neighbor-based adjustments are based on linear mod-
els, which follow the assumption that the samples come from
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the same distribution. If this assumption is no longer valid, it
can result in poor performance of spatial adjustment methods.
This is why experiments usually consist of similar matu-
rity groups and genetic backgrounds, which helps to reduce
interplot competition as genotypes invariably have similar
phenological/architectural traits. The XGB_Local model had
the best metrics for reducing the spatial autocorrelation for
seed yield within tests, the greatest increase in the mean
relative efficiency, and also had the lowest median CZ coef-
ficient across all tests and selection thresholds. For caution,
it is important to clarify that dissimilar selection decisions
stemming from unadjusted or any of the spatial adjustment
methods require further replicated field trials in the follow-
ing year to confirm the accuracy of the selection of different
methods. Since we used an active breeding pipeline for this
research, which used MM in the A-test in the previous year,
we do not have a completely independent set to compare the
efficiency of selection across methods. The CZ coefficient
serves as a way to showcase that using this method results in
different varieties being selected and advanced. Using a more
complex methodology for selection decision-making will not
be adopted by breeders if the outcomes are the same or highly
similar to a simpler model. The advantage of using soil fea-
tures with XGBoost is that the model is based on the feature
space of each field whereas neighbor-based adjustments uti-
lize only the location space of each dataset. Utilizing the
feature space becomes more important when breeders want
to grow dissimilar genotypes in the same test. This happens
because the nearest neighbor methods have a proclivity for
better estimates for similar phenotypes. The other advantage
of XGBoost is the interpretability of the adjustments giving
increased confidence in breeders’ decision-making.

The overall results suggest that using a locally trained
model using the proposed methodology can increase the effi-
ciency of selection within the breeding program. Interestingly,
the local model consistently performed better than a global
model for applications of spatial adjustments within a breed-
ing program. We hypothesize that this is due to the variation
in environments and that the local models can pick up on
environment-specific factors. While the global model was
generalized across fields, the non-generalizable models were
effective because they were able to determine the local field
effects and interactions. The global model became a statis-
tical average of all models and removed the sensitivity that
was obtained in the local model that was refined for each
individual field.

There are several avenues for the integration of ML-based
spatial adjustment models in other on-going areas of research
in crop science. For example, crop modeling has been shown
to be an effective tool for parsing out the effects of genotype,
environment, and management for crop production (Ojeda
et al., 2022). The fusion of better environmental data and
increased modeling capabilities, along with high throughput

phenotyping (HTP) methods for genotype specific calibra-
tions, can be used by breeders to make selections for both
current and future breeding environments (Cooper et al.,
2021; Chattopadhyay et al., 2023; Gupta & Singh, 2023;
Krause et al., 2022). High-resolution soil maps and spatial
adjustments can be invaluable for these modeling projects,
and it has been shown that spatial adjustments can be use-
ful for increasing genomic prediction model accuracies (Lado
et al., 2013; Mao et al., 2020). Comprehensive weather and
genetics data have been used to predict complex phenotypic
traits (Li et al., 2018; Shook, Gangopadhyay et al., 2021;
Shook, Lourenco et al., 2021) and integration of soil maps
and interpretable spatial adjustments can improve the explain-
ability of genotype response. These advantages extend to the
study of component traits in seed yield and other physio-
logical end-trait predictions (Chiozza et al., 2021; Moreira
et al., 2019; Riera et al., 2021; Xavier et al., 2017), including
ML-based predictions and prescriptive breeding approaches
(Parmley, Higgins et al., 2019; Parmley, Nagasubramanian
et al., 2019). The integration of explainability features can
also lead to an enhanced understanding and usage of 3D based
approaches for yield improvement (Young et al., 2023).

Soil mapping and interpretable spatial adjustments could be
useful in studying abiotic and biotic stress responses, particu-
larly in conjunction with HTP and ML (Guo et al., 2021; Herr
et al., 2023; Reynolds et al., 2020; A. K. Singh et al., 2021).
Using digital soil maps to test varieties in the field may allow
breeders to have the benefit of exploiting the levels of nutrient
stress encountered by each variety (Byron & Lambert, 1983).
For example, in a large test, breeders can utilize the soil map
and Shapley values to demarcate regions that have a specific
nutrient stress. This essentially leads to selection in this sub-
region for nutrient stress response, providing an opportunistic
selection outcome. Similarly, breeders can select for disease
tolerance in conjunction with soil features. Additionally, it
enhances the value of field testing of each plot because we
can better and strategically utilize soil variables without set-
ting up large specialized nurseries. However, it is paramount
that we realize that opportunistic selection does not change the
value of specialized nurseries, which are essential for breed-
ing for stress tolerance (D. P. Singh et al., 2021). Furthermore,
advances in root trait studies (Carley et al., 2022; Falk, Jubery,
O’Rourke et al., 2020; Falk, Jubery, Mirnezami et al., 2020;
Jubery et al., 2021; Lynch & Brown, 2001) can be comple-
mented with the use of soil maps and spatial adjustments for
a more holistic interpretation of plant response accounting for
both above- and below-ground traits.

There are four main avenues to further improve this work.
(a) The setup of this experiment does not allow us to make
causal inferences about the true effect of various soil param-
eters, but it does open the door for future work where
researchers can start to investigate nutrient use efficiency
for different genotypes (Baligar et al., 2001), and also the
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complex interactions of soil, genotypes, weather, and manage-
ment for optimal plant growth and development. (b) Future
work can investigate the use of soil, weather, genotype, and
remote sensing data to develop a generalized model for yield
prediction. We controlled for variations in genetic background
by centering populations around their mean values, but more
work looking into additional crops should be done to deter-
mine the effectiveness of this methodology. More recent work
that studied the effect of including genetic relationships in
spatial adjustment methods has shown that including SNP
and pedigree information can help to improve spatial adjust-
ments; however, this was based on simulated data (Borges da
Silva et al., 2021). As breeders continue to have more tools
at their disposal, modeling the genetic and environmental fac-
tors could help to make more informed selections. This can
remove non-genetic effects when evaluating lines and also
start to investigate the genetic components that affect nutrient
use efficiency and help to create more prescriptive cultivars
across regions (Parmley, Higgins et al., 2019). (c¢) The analy-
sis methods presented in our study were not used to compare
performance in the following years, to see how different selec-
tion methods performed. Future work should investigate the
repeatability of methods across years and locations. (d) Vari-
able soil fertility was observed across all testing sites, but the
locations that were tested are generally considered to be high-
yielding environments. Future work investigating the utility
of soil mapping in lower productive soil is needed to see the
utility of this method in a wider range of environments.

S | CONCLUSION AND FUTURE WORK

We demonstrate the usefulness of spatial adjustment models
to improve the selection efficiency in plant breeding programs
by removing environmental trends that can bias selection
decision-making. While spatial adjustments do not give any
advantage over unadjusted plot seed yield-based analysis
when no field variation exists, such a scenario is extremely
rare. Therefore, unreplicated trials will benefit from the use
of spatial adjustment models. In this paper, we demonstrate
the usefulness of an ML method for spatial adjustment in plot
experiments. This method models soil fertility trends within
a field and allows breeders to increase their knowledge about
the quality of the growing conditions of each plot within a
field trial. Compared to unadjusted, MM, and Spline methods,
the XGB_Local model had the greatest increase in the mean
relative efficiency, the lowest median CZ coefficient across all
tests and selection thresholds, and showed a consistent abil-
ity to reduce field gradient effects on the yield of plots. The
XGBoost method we demonstrate is based on soil features,
which becomes more important when breeders want to grow
genetically diverse and phenologically dissimilar genotypes
in the same test where the soil map indicates variability in
nutrients, soil texture properties, pH, CEC, and OM. XGBoost

provides interpretability of the adjustments that can increase
breeders’ confidence in the application of spatial adjustment
methods. Additionally, soil-based adjustments provide oppor-
tunities to select for genotypes that respond to soil features,
for example, nutrient deficiency response. As crop breeding
and production innovations continue to bring in and integrate
advanced data analytics and computer science approaches,
for example, cyber-agricultural systems (Singh et al., 2024;
Sarkar et al.,, 2023), we envision crop improvement will
effectively utilize plant production variables, including soil
features, for variety development.
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