
Improved Construction of Robust Gray Codes

Dorsa Fathollahi

Department of Electrical Engineering

Stanford University

Stanford, CA, USA

Email: dorsafth@stanford.edu

Mary Wootters

Departments of Computer Science and Electrical Engineering

Stanford University

Stanford, CA, USA

Email: marykw@stanford.edu

Abstract—A robust Gray code, formally introduced by (Lolck
and Pagh, SODA 2024), is a Gray code that additionally has
the property that, given a noisy version of the encoding of an

integer j, it is possible to reconstruct ĵ so that |j − ĵ| is small
with high probability. That work presented a transformation that
transforms a binary code C of rate R to a robust Gray code with
rate Ω(R), where the constant in the Ω(·) can be at most 1/4. We
improve upon their construction by presenting a transformation
from a (linear) binary code C to a robust Gray code with similar
robustness guarantees, but with rate that can approach R/2.

A full version of this paper can be found in [1].

I. INTRODUCTION

In [2], Lolck and Pagh introduce the notion of a robust

Gray code. Informally, a robust Gray code G ¦ {0, 1}d has

an encoding map EncG : {0, . . . , N −1} → {0, 1}d that maps

integers to bitstrings, with the following desiderata.

• G should be a Gray code.1 That is, for any j ∈
{0, . . . , N − 2}, |EncG(j)− EncG(j + 1)| = 1.

• G should be “noise robust.” Informally, this means that

we should be able to approximately recover an integer

j ∈ {0, . . . , N − 1} given a noisy version of EncG(j).
Slightly more formally, G should have a decoding map

DecG : {0, 1}d → {0, . . . , N − 1}, so that when ¸ ∼
Ber(p)n, the estimate ĵ = DecG(EncG(j)·¸) should be

close to j with high probability.

• G should have high rate. The rate logN
d

of G should be

as close to 1 as possible.

• G should have efficient algorithms. Both EncG and

DecG should have running time polynomial (ideally, near-

linear) in d.

Robust Gray codes have applications in differential privacy;

see [2]–[5] for more details on the connection. It is worth

mentioning that there exist non-binary codes based on the

Chinese Remainder Theorem [6], [7] that have nontrivial

sensitivity, but in our work, we focus on binary codes.

Our Contributions. In this paper, we improve upon the

construction of [2] by giving a construction of a robust Gray

code with the same robustness guarantees, but better rate.

More precisely, for p ∈ (0, 1/2), [2] give a general recipe

for turning a good error-correcting code C with rate R into a

1The paper [2] also gives a more general definition, where the code should
have low sensitivity, meaning that |EncG(j)−EncG(j+1)| is small; however,
both their code and our code is a Gray code, so we specialize to that case (in
which the sensitivity is 1).

robust Gray code G with rate Ω(R), and with the following

robustness guarantee:

Pr
¸∼Ber(p)d

[|j −DecG(EncG(j) + ¸)| g t]

f exp(−Ω(t)) + exp(−Ω(d)) +O(Pfail(C)), (1)

where Pfail(C) is the failure probability of the code C on the

binary symmetric channel with parameter p:

Pfail(C) = max
v∈F

k
2

Pr
¸∼Ber(p)n

[DecC(EncC(v) + ¸p) ̸= v].

Our main result is a similar transformation that turns a

(linear) binary code C with good performance on the binary

symmetric channel into a robust Gray code G. We obtain a

similar robustness guarantee as (1) (see Theorem 1 for the

precise statement), but with better rate. Concretely, if the

original code C has rate R ∈ (0, 1), the rate of the robust

Gray code from [2] is proven to be Ω(R), where the constant

inside the Ω approaches 1/4 when C has sublinear distance;

this comes from the fact that the a codeword in their final

construction involves four codewords from C. In contrast,

under the same conditions, our robust Gray code G has rate

approaching R/2; this is because our construction involves

only two codewords from C. (See Observation 2 for the formal

statement). Moreover, if the encoding and decoding algorithms

for C are efficient, then so are the encoding and decoding

algorithms for our construction G; concretely, the overhead on

top of the encoding and decoding algorithms for C is O(d)
(see Lemma 3 for the precise statement).

As a result, when instantiated with, say, a constant-rate

Reed-Muller code or a polar code (both of which have

sublinear distance and good performance on the BSC(p) (see,

e.g., [8]–[12])), our construction gives efficient robust Gray

codes with a rate about two times larger than than previous

work, approaching R/2 if C has rate R.

Main Idea. The idea of our transformation is quite simple,

and follows the same high-level structure as [2]. We begin

with our base code C, and use it to construct an intermediate

code W (with an appropriate ordering). Then we add new

codewords to W to complete it to a Gray code. For example,

if wi, wi+1 are two consecutive codewords in W , then we will

insert ∆(wi, wi+1)−1 codewords in between them, iteratively

flipping bits to move from wi to wi+1.

37979-8-3503-8284-6/24/$31.00 ©2024 IEEE

20
24

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
In

fo
rm

at
io

n
Th

eo
ry

 (I
SI

T)
 |

 9
79

-8
-3

50
3-

82
84

-6
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/IS
IT

57
86

4.
20

24
.1

06
19

58
5

Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

The main difference between our construction and that of

previous work is how we build and order W . First, we use a

standard Gray code to construct an ordering of the codewords

in C. Then, we build W as follows. Let ci be the i’th codeword

in C. Then the i’th codeword in W is given by

wi = si ◦ ci ◦ si ◦ ci ◦ si,

where si is a short string that is all zeros if i is even and all

ones otherwise, and ◦ denotes concatenation. Then we form

G by interpolating as described above.

Our decoding algorithm ends up being rather complicated,

but the idea is simple. Suppose that for a codeword g ∈ G,

we see a corrupted version g + ¸ ∈ F
d
2, where ¸ is a noise

vector. As described above, g is made up of a prefix from

wi+1 and a suffix from wi, for some i. Let h ∈ [d] be the

index where g “crosses over” from wi+1 to wi. Notice that,

as this crossover point can only be in one place, at least one of

the two codewords of C appearing in g will be complete, and

equal to either ci or ci+1. Thus, if we could identify where

the crossover point h was, then we could use C’s decoder to

decode whichever the complete C-codeword was to identify i;
and then use our knowledge of where h is to complete the

decoding. The simple observation behind our construction is

that, because the strings si (which are either all zeros or all

ones) flip with the parity of i, we can tell (approximately)

where h was! Indeed, these strings will be all zeros before h
and all ones after h, or vice versa. Of course, some noise will

be added, but provided that the length of the strings si are

long enough, we will still be able to approximately locate h
with high probability.

However, there are several challenges to implementing this

simple idea. For example, given i and h, how do we efficiently

compute j? (Here is where the fact that we ordered C carefully

comes in; it’s not trivial because the number of codewords of

G inserted between wi and wi+1 depends on i, so naively

adding up the number of codewords of G that come before

wi and then adding h would take exponential time.) Or, what

happens when the crossover point h is very close to the end

of gj + ¸? (Here, it might be the case that we mis-identify i;
but we show that this does not matter, with high probability,

because our final estimate will still be close to j with high

probability). In the rest of the paper, we show how to deal

with these and other challenges.

II. PRELIMINARIES

We begin by setting notation. Throughout, we work with

linear codes over F2, so all arithmetic between codewords is

modulo 2. For x, y ∈ F
ℓ
2, let ∆(x, y) denote the Hamming

distance between x and y. We use ∥x∥ to denote the Hamming

weight of a vector x ∈ F
ℓ
2. For a code C ¦ F

n
2 , the minimum

distance of the code is given by D(C) := minc ̸=c′∈C ∆(c, c′).
For two strings s1 and s2, we use s1 ◦ s2 to denote the

concatenation of s1 and s2. For a string s ∈ F
ℓ
2 and for i f ℓ,

we use prefi(s) ∈ F
i
2 to denote the prefix of the string s ending

at (and including) index i. Analogously, we use suffi(s) ∈

F
ℓ−i
2 be defined as the suffix of s starting at (and including)

index i. For an integer ℓ, we use [ℓ] to denote the set {1, . . . , ℓ}.

For ℓ ∈ Z, let Majℓ : Fℓ
2 → F2 be majority function on ℓ

bits. (In the case that ℓ is even and a string y ∈ F
ℓ
2 has an

equal number of zeros and ones, Majℓ(y) is defined to be a

randomized function that outputs 0 or 1 each with probability

1/2.) We use Ber(p) to denote the Bernoulli-p distribution on

F2, so if X ∼ Ber(p), then X is 1 with probability p and 0
with probability 1− p.

Next we define Binary Reflected Codes, a classical Gray

code ([13]; see also, e.g., [14]); we will use these to define

our ordering on C. Let k be a positive integer. The Binary

Reflected Code (BRC) is a map Rk : {0, . . . , 2k − 1} → F
k
2

defined recursively as follows.

1) For k = 1, R1(0) = 0 and R1(1) = 1.

2) For k > 1, for any i ∈ {0, . . . , 2k − 1},

• If i < 2k−1, then Rk(i) = 0 ◦Rk−1(i)
• If i g 2k−1, then Rk(i) = 1 ◦ Rk−1(2

k−1 − (i −
2k−1)− 1) = 1 ◦Rk−1(2

k − i− 1).

It is not hard to see that Rk is indeed a Gray code.

As an example, R2(1) = 0◦R1(1) = 01, as 1 < 2k−1 = 2;

and R2(2) = 1 ◦R1(1) = 11, as 2 g 2k−1 = 2.

We will need one more building-block, the Unary code. The

Unary code U ¦ F
ℓ
2 is defined as the image of the encoding

map EncU : {0, . . . , ℓ} → F
ℓ
2 given by EncU (v) := 1v ◦0ℓ−v.

The decoding map DecU : Fℓ
2 → {0, . . . , ℓ} is given by

DecU (x) = argminv∈{0,...,ℓ}∆(x,EncU (v)).

III. CONSTRUCTION

We recall the high-level overview of our construction from

the introduction: To construct G we will start with a base

code C where C ¦ F
n
2 , which we will order in a particular

way (Definition 1). Then we construct an intermediate code

W = {w0, . . . , w2k−1} ¦ F
d
2 by transforming the codewords

of C (Definition 2); the codewords of W inherit an order

of C. Finally, we create final code G ¦ F
d
2 by adding new

codewords that “interpolate” between the codewords of W so

that it satisfies the Gray code condition (Definition 5). We

discuss each of these steps more below.

First, given a base code C ¢ F
n
2 , we define an ordering on

the elements of C as follows.

Definition 1. Let C ¦ F
n
2 be a linear code with block length n

and dimension k. Let AC ∈ F
k×n
2 be a generator matrix for C,

and let az denote the z-th row of AC . Given i ∈ {0, . . . , 2k −
1}, define zi to be the unique integer so that Rk(i)[zi] ̸=
Rk(i+1)[zi]. Let c0 = 0n. Then, for all i ∈ {1, . . . , 2k − 1},

the i-th codeword of C is defined by ci = ci−1 + azi .

In the full version of the paper, we prove that indeed this

ordering hits all of the codewords. For now, we move on to

define our intermediate code W .

Definition 2. Let C ¦ F
n
2 be a linear code of dimension k.

Let (c0, . . . , c2k−1) denote the ordering of codewords in C as

per Definition 1. Let d = 2n+3D(C). The intermediate code

38Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

W , along with its ordering, is defined as follows. For each

i ∈ {0, . . . , 2k − 1}, define wi ∈ F
d
2 by the equation

wi =

{

0D(C) ◦ ci ◦ 0
D(C) ◦ ci ◦ 0

D(C) if i is even

1D(C) ◦ ci ◦ 1
D(C) ◦ ci ◦ 1

D(C) if i is odd
(2)

Then, W ¦ F
d
2 is defined by W = {wi : i ∈ {1, . . . , 2k−1}},

where W is ordered as (w0, . . . , w2k−1).

Definition 3. For every i, define ri =
∑i

ℓ=1 ∆(wℓ−1, wℓ).

It will be useful to be able to locate j ∈ [N] within a block

[ri, ri+1). To that end, we introduce the following notation.

Definition 4. Let j ∈ {0, . . . , N−1}. Let i ∈ {0, . . . , 2k−1}
be such that j ∈ [ri, ri+1). Then we will use the notation j̄ to

denote j−ri. That is, j̄ is the index of j in the block [ri, ri+1).

Finally, we to create our robust Gray code G, given any

two consecutive codewords in W , we inject extra codewords

between them as follows.

Definition 5 (Definition of our robust Gray code G; and the

parameters ri, hi,j). Let W ¦ F
d
2 be a code defined as in Defi-

nition 2. For each i ∈ [2k], recall that ri =
∑i

ℓ=1 ∆(wℓ−1, wℓ)
according to Definition 3, and let N = r2k . For i ∈ [2k] and

1 f j̄ < ∆(wi, wi+1), let hi,j̄ ∈ {0, . . . , d − 1} be the j̄-th

index where codewords wi and wi+1 differ.

Define g0 = w0. Fix j ∈ {1, . . . , N − 1}. Find i such

that j ∈ [ri, ri+1). (Note that this can be done efficiently, via

binary search.) If j = ri, we define gj ∈ F
d
2 by gj = wi. On

the other hand, if j ∈ (ri, ri+1), then we define gj ∈ F
d
2 as

gj = prefhi,j−ri
(wi+1) ◦ suffhi,j−ri

+1(wi).

Finally, define G ¦ F
d
2 by G = {gi : i ∈ {0, . . . , N − 1}},

along with the encoding map EncG : {0, . . . , N − 1} → F
d
2

given by EncG(i) = gi.
We will also define hi = (hi,1, hi,2, . . . , hi,∆(wi,wi+1)−1) ∈

{0, . . . , d − 1}∆(wi,wi+1)−1 to be the vector of all indices in

which wi and wi+1 differ, in order, except for the last one.2

Note that, in this notation, when j ∈ [ri, ri+1), the last bit

that has been flipped to arrive at gj in the ordering of G (that

is, the “crossover point” alluded to in the introduction) is hi,j̄ .
It follows from Definition 5 that G is indeed a Gray code,

and that it has rate approaching R/2. Formally, we have the

following two observations.

Observation 1. G is a Gray code. That is, For any j ∈
{0, . . . , N − 1}, we have that ∆(gj , gj+1) = 1.

Observation 2. Suppose that C ¦ F
n
2 has rate R = log2 |C|/n

and distance o(n). Then the code G constructed as in Defini-

tion 5 has rate that approaches R/2 as N → ∞.

In the full version, we prove that G (Definition 5) is indeed

an injective map, so we don’t need to worry about running

into the same string multiple times while “interpolating.”

2The reason we don’t include the last one is because once the last differing
bit has been flipped, gj will lie in [wi+1, wi+2), not [wi, wi+1).

IV. DECODING ALGORITHM AND ANALYSIS

In this section, we define our decoding algorithm and

analyze it. We begin with some notation for the different parts

of the codewords gj ∈ G. For a string x, we use x[i : i′]
to denote the substring (xi, xi+1, . . . , xi′−1). Moreover, [i :]
denotes the suffix of string x staring at i. With this notation,

for any x ∈ F
d
2, define the following substrings:

• s1(x) = x[0 : D(C)]
• c̃1(x) = x[D(C) : D(C) + n]
• s2(x) = x[D(C) + n : 2D(C) + n]
• c̃2(x) = x[2D(C) + n, 2D(C) + 2n]
• s3(x) = x[2D(C) + 2n : 3D(C) + 2n].

Notice that if x ∈ G, then c̃1 and c̃2 are in locations

corresponding to the codewords of C that appear in codewords

of W , while s1, s2, and s3 are in locations corresponding to

the 0D(C) and 1D(C) strings.

Before we formally state the algorithm (Algorithm 2 below),

introduce some notation and state a lemma to motivate its

structure.

First, it is not hard to see (and we prove formally in the full

version) that if we write g = s1 ◦ c̃1 ◦ s2 ◦ c̃2 ◦ s3, then at most

one of these “chunks” are broken up by the “crossover point”

hi,j̄ ; the other four are equal to the corresponding substring

in wi or wi+1. We say that a substring in S that is equal to its

corresponding substring in wi or wi+1 is a full chunk. Thus,

there are at least four full chunks in any gj ∈ G. Notice that

it is possible that a substring c̃ℓ is in C but is not a full chunk.

We say that all full chunks are decoded correctly if, for

full chunk of x, when we run the corresponding decoder, we

get the right answer. That is, if c̃1(x) is a full chunk, then if

we were to run DecC on c̃1(x) we would obtain c̃1(gj), and

similarly for c̃2; and if s1(x) is a full chunk, and we were to

run MajD(C) on s1(x), we would obtain s1(gj), and similarly

for s2 and s3.

The intuition behind our algorithm, as mentioned above, is

that we can detect (approximately) where the “crossover point”

hi,j̄ is by seeing what the chunks s1(x), s2(x) and s3(x)
decode to under majority-vote. This motivates three cases that

will be reflected in our algorithm, which we characterize with

the following lemma.

Lemma 1. Let gj ∈ G and let i be such that j ∈ [ri, ri+1).
Let ¸ ∼ Ber(p)d where p ∈ (0, 1/2). Let x = gj + ¸ be a

received input. Then define v̂i′ = DecC(c̃i′(x)) for i′ ∈ {1, 2}
and bi′ = MajD(C)(si′(x)) for i′ ∈ {1, 2, 3}. Assume that

all full chunks are decoded correctly by their corresponding

decoder. Then the following hold.

1) If (b1, b2, b3) ∈ {(1, 1, 0), (0, 0, 1)}, then EncC(v̂1) =
ci+1 and hi,j̄ g n+D(C).

2) If (b1, b2, b3) ∈ {(0, 1, 1), (1, 0, 0)}, then EncC(v̂2) = ci
and hi,j̄ f n+ 2D(C).

3) If (b1, b2, b3) ∈ {(0, 0, 0), (1, 1, 1)}, then EncC(v̂1) =
EncC(v̂2) ∈ {ci, ci+1} and hi,j̄ ∈ [0, D(C)) ∪ [d −
D(C), d).

39Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

We sketch the proof below, and refer the reader to the full

version for details.

Proof sketch. We address each case individually.

1) If (b1, b2, b3) ∈ {(1, 1, 0), (0, 0, 1)} then we claim that

hi,j̄ g n+D(C). Assume otherwise. If hi,j̄ ∈ [0, D(C)),
then gj [D(C) :] = wi[D(C) :], and s2(gj) = s3(gj)
are full chunks. Given the assumption that all the full

chunks are decoded correctly, b2 = Maj(s2(x)) =
Maj(s3(x)) = b3 but that contradicts our assumption

for this case; so we conclude that hi,j̄ ̸∈ [0, D(C)).
Thus, hi,j̄ ∈ [D(C), n + D(C)). But then then s1(gj)
and s2(gj) are full chunks, and s1(gj) ̸= s2(gj). This

implies that b1 ̸= b2, again a contradiction. This shows

hi,j̄ g n+D(C).
Finally, the fact that hi,j̄ g n + D(C) implies that

c̃1(gj) = c̃1(wi+1) = ci+1, and c̃1(gj) is a full chunk.

Using the assumption of correct decoding of all full

chunks, we see that EncC(v̂1) = ci+1.

2) If (b1, b2, b3) ∈ {(0, 1, 1), (1, 0, 0)}, then the conclusion

follows by an argument nearly identical to Case 1.

3) If (b1, b2, b3) ∈ {(0, 0, 0), (1, 1, 1)}, then we claim that

hi,j̄ ∈ [0, D(C))∪[d−D(C), d). Assume otherwise, then

s1(gj) = s1(wi+1) and s3(gj) = s3(wi) and they are

full chunks. Now as i and i + 1 do not have the same

parity, s1(gj) ̸= s3(gj). As a result, if all full chunks

are decoded correctly, we have that b1 ̸= b3, which

contradicts our assumption in this case. This proves our

claim that hi,j̄ ∈ [0, D(C)) ∪ [d−D(C), d).
If hi,j̄ ∈ [0, D(C)) then c̃1(gj) = c̃2(gj) = ci; if

hi,j̄ ∈ [d −D(C), d) then c̃1(gj) = c̃2(gj) = ci+1; and

in either case both are full chunks. Using the assumption

that all full chunks are decoded correctly, we see that

EncC(v̂1) = EncC(v̂2) ∈ {ci, ci+1}, as desired.

A. Decoding Algorithm

Before we state our main algorithm (Algorithm 2 below),

we include a helper algorithm, compute-r (Algorithm 1).

This algorithm takes an index i ∈ {0, . . . , 2k − 1} and

returns ri. Note that this is not trivial to do efficiently: If we

wanted to compute ri directly from the definition, that would

require computing or storing ∆(wℓ, wℓ+1) for all ℓ f i and

adding them up, which may take time Ω(2k). Instead, we do

something much faster.

Algorithm 1 compute-r

Input: i ∈ {0, ..., 2k − 1}
r̂i = 0
for z ∈ {0, . . . , k − 1} do

r̂i = r̂i + 2+ i+2z

2z+1 , · ∥az∥+ 3D(C) ▷ az is the z’th row

of the generator matrix of C.

end for

Return: r̂i

Lemma 2. The Algorithm compute-r (Algorithm 1) cor-

rectly computes ri.

Proof. Recall that ri =
∑i−1

ℓ=0 ∆(wℓ, wℓ+1). Consider a fixed

difference ∆(wℓ, wℓ+1). This is precisely

∆(wℓ, wℓ+1) = 2∥azℓ∥+ 3D(C), (3)

where zℓ is the unique index so that Rk(ℓ)[zℓ] ̸= Rk(ℓ+1)[zℓ]:
indeed, by Definition 1, ∆(cℓ, cℓ+1) = ∥azℓ∥, and from that

(3) follows from the definition of W (Definition 2). Thus, in

order to compute

ri =

i−1
∑

ℓ=0

(2∥azℓ∥+ 3D(C)),

it suffices to count how often each index z ∈ {0, . . . , k − 1}
shows up as some zℓ in that sum. This is precisely

⌊

i+2z

2z+1

⌋

,
by the definition of Rk.

Our final algorithm is given in Algorithm 2. It is organized

into the three cases of Lemma 1. To help the reader, we have

included comments saying what each estimate “should” be.

Here, “should” is under the assumption that each full chunk

is decoded correctly.

Algorithm 2 DecG : Decoding algorithm for G

1: Input: x = gj + ¸ ∈ F
d
2

2: Output: ĵ ∈ [N]
3: for ℓ ∈ {1, 2} do

4: v̂ℓ = DecC(c̃ℓ(x)) ▷ Decode c̃1(x) and c̃2(x)
individually to obtain v̂1, v̂2 ∈ {0, . . . , 2k − 1}.

5: end for

6: for ℓ ∈ {1, 2, 3} do

7: bℓ = MajD(C)(sℓ(x)) ▷ Decode each sℓ(x) to obtain

bℓ ∈ {0, 1}.

8: end for

9: ▷ Below, in the comments we note what each value

“should” be. This is what these values will be under the

assumption that each full chunk is decoded correctly.

10: if (b1, b2, b3) ∈ {(1, 1, 0), (0, 0, 1)} then

11: ▷ Case 1: EncC(v̂1) should be ci+1

12: º̂ = R−1
k (v̂1) ▷ º̂ should be i+ 1

13: v̂ = Rk(º̂− 1) ▷ v̂ should be Rk(i)
14: ĉ1 = EncC(v̂) ▷ ĉ1 should be ci
15: ĉ2 = EncC(v̂1) ▷ ĉ2 should be ci+1

16: ŵ1 = EncW(ĉ1) ▷ ŵ1 should be wi

17: ŵ2 = EncW(ĉ2) ▷ ŵ2 should be wi+1

18: H ′ = {ℓ ∈ hº̂−1 : ℓ g n+D(C)}
19: u = DecU (x[H

′] + ŵ1[H
′])

20: ▷ u is an estimate of hi,j̄ −∆(ci, ci+1)−D(C)

21: ĵ = u+D(C) + ∆(ĉ1, ĉ2) + compute-r(º̂− 1)
22: else if (b1, b2, b3) ∈ {(0, 1, 1), (1, 0, 0)} then

23: ▷ Case 2: EncC(v̂2) should be ci
24: º̂ = R−1

k (v̂2) ▷ º̂ should be i
25: v̂ = Rk(º̂+ 1) ▷ v̂ should be Rk(i+ 1)
26: ĉ1 = EncC(v̂2) ▷ ĉ1 should be ci
27: ĉ2 = EncC(v̂) ▷ ĉ2 should be ci+1

40Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

28: ŵ1 = EncW(ĉ1) ▷ ŵ1 should be wi

29: ŵ2 = EncW(ĉ2) ▷ ŵ2 should be wi+1

30: H ′ = {ℓ ∈ hº̂−1 : ℓ < n+ 2D(C)}
31: u = DecU (x[H

′] + ŵ1[H
′])

32: ▷ u is an estimate of hi,j̄ f 2D(C) + n

33: ĵ = u+ compute-r(º̂)
34: else if (b1, b2, b3) ∈ {(0, 0, 0), (1, 1, 1)} then

35: ▷ Case 3: EncC(v̂1) and EncC(v̂2) should be

equal to each other, and to either ci or ci+1, but we need

to figure out which one.

36: º̂ = R−1
k (v̂1) ▷ º̂ should be either i or i+ 1

37: v̂ = Rk(º̂− 1) ▷ v̂ should be Rk(i) or Rk(i− 1)
38: ĉ1 = EncC(v̂) ▷ ĉ1 = ci if º̂ = i+ 1; ci−1 if º̂ = i
39: ĉ2 = EncC(v̂1) ▷ ĉ2 = ci+1 if º̂ = i+ 1; ci if º̂ = i
40: ŵ = EncW (ĉ2) ▷ ŵ = wi+1 if º̂ = i+ 1; wi if º̂ = i

41: u1 = DecU (x[< D(C)] + b
D(C)
1)

42: ▷ u1 is an estimate of hi,j̄ < D(C) if ŵ = wi

43: u2 = DecU (x[> 2D(C) + 2n] + b̄
D(C)
1)

44: ▷ u2 is an estimate of hi,j̄ − 2D(C)− 2∆(ci, ci+1) if

ŵ = wi+1

45: ĵ1 = u1 + compute-r(º̂) ▷ Estimate j if ŵ = wi

46: ĵ2 = u2+2D(C)+2∆(ĉ1, ĉ2)+compute-r(º̂− 1))
▷ Estimate j if ŵ = wi+1

47: ĝ1 = EncG(ĵ1)
48: ĝ2 = EncG(ĵ2)
49: ĵ = minj′∈{ĵ1,ĵ2}

∆(x, ĝj′)
50: end if

B. Analysis

Next, we provide formal statements about the correctness

and running time of Algorithm 2. Due to space constraints,

we state only the main results and defer all proofs to the full

version, and only offer intuition in this extended abstract.

We begin with the running time, which follows immediately

from inspection of Algorithms 1 and 2.

Lemma 3. Let C ¦ F
n
2 be a code with rate Ω(1). Suppose

that DecC runs in time TDecC (n), EncC runs in time TEncC (n),
and D(C) = o(n). Let AC be the generator matrix of C, with

rows az for z ∈ {0, . . . , 2k − 1}. Suppose that ∥az∥ can be

computed in time O(1). Then the running time is of DecG is

O(TDecC (d) + TEncC (d) + d), and the running time of EncG
is O(TEncC (d)).

Remark 1 (Time to compute ∥az∥). If C is, say, a Reed-Muller

code RM(r,m), then indeed, given z, ∥az∥ can be computed

in time O(1): if the binary expansion of z has weight t f
r, then the corresponding row has weight 2m−t. For codes

that may not have closed-form expressions for their generator

matrices, we can pre-compute each ∥az∥ (in total time O(d2))
and store them to allow for O(1) lookup time.3

Finally, we state our main correctness theorem.

3If a lookup table is not desirable and the ∥az∥ cannot otherwise be
computed on the fly, then our algorithm still works, and DecG runs in time
at most O(TDecC

(d) + TEncC
(d) + d2), where we recall that d = Θ(n)

and O(logN).

Theorem 1. Fix p ∈ (0, 1/2). Let C ¦ F
n
2 be a linear code. Let

G be defined as in Definition 5 from C. Let ¸p ∈ F
d
2 ∼ Ber(p)d

Then

Pr [|j −DecG(EncG(j) + ¸p)| > t] f µ exp(−³t) + 5Pfail(C)

where ³ and µ are constants given by ³ = − (1−2p)2

4p+2 and

µ = 2
1−exp(−³) .

Unfortunately, we do not have space for the proof (see the

full version), but we give a quick sketch here.

First, we argue that, under the assumption that all full

chunks are decoded correctly, that the values computed in

Algorithm 1 (for example, º̂, ŵ1, ŵ2, ĉ1, ĉ2, and so on) are

what they “should” be. That is, we argue that these are the

values that the comments in Algorithm 2 indicate.

Second, we show that, again under the assumption that all

full chunks are decoded correctly, we always have

|j − ĵ| = ∆(gj , gĵ), (4)

where ĵ is the estimate of j returned by DecG . This in-

volves some case analysis and stepping carefully through

Algorithm 2.

Next, let S be the bad event that some full chunk is decoded

incorrectly. We write

Pr[|j − ĵ| > t]

= Pr
[

|j − ĵ| > t | S̄
]

· Pr[S̄] + Pr
[

|j − ĵ| > t | S
]

· Pr[S]

f Pr
[

|j − ĵ| > t | S̄
]

+ Pr[S],

and bound each term separately.

To bound the first term, we show that if the algorithm

returns ĵ rather than the correct answer j, then it was because

gĵ was closer to the received word x than gj was, that is,

∆(gĵ , x) f ∆(gj , x). As a result, this can only happen if the

noise vector ¸p has weight at least ∆(gj , gĵ), which by a Cher-

noff bound happens with probability at most exp(−³∆(gj , gĵ)
for some constant ³. Using (4), this implies that the probability

of returning ĵ is at most exp(−³|j − ĵ|). Finally, we can

conclude that

Pr
[

|j − ĵ| g t | S̄
]

f
∞
∑

z=t

2 exp(−³z) =
2 exp(−³t)

1− exp(−³)
,

which bounds the first term.

Finally, the second term Pr[S] can be bounded by

O(Pfail(C)). This is because if any full chunk is decoded

incorrectly, then either C’s decoder failed, or else the Maj
decoder failed on a string of length ∆(C), which we show

happens with probability at most Pfail(C) as well.

Altogether, this line of reasoning establishes Theorem 1. We

refer the reader to the full version for more details.

ACKNOWLEDGMENT

MW and DF are partially supported by NSF Grants CCF-

2231157 and CCF-2133154. The first author thanks Rasmus

Pagh for bringing our attention to this problem.

41Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Fathollahi and M. Wootters, “Improved construction of robust
gray codes,” 2024, arXiv eprint 2401.15291. [Online]. Available:
https://arxiv.org/abs/2401.15291

[2] D. R. Lolck and R. Pagh, “Shannon meets gray: Noise-robust, low-
sensitivity codes with applications in differential privacy,” in Proceed-

ings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms

(SODA). SIAM, 2024, pp. 1050–1066.
[3] M. Aumüller, C. J. Lebeda, and R. Pagh, “Differentially private sparse

vectors with low error, optimal space, and fast access,” in Proceedings of

the 2021 ACM SIGSAC Conference on Computer and Communications

Security, 2021, pp. 1223–1236.
[4] J. Acharya, Y. Liu, and Z. Sun, “Discrete distribution estimation under

user-level local differential privacy,” in International Conference on

Artificial Intelligence and Statistics. PMLR, 2023, pp. 8561–8585.
[5] J. Acharya, C. Canonne, Y. Liu, Z. Sun, and H. Tyagi, “Distributed

estimation with multiple samples per user: Sharp rates and phase
transition,” Advances in neural information processing systems, vol. 34,
pp. 18 920–18 931, 2021.

[6] L. Xiao, X.-G. Xia, and Y.-P. Wang, “Exact and robust reconstructions
of integer vectors based on multidimensional chinese remainder theorem
(md-crt),” IEEE Transactions on Signal Processing, vol. 68, pp. 5349–
5364, 2020.

[7] W. Wang and X.-G. Xia, “A closed-form robust chinese remainder
theorem and its performance analysis,” IEEE Transactions on Signal

Processing, vol. 58, no. 11, pp. 5655–5666, 2010.
[8] G. Reeves and H. D. Pfister, “Reed–muller codes on bms channels

achieve vanishing bit-error probability for all rates below capacity,” IEEE

Transactions on Information Theory, 2023.
[9] E. Arikan, “A performance comparison of polar codes and reed-muller

codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447–449, 2008.
[10] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and

polynomial gap to capacity,” IEEE Transactions on Information Theory,
vol. 61, no. 1, pp. 3–16, 2014.

[11] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Unified scaling of
polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors,” IEEE Transactions on Information Theory, vol. 62, no. 12,
pp. 6698–6712, 2016.

[12] H.-P. Wang, T.-C. Lin, A. Vardy, and R. Gabrys, “Sub-4.7 scaling
exponent of polar codes,” IEEE Transactions on Information Theory,
2023.

[13] F. Gray, “Pulse code communication,” Mar. 17 1953, uS Patent
2,632,058.

[14] D. E. Knuth, The art of computer programming, volume 4A: combina-

torial algorithms, part 1. Pearson Education India, 2011.

42Authorized licensed use limited to: Stanford University Libraries. Downloaded on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

