

pubs.acs.org/joc Article

A Cascade Synthesis of Indoles

Assia Chebieb and Jin Kun Cha*

Cite This: https://doi.org/10.1021/acs.joc.4c01190

ACCESS I

Metrics & More

Article Recommendations

Supporting Information

ABSTRACT: We report herein an expedient method for the regioselective synthesis of indoles from o-haloanilines and α -ketol-derived N-tosylhydrazones. This two-step, modular synthesis of N-H indoles can be carried out conveniently without purification of intermediates.

$$X = I, Br$$

$$X = I, Br$$

$$Et_3N;$$

$$Pd(OAc)_2$$

$$R^1$$

$$R$$

INTRODUCTION

The indole nucleus is among the most frequently encountered heterocycles in natural products. There is a continuing interest in the development of new synthetic methods for functionalized indoles. The union of two readily available fragments is an effective strategy to construct the indole skeleton. Of burgeoning interest are inherently advantageous cascade reactions that allow indole synthesis in a single operation from simple starting materials. We recently described indole synthesis by the sequential implementation of Pd-catalyzed cross-coupling of o-haloanilines with N-tosylhydrazones and oxidative cyclization of the resulting 2-alkenylanilines (Scheme 1A). We report a variant for the convenient construction of mono- and disubstituted indoles with predetermined regiochemistry (Scheme 1B). This method features an intra-

Scheme 1. Sequential and Tandem Approaches to Indoles

(A) Previous Work - a sequential approach to indoles

(B) This Work – a tandem approach to indoles

$$R^{1}$$

$$X = \text{TshNN}$$

$$+$$

$$AcO$$

$$R^{2}$$

$$X = \text{Br. I}$$

$$R^{1}$$

$$Pd(OAc)_{2}$$

$$R^{1}$$

$$R^{2}$$

molecular Barluenga—Valdés cross-coupling reaction, which, to our knowledge, has not been reported previously. A highlight is the regiochemical outcome of our indole syntheses that is complementary to the venerable Fischer indole synthesis and related variants with respect to the starting keto substrates, offering greater flexibility in synthetic planning.⁴ Direct preparation of *N*-H indoles with no *N*-protecting group is also advantageous.

■ RESULTS AND DISCUSSION

Our previously reported synthesis of indoles proceeded in good overall yields.3 Clean regioselectivity was observed in favor of the 2-alkenylanilines at the less substituted α -carbon (e.g., a methylene or methyl position in preference to the methine), when the starting N-tosylhydrazones are substituted at the α position. There was a clear limitation with unsymmetrical N-tosylhydrazones having no alpha-substituents, which proceeded with low regioselectivity. A solution was found in the use of an α -siloxy tosylhydrazone to secure regioselective formation of 2-alkenylanilines by the Barluenga-Valdés cross-coupling reaction with o-bromoaniline (Scheme 1A). The corresponding α -acyloxy substrate was projected to display a new reaction manifold with complete regiocontrol (Scheme 1B). α -Acetoxy-N-tosylhydrazone 1 (prepared from the known acetate of propioin) and o-bromoaniline (2) were subjected to the Barluenga reaction under Houpis-Chen's modified conditions [Pd(OAc)₂, tBu₂MeP·HBF₄, and K₂CO₃ in DMA].6a The desired indole 3 was obtained in 48% yield, together with 2-(4-methylphenyl)aniline (19%):3,6b the preliminary (unoptimized) result gave a modest yield, in part

Received: May 14, 2024 **Revised:** June 12, 2024 **Accepted:** June 20, 2024

due to the known formation of the latter side-product. However, the formation of 3 as a single regioisomer was notable (Scheme 2). Tosylhydrazone 1 was chosen as an initial

Scheme 2. A Cascade Reaction Mechanism

substrate to shed light on the mechanistic pathways. Formation of 3 as a single regioisomer was in accord with the intermediacy of sulfonylazoalkene 4 (triggered by 1,4-elimination of acetate), followed by the aza-Michael reaction of aniline 2 and cyclization $(5 \rightarrow 6 \rightarrow 3)$.

1,4-Elimination reactions of N-tosylhydrazones bearing a potential nucleofuge, such as halides or epoxides, at the α -carbon were well-known. In addition to the venerable Eschenmoser fragmentation, their useful synthetic applications involved conjugate addition reactions of carbon nucleophiles (e.g., cuprates) to the resulting N-sulfonyl azoalkenes and Diels—Alder reactions. In marked contrast, only a handful of examples involving an acyloxy group as a leaving group were documented under somewhat harsh conditions (thermally or with base), along with thermal decomposition to alkynes or allenes. Additionally, 1,4-elimination of α -acyloxy tosylhydrazones was not used to trigger a tandem reaction sequence.

In support of the initial 1,4-elimination reaction, the trapping product 5 was obtained cleanly in 90% yield by the action of triethylamine (which was superior to K_2CO_3) as a base at 50 °C. When 5 was then subjected to Houpis—Chen's conditions, the indole formation, an intramolecular Barluenga—Valdés reaction, proceeded cleanly in 81% yield. The indole 3 was also synthesized conveniently without the purification of intermediates in a comparable 70% yield.

This cascade synthesis of indoles was validated by a set of examples, in which the yield for each step of the two-step tandem sequence was determined to ascertain its efficiency (Scheme 3). Indoles 9a-c were prepared in good yields from α -acetoxy tosylhydrazones 8a-c and σ -bromoaniline (2) under the aforementioned conditions. Similarly, the coupling of 8c-e and σ -iodoaniline (7) (see below) also proceeded cleanly. As was the case with the synthesis of 3, comparable yields were obtained when the intermediates were not purified (e.g., 80% and 82% for 9a and 9b, respectively).

However, it was surprising that 8f failed to afford 9f; instead, ketone 11 was isolated in a nearly quantitative yield (Scheme 4). Also unanticipated was the exclusive formation of 12 with trace amounts of 9g from 8g: the Barluenga reaction pathway was surprisingly slower than the Bamford—Stevens-type

Scheme 3. Additional Indole Syntheses

Scheme 4. Comparison of o-Bromoaniline and o-Iodoaniline

8f-h +
$$\begin{pmatrix} X \\ NH_2 \end{pmatrix}$$
 (1) Et₃N (2) Pd(0), base see Scheme 3 $\begin{pmatrix} R^3 \\ NH_2 \end{pmatrix}$ $\begin{pmatrix} R^3 \\ NH_2 \end{pmatrix}$ and byproducts 11–13

SM	indole	yields (%) step (1)	yields (%) indole + byproduct
8f	2	88	9f (~0) + 11 (100)
8g	2	91	9g (~0) + 12 (100)
8h	2	91	9h (~50) + 13 (~50)
8f	7	88	9f (85) + 11 (0)
8g	7	88	9g (86) + 12 (0)
8h	7	94	9h (90) + 13 (0)
8f: R ² = Ph, R ³ = CH ₂ Ph 8g: R ² = (CH ₂) ₂ Ph, R ³ = i -Pr 8h: R ² = (CH ₂) ₅ CH ₃ , R ³ = i -Pr OAc 8f-h			
8g	& 8h +	2 12: R ² = (C 13: R ² = (C	

reaction. Similarly, the corresponding reaction of 8h was plagued by the formation of a \sim 1:1 mixture of 9h and 13. ¹⁵ It was gratifying that an effective solution to the unforeseen sidereaction was found in the use of o-iodoaniline (7), where faster oxidative addition enabled the preparation of 9f from 8f in 85% yield. When 7 was utilized in place of 2, clean formation of 9g and 9h was also observed in good yields.

Adaptation of the identical procedure also afforded tri- and tetracyclic indoles 15–18 smoothly (Scheme 5). These polycyclic indoles were synthesized in support of the projected

total synthesis studies toward structurally complex natural products. 16

Scheme 5. Synthesis of Tri- and Tetracyclic Indoles

Frequent applications of the Barluenga reaction in the preparation of various olefins and heterocycles notwithstanding, only a few computational reports have appeared. To gain mechanistic insight into the hitherto unknown energetics of the key migratory insertion and rate-determining steps, the competition experiments of the diazo intermediate (from base-induced decomposition of an *N*-tosylhydrazone) between its subsequent reaction with the presumed arylpalladium intermediate and the competing 1,3-dipolar cycloaddition to the tethered olefin were carried out (Scheme 6). *N*-Tosylhydra-

Scheme 6. Competition Experiments with 19a,b and 22

zones 19a,b (n=1 and 2) derived from the corresponding aldehydes afforded indoles 21a,b, via anilines 20a,b, in excellent yields under standard conditions: as indicated with the red arrow in Ia,b, the reaction of the diazo group with the arylpalladium complex (from oxidative addition), Ia,b \rightarrow IIa,b, proceeded cleanly with no 1,3-dipolar cycloadduct. Additionally, the intramolecular nature of the second step (Barluenga reaction) allowed determining the stereochemical

outcome of $\text{IIa,b} \to \text{IIIa,b}$, since the latter must be capable of syn β -H elimination leading to the indole products. Similarly, indole 23 was obtained in a comparable yield from 22 having the methyl group $(R^1 = \text{Me})$.

Interestingly, the corresponding tosylhydrazone 24 possessing the phenyl moiety (R^1 = Ph vs Me or H in Scheme 6) afforded no indole product (Scheme 7). The Barluenga

Scheme 7. Competition Experiments with 24

reaction pathway of the diazo intermediate **V** was completely outcompeted by the diazo 1,3-dipolar cycloaddition to furnish a mixture of **25** and **26** in excellent yield. This result was attributed to the phenyl group impeding the key reaction step of **V** between the diazo group and the arylpalladium intermediate. In a control experiment with **27** lacking the butenyl side-chain, clean (81%) formation of indole **28** was observed, supporting the indicated stereochemistry of the presumed alkylpalladium intermediate **VI** to set the stage for the final syn β -H elimination step.

Taken together, these competition experiments corroborate the premise that the reaction between the diazo intermediate and the arylpalladium complex (from oxidative addition) is the rate-determining step in the Barluenga reaction and that the oxidative addition step is reversible ($IV \rightleftarrows V$) with V being the catalyst resting state.

CONCLUSIONS

In conclusion, we have developed a convenient synthesis of indoles from o-haloanilines and α -acyloxy-N-tosylhydrazones by the sequential orchestration of the base-induced 1,4-elimination, the aza-Michael reaction, and the intramolecular Pd-catalyzed cross-coupling reaction. This cascade variant can be carried out in good to excellent yields without isolating reaction intermediates. Advantages over our previous synthesis (involving the Barluenga reaction and subsequent PIFA

oxidation)³ are the predetermined regiochemistry, especially regarding unsymmetrical *N*-tosylhydrazone substrates having no alpha-substituents (e.g., having two different methylene groups); and the absence of the 2-(4-methylphenyl)aniline side-product derived from the toluenesulfonyl fragment, obviating the use of the nitrobenzenesulfonyl hydrazones. Both synthetic methods utilize the identical ketone starting materials (as the corresponding *N*-tosylhydrazones), which are regioisomers of those required for the Fischer indole synthesis and its variants. Finally, the intramolecular nature of the Pdcatalyzed cross-coupling (Barluenga) reaction is exploited to probe the hitherto unknown stereochemical outcome of the widely accepted alkylpalladium intermediates.

■ EXPERIMENTAL SECTION

General. Unless otherwise noted, reagents were obtained from commercial sources and were used without further purification. All glassware, syringes, needles, and magnetic stirring bars used in moisture-sensitive reactions were oven-dried and stored in desiccators prior to use. All moisture- or oxygen-sensitive reactions were conducted under an atmosphere of argon. Upon workup, solvents were evaporated by using a rotary evaporator. All solvents were purified prior to use. Ether and tetrahydrofuran were dried through alumina columns.

NMR spectra were measured on commercially available spectrometers (¹H at 400 and ¹³C at 100 MHz) in CDCl₃ unless stated otherwise. Low- and high-resolution mass spectra were measured by the GC–MS and QTof ionization methods, respectively.

Analytical thin layer chromatography (TLC) was performed by using Merck 60 F254 glass plates precoated with a 0.25 mm thickness of silica gel. TLC plates were visualized with UV light (254 nm) and phosphomolybdic acid, anisaldehyde, $\rm I_2$, or ninhydrin staining solutions. Column chromatography was performed on Kiesel gel 60 (70–230 mesh) silica gel. Unless otherwise noted, all compounds purified by chromatography were sufficiently pure (>95%) by $\rm ^1H$ NMR analysis.

Representative Procedure for the Preparation of o-Bromoaniline Trapping Products from α -Acyloxy-N-tosylhydrazones. In an ovendried flask under an argon atmosphere were placed 2-bromoaniline (35.2 mg, 0.20 mmol) and tosylhydrazone 8c (70 mg, 0.17 mmol), followed by DMF (0.8 mL). After the mixture had been heated at 50 °C, a solution of NEt₃ (0.05 mL, 0.34 mmol) in DMF (1 mL) was added dropwise (by syringe pump) over 1 h. The reaction mixture was then stirred at the same temperature for an additional 3 h. The reaction mixture was quenched with water (10 mL) and extracted with ethyl acetate (3 \times 15 mL). The organic extracts were washed with brine, dried over Na2SO4, and concentrated. The residue was purified by flash chromatography (1:4 EtOAc-hexane) to afford the corresponding o-bromoaniline trapping product (78 mg, 88%) as a white solid: $R_f = 0.3$ (4:1 hexane-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.2 Hz, 2H), 7.75 (br s, 1H), 7.34 (dd, J = 7.6, 1.5 Hz, 1H), 7.29 (d, J = 8.2 Hz, 2H), 6.83 (t, J = 8.3 Hz, 1H), 6.49 (td, J = 7.6 Hz, 1.5 Hz, 1H), 6.36 (dd, J = 8.3, 1.5 Hz, 1H), 4.38 (d, J = 8.3, 1.5 Hz, 1H)= 6.7 Hz, 1H), 3.96 (q, J = 6.8 Hz, 1H), 2.44 (s, 3H), 2.04 (td, J = 7.4, 5.8, 2.5 Hz, 2H), 1.50–1.44 (m, 2H), 1.32–1.03 (m, 9H), 0.88–0.78 (m, 9H); 13 C NMR (100 MHz, CDCl₃) δ 160.6, 143.9, 143.8, 135.4 132.2, 129.5, 128.3, 128.0, 117.9, 112.0, 109.5, 57.6, 42.4, 31.2, 29.6, 25.8, 25.0, 24.7, 22.6, 22.4, 22.3, 21.6, 13.9; HRMS (ESI): m/z calcd for C₂₅H₃₆BrN₃O₂S: 522.1790 [M + H]⁺; found: 522.1801.

Representative Procedure for the Preparation of Indole Products from o-Bromoaniline Trapping Products. A mixture of $Pd(OAc)_2$ (1.2 mg, 5 μ mol), $tBu_2MeP\cdot HBF_4$ (2.8 mg, 0.01 mmol), and K_2CO_3 (47.6 mg, 0.34 mmol) in DMF (1 mL) was heated to 110 °C under an argon atmosphere. A solution of the o-bromoaniline trapping product (60 mg, 0.114 mmol) in DMF (1 mL) was added dropwise (by syringe pump) over 1 h. The reaction mixture was then stirred at 110 °C for an additional 3 h. The reaction mixture was cooled to rt, and water (10 mL) was added. The mixture was extracted with ethyl

acetate (3 × 15 mL). The organic layer was washed with brine (6 mL), dried with Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (1:9 EtOAc–hexane) to afford the indole product 9c (25.4 mg, 86%) as a waxy solid: $R_{\rm f}=0.3$ (4:1 hexane–EtOAc); $^{\rm 1}$ H NMR (400 MHz, CDCl₃) δ 7.66 (br s, 1H), 7.52 (dd, J=7.4, 1.4 Hz, 1H), 7.27 (d, J=7.4 Hz, 1H), 7.12–7.04 (m, 2H), 2.71–2.64 (m, 2H), 2.59 (d, J=7.3 Hz, 2H), 2.00–1.91 (m, 1H), 1.67–1.58 (m, 2H), 1.40–1.22 (m, 6H), 0.97 (d, J=6.6 Hz, 6H), 0.89 (t, J=5.0 Hz, 3H); $^{\rm 13}$ C NMR (100 MHz, CDCl₃) δ 135.3, 134.2, 128.7, 120.7, 118.8, 118.4, 113.1, 110.1, 35.4, 31.8, 30.9, 29.5, 29.3, 24.3, 22.7, 22.6, 14.1; HRMS (ESI): m/z calcd for $C_{18}H_{27}N$: 258.2222 [M + H]+; found: 258.2229.

Representative Procedure for the Preparation of o-lodoaniline Trapping Products from α -Acyloxy-N-tosylhydrazones. In an ovendried flask under an argon atmosphere were placed 2-iodoaniline (38.4 mg, 0.17 mmol), tosylhydrazone 8c (60 mg, 0.14 mmol), and DMF (0.7 mL). After the mixture had been heated at 50 °C, a solution of NEt₃ (0.04 mL, 0.28 mmol) in DMF (1 mL) was added dropwise (by syringe pump) over 1 h. The reaction mixture was then stirred at the same temperature for an additional 3 h. The reaction mixture was quenched with water (10 mL) and extracted with ethyl acetate (3 × 15 mL). The organic extracts were washed with brine, dried over Na2SO4, and concentrated. The residue was purified by flash chromatography (1:4 EtOAc-hexane) to afford the corresponding o-iodoaniline trapping product (75.7 mg, 91%) as a white solid: $R_{\rm f}$ = 0.3 (9:1 hexane-EtOAc); ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 8.1 Hz, 2H), 7.58 (dd, J = 7.6, 1.5 Hz, 1H), 7.30 (d, J = 8.1 Hz, 1Hz)2H), 6.85 (dt, J = 8.3, 1.4 Hz, 1H), 6.36 (dt, J = 7.6, 1.5 Hz, 1H), 6.29 (dd, J = 8.3, 1.4 Hz, 1H), 4.24 (d, J = 6.6 Hz, 1H), 3.96 (q, J = 6.6 Hz, 1H)1H), 2.44 (s, 3H), 2.08-1.99 (m, 2H), 1.54-1.42 (m, 3H), 1.28-1.07 (m, 8H), 0.86 (d, J = 5.4 Hz, 3H), 0.81 (dd, J = 6.4, 2.8 Hz, 6H); ^{13}C NMR (100 MHz, CDCl₃) δ 160.5, 146.0, 143.9, 138.8, 135.4, 129.5, 129.3, 128.0, 118.8, 111.3, 85.2, 58.0, 42.4, 31.2, 29.6, 25.7, 25.0, 24.8, 22.6, 22.4, 22.3, 21.6, 13.9; HRMS (ESI): m/z calcd for $C_{25}H_{36}IN_3O_2S$: 570.1651 [M + H]⁺; found: 570.1649.

Representative Procedure for the Preparation of Indole Products from o-lodoaniline Trapping Products. A mixture of Pd(OAc)₂ (1 mg, 4 μ mol), tBu₂MeP·HBF₄ (2.1 mg, 8 μ mol), and K₂CO₃ (36.4 mg, 0.26 mmol) in DMF (0.7 mL) was heated to 110 °C under an argon atmosphere. A solution of the o-iodoaniline trapping product (50 mg, 0.088 mmol) in DMF (0.7 mL) was added dropwise (by syringe pump) over 1 h. The reaction mixture was then stirred at 110 °C for an additional 3 h. The reaction mixture was cooled to rt, and water (10 mL) was added. The mixture was extracted with ethyl acetate (3 × 15 mL). The organic layer was washed with brine (6 mL), dried with Na₂SO₄, filtered, and concentrated. The residue was purified by flash chromatography (1:9 EtOAc—hexane) to afford the indole product 9c (20.3 mg, 90%).

Representative Procedure for the "One-Pot" Preparation (Without Purifying the Trapping Products) of Indole Products. In an oven-dried flask under an argon atmosphere were placed 2-iodoaniline (56 mg, 0.25 mmol), tosylhydrazone 8c (100 mg, 0.24 mmol), and DMF (1 mL). After the mixture had been heated at 50 °C, a solution of NEt₃ (0.07 mL, 0.48 mmol) in DMF (1 mL) was added dropwise (by syringe pump) over 1 h. The reaction mixture was then stirred at the same temperature for an additional 3 h. The reaction mixture was quenched with water (10 mL) and extracted with ethyl acetate (3 × 20 mL). The organic extracts were washed with brine, dried over Na₂SO₄, concentrated, and used for the next step without further purification.

A solution of the aforementioned o-iodoaniline trapping product in DMF (1 mL) was added dropwise (by syringe pump) over 1 h to a mixture of Pd(OAc) $_2$ (1.3 mg, 0.006 mmol), $tBu_2MeP \cdot HBF_4$ (2.8 mg, 0.011 mmol), and K_2CO_3 (47.3 mg, 0.34 mmol) in DMF (1 mL) heated to 110 °C under an argon atmosphere. The reaction mixture was then stirred at 110 °C for an additional 2 h. The reaction mixture was cooled to rt, and water (10 mL) was added. The mixture was extracted with ethyl acetate (3 × 20 mL). The organic layer was washed with brine (6 mL), dried with Na $_2SO_4$, filtered, and

concentrated. The residue was purified by flash chromatography (1:9 EtOAc-hexane) to afford the indole product 9c (32.6 mg, 92%).

ASSOCIATED CONTENT

Data Availability Statement

The data underlying this study are available in the published article and its Supporting Information.

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.joc.4c01190.

Reaction mechanism; characterization data for all new compounds; ¹H and ¹³C NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

Jin Kun Cha — Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States; orcid.org/0000-0003-4038-3213; Email: ao1929@wayne.edu

Author

Assia Chebieb — Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States; Laboratory of Catalysis and Organic Synthesis LCSCO, University of Tlemcen, Tlemcen 13000, Algeria

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.joc.4c01190

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Prof James Bour and Dr Dennis Anderson of our department for helpful discussion and the structure determination of 25, respectively. Prof Si Blackstock and Qiaoli Liang (The University of Alabama) are also thanked for HRMS measurements. We also thank the National Science Foundation (CHE-2203224) for generous financial support.

REFERENCES

- (1) Recent reviews: (a) Cacchi, S.; Fabrizi, G. Synthesis and functionalization of indoles through palladium-catalyzed reactions. *Chem. Rev.* **2005**, *105*, 2873–2920. (b) Humphrey, G. R.; Kuethe, J. T. Practical methodologies for the synthesis of indoles. *Chem. Rev.* **2006**, *106*, 2875–2911. (c) Taber, D. F.; Tirunahari, D. K. Indole synthesis: a review and proposed classification. *Tetrahedron* **2011**, *67*, 7195–7210. (d) Inman, M.; Moody, C. Indole synthesis something old, something new. *J. Chem. Sci.* **2013**, *4*, 29–41. (e) Youn, S. W.; Ko, T. Y. Metal-Catalyzed Synthesis of Substituted Indoles. *Asian J. Org. Chem.* **2018**, *7*, 1467–1487.
- (2) (a) Barluenga, J.; Rodríguez, F.; Fañanás, J. Recent advances in the synthesis of indole and quinoline derivatives through cascade reactions. *Chem Asian J.* **2009**, *4*, 1036–1048. (b) Christodoulou, M. S.; Beccalli, E. M.; Foschi, F.; Giofrè, S. Pd-catalyzed domino reactions involving alkenes to access substituted indole derivatives. *Synthesis* **2020**, *52*, 2731–2760. (c) Liu, J.; Lin, H.; Jiang, H.; Huang, L. Polysubstituted indole synthesis via palladium/norbornene cooperative catalysis of oxime esters. *Org. Lett.* **2022**, *24*, 484–489.
- (3) (a) Chebieb, A.; Kim, Y. G.; Cha, J. K. Synthesis of Indoles from o-haloanilines. *J. Org. Chem.* **2023**, 88, 10164–10170. (b) Kim, J. H.; Lee, S. A.; Jeon, T. S.; Cha, J. K.; Kim, Y. G. A united approach to mono- and 2,3-disubstituted N-H indoles. *Synlett* **2023**, 34, 1719–1722.

- (4) (a) Hughes, D. L. Progress in the Fischer indole reaction. A review. Org. Prep. Proced. Int. 1993, 25, 607-632. (b) Chen, C.-Y.; Lieberman, D. R.; Larsen, R. D.; Verhoeven, T. R.; Reider, P. J. Syntheses of indoles via a palladium-catalyzed annulation between iodoanilines and ketones. J. Org. Chem. 1997, 62, 2676-2677. (c) Nazaré, M.; Schneider, C.; Lindenschmidt, A.; Will, D. W. A flexible, palladium-catalyzed indole and azaindole synthesis by direct annulation of chloroanilines and chloroaminopyridines with ketones. Angew. Chem., Int. Ed. 2004, 43, 4526-4528. (d) Jia, Y.; Zhu, J. Palladium-catalyzed, modular synthesis of highly functionalized indoles and tryptophans by direct annulation of substituted ohaloanilines and aldehydes. J. Org. Chem. 2006, 71, 7826-7834. (e) Knapp, J. M.; Zhu, J. S.; Tantillo, D. J.; Kurth, M. J. Multicomponent assembly of highly substituted indoles by dual palladium-catalyzed coupling reactions. Angew. Chem., Int. Ed. 2012, 51, 10588-10591. (f) Tan, Y.; Hartwig, J. F. Palladium-catalyzed amination of aromatic C-H bonds with oxime esters. J. Am. Chem. Soc. 2010, 132, 3676-3677.
- (5) (a) Barluenga, J.; Moriel, P.; Valdés, C.; Aznar, F. N-Tosylhydrazones as reagents for cross-coupling reactions: a route to polysubstituted olefins. Angew. Chem., Int. Ed. 2007, 46, 5587-5590. (b) Barluenga, J.; Valdés, C. Tosylhydrazones: new uses for classic reagents in palladium-catalyzed cross-coupling and metal-free reactions. Angew. Chem., Int. Ed. 2011, 50, 7486-7500. (c) Barluenga, J.; Valdés, C. Pd-catalyzed cascade reactions between o-iodo-Nalkenylanilines and tosylhydrazones: novel approaches to the synthesis of polysubstituted indoles and 1,4-dihydroquinolines. Chem. Commun. 2016, 52, 6315-6315. (d) Barluenga, J.; Quiñones, N.; Cabal, M.-P.; Aznar, F.; Valdés, C. Tosylhydrazide-promoted palladium-catalyzed reaction of β -aminoketones with o-dihaloarenes: combining organocatalysis and transition-metal catalysis. Angew. Chem., Int. Ed. 2011, 50, 2350-2353. (e) Xia, Y.; Qiu, D.; Wang, J. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem. Rev. 2017, 117, 13810-13889. (f) Shao, Z.; Zhang, H. N-Tosylhydrazones: versatile reagents for metal-catalyzed and metal-free cross-coupling reactions. Chem. Soc. Rev. 2012, 41, 560-572. (g) Raina, G.; Kannaboina, P.; Ahmed, Q. N.; Mondal, K.; Das, P. Palladium-catalyzed Barluenga-Valdes type cross-coupling reaction: alkenylation of 7-azaindoles. Asian J. Org. Chem. 2021, 10, 251-256. (h) Rahman, S. M. A.; Söderberg, B. C. G. A palladium-catalyzed Barluenga cross-coupling-reductive cyclization sequence to substituted indoles. Tetrahedron 2021, 94, 132331.
- (6) (a) Tan, H.; Houpis, I.; Liu, R.; Wang, Y.; Chen, Z.; Fleming, M. J. Palladium-catalyzed coupling of sulfonylhydrazones with heteroaromatic 2-amino-halides (Barluenga reaction): exploring the electronics of the sulfonylhydrazone. *Org. Process Res. Dev.* **2015**, 19, 1044–1048. (b) The side-product formation was eliminated when p-nitrobenzenesulfonylhydrazones were used in place of ptosylhydrazones.
- (7) See the Supporting Information for an alternative pathway involving the initial Barluenga cross-coupling leading to the palladium carbenoid intermediate that would set the stage for the π -allyl palladium complex and subsequent amination. This pathway could also undergo β -O (acetate) elimination of the migratory insertion intermediate, but the resulting product would not undergo the indole formation (as shown in our previous work.^{3a})
- (8) (a) Rosini, G.; Baccolini, G. Reaction of tosylhydrazones with phenyltrimethylammonium perbromide. Synthesis of tosylazoalkenes. *J. Org. Chem.* **1974**, *39*, 826–828. (b) Reese, C. B.; Sanders, H. P. Conversion of tosylhydrazones of α -halogeno-aldehydes and -ketones into the corresponding phenylthio- and phenylseleno-derivatives. *J. Chem. Soc., Perkin Trans.* **1982**, *1*, 2719–2724. (c) Sakai, K.; Hida, N.; Kondo, K. Reaction of α -polyhalo ketone tosylhydrazones with sulfide ion and primary amines. Cyclization to 1,2,3-thiadiazoles and 1,2,3-thiazoles. *Bull. Chem. Soc. Jpn.* **1986**, *59*, 179–183.
- (9) (a) Sacks, C. E.; Fuchs, P. L. ∝-Arylation of carbonyl groups. Utilization of the p-toluenesulfonylazo olefin functional group as an enolonoium synthon. *J. Am. Chem. Soc.* **1975**, *97*, 7372–7374. (b) Cacchi, A.; Felici, M.; Rosini, G. Formation of ∝-mono- and

α,α'-methyl or -phenyl derivatives of tosylhydrazones through an in situ sequence by treatment with lithium dimethyl- or diphenyl-cuprate. *J. Chem. Soc., Perkin Trans.* 1977, *1*, 1260–1263. (c) Hatcher, J. M.; Coltart, D. M. Copper(I)-catalyzed addition of Grignard reagents to in situ-derived N-sulfonyl azoalkenes: an umpolung alkylation procedure applicable to the formation of up to three contiguous quaternary centers. *J. Am. Chem. Soc.* 2010, 132, 4546–4547. (d) Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C. Enantioselective synthesis of dihydropyrazoles by formal [4 + 1] cycloaddition of in situ-derived azoalkenes and sulfur ylides. *J. Am. Chem. Soc.* 2012, 134, 6924–6927.

- (10) (a) Schreiber, J.; Felix, D.; Eschenmoser, A.; Winter, M.; Gautschi, F.; Schulte-Elte, K. H.; Sundt, E.; Ohloff, G.; Kalovoda, J.; Kaufmann, H.; Wieland, P.; Anner, G. Die synthese von acetylencarbonyl-verbindungen durch fragmentierung von α,β -epoxy-ketonen mit p-toluolsulfonylhydrazin. *Helv. Chim. Acta* **1967**, *50*, 2101–2108. (b) Tanabe, M.; Crowe, D. F.; Dehn, R. L. A novel fragmentation reaction of α,β -epoxyketones. The synthesis of acetylenic ketones. *Tetrahedron Lett.* **1967**, *8*, 3943–3946. (c) Drahl, M. A.; Manpadi, M.; Williams, L. J. C–C Fragmentation: origins and recent application. *Angew. Chem., Int. Ed.* **2013**, *52*, 11222–11251.
- (11) (a) Barbieri, W.; Bernardi, L.; Masi, P.; Caglioti, L.; Rosini, G. Reaction of tosylazocyclohexene with dienophiles. *Tetrahedron* 1970, 11, 1343–1346. (b) Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Cultivating the passion to build heterocycles from 1,2-diaza-1,3-dienes: the force of imagination. *Eur. J. Org. Chem.* 2009, 2009, 3109–3127. (c) Attanasi, O. A.; Favi, G.; Mantellini, F.; Moscatelli, G.; Santeusanio, S. A novel assembly of substituted pyrroles by acid-catalyzed sequential three-component reaction of amines, alkynoates, and 1,2-diaza-1,3-dienes. *Adv. Synth. Catal.* 2011, 355, 1519–1524. (d) Tong, M.-C.; Chen, X.; Li, J.; Huang, R.; Tan, H.; Wang, C.-J. Catalytic Asymmetric Synthesis of [2,3]-Fused Indoline Heterocycles through Inverse-Electron-Demand Aza-Diels—Alder Reaction of Indoles with Azoalkenes. *Angew. Chem., Int. Ed.* 2014, 53 (18), 4680–4684.
- (12) (a) Rosini, G.; Ranza, R. Decomposition of p-toluenesulfony-lazoalkenes. *J. Org. Chem.* **1971**, *36*, 1915–1918. (b) Iwadare, T.; Adachi, I.; Hayashi, M.; Matsunaga, A.; Kitai, T. Decomposition of tosylhydrazones of benzoin, benzoin acetate and benzoin benzoate with alkali. *Tetrahedron Lett.* **1969**, *10*, 4447–4448.
- (13) ∝-Acyloxy ketones/tosylhydrazones were prepared by literature methods: α-acyloxylation: (a) Beshara, C. S.; Hall, A.; Jenkins, R. L.; Jones, K. L.; Jones, T. C.; Killeen, N. M.; Taylor, P. H.; Thomas, S. P.; Tomkinson, N. C. O. A general method for the α -acyloxylation of carbonyl compounds. Org. Lett. 2005, 7, 5729-5732. (b) Jones, T. C.; Tomkinson, N. C. O. A practical procedure for carbonyl ∝-oxidation: synthesis of (2-benzoyloxy)-1,4-cyclohexanedione mono-ethylene ketal. Org. Synth. 2007, 84, 233-241. (c) Moriarty, R. M.; Prakash, O.; Vavilikolanu, P. R.; Vaid, R. K.; Freeman, W. A. Synthesis and structure of 2∞-hydroxytropan-3-one. J. Org. Chem. 1989, 54, 4008-4010. (d) Ochiai, M.; Takeuchi, Y.; Katayama, T.; Sueda, T.; Miyamoto, K. Iodobenzene-catalyzed ∝-acetoxylation of ketones. In situ generation of hypervalent (diacyloxyiodo)benzenes using mchloroperbenzoic acid. J. Am. Chem. Soc. 2005, 127, 12244-12245. (e) Smith, A. B.; Adams, C. M. Evolution of dithiane-based strategies for the construction of architecturally complex natural products. Acc. Chem. Res. 2004, 37, 365-377.
- (14) Ketone 11 was isolated due to facile hydrolysis of the initial imine product 10 during column chromatography. The latter, in turn, likely arose from the Bamford-Stevens-type reaction, in which the regiochemistry of 1,2-hydrogen shift was driven by conjugation with the phenyl group.
- (15) The reason is unclear, but a branched chain in R^3 (e.g., i-Pr) could impede the Barluenga reaction of the arylpalladium intermediate with the diazo moiety, thus resulting in the Bamford-Stevens-type reaction.
- (16) (a) Kozmin, S. A.; Iwama, T.; Huang, Y.; Rawal, V. H. An efficient approach to Aspidosperma alkaloids via [4 + 2] cyclo-

- additions of aminosiloxydienes: stereocontrolled total synthesis of (±)-tabersonine. Gram-scale catalytic asymmetric syntheses of (+)-tabersonine and (+)-16-methoxytabersonine. Asymmetric syntheses of (+)-aspidospermidine and (-)-quebrachamine. *J. Am. Chem. Soc.* 2002, 124, 4628–4641. (b) Wagnières, O.; Xu, Z.; Wang, Q.; Zhu, J. Unified strategy to monoterpene indole alkaloids: total syntheses of (±)-goniomitine, (±)-1,2-dehydroaspidospermidine, (±)-aspidospermidine, (±)-vincadifformine, and (±)-kopsihainanine. *J. Am. Chem. Soc.* 2014, 136, 15102–15108. (c) Johnson, R. E.; Ree, H.; Hartman, M.; Lang, L.; Sawano, S.; Sarpong, R. Total synthesis of pentacyclic (-)-ambiguine P using sequential indole functionalizations. *J. Am. Chem. Soc.* 2019, 141, 2233–2237.
- (17) (a) Ping, W.-W.; Jin, L.; Wu, Y.; Xue, X.-Y.; Zhao, X. On the mechanism of Pd(0)-catalyzed coupling of propargylic carbonates with N-tosylhydrazones: Density functional theory survey. *Tetrahedron* **2014**, 70, 9373–9380. (b) Sullivan, R. J.; Freure, G. P. R.; Newman, S. G. Overcoming scope limitations in cross-coupling of diazo nucleophiles by manipulating catalyst speciation and using flow diazo generation. *ACS Catal.* **2019**, 9, 5623–5630. (c) Thomas, G. T.; Ronda, K.; McIndoe, J. S. A mechanistic investigation of the Pdcatalyzed cross-coupling between N-tosylhydrazones and aryl halides. *Dalton Trans.* **2021**, 50, 15533–15537. (d) Lennon, G.; O'Boyle, C.; Carrick, A. J.; Dingwall, P. Investigating the mechanism and origins of selectivity in palladium-catalysed carbene insertion cross-coupling reactions. *Catal. Sci. Technol.* **2023**, 13, 372–380.
- (18) Padwa, A.; Ku, H. Intramolecular cycloaddition reactions of olefinic tosylhydrazones. *J. Org. Chem.* **1980**, *45*, 3756–3766.
- (19) (a) Not surprisingly, no Heck cyclization products were observed because of the tether length (i.e., 7- or 8-membered ring formation). (b) No stereochemical information could be gleaned from $22 \rightarrow 23$ because of the presence of the CH₃ group.
- (20) (a) Roy, A. H.; Hartwig, J. F. Reductive elimination of aryl halides from palladium(II). *J. Am. Chem. Soc.* **2001**, *123*, 1232–1233. (b) Newman, S. G.; Lautens, M. The role of reversible oxidative addition in selective palladium(0)-catalyzed intramolecular crosscouplings of polyhalogenated substrates: synthesis of brominated indoles. *J. Am. Chem. Soc.* **2010**, *132*, 11416–11417.