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1. Introduction

Fluidic elastomer actuators (FEAs) feature large relative deforma-
tions, infinite degrees of freedom, and passive adaptation to
external perturbations, despite minimalist designs and inexpen-
sive fabrication techniques. These remarkable properties have
led to widespread adoption in biomedical devices,[1] factory
and field manipulation,[2] wearables,[3] and mobile aqueous,
airborne, and ground robots.[4,5] A key to their success is

morphological intelligence that enables
complex deformations and multifunction-
ality without explicit control signals paving
the way for cost-effective robots that can be
deployed in greater numbers and across
different size scales. Such minimal soft
mechanisms may work independently
or complement more sophisticated
control architectures for a higher degree
of versatility.

In pursuit of a larger workspace, and
better control and resolution within that
workspace, researchers have introduced
strain-limiting layers,[6] antagonistic config-
urations,[7] addressable bang-bang control
of pumps and valves,[8] negative pres-
sures,[9,10] and use of external obstacles
to induce deformations.[11] In recent years,
researchers have also shown new ways
to achieve minimalist control, either by
passive pressure-driven valves to produce
actuator oscillations,[12] or by bringing
utility to fluid viscosity through narrow
internal channels that connect elastomer
bladders,[13,14] stochastic pore distribu-

tion,[15] or viscous peeling.[16] In a similar vein, viscous control-
lers have been shown to be able to drive a delay sequence of
single mode, constant curvature FEAs.[17]

In spite of this progress, the field has yet to demonstrate
complex actuation profiles with practical drive circuitry, on par
with the infinite passive degrees of freedom that are the hallmark
of soft actuators. Toward this goal, we cast FEAs in a new light.
Fundamentally, the primary two-way coupled mechanism
governing all FEAs is the balance between the spatial change
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Herein, complex motion in soft, fluid-driven actuators composed of elastomer
bladders arranged around a neutral plane and connected by slender tubes is
demonstrated. Rather than relying on complex feedback control or multiple
inputs, the motion is generated with a single pressure input, leveraging viscous
flows within the actuator to produce nonuniform pressure between bladders.
Using an accurate predictive model coupling with a large deformation Cosserat
rod model and low-Reynolds-number flow, all dominating dynamic interactions
including extension and curvature are captured with two governing equations.
Given insights from this model, five design elements are described and dem-
onstrated in practice. By choosing the relative timescales between the solid, fluid,
and input pressure cycles, the tip of the actuator can obtain almost any desired
trajectory and can be placed anywhere temporarily within its 2D workspace.
Finally, the benefits of viscous-driven soft actuators are showcased in a six-legged
untethered robot able to walk 0.05 body lengths per second. The foundation is
laid for a new class of morphologically intelligent, soft robotic actuators that
enables complex deformations and multifunctionality without explicit drivers;
whereby generating nonuniform pressure distributions, their infinite degrees
of freedom can be exploited.
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in flux and the volume change. This change in flux is related
to spatial pressure gradients in the fluid field that generate
stresses on the fluid–solid interface; these stresses, in turn,
produce local moments and normal forces in the solid, which
deform the actuator and vice versa. In these fluid-structure
dynamics, we identify three governing timescales: the elastic-
inertial timescales of the solid t�s , the viscous-elastic timescale
of the fluid t�f , and the input transient timescale t�i .

Following this insight, we map out previous state-of-the-art
soft-robots along two axes (Figure 1), where the x-axis represents
a measure of the fluidic spatial pressure distribution and the
y-axis the degree of solid inertia. Along the x-axis, we see that
for t�s=t�f � 1, quadrants (II) and (III), pressure propagates
significantly slower than solid impulse response, solid inertia
becomes negligible, and the FEA reflects spatial variations in
the fluidic pressure field. For t�s=t�f ≫ 1, quadrants (I) and
(IV), fluidic pressure propagates significantly faster than the solid
response to pressure gradients, and the FEA behaves as if it is
responding to a uniform spatial pressure distribution. Along the
y-axis, we see that for t�s=t�i � 1, quadrants (III) and (IV), solid-
field impulse response is significantly faster than the input signal
transient and the FEA has a quasistatic transient behavior. In
contrast, for t�s=t�i ≫ 1, quadrants (I) and (II), the input signal
transients dominate, and the FEA has either an inertial response
or a quasistatic response, based on pressure propagation rates
t�s=t�f ≫ 1 or t�s=t�f � 1, respectively.

“Classic” FEAs predominantly occupy quadrant (IV),[12,17–26]

where a spatially uniform pressure distribution is coupled with
quasistatic transient behavior. Recent work on dynamic response
and combustion-driven FEAs falls in quadrant (I),[14,27–31] where

a spatially uniform pressure distribution (as t�s=t�i ≫ 1) and solid
inertia dominate. Here, the uniform pressure-to-curvature
(stress–strain) characteristics of the material restrict the FEA
to one spatiotemporal pattern with a decaying inertial transient
superimposed upon it. For both quadrants, the FEA forms a
semicircular deformed state since all sections exhibit the same
pressure-to-curvature profile and experience the same pressure.
Circumventing this can only be achieved by adding complexity,
such as patterning structural asymmetries, or external control
schemes, such as discretized section controls.

Quadrant (II) is more sparsely studied and occupied mainly by
theoretical work. Work in this quadrant is dominated by the
spatial pressure distribution with steep input transient
times.[13,15,16,31] Deformation includes localized sharp pressure
gradients as t�s=t�i ≫ 1, which result in pseudo-inertial, yet
diffusivity-decaying deformation propagating down the length
of the FEA.

Our work is the first to suggest operation in quadrant (III),
where the spatial pressure distribution and the fluid-scale input
transient times dominate. Here, deformation is driven by spatial
pressure variations and fluid-scale temporal input gradients that
are insufficient to evoke a leading-order inertial response at the
solid. This unique combination gives rise to varying spatiotem-
poral deformation patterns, even when driven by a single input
pressure profile. Specifically, in this paper, we introduce both
theory and experiments to achieve complex motion in FEAs
by leveraging viscous flows which cause nonuniform pressure
distributions throughout the actuator. We show how to generate
multiple deformation shapes and amplitudes (the spatial part)
with time-varying form and position in space (the temporal part),
and do so independently of patterning structural asymmetries or
complex control schemes.

We start from the traditional approach whereby asymmetry in
stress about the neutral plane of the solid body produces curva-
ture, whereas symmetry induces axial deformation. Next, we con-
struct the simplest possible unit cell of soft fluid-driven actuators,
namely a closed series of evenly distributed cavities embedded in
elastomer bellows, and pressurize them through slender tubes.
Finally, we embed the control mechanism within the structure
itself, in the form of preconfigured interconnections, as depicted
in the configuration schematic (Figure 2A).

If such an actuator was operated in Quadrant (IV) and driven
by a single pressure inlet, the tip could be placed vertically. If it
was driven antagonistically with a separate pressure source per
column, the tip could be placed in a 2D workspace. Whereas it
would take a separate pressure source per bellow to achieve full
control. Operation in Quadrant (III) enables an important subset
of the latter, through a single pressure inlet. Here, a stable inlet
pressure can be used to position the tip of the actuators vertically
similar to classic FEAs, but a changing inlet pressure can be used
to drive both the tip and the profile of the actuator in complex
trajectories. We see this, for example, in Figure 2B,C where
we show four distinct, tracked tip motion cycles that would oth-
erwise be impossible to achieve without at least two pressure
sources or more complex driver circuitry. Note also that the
snapshot of the robot illustrates actuator profiles that would
be impossible to achieve with two separately driven antagonistic
elastomer cavities. In this article, we focus exclusively on

Figure 1. Characterization of the state of the art in soft robotics and how
this contribution differentiates itself. The x-axis depicts a measure of fluidic
spatial pressure distribution in the form of a ratio between the elastic-
inertial timescales t�s over the viscous-elastic timescale t�f . In the y-axis,
we present a measure of solid inertia involvement, expressed as a ratio
of the elastic-inertial timescales t�s over the input signal transient timescale
t�i . The domain space has been divided into four quadrants based on their
unique characteristics: I) uniform spatial pressure quadrant, dominated by
solid inertia. II) Spatial pressure distribution dominated quadrant, with
steep input transient times. III) Spatial pressure distribution dominated
quadrant, with fluid timescale input transient times. IV) Uniform spatial
pressure quadrant exhibiting quasistatic transient behavior. The work
highlighted in this plot is further detailed in Appendix A, Supporting
Information.
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demonstrating the potential of this new operating regime.
However, this design technique does not restrict combination
with more traditional methods; for example, valves can be
added to permit the two columns of bellows to also be driven
antagonistically.

We provide a compact predictive model that couples large
deformation, modeled by a Cosserat rod continuum, with low-
Reynolds-number flow in the slender tubes, capturing leading-
order dynamic interactions, including extension and flexure.
Following insights from this model, and to make this new design
space more accessible to experimentalists, we categorize these
interactions into five dominant mechanisms and provide illustra-
tions of their influence in practice (Figure 3, 4 and Movie S1–5,
Supporting Information).

We further demonstrate the use of these mechanisms in a six-
legged robot driven by two onboard syringe pumps (Figure 2B, 5
and Movie S6, Supporting Information). Guided by the model
and the experimentally derived parameters, we are able to achieve
speeds of 0.05 body lengths per second (BL s�1). It is worth not-
ing that this is on the order of the most prominent existing exam-
ples of soft, fluid-driven, legged, untethered robots,[12,19] in spite
of the fact that we inherently introduce delays in our system by
relying on viscous-driven pressure differentials, rather than
explicit driver circuitry as in classic FEAs. As highlighted by blue
markers in Figure 1, such untethered walking robots supported
by theoretical frameworks are rare due to the high pressures and
consequently high payloads required to achieve significant
motion. Beyond serving as a powerful demonstration, our robot
implementation elucidates the relation between absolute
pressure and payload and stability.

Our goal with this paper is to provide, for the first time, a
reduced model and a meaningful experimental demonstration
to equip the reader with a toolset to harness the full potential
of the fluid–structure interaction internal to viscous fluid-driven
soft robots, empowering them to generate their own complex

spatiotemporal deformations previously unattainable without
extensive external control.

2. Analysis

2.1. Model Derivation

Here, we formulate the theoretical framework for a two-way
coupled fluid–structure interaction reduced physical model, as
well as respective characteristic scales, describing the nonlinear
dynamics of viscous fluid-driven soft robots based on ref. [14].
We present the fundamental steps required to reconstruct the
model tailored to the actuators used throughout this paper.
The model is intended to provide the reader with key insights
into the governing mechanism of such systems and provide a
practical goal-oriented design tool and predictor for the dynamic
behavior of such systems. We start from the traditional approach
whereby asymmetry in stress about the neutral plane of the solid
body produces curvature, whereas symmetry induces axial
deformation. We distribute a matrix of interconnected fluid-filled
bladders evenly about the neutral plane and pressurize them. The
pressure within the fluid-field generates and is induced by
deformation of the solid structure. In Figure 2A, we present
the fundamental configuration in use.

We denote vector variables using bold letters, direction vectors
by hat notation, nondimensional variables by tilde or capital
letters, characteristic values by asterisk superscript, and s or f
subscripts for solid or fluid properties, respectively. For a full
nomenclature, scaling arguments, and detailed characteristic
scale, see Appendix Section B.1 and Table B.1, Supporting
Information. We define a lab frame of reference (bxs,bys,bzs) for
the solid domain with a dimensional curvilinear length coordi-
nate θ along the actuator’s reference curve (neutral axis), and
assign a position vector x ¼ x θ, tð Þ, z θ, tð Þð Þ pointing to the
material point along it. We define a fluidic-field bladder-tube

Figure 2. A) Sketch of a single actuator (left), composed of a closed system of fluid-filled bellows and interconnecting tubes, alongside a sketch showing the
internal geometry as experienced by the fluid (marked in turquoise). B) Hexapod robot walking with two sets of three viscous-driven actuators coupled in parallel,
driven only by two syringe pumps. Note that all motion occurs in the ðbxs,bzsÞ-plane. C) Example motion cycles caused by different inlet pressure profiles.
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curvilinear frame (bxf ,byf ,bzf ) defined such that bxf is the stream-
wise direction, perpendicular to the byf � bzf plane. We define
actuator length ls, height hs, width ws, Young’s modulus E, solid
density ρs, and parameters f e, f i as solid-field correction
coefficients for cross sectional extension and bending stiffness,
comparing the actuator to a full rectangular cross-section beam
with identical dimensions, see Appendix Section B.5, Supporting
Information. Frames of reference and geometric dimensions are
illustrated in Figure 2A.

We limit our analysis to a beam-like configuration dominated
by viscous fluid-filled bladders wb=ls � 1. The averaged proper-
ties of these “unit cells” can be used to approximate that of the
solid domain’s averaged property as wb ⋅ n=2ð Þ=ls∼1, where n=2
is the number of bladders along the actuator length ls. We exam-
ine the 2D deformation in the bxs � bzs plane considering only
directors (d1 θ, tÞ;d3 θ, tð Þð ). The explicit representations of rele-
vant directors of the lab frame in dimensional form are d1 ¼
∂zsð Þ= ∂θð Þ, � ∂xsð Þ= ∂θð Þð Þ and d3 ¼ ∂xsð Þ= ∂θð Þ, ∂zsð Þ= ∂θð Þð Þ.
We define a small parameter representing the slenderness of

the fluidic domain ε1 ¼ 2rc=l � 1, where rc is the tube radius
and l is the total length of connective array of tubes. Next, we
formulate the Stokes equations for incompressible, creeping,
Newtonian flow in a slender elastic domain. The resulting
conservation of momentum is ∇p ¼ μ∇2u, and the conservation
of mass ∇ ⋅ u ¼ 0 with pressure p, the flow-field velocity u, and
the fluid dynamic viscosity μ. Applying order-of-magnitude anal-
ysis, and implementing lubrication and Gauss theorem, we inte-
grate over conservation of mass and obtain a nonlinear diffusion
equation balancing the change in axial flux with the change in
cross section over time in nondimensional terms

� ∂2P
∂X2

f
⋅Q1 þ

∂P
∂Xf

⋅
∂Q1

∂Xf

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Change in axial flux

þ ∂A
∂P

∂P
∂T|fflfflffl{zfflfflffl}

unsteady pressure term

þ R
∂A
∂M̃e

∂M̃e

∂T
þ j Rð Þj ∂A

∂Ñe

∂Ñe

∂T

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

change in fluid section due to resultant from solid domain

¼ 0

(1)

In governing Equation (1), we see how the axial flux is diffu-
sive in nature as evident by the nondimensional permeability
Q1 ¼ Qb

1ΓQ X fð Þ, where the advective term ∂P= ∂X f only contrib-
utes the nondimensional pressure P ¼ p=E propagation in the
presence of a permeability gradient along the length of the fluid
field (as it is in our case where bladders and connective tubing
have a nonuniform cross section). Balancing the axial flux is the
change in cross section A ¼ a=a�0 ¼ a=πr2c over time T ¼ t=t�f as
given by our unsteady pressure term and ∂A= ∂P ¼ ∂Ap1= ∂P

� �
ΓA X fð Þ representing the change in cross section per unit
pressure, and the feedback source terms from the solid-
field resultants for normal force Ñe, and moment M̃e

via ∂A= ∂Ñe ¼ ∂AN1= ∂Ñe
� �

ΓA X fð Þ, ∂A= ∂M̃e ¼ ∂AM1= ∂M̃e
� �

ΓA X fð Þ coupling solid-field deformation to flow. Last, we differ-
entiate between the parametric value referring to bladder or tube
by setting

ΓA X fð Þ ¼

8>>><>>>:
∂Θ xfð Þ
∂X f

¼ 0, 1

∂Θ xfð Þ
∂X f

6¼ 0, 0
(2)

ΓQ X fð Þ ¼

8>>><>>>:
∂Θ xfð Þ
∂X f

¼ 0, 1

∂Θ xfð Þ
∂X f

6¼ 0,Qc
1=Q

b
1

(3)

with bladder permeability Qb
1 and connective tube’s Qc

1 respec-
tive to X f position. In providing the feedback from solid to fluid
field, we define Θ X fð Þ as the coordinate mapping function of
solid-field deformation onto the fluidic pressure field. For more
detail, see Appendix Section B.3.5 and B.7, Supporting
Information. The pressure source terms in Equation (1) are gov-
erned by ∂M̃e= ∂T and ∂Ñe= ∂T . We thus need to map our resul-
tants onto the fluid field to derive their respective values. Even for
large deformations, leading-order predictions can be achieved
with good agreement by setting ∂Ap1= ∂P ¼ E=a�0

� �
⋅ ∂a1= ∂p,

∂AN1= ∂Ñe ¼ N�
e=a�0

� �
⋅ ∂a1= ∂Ne, and ∂AM1= ∂M̃e ¼ V�

e ls=a�0
� �

⋅
∂a1= ∂Me as averaged constants (Figure 3). To enhance the
prediction capabilities of the model for systems whose response
to pressure and external forces is significantly nonlinear due to
hyperelasticity, these can be readily replaced with curve-fitted
functions, measured from the material.[14] Finally, we define
R X fð Þ ¼ 1 and R X fð Þ ¼ �1 discretely to indicate to which
column within the actuator the bladder belongs.

Over the solid domain, we consider the dynamics of this FEA,
or elastic beam, initially at rest. We set an intrinsic Cosserat rod
formulation nondimensional deflection U1 and extension U3 in
the xs and zs direction, respectively. We limit the cross section to
maintain its initial shape and remain perpendicular to the refer-
ence curve based on the assumption of negligible cross-sectional
extension, cross-sectional shear, and tangential shear; finally, we
obtain the reduced nondimensional form respective to the X s

and Zs direction

τ2
∂2U1= ∂T2

∂2U3= ∂T2

� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Linear inertia

¼ Bx
Bz

� �
|fflfflffl{zfflfflffl}
Traction

þ η
∂Ñe

∂Θ
� α̃eṼe

� �
Etx
Etz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Curvilinear tangential force

þ ∂Ṽe

∂Θ
þ ηα̃eÑe

� �
Enx
Enz

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Curvelinear normal force

þ ∂
∂Θ

264 1
d33

B1
x � Y11τ2 ∂2 d̃1x

∂T2

	 

d̃3x

þ B1
z � Y11τ2 ∂2 d̃1z

∂T2

	 

d̃3z

0@ 1A d̃1x
d̃1z

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Rotary inertia

(4)

where Ṽe is the nondimensional shear force resultants and Θ is
the nondimensional curvilinear length coordinate along the
beam reference curve. We define our kinematic variable
for curvature α̃e, the structure reference curve tangent
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Et ¼ d̃3x , d̃3z
� �

=d̃1=233 , and normal En ¼ � d̃1x , d̃1z
� �

=d̃1=233 compo-
nents with the nondimensional directors being

d̃1 ¼ 1þ ∂U3= ∂Θ, � ∂U1= ∂Θð Þ, d̃3 ¼ ∂U1= ∂Θ, 1þ ∂U3= ∂Θð Þ
and d̃33 ¼ d̃3 ⋅ d̃3

(5)

We notice the emergence of three critical nondimensional
numbers determining the dynamic regime of the structure:
the timescale ratio τ ¼ t�s=t�f where t�s∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml4s=EIf i

p
is the

elastic-inertial timescale and t�f∼μð ∂a1= ∂pÞjp¼p0
=ða�0ε21Þ is the vis-

cous-elastic timescale, the normalized squared radius of gyration
Y11 ¼ If ið Þ= wshsf ml

2
sð Þ, and the force scale ratio determining the

balance between shear and normal forces η ¼ N�
e=V�

e ¼
Ehswsf e= Ewsh3s f i= 12l2sð Þð Þ. Last, we define the nondimensional
distributed traction force per unit mass B ¼ Bx ,Bzð Þ ¼
bx= V�

e=lsmð Þ, ηbz= V�
e=lsmð Þð Þ and the nondimensional distrib-

uted moment per unit mass vectors B1 ¼ B1
x,B1

zð Þ ¼
b1x= V�

e=mð Þ, ηb1z= V�
e=mð Þð Þ. Finishing the explicit form of the

reduced model, we provide the constitutive laws coupled with
feedback from the fluidic domain pressure P

Ñe ¼ λ̃e � 1
� �

(6)

M̃e ¼ α̃e (7)

Ṽe ¼ � 1

d̃1=233

∂M̃e

∂Θ
(8)

A C

B D

Figure 3. A,B) Similar input pressure profiles lead to different transient behavior when the actuators are configured in a straight or crossed configuration,
also shown in the inserts on the top left. Notice that these actuators only have a single pressure inlet. Solid lines are motions predicted by the model; black
marks are tracked markers in footage of the real leg, the colored dots are splines fitted to those marks. Curve color indicates passing of time; similarly, the
position of markers indicate both the spatial and temporal position of the actuator. All scale bars indicate 20mm. Both experimental and predictive model
curves use the same inlet pressure profile Pð0, TÞ ¼ Pmax � ΔPmax=ð1þ expð�2κðT � 0.5=t�f ÞÞÞ þ ΔPmax=ð1þ expð�2κðT � 4=t�f ÞÞÞ. For more informa-
tion, see section 2 under fluid-field boundary conditions, and Appendix Section C.6, Supporting Information. C,D) Steady-state configuration of the
actuator under positive pressure, with two different configurations.
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With respective fluid coupled intrinsic kinematic variables

λ̃e|{z}
Elastic stretch

¼ 1
λ�e

d̃1=233|fflffl{zfflffl}
Overall stretch

� λ�p
λ�e

P X fð Þϕ ∂ζ
∂ p=Eð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pressure�based stretch

(9)

α̃e|{z}
Elastic curvature

¼ 1
l2s

d̃1x,3d̃3x þ d̃1z,3d̃3z
d̃1=233|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Overall curvature

þ α�p
α�e

P0 X fð ÞΦ ∂ψ
∂ p0=Eð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Pressure�based curvature

(10)

where the effective normalized pressure for slope and extension
generation are respectively P0 X fð Þ ¼ Pd X fð Þ � Pu X fð Þð Þ and
P X fð Þ ¼ Pd X fð Þ þ Pu X fð Þð Þ, where Pu and Pd are the fluidic
pressures at the right and left bladders, ∂ζ= ∂ p=Eð Þ is the dimen-
sional change in length per cross-section per normalized
pressure sum, and ∂ψ= ∂ p0=Eð Þ represents the change in beam
slope per cross section per normalized pressure difference. The
coupling introduces the fluid pressure as a source term for cur-
vature and extension per solid domain coordinate Θ. Defining
these terms requires us to map our fluidic domain solution using
the X f Θð Þ mapping, for more detail, see Appendix Section B.3.5
and B.6, Supporting Information. Last, we note the characteristic
measures for curvature α�e∼α�p∼1=ls and stretch λ�e∼λ�p∼1, where
the subscripts e represent the source of the measure being exter-
nal forces, that is, traction applied to the surface, and the
subscript p represent pressure.

Concluding our model, we set the boundary and initial
conditions for a well-posed problem. Both fluid and solid fields
start from rest. For the solid field, we set standard boundary
conditions for a cantilever beam; over the fluid field, we set
P 0,Tð Þ ¼ Pmax � ΔPmax= 1þ exp �2κ T � 0.5=t�f

� �� �� �þ ΔPmax=

1þ exp �2κ T � 4=t�f
� �� �� �

as the pressure input signal where
the maximum pressure is Pmax ¼ 0.02245, the total pressure
difference ΔPmax ¼ 0.0785, and the sigmoid logistic growth rate
κ ¼ 6=δTð Þ with δT ¼ t�i =t

�
f ¼ 0.875=t�f as the nondimensional

transition period between the upper and lower pressure limits.
The experimental procedure to obtain the inlet function is
detailed in Appendix Section C.6, Supporting Information.
Last, we define the far-end of the bladder-tube array as sealed
by setting ð ∂P X f ,Tð Þ= ∂X f ÞjX f¼1 ¼ 0.

In Experimental Section, we quantify the parameters of our
experimental system for use with this model and in Appendix
Section C.1–5, Supporting Information, we detail how the follow-
ing five coupling coefficients were measured: 1) the change in
bladder cross section per unit pressure, 2) the change in actuator
slope per cross section per normalized pressure difference, 3) the
change in actuator length per cross section per normalized pres-
sure sum, 4) the change in bladder cross section per normal force
resultant, and 5) the change in bladder cross section per moment
resultant. Having defined those, we can calculate both the
inertial-elastic timescale t�s∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml4s=EIf ið Þ

p
¼ 0.029 sec½ � and the

viscous-elastic timescale t�f∼μð ∂a1= ∂pÞjp¼p0
= a�0ε

2
1

� �¼ 0.157 sec½ �.
Next, we reason about five intuitive mechanisms derived from
the reduced model formulated earlier and experimentally
demonstrate each independently. These, when superimposed,
provide a complete toolset to guide goal-oriented design of
complex viscous-driven motion cycles in FEAs.

3. Results

Having defined a theoretical predictive model, we identify five
mechanisms within our control and demonstrate how various
scaling arguments can be used to formulate design principles
for viscous flow–driven robotic limbs, namely the spatial distri-
bution of connected bladders, the viscous-elastic to inertial elastic
timescale ratio, the viscous-elastic to input timescale ratio, the
mass flux control via viscous resistance, and the cycled baseline
pressure. See Movie S1–5, Supporting Information, for real-time
recordings of the actuator motion cycles and examples of each of
these mechanisms.

3.1. Spatial Distribution of Connected Bellows

The system’s dynamics are affected by the spatial distribution of
bladders. Recall Equation (1), which shows how lag resulting
from the diffusive propagation of pressure provides an advantage
in generating complex transient deformation patterns with a sin-
gle input in a closed system. Figure 3A,B and Movie S1,
Supporting Information, illustrate the concept: two actuators
with an identical pressure inlet (For more information, see
Section 2 under fluid-field boundary conditions, and Appendix
Section C.6, Supporting Information), but different connectivity,
will exhibit significantly different spatiotemporal motion. The
straight connectivity produces wide motion, whereas a single
crossing of connections produces narrower cycles. Similarly,
the profile of the actuator throughout the motion cycle differs,
as does the slope of the actuator tip. In a legged-robot gait, this
could be equated to ostrich-like strides and elephant-like trot
respectively. While the trajectory of the tip of actuator may appear
qualitatively similar, the difference in curvature throughout the
motion cycle in the FEA causes significantly different tip angles.

Using numerical solutions of the coupled system of governing
Equation (1) and (4), we observe a good agreement between the
predictivemodel and experimental curves of the actuator’s dynamic
behavior, see Figure 3A,B, left versus right. The model predicts the
initial extension within 2.8% and 3.2% of the actual extension in the
straight and crossed configuration, respectively, and the maximum
horizontal deflection within 4.7% and 12.6% of the actual deflection
for the straight and crossed configuration, respectively.

Last, we show a way to determine the initial steady state of the
actuator in Figure 3C,D. The diagram shows the positive and
negative pressurized bellows in relation to the neutral plane with
a plus or minus sign corresponding to the inlet pressure. A
bellow pair with a ðþÞ � ð�Þ will bend to the right, ð�Þ � ðþÞ
to the left, ðþÞ � ðþÞ will extend, and ð�Þ � ð�Þ will contract.
This corresponds to the characterized values for the change in
actuator angle per unit per normalized pressure, ∂ψ= ∂ p0=Eð Þ,
and change in actuator length per unit per normalized pressure,
∂ζ= ∂ p=Eð Þ, respective to the pressure difference P0 X fð Þ ¼
Pd X fð Þ � Pu X fð Þ and pressure sum P X fð Þ ¼ Pd X fð Þ þ Pu X fð Þ.

3.2. Solid and Fluid Timescale Ratio

The viscous-elastic to inertial elastic timescale ratio is an instru-
mental characteristic scale for determining the dynamic regime
in which our system operates

www.advancedsciencenews.com www.advintellsyst.com
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τ ¼ t�s=t�f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ml4s=EIf ið Þ

q
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Inertial�elastic time scale

=ðμð ∂a1= ∂pÞjp¼p0
=ða�0ε21ÞÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Viscous�elastic time scale

(11)

In Figure 4 and Movie S2, Supporting Information, we show
how we can switch between actuation modes solely based on the
dynamic regime. The magenta dashed curve in Figure 4A shows
a water-filled system, μ � 1 ⋅ 10�3 Pa ⋅ sec½ � where τ � 1 � 0.004.
In this regime, pressure propagates significantly slower than the
solid field’s response to change and solid inertia becomes negli-
gible. The beam deformation reflects pressure-field evolution
over time across the array of bellows, actuating them in
sequence, first on the right half of the workspace, then the left.

The cyan dotted curve in Figure 4A shows what happens when
the input pressure cycle is maintained, but the bellows are filled
with air, μ � 2 ⋅ 10�5 Pa ⋅ sec½ �. Now, the calculated timescale
is two orders of magnitude higher and approaches unity
τ ! 1 � 0.2, that is, the pressure-field evolution timescale
approaches that of the solid response. As a result, the pressure
field is close to uniform within the entire bellow array, the
connective configuration loses significance, and the actuator
experiences almost pure axial extension and contraction, with
all bellows experiencing uniform pressure in leading order.

Two additional insights raise from the spatially uniform case.
First, as τ ≫ 1, the spatial pressure distribution approaches uni-
formity. Second, the measure of solid inertia involvement in the

A B

C D

Figure 4. A) Change in a 4-bellow actuator cycle with internal fluid: water (- -) and air (.). The curves show the tracked path of the lower-most blue marker
on the actuator. B–D) The blue curve shows the path of the 16-bellow actuator in a straight configuration with uniform tube length operated at ambient
pressure gauge, also shown in Figure 3A. B) Operation over the middle- (-.-), right- (.), left- (- -), and lower- (..) workspace, due to a change in the pressure
profile. The lower left insert shows relative amplitude of supply voltage to the syringe pump over time. C) Change in the actuator cycle when the top right
tube has triple length (.). D) Vertical shift in the actuator cycle, due to changing absolute pressure gauge: �2½kPa� (.) and þ2½kPa� (- -).
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interaction increases as t�s=t�i ≫ 1, where t�i is the characteristic
timescale of the input signal defined as the minimum interval
required to achieve input extrema pressure from gauge pressure
baseline. Evaluating inertial involvement in our experiment, we
estimate t�i ¼ 0.74s and thus t�s=t�i ¼ 0.04, thereby making solid
inertia negligible. Last, it is important to note that the system’s
dynamic response to fluidic input pressure transients is
governed in leading order by fluid viscosity corresponding to
the viscous-elastic timescale t�f . Thus, the system acts as a
low-pass filter, attenuating the frequency response from a cutoff
frequency of the order f cutoff ¼ O 101ð Þ=t�f Hz½ �, which drops as
fluid viscosity increases.

3.3. Viscous-Elastic to Input Timescale Ratio

The pressure input profile is the most obvious form of control in
this system, because it requires no physical change to the system
or additional driver components. In Figure 4B and Movie S3,
Supporting Information, we show how we can bias the actuator
deflection to the middle, right, left, and lower part of the full
workspace, by varying only the frequency, duty cycle, and ampli-
tude of the input signal. Such differences may be useful to, for
example, produce crouched gaits in the presence of obstacles or
back- and front strokes for swimming robots.

3.4. Pressure-Field Diffusive Propagation

The viscous resistance affects the maximum flux throughout the
actuator, and therefore has an effect on local deformation. In
Figure 4C and Movie S4, Supporting Information, we demon-
strate how a single change to the connective tubing—increasing
the length of the second to third bellow tubing by three times—
can reduce local mass flux by a third. This reduction in mass flow
causes a local pressure concentration in the preceding bellow,

that is, the first right-side bellow, resulting in a localized increase
in contraction and expansion during an input pressure cycle, tilt-
ing the entire motion vertically down and to the left. In this way,
localized irregularities can be superimposed on a desired
actuation mode to tune cycle orientation. More information is
provided in the last comment in Appendix Section B.3.7,
Supporting Information.

3.4.1. Initial Gauge Pressure

A unique feature of closed fluid-driven systems is the ability to
cycle the pressure gradient about an initial gauge that is different
from ambient. By changing the gauge pressure around which the
input pressure cycles, only the sum of pressure in a given cross-
section P is changed, not the difference P0. As such this will gen-
erate the same motion pattern, just cycling around a different
point along the actuator length. This concept is shown in practice
in Figure 4D and Movie S5, Supporting Information.

3.5. Robot Implementation

To exemplify how viscous-driven soft actuators can be incorpo-
rated into a system, we further implemented a hexapod robot
with six actuators, or “legs”, driven in two sets of three by two
syringe pumps carried on the back of the robot (Figure 2B).
Note that we chose the initial gauge pressure in concert with
the actuators that drive the change in pressure. Within a similar
price range, more powerful electric motors which can overcome
the increased resistance in the elastomer when the actuator is
driven above or below ambient pressure are also heavier[32]

and must cycle around a higher gauge pressure to meet the
increased payload. To support the weight of the robot (734 g½ �),
all legs are cycled around an initial gauge pressure of 140 kPa
unloaded. The gauge pressure also affects the leg stiffness, a

Figure 5. A) The absolute pressure can be changed in a hexapod robot to make it stand tall (left) or crouch (right). B) Snapshots from video
accompanying the paper, in which the robot takes two steps forward.

www.advancedsciencenews.com www.advintellsyst.com

Adv. Intell. Syst. 2023, 5, 2200330 2200330 (8 of 10) © 2022 The Authors. Advanced Intelligent Systems published by Wiley-VCH GmbH

 26404567, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/aisy.202200330 by C

ornell U
niversity, W

iley O
nline Library on [21/02/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

http://www.advancedsciencenews.com
http://www.advintellsyst.com


feature that may be used in future studies to tune locomotion
efficiency, robot payload, and stability depending on the surface
terrain.

Figure 5A and Movie S6, Supporting Information, show how
the actuators can be driven slowly to make the robot crouch—the
legs compress to 85% of their original height. Figure 5B shows
the robot walking over a horizontal smooth surface; more steps
are shown inMovie S6, Supporting Information. The robot walks
in a quasi-static mode, by balancing on three legs while lifting
and moving the others, and can traverse a distance correspond-
ing to its own body length (BL ¼ 254 mm½ �) in 21 sec½ �, i.e.,
0.05 BL=sec½ �; or 0.12 BL½ � ¼ 14 mm½ �ð Þ per step. It is worth noting
that this is relatively fast for an untethered, (non-combustion)
legged robot.[4,33] For comparison, some of the most prominent
fluid-driven soft-legged robots to date achieved 0.09 BL=sec½ �[19]
0.014 BL=sec½ �.[12]

4. Summary

In this work, we expanded existing knowledge on strategies for
minimalistic control of underactuated soft robots. We focused on
a simplified unit cell typical of soft FEAs, namely a closed series
of elastomer bellows with fixed slender interconnections filled
with fluid and arranged symmetrically around a neutral plane.
We defined a theoretical framework to analyze the concerted rela-
tion between the three governing timescales: that of the input,
the fluid, and the solid; identifying a void—a temporal domain
in the field of soft robotics unexplored previous to this work.
Within this goldilocks temporal domain, deformation patterns
are driven by spatial viscous pressure variations generated by
temporal gradients at the input that are on the same timescale
as the fluid.

We detailed in theory and experiment the five principle mech-
anisms for generating these complex motions: 1) the spatial dis-
tribution of connected bellows, 2) the solid to fluid timescale
ratio, 3) the viscous-elastic to input timescale ratio, 4) the pres-
sure-field diffusive propagation, and the 5) initial gauge pressure.
We showcased the utility of this work in a six-legged robot able to
achieve a speed of V ¼ 0.05 BL=sec½ �; on par with existing,
untethered, fluid-driven soft-legged walkers.

In summary, we showed that viscous-driven, nonuniform
pressure distributions throughout the actuator can be harnessed
to produce interchangeable, complex spatiotemporal motions in
fixed-configuration FEAs with a single modulated pressure inlet.
Essentially, this permits the designer to embed all or part of the
control algorithm into the actuator morphology and material.
While demonstrations in this article were limited to open loop
operation, the two-way coupling between the solid and fluids also
enables closed loop control, which we aim to address in future
work. The contributed tool set of five principle mechanisms with
their three timescales for input, fluid, and solid is key to unlock-
ing more capable and competitive soft robots that fully harness
their infinite degrees of freedom.

5. Experimental Section

Fluid Elastomer Actuators: The actuator used throughout the majority of
the paper consisted of 16 bellows, connecting tubes, and a mechanical

adapter that was mounted to a syringe pump. The bellows were produced
on a Carbon 3D SLA printer from Sil-30, a flexible, tear-resistant silicone
urethane. Each bellow contained a single bend to keep the form factor
small while allowing for significant deformation. Each layer of the leg
consisted of two open bellows mounted onto a lid with nested protrusions
in an antagonistic fashion. Lids and bellows were bonded together using
uncured Sil-30 and sealed by baking for 8 h at 120 °C½ �. Each bellow was
connected to up to two neighbors using 22 AWG silicone tubing and the
inlet of the actuator was attached to a 20 G blunt tip luer-lock needle.
Bonds were formed with cyanoacrylate super glue. The actuator was
connected to a custom syringe pump by means of soft PVC Tygon
B-44-3 tubing and a 3=32 ”½ � hose barb luer adapter.

The actuators were flexible in all directions and might lean sideways out
of the plane of motion if externally loaded. To mitigate this issue in the
hexapod robot, small rigid pillars were mounted along the side of the first
two layers of bellows in each leg. A single actuator weighs approximately
31 g.

Model Parameters: The experimental setup consisted of an actuator of
length ls ¼ 0.109 m½ �, height hs ¼ 0.03 m½ �, and width ws ¼ 0.02 m½ �,
made up of n ¼ 16 bellows. The SIL-30 material had a Young’s modulus
of E ¼ 1.8 MPa½ � and density of ρs � 950 kgm�3½ �. The actuator’s solid
mass fraction was f m � 0.47, resulting in actuator mass per unit length
of m ¼ ρs wshsð Þ, f m ¼ 0.269 kgm�1½ �. Due to the nontrivial elastomer
distribution in the typical cross section, the section area and second
moment of inertia were approximated as a ¼ hsws � 6 ⋅ 10�4 m2½ � and
I ¼ wsh3sð Þ=12 � 4.5 ⋅ 10�8 m4½ �. We then multiplied the results by
correction coefficients for cross-sectional extension and bending stiffness
compared to a solid rectangular beam, f e � 0.53 and f i � 0.55 respec-
tively; these were calculated numerically in a cantilever setup using
COMSOL 5.5 basic Solid Mechanics module. Last, the fabricated bellows
height, width, and length were hb,wb, lbð Þ ¼ 0.010, 0.012, 0.018ð Þ m½ �, the
radius of the connective tubes was rc ¼ 3.25 ⋅ 10�4 m½ �, and the total
length of tubes was l ¼ 0.6 m½ �.

We experimentally measured five coupling coefficients quantifying the
fluid–structure interaction including 1) the change in bellow cross section
per unit pressure ∂ap1= ∂p ¼ 3.413 ⋅ 10�9 m2=Pa½ �, 2) the change in actu-
ator slope per cross section per normalized pressure difference
∂ψ= ∂ p0=Eð Þ ¼ 10.266 Rad=1½ �, 3) the change in actuator length per cross
section per normalized pressure sum ∂ζ= ∂ p=Eð Þ ¼ 0:047 m=1½ �, 4) the
change in bellow cross section per normal force resultant
∂a1= ∂Ne � 0.03 ⋅ 10�5 m2=N½ �, and 5) the change in bellow cross-section
per moment resultant ∂a1= ∂Me � 1.2 ⋅ 10�6 m2=Nm½ �. See Appendix
Section C, Supporting Information, for more information.

Drive Circuitry: The individual legs and the hexapod robot were all driven
by a custom backpack equipped with an Arbotix-M controller, one 11.1 V½ �
450 mAh½ � LiPo battery, and two syringe pumps controlling two sets of
three legs, respectively. Each syringe pump consisted of a gear-rack system
(18 gear teeth, pitch diameter 29.6 mm½ �) and a 100 mL½ � syringe, driven by
a Dynamixel AX-18A servo with a stall torque of 1.8 Nm½ � and a no load
speed of 97 rpm½ �. Sensors included limit switches to prevent overexten-
sion and a Phidgets 1140-1 pressure sensor. The backpack frame was
printed in lightweight PLA for minimum payload; the full backpack weighs
510 g½ �, including the two servos which weigh 112 g½ � each. To increase
stability, the backpack was configured such that the lightweight syringes
and electronics mounted on top and the heavier batteries sat low between
the legs for stability. Each set of legs were connected to the syringe using
soft PVC Tygon B-44-3 tubing, T-connectors, and a 3=32 ”½ � hose barb luer
adapter. Each leg was mechanically attached to the backpack with four
nylon bolts; washers with a thickness up to 4 mm½ � were used to angle
the legs outward for added stability.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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