2024 IEEE International Symposium on Information Theory (ISIT) | 979-8-3503-8284-6/24/$31.00 ©2024 IEEE | DOI: 10.1109/ISIT57864.2024.10619585

Improved Construction of Robust Gray Codes

Dorsa Fathollahi
Department of Electrical Engineering
Stanford University
Stanford, CA, USA
Email: dorsafth@stanford.edu

Abstract—A robust Gray code, formally introduced by (Lolck
and Pagh, SODA 2024), is a Gray code that additionally has
the property that, given a noisy version of the encoding of an
integer j, it is possible to reconstruct ; so that |j — ;| is small
with high probability. That work presented a transformation that
transforms a binary code C of rate R to a robust Gray code with
rate Q(R), where the constant in the Q(-) can be at most 1/4. We
improve upon their construction by presenting a transformation
from a (linear) binary code C to a robust Gray code with similar
robustness guarantees, but with rate that can approach R/2.

A full version of this paper can be found in [1].

I. INTRODUCTION

In [2], Lolck and Pagh introduce the notion of a robust
Gray code. Informally, a robust Gray code G C {0,1}% has
an encoding map Encg : {0,..., N —1} — {0,1}% that maps
integers to bitstrings, with the following desiderata.

o G should be a Gray code.! That is, for any j €

{0,...,N — 2}, |Encg(j) — Encg(j + 1)| = 1.

o G should be “noise robust.” Informally, this means that
we should be able to approximately recover an integer
j€{0,...,N — 1} given a noisy version of Encg(j).
Slightly more formally, G should have a decoding map
Decg : {0,1}% — {0,...,N — 1}, so that when 7 ~
Ber(p)”, the estimate j = Decg(Encg(j) @7) should be
close to j with high probability.

o G should have high rate. The rate IO%N of G should be
as close to 1 as possible.

e G should have efficient algorithms. Both Encg and
Decg should have running time polynomial (ideally, near-
linear) in d.

Robust Gray codes have applications in differential privacy;
see [2]-[5] for more details on the connection. It is worth
mentioning that there exist non-binary codes based on the
Chinese Remainder Theorem [6], [7] that have nontrivial
sensitivity, but in our work, we focus on binary codes.

Our Contributions. In this paper, we improve upon the
construction of [2] by giving a construction of a robust Gray
code with the same robustness guarantees, but better rate.
More precisely, for p € (0,1/2), [2] give a general recipe
for turning a good error-correcting code C with rate R into a

I'The paper [2] also gives a more general definition, where the code should
have low sensitivity, meaning that |Encg (j)—Encg (j+1)] is small; however,
both their code and our code is a Gray code, so we specialize to that case (in
which the sensitivity is 1).

Mary Wootters

Departments of Computer Science and Electrical Engineering

Stanford University
Stanford, CA, USA
Email: marykw @stanford.edu

robust Gray code G with rate 2(R), and with the following
robustness guarantee:

Pr [|j — Decg(Encg(j) +n)| > ¢
n~Ber(p)?

< exp(=Q(t)) + exp(=Q(d)) + O(Prn(C)), (D)

where P (C) is the failure probability of the code C on the
binary symmetric channel with parameter p:

Prif(C) =max Pr [Dece(Ence(v) + 1) # v].

vEFL n~Ber(p)"

Our main result is a similar transformation that turns a
(linear) binary code C with good performance on the binary
symmetric channel into a robust Gray code G. We obtain a
similar robustness guarantee as (1) (see Theorem 1 for the
precise statement), but with better rate. Concretely, if the
original code C has rate R € (0,1), the rate of the robust
Gray code from [2] is proven to be {2(R), where the constant
inside the {2 approaches 1/4 when C has sublinear distance;
this comes from the fact that the a codeword in their final
construction involves four codewords from C. In contrast,
under the same conditions, our robust Gray code G has rate
approaching R/2; this is because our construction involves
only two codewords from C. (See Observation 2 for the formal
statement). Moreover, if the encoding and decoding algorithms
for C are efficient, then so are the encoding and decoding
algorithms for our construction G; concretely, the overhead on
top of the encoding and decoding algorithms for C is O(d)
(see Lemma 3 for the precise statement).

As a result, when instantiated with, say, a constant-rate
Reed-Muller code or a polar code (both of which have
sublinear distance and good performance on the BSC(p) (see,
e.g., [8]-[12])), our construction gives efficient robust Gray
codes with a rate about two times larger than than previous
work, approaching R/2 if C has rate R.

Main Idea. The idea of our transformation is quite simple,
and follows the same high-level structure as [2]. We begin
with our base code C, and use it to construct an intermediate
code W (with an appropriate ordering). Then we add new
codewords to W to complete it to a Gray code. For example,
if w;, w41 are two consecutive codewords in W, then we will
insert A(w;, w;+1)— 1 codewords in between them, iteratively
flipping bits to move from w; to w;4.

979-3uBfized D@4sed 2443t QTP PR sity Libraries. Downloadggon March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

The main difference between our construction and that of
previous work is how we build and order W. First, we use a
standard Gray code to construct an ordering of the codewords
in C. Then, we build W as follows. Let ¢; be the i’th codeword
in C. Then the i’th codeword in W is given by

W; = §40C; ©8;0C; O S,

where s; is a short string that is all zeros if ¢ is even and all
ones otherwise, and o denotes concatenation. Then we form
G by interpolating as described above.

Our decoding algorithm ends up being rather complicated,
but the idea is simple. Suppose that for a codeword g € G,
we see a corrupted version g +n € F4, where 7 is a noise
vector. As described above, g is made up of a prefix from
w;+1 and a suffix from w;, for some i. Let h € [d] be the
index where g “crosses over” from w;;; to w;. Notice that,
as this crossover point can only be in one place, at least one of
the two codewords of C appearing in g will be complete, and
equal to either ¢; or ¢;4;. Thus, if we could identify where
the crossover point h was, then we could use C’s decoder to
decode whichever the complete C-codeword was to identify 4;
and then use our knowledge of where h is to complete the
decoding. The simple observation behind our construction is
that, because the strings s; (which are either all zeros or all
ones) flip with the parity of ¢, we can tell (approximately)
where h was! Indeed, these strings will be all zeros before h
and all ones after h, or vice versa. Of course, some noise will
be added, but provided that the length of the strings s; are
long enough, we will still be able to approximately locate h
with high probability.

However, there are several challenges to implementing this
simple idea. For example, given ¢ and h, how do we efficiently
compute j? (Here is where the fact that we ordered C carefully
comes in; it’s not trivial because the number of codewords of
G inserted between w; and w;y; depends on ¢, so naively
adding up the number of codewords of G that come before
w; and then adding h would take exponential time.) Or, what
happens when the crossover point & is very close to the end
of g; +n? (Here, it might be the case that we mis-identify ¢;
but we show that this does not matter, with high probability,
because our final estimate will still be close to j with high
probability). In the rest of the paper, we show how to deal
with these and other challenges.

II. PRELIMINARIES

We begin by setting notation. Throughout, we work with
linear codes over [y, so all arithmetic between codewords is
modulo 2. For z,y € F%, let A(z,y) denote the Hamming
distance between = and y. We use ||z to denote the Hamming
weight of a vector z € IF% For a code C C Fy, the minimum
distance of the code is given by D(C) := mincxecc Alc,).

For two strings s; and so, we use $; o So to denote the
concatenation of s; and ss. For a string s € IFé and for ¢ < /¢,
we use pref;(s) € S to denote the prefix of the string s ending
at (and including) index i. Analogously, we use suff;(s) €

]Fé_i be defined as the suffix of s starting at (and including)
index 7. For an integer ¢, we use [¢] to denote the set {1, ..., £}.

For ¢ € Z, let Maj, : F§ — Fy be majority function on ¢
bits. (In the case that £ is even and a string y € F% has an
equal number of zeros and ones, Maj,(y) is defined to be a
randomized function that outputs O or 1 each with probability
1/2.) We use Ber(p) to denote the Bernoulli-p distribution on
Fs, so if X ~ Ber(p), then X is 1 with probability p and 0
with probability 1 — p.

Next we define Binary Reflected Codes, a classical Gray
code ([13]; see also, e.g., [14]); we will use these to define
our ordering on C. Let k be a positive integer. The Binary
Reflected Code (BRC) is a map Ry : {0,...,2F — 1} — F%
defined recursively as follows.

1) For k=1, R1(0) =0 and R1(1) = 1.

2) For k > 1, for any i € {0,...,2F — 1},

o If i < 2871, then Ry (i) = 00 Ry_1(i)
o If 7 > 2k71, then Rk(l) =1 Oﬁk_l(Qkil — (Z —
2F=1) — 1) =10 Rp_1(2F —i—1).
It is not hard to see that Ry, is indeed a Gray code.

As an example, Ra(1) = 00 Ry(1) =01, as 1 < 2F-1 = 2;
and Ry(2) =10 Ry(1) =11, as 2 > 2k =2,

We will need one more building-block, the Unary code. The
Unary code U C Y is defined as the image of the encoding
map Ency : {0,...,¢} — F} given by Ency/(v) := 1Y 007",
The decoding map Decy, : F5 — {0,...,¢} is given by

Decy(z) = argmin, ¢ o, 3 Az, Ency (v)).

III. CONSTRUCTION

We recall the high-level overview of our construction from
the introduction: To construct G we will start with a base
code C where C C F%, which we will order in a particular
way (Definition 1). Then we construct an intermediate code
W = {wo, ..., wok_1} CF¢ by transforming the codewords
of C (Definition 2); the codewords of WV inherit an order
of C. Finally, we create final code G C Fg by adding new
codewords that “interpolate” between the codewords of W so
that it satisfies the Gray code condition (Definition 5). We
discuss each of these steps more below.

First, given a base code C C F5, we define an ordering on
the elements of C as follows.

Definition 1. Let C C F7} be a linear code with block length n
and dimension k. Let A¢c €]FSX” be a generator matrix for C,
and let a, denote the z-th row of Ac. Given i € {0,...,2F —
1}, define z; to be the unique integer so that Ry (i)[z;] #
Ri(i+1)[z]. Let ¢g = 0. Then, for all i € {1,...,2F — 1},
the i-th codeword of C is defined by ¢; = ¢;—1 + a,.

In the full version of the paper, we prove that indeed this
ordering hits all of the codewords. For now, we move on to
define our intermediate code W.

Definition 2. Let C C F3 be a linear code of dimension k.
Let (cg,...,cor_1) denote the ordering of codewords in C as
per Definition 1. Let d = 2n + 3D(C). The intermediate code

Authorized licensed use limited to: Stanford University Libraries. Download@@on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

W, along with its ordering, is defined as follows. For each
i €{0,...,2F — 1}, define w; € FY by the equation

0P©) o ¢ o 0P©) o ¢ o 0P©)
i 1P©) 6 ¢; 01P©) o ¢; 0 1P(©)

if 7 is even

e 2
if 7 is odd

Then, W C F4 is defined by W = {w; :
where W is ordered as (wyg, ..., wqr_1).

ie{l,...,28-1}},

Definition 3. For every ¢, define r; = 22:1 A(we—1,wp).

It will be useful to be able to locate j € [N] within a block
[ri,7i+1). To that end, we introduce the following notation.

Definition 4. Let j € {0,..., N —1}. Leti € {0,...,2F —1}
be such that j € [r;, riﬂ). Then we will use the notation j to
denote j—r;. That is, j is the index of j in the block [r;, 74+1).

Finally, we to create our robust Gray code G, given any
two consecutive codewords in ¥V, we inject extra codewords
between them as follows.

Definition 5 (Definition of our robust Gray code G; and the
parameters 7;, h; ;). Let W C]Fg be a code defined as in Defi-
nition 2. For each i € [2¥], recall that r; = > _,_, A(wp—1,wy)
according to Definition 3, and let N = 7yx. For i € [2*] and
1< 5 < A(wi,wi+1), let hlJ S {0, ey d — 1} be the j—th
index where codewords w; and w;; differ.

Define go = wy. Fix j € {1,...,N — 1}. Find 4 such
that j € [r;,7;41). (Note that this can be done efficiently, via
binary search.) If j = r;, we define g; € F¢ by g; = w;. On
the other hand, if j € (r;,7;41), then we define g; € F¢ as

g; = prefy,, . (wiy1)osuffy, ;_ 41(wi).

i,j =7

Finally, define G CF¢ by G = {g; : i € {0,...,N —1}},
along with the encoding map Encg : {0,..., N — 1} — F¢
given by Encg (i) = g;.

We will also define h; = (h 1, Ri2, .. o5 hi Agwiwiy)—1) €
{0,...,d — 1}AWiwis)=1 o be the vector of all indices in
which w; and w;4; differ, in order, except for the last one.?

Note that, in this notation, when j € [r;,7;41), the last bit
that has been flipped to arrive at g; in the ordering of G (that
is, the “crossover point” alluded to in the introduction) is h; ;.

It follows from Definition 5 that G is indeed a Gray code,
and that it has rate approaching R/2. Formally, we have the
following two observations.

Observation 1. G is a Gray code. That is, For any j €
{0,..., N — 1}, we have that A(g;j,gj4+1) = 1.

Observation 2. Suppose that C C FJ has rate R = log, |C|/n
and distance o(n). Then the code G constructed as in Defini-
tion 5 has rate that approaches R/2 as N — oo.

In the full version, we prove that G (Definition 5) is indeed
an injective map, so we don’t need to worry about running
into the same string multiple times while “interpolating.”

2The reason we don’t include the last one is because once the last differing
bit has been flipped, g; will lie in [w;41, wit2), not [w;, wit1).

IV. DECODING ALGORITHM AND ANALYSIS

In this section, we define our decoding algorithm and
analyze it. We begin with some notation for the different parts
of the codewords g; € G. For a string z, we use z[i : 7]
to denote the substring (z;, Z;+1,...,2y—1). Moreover, [i :]
denotes the suffix of string = staring at ¢. With this notation,
for any € F4, define the following substrings:

e s1(z) =z[0: D(C)]

e ¢1(x) =2z[D(C): D(C) + n|

e so(z) =z[D(C)+n:2D(C) + n|

o Co(x) = 2[2D(C) + n,2D(C) + 2n]

e s3(z) =z[2D(C) + 2n : 3D(C) + 2n).

T
Notice that if z € G, then ¢; and & are in locations
corresponding to the codewords of C that appear in codewords
of W, while s1, s9, and s3 are in locations corresponding to
the 0P(©) and 17(©) strings.

Before we formally state the algorithm (Algorithm 2 below),
introduce some notation and state a lemma to motivate its
structure.

First, it is not hard to see (and we prove formally in the full
version) that if we write g = s1 0 ¢; 0 89 0 ¢ 0 53, then at most
one of these “chunks” are broken up by the “crossover point”
h; ;; the other four are equal to the corresponding substring
in w; or w;y1. We say that a substring in S that is equal to its
corresponding substring in w; or w;41 is a full chunk. Thus,
there are at least four full chunks in any g; € G. Notice that
it is possible that a substring ¢y is in C but is not a full chunk.
We say that all full chunks are decoded correctly if, for
full chunk of x, when we run the corresponding decoder, we
get the right answer. That is, if ¢ () is a full chunk, then if
we were to run Dece on ¢;(z) we would obtain ¢;(g;), and
similarly for é3; and if s;(«) is a full chunk, and we were to
run Majp) on s1(z), we would obtain s1(g;), and similarly
for s and sg3.

The intuition behind our algorithm, as mentioned above, is
that we can detect (approximately) where the “crossover point”
h;; is by seeing what the chunks s;(z),s2(z) and s3(x)
decode to under majority-vote. This motivates three cases that
will be reflected in our algorithm, which we characterize with
the following lemma.

Lemma 1. Let g; € G and let ¢ be such that j € [r;, r;41).
Let ~ Ber(p)? where p € (0,1/2). Let z = g; + 7 be a
received input. Then define ¥;; = Dece(¢y (z)) for i’ € {1,2}
and by = Majp (s (z)) for i' € {1,2,3}. Assume that
all full chunks are decoded correctly by their corresponding
decoder. Then the following hold.

1) If (bhbz,bg) S {(1,1,0),(07071)}, then Encc(ﬁl) =
ci+1 and hlj >n—+ D(C)

2) If (bl, ba, bg) S {(0, 1, 1), (1, 0, 0)}, then EHCC('[)Q) =c;
and h; 3 <n+2D(C).

3) If (b1,b2,b3) € {(0,0,0),(1,1,1)}, then Ence (1) =
Ence(d2) € {ci,cipr} and h;; € [0,D(C)) U [d —
D(C),d).

Authorized licensed use limited to: Stanford University Libraries. Downloadd§on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

We sketch the proof below, and refer the reader to the full
version for details.

Proof sketch. We address each case individually.

1) If (b1,be,b3) € {(1,1,0),(0,0,1)} then we claim that

h; 3 > n+D(C). Assume otherwise. If h; ; € [0, D(C)),
then g;[D(C) :] = wi[D(C) 1, and s2(g;) = s3(g;)
are full chunks. Given the assumption that all the full
chunks are decoded correctly, by = Maj(s2(x)) =
Maj(ss(x)) = bz but that contradicts our assumption
for this case; so we conclude that h,;; & [0, D(C)).
Thus, h;; € [D(C),n + D(C)). But then then s1(g;)
and s5(g;) are full chunks, and s;(g;) # s2(g;). This
implies that b; # bo, again a contradiction. This shows
h; 3 > n+ D(C).
Finally, the fact that h;,; > n + D(C) implies that
51(9;‘) = él(wiJrl) = Cij+1, and 51(93) is a full chunk.
Using the assumption of correct decoding of all full
chunks, we see that Ence (1) = ¢;y1.

2) If (by,b2,b3) € {(0,1,1),(1,0,0)}, then the conclusion
follows by an argument nearly identical to Case 1.

3) If (b1,b2,b3) € {(0,0,0),(1,1,1)}, then we claim that
h;; €10, D(C))Uld—D(C),d). Assume otherwise, then
Sl(gj) = sl(wi+1) and Sg(gj) = 83(’11)1‘) and they are
full chunks. Now as ¢ and 7 + 1 do not have the same
parity, s1(g;) # s3(g;). As a result, if all full chunks
are decoded correctly, we have that b; # b3, which
contradicts our assumption in this case. This proves our
claim that h, ; € [0, D(C)) U [d — D(C), d).

If hi,j S [O,D(C)) then El(gj) = 52(gj) = ¢ if
hi,j S [d — D(C),d) then 61(9]) = 62(9]) = Cit1; and
in either case both are full chunks. Using the assumption
that all full chunks are decoded correctly, we see that
Ence(01) = Ence(02) € {¢;, ¢it1}, as desired.

O

A. Decoding Algorithm

Before we state our main algorithm (Algorithm 2 below),
we include a helper algorithm, compute-r (Algorithm 1).
This algorithm takes an index i € {0,...,2¥ — 1} and
returns 7;. Note that this is not trivial to do efficiently: If we
wanted to compute r; directly from the definition, that would
require computing or storing A(wyg, wyes1) for all £ < ¢ and
adding them up, which may take time €2(2¥). Instead, we do
something much faster.

Algorithm 1 compute-r
Input: i € {0,...,2F — 1}
7 =0
for z€{0,...,k—1} do
i =7 + 2| 20] - Jlaz|| + 3D(C) > a is the z’th row
of the generator matrix of C.
end for
Return: 7;

Lemma 2. The Algorithm compute-r (Algorithm 1) cor-
rectly computes ;.

Proof. Recall that r; = Zz;é A(wg, wes1). Consider a fixed
difference A(wy, wyy1). This is precisely

A(wg, weq 1) = 2||a, || +3D(C), 3)

where 2 is the unique index so that Ry, (¢)[z¢] # R (€+1)[z¢]:
indeed, by Definition 1, A(cg, ce41) = ||az,||, and from that
(3) follows from the definition of VW (Definition 2). Thus, in
order to compute

i—1
ri =y _(2llas, | +3D(C)),
=0
it suffices to count how often each index z € {0,...,k — 1}
shows up as some 2, in that sum. This is precisely |5t |,
by the definition of Ry. O

Our final algorithm is given in Algorithm 2. It is organized
into the three cases of Lemma 1. To help the reader, we have
included comments saying what each estimate “should” be.
Here, “should” is under the assumption that each full chunk
is decoded correctly.

Algorithm 2 Decg: Decoding algorithm for G

1: Input: z = g; + n € F4

2: Output: j € [N]

3. for ¢ € {1,2} do

4: 0y = Dece(¢e(z)) > Decode ¢ () and éa(x)
individually to obtain vy, 02 € {0, ..., 2k —1}.

: end for

6: for (€ {1,2,3} do

: by = Majpc)(se(x)) > Decode each sy(x) to obtain
by, € {()l}

8: end for

> Below, in the comments we note what each value

“should” be. This is what these values will be under the
assumption that each full chunk is decoded correctly.

10: if (bl,bg,bg,) € {(17 1,0), (O,O7 1)} then

i

11: > Case 1: Ence(97) should be ¢;41

122 =Ry () > i should be i + 1
13: 0 =Rp(i—1) > 0 should be Ry,(7)
14: ¢1 = Ence(0) > ¢q should be ¢;
15: éo = Ence(07) > ¢o should be ¢;y
16 w1 = Encyy (&) > 1 should be w;
17: we = Encyy (é2) > g should be w; 4

18: H ={leh;—1 : £t>n+D(C)}

19: u = Decy (z[H'] + 1 [H'])

20: > u is an estimate of h; ; — A(c;, ciy1) — D(C)
21: J=u+ D(C) + A(é1,¢&) + compute-r(i — 1)

22: else if (by,be,b3) € {(0,1,1),(1,0,0)} then

23: > Case 2: Ence(02) should be ¢;

24 P =Ry (0a) > i should be i
25: 0=TRg(i+1) > o should be Ry (i + 1)
26: ¢1 = Ence(02) > ¢; should be ¢;
27: éo = Ence(0) > ¢o should be ¢y

Authorized licensed use limited to: Stanford University Libraries. Downloadg@)on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

28: w1 = Ency(é1) > 1y should be w;
29: we = Encyy(éa) > 1o should be w1
30: H ={{eh_1 :{<n+2D(C)}

3L u = Decy (z[H'] + w1 [H'])

32: > u is an estimate of h; ; < 2D(C) +n

33: J = u+ compute-r(i)

34: else if (by,bo,b3) € {(0,0,0),(1,1,1)} then

35: > Case 3: Ence(01) and Ence(02) should be
equal to each other, and to either ¢; or c¢;41, but we need
to figure out which one.

36: i =Ry (1) > i should be either 7 or i + 1

37: 0 =Rp(i—1) > © should be Ry (i) or Ry(i — 1)

38: ¢ =Ence(0) by =cifi=i+1i¢qifi=1

39: Gy = EHCC(’IAjl) > oy = Cit1 ifo=i+1,¢c;if =1

40: W =Ency (&) > w =w;py if i =i+ 1;w; if i =1

41: uy = Decy(z[< D(C)] + b))

42: > uy is an estimate of h; ; < D(C) if © = w;

43 uy = Decy(z[> 2D(C) + 2n] + b°“)

44: > ug is an estimate of h; ; — 2D(C) — 2A(c;, ciy1) if
W= Wi

45: 51 = uj + compute-r(f) > Estimate j if w0 = w;

46: 52 :u2+2D(C)+2A(él,ég)+compute—r(i—1))
X > Estimate j if w = w;44

47: g1 = Ean(_Zl)

48: QQ = Ean(jg)

49: J=ming s 5 Az, gj)

50: end if

B. Analysis

Next, we provide formal statements about the correctness
and running time of Algorithm 2. Due to space constraints,
we state only the main results and defer all proofs to the full
version, and only offer intuition in this extended abstract.

We begin with the running time, which follows immediately
from inspection of Algorithms 1 and 2.

Lemma 3. Let C C F% be a code with rate £2(1). Suppose
that Dece runs in time Thec.. (7)., Ence runs in time Tgye. (1),
and D(C) = o(n). Let Ac be the generator matrix of C, with
rows a, for z € {0,...,2F — 1}. Suppose that |a.|| can be
computed in time O(1). Then the running time is of Decg is
O(Tpece (d) + Tence (d) + d), and the running time of Encg
is O(TEnce (d)).

Remark 1 (Time to compute ||a.||). If C is, say, a Reed-Muller
code RM(r,m), then indeed, given z, ||a.| can be computed
in time O(1): if the binary expansion of z has weight ¢t <
r, then the corresponding row has weight 2™~¢. For codes
that may not have closed-form expressions for their generator
matrices, we can pre-compute each ||a|| (in total time O(d?))
and store them to allow for O(1) lookup time.?

Finally, we state our main correctness theorem.

3If a lookup table is not desirable and the ||a.|| cannot otherwise be
computed on the fly, then our algorithm still works, and Decg runs in time
at most O(Tpec, (d) + Tence (d) + d?), where we recall that d = O(n)
and O(log N).

Theorem 1. Fix p € (0,1/2). Let C C F7 be a linear code. Let
G be defined as in Definition 5 from C. Let 1), € Fg ~ Ber(p)?
Then

Pr[|j — Decg(Encg(j) +np)| > t] < yexp(—at) + 5P (C)

(1—2p)*

112 and

where o and ~ are constants given by o = —
2

7= T=exp(—a)

Unfortunately, we do not have space for the proof (see the
full version), but we give a quick sketch here.

First, we argue that, under the assumption that all full
chunks are decoded correctly, that the values computed in
Algorithm 1 (for example, Z,w;,ws,¢1,C2, and so on) are
what they “should” be. That is, we argue that these are the
values that the comments in Algorithm 2 indicate.

Second, we show that, again under the assumption that all
full chunks are decoded correctly, we always have

5 = il = Algj 95), 4

where j is the estimate of j returned by Decg. This in-
volves some case analysis and stepping carefully through
Algorithm 2.

Next, let S be the bad event that some full chunk is decoded
incorrectly. We write

Prlj —j| > 1]
=Pr[lj = jl > t|S] - PrlS]+Pr [|j = j| > t] 5] - PxlS]
<Pr [|j—j’| >t|5} + PrfS),

and bound each term separately.

To bound the first term, we show that if the algorithm
returns j rather than the correct answer 7, then it was because
g; was closer to the received word x than g; was, that is,
A(g;,z) < A(gj,x). As a result, this can only happen if the
noise vector 7, has weight at least A(g;, g;), which by a Cher-
noff bound happens with probability at most exp(—aA(g;, g;)
for some constant «.. Using (4), this implies that the probability
of returning j is at most exp(—alj — j|). Finally, we can
conclude that

.o - > 2 exp(—at)

Prilj—jl= tIS} < ;QGXP(az) =7 —exp(—a)’
which bounds the first term.

Finally, the second term Pr[S] can be bounded by
O(Prit(C)). This is because if any full chunk is decoded
incorrectly, then either C’s decoder failed, or else the Maj
decoder failed on a string of length A(C), which we show
happens with probability at most Pp,;(C) as well.

Altogether, this line of reasoning establishes Theorem 1. We
refer the reader to the full version for more details.

ACKNOWLEDGMENT

MW and DF are partially supported by NSF Grants CCF-
2231157 and CCF-2133154. The first author thanks Rasmus
Pagh for bringing our attention to this problem.

Authorized licensed use limited to: Stanford University Libraries. Downloaddd on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] D. Fathollahi and M. Wootters, “Improved construction of robust
gray codes,” 2024, arXiv eprint 2401.15291. [Online]. Available:
https://arxiv.org/abs/2401.15291

[2] D. R. Lolck and R. Pagh, “Shannon meets gray: Noise-robust, low-
sensitivity codes with applications in differential privacy,” in Proceed-
ings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2024, pp. 1050-1066.

[3] M. Aumiiller, C. J. Lebeda, and R. Pagh, “Differentially private sparse
vectors with low error, optimal space, and fast access,” in Proceedings of
the 2021 ACM SIGSAC Conference on Computer and Communications
Security, 2021, pp. 1223-1236.

[4] J. Acharya, Y. Liu, and Z. Sun, “Discrete distribution estimation under
user-level local differential privacy,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2023, pp. 8561-8585.

[5] J. Acharya, C. Canonne, Y. Liu, Z. Sun, and H. Tyagi, “Distributed
estimation with multiple samples per user: Sharp rates and phase
transition,” Advances in neural information processing systems, vol. 34,
pp. 18920-18931, 2021.

[6] L. Xiao, X.-G. Xia, and Y.-P. Wang, “Exact and robust reconstructions
of integer vectors based on multidimensional chinese remainder theorem
(md-crt),” IEEE Transactions on Signal Processing, vol. 68, pp. 5349—
5364, 2020.

[71 W. Wang and X.-G. Xia, “A closed-form robust chinese remainder
theorem and its performance analysis,” IEEE Transactions on Signal
Processing, vol. 58, no. 11, pp. 5655-5666, 2010.

[8] G. Reeves and H. D. Pfister, “Reed—muller codes on bms channels
achieve vanishing bit-error probability for all rates below capacity,” I[EEE
Transactions on Information Theory, 2023.

[9] E. Arikan, “A performance comparison of polar codes and reed-muller
codes,” IEEE Communications Letters, vol. 12, no. 6, pp. 447-449, 2008.

[10] V. Guruswami and P. Xia, “Polar codes: Speed of polarization and
polynomial gap to capacity,” IEEE Transactions on Information Theory,
vol. 61, no. 1, pp. 3-16, 2014.

[11] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Unified scaling of
polar codes: Error exponent, scaling exponent, moderate deviations, and
error floors,” IEEE Transactions on Information Theory, vol. 62, no. 12,
pp. 6698-6712, 2016.

[12] H.-P. Wang, T.-C. Lin, A. Vardy, and R. Gabrys, “Sub-4.7 scaling
exponent of polar codes,” IEEE Transactions on Information Theory,
2023.

[13] F. Gray, “Pulse code communication,” Mar. 17 1953, uS Patent
2,632,058.

[14] D. E. Knuth, The art of computer programming, volume 4A: combina-
torial algorithms, part 1. Pearson Education India, 2011.

Authorized licensed use limited to: Stanford University Libraries. Downloadg@on March 31,2025 at 18:23:50 UTC from IEEE Xplore. Restrictions apply.

