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Large language modules (LLMs) have great potential for auto-grading student written responses to physics
problems due to their capacity to process and generate natural language. In this explorative study, we use a
prompt engineering technique, which we name “scaffolded chain of thought (COT)”, to instruct GPT-3.5 to
grade student written responses to a physics conceptual question. Compared to common COT prompting,
scaffolded COT prompts GPT-3.5 to explicitly compare student responses to a detailed, well-explained rubric
before generating the grading outcome. We show that when compared to human raters, the grading accuracy
of GPT-3.5 using scaffolded COT is 20% - 30% higher than conventional COT. The level of agreement
between Al and human raters can reach 70% - 80%, comparable to the level between two human raters. This
shows promise that an LLM-based Al grader can achieve human-level grading accuracy on a physics
conceptual problem using prompt engineering techniques alone.
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L. INTRODUCTION

Generative Al (GenAl), especially large language
models (LLMs) such as GPT and Llama, has been
increasingly applied in science education [1], due to their
ability to generate natural language output based on natural
language input from a human user. Prior research has
demonstrated LLMs’ ability to solve physics [2] and math
problems [3], provide personalized feedback to student
written responses to a physics conceptual question [4], and
grade student written responses to science questions [5].

In particular, LLMs’ ability to “understand” students’
written responses to a question and assign grades based on
human-written rubric have a great potential to be widely
applied in university physics and STEM classrooms,
especially large enrollment courses. This would significantly
reduce the grading loads of instructors and/or teaching
assistants and enhance the quality of assessments. However,
one of the well-known key drawbacks of LLMs is their
tendency to “hallucinate”, which means LLMs can generate
outputs that are factually false or contextually
implausible [6]. In grading student written responses,
hallucination can result in LLM generating erroneous
grading outcomes (including grades and justifications) that
have a low level of agreement with human graders.

To reduce hallucination and increase the performance of
LLMs, a few methods have been proposed in Al literature,
including fine tuning [7], retrieval augmented generation
(RAG) [8]few-shot learning [9], and prompt
engineering [10]. Fine turning and RAG both require
hundreds to thousands of pre-labeled data, which
significantly hinders their applicability to grading, especially
grading of new problems. Few-shot learning requires
significantly less examples, but the outcome can be
significantly impacted by the choice of examples. Prompt
engineering, on the other hand, is a time- and cost-efficient
method as it does not require examples or pre-labeled data.

A prompt is the natural language input by a human user
to an LLM. Prompt engineering is the process of developing
and refining a prompt to optimize the output by LLMs [10].
Many prompting techniques have been suggested to improve
LLMs’ ability for various tasks, such as Chain of thought
(COT) prompting [11] and generated knowledge
prompting [12]. A chain-of-thought prompt instructs an
LLM to first generate a chain of intermediate reasoning steps
before it generates the final answer. In some cases, LLM’s
performance can be significantly improved simply by adding
“let’s think step by step” at the end of the prompt. However,
as is demonstrated in this study, the simple COT technique
is still not sufficient to eliminate hallucinations during
grading to a satisfactory level.

In this pilot study, we demonstrate that, by using a
carefully engineered prompt, which we name “scaffolded
COT”, the accuracy of an Al grader can increase by 20% -
30% compared to simple COT prompting. The prompt with
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scaffolded COT is improved in two aspects. First, a detailed
explanation of the rubric is provided together with the rubric.
This is similar to explaining in detail each rubric item to a
human rater. Second, the scaffolded COT prompt “forces”
the LLM to first select the most relevant portion of the
student answer, and then explicitly compare it to the rubric
explanation before generating a grade. Using scaffolded
COT, the level of agreement between an Al grader and
human raters can reach 70% - 80%, which is comparable to
the level between two human raters. This shows the potential
that an LLM based Al grader can achieve human-level
grading accuracy on a physics conceptual problem using
prompt engineering techniques alone.

II. METHODS

A. Instructional context

The study was carried out in a large public research
university in the south-eastern U.S. The target course was a
calculus-based introductory physics course that focuses on
Mechanics. The course was taught in a studio mode, which
integrates lecture, recitation (or tutorial), and laboratory. The
course enrollment was 99. On a midterm exam, students
were given an opportunity to provide their explanations to
their answers on a multiple-choice question. Students were
told that in the case that they chose the wrong answer to the
problem, they would be awarded partial credit according to
their explanation of their reasoning.,

B. Physics problem and grading rubric

The multiple-choice question used in this study concerns
two swimmers sliding down frictionless water slides as
shown in Fig. 1. The slides have identical height, but one is
straight and the other is curved. Students were asked which
swimmer, if either, will have a greater speed at the end of the
slide. In a follow-up question, students were asked to explain
their reasoning. They were prompted to specify the physics
principle they used, why they think the principle can be
applied, and the steps they used to reach the conclusion.

Swimmers at a water park have a choice of two
frictionless water slides. Both slides drop over the
same height /: slide 1 is straight while slide 2 is
curved, dropping quickly at first and then leveling
out. How does the speed v; of a swimmer reaching
the bottom of slide 1 compare with v, the speed of
a swimmer reaching the end of slide 2?
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FIG. 1. The physics conceptual question used in GenAl grading.

The rubric we provided to the LLM has 3 items. The first
item requires students to state that they used conservation of



energy or work-energy theorem. The second item requires
students to explain that because there is no non-conservative
force doing work on the swimmer+earth system, the
mechanical energy is conserved (or the work done by gravity
causes the kinetic energy of the swimmer to change). The
third item requires students to state that the potential energy
is converted into kinetic energy of the system (or the work
done by gravity is equal to the change in kinetic energy of
the swimmer). Each rubric item has binary ratings, 1 or 0.

C. Data collection

On the exam, 94 students provided explanations to their
answers on the multiple-choice question. In this pilot study,
we only included explanations from students who answered
the multiple-choice question incorrectly (N = 40). Two
human raters (i.e., the authors) independently graded the
student explanations using the rubric described above. There
were two reasons for choosing only the explanations
associated with incorrect choices. First, from a practical
perspective, only students with incorrect choices required
partial credit grading, so the instructor initially only graded
the explanation of the incorrect answer choices. Second,
from a research perspective, the reasoning used by those who
selected incorrect answers had a wider variety, ranging from
completely incorrect to mostly correct with a minor mistake.
On the other hand, explanations associated with correct
answer choices were overall more uniform. Therefore, to test
GenAl’s ability to differentiate between different types of
reasoning, we chose to focus on the reasoning for incorrect
answers first.

D. GenAl grading and prompt development

We used GPT-3.5 Turbo in completion mode, developed
by OpenAl and accessed through the Microsoft Azure
platform. The specific deployment of the LLM is conducted
by university IT and all the data remained on university
owned business level secure server. Access to and
communication with the LLM was done using the
LangChain AzureOpenAl python API.

The prompt given to GPT-3.5 Turbo consists of five
components: (1) contextual information (e.g., introductory
level physics course), (2) general grading instructions (e.g.,
binary ratings for each rubric item), (3) problem statement,
(4) the rubric, and (5) specific grading requirements.

The prompt was developed and refined iteratively using
five student explanations that were randomly selected. We
developed and tested three versions of the prompt, which we
name Naive COT, Detailed-rubric COT, and Scaffolded
COT. Each version has identical components (1) — (3), but
different components (4) and (5), which are explained
below.

Naive COT: For component 4, the original rubric text is
included with only minor modification. For component 5,
the specific grading requirement states: “For each rubric
item, first write step-by-step reasoning on why or why not
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the student explanation satisfies or contradicts the item, then
conclude with a binary grade of either 1 or 0 for the rubric
item.”

Detailed-rubric COT: For component 4, each rubric item
is accompanied by additional explanation text such as
“student’s explanation must explicitly contain ‘frictionless’
or ‘smooth’ or a similar phrase.” The rubric items are also
formatted slightly differently. For component 5, the grading
requirement starts with the statement that “For each rubric
item, first write a step-by-step reasoning that compares the
student explanation to the rubric item and its contents.”

Scaffolded COT: Component 4 is identical to that of
Detailed-rubric COT. For component 5, the following text is
provided.

# For each rubric item, write the grading statement

strictly following the order of the statements below:

## First, state one of the following two
“For item <<item number>>, the rubric states that
<<quote from the rubric item description>>. The
most relevant parts in the student explanation are
<<direct quote or quotes from student
explanation>>.”
“For item <<item number>>, the rubric states that
<<quote from the rubric item description>>. No part
in the students' explanation is relevant to the
rubric.”

## then state one of the following:

“the student explanation is similar to this part of

the rubric description <<most similar part of the

rubric>>,”

“the student explanation and the rubric description

are very different”

“the student explanation and the rubric description

are irrelevant”

Finally, conclude with a binary score:

“so the grade is 1”

“so the grade is ©”

H#i#

E. Evaluation of grading accuracy

GPT-3.5 Turbo’s grading accuracy is evaluated based on
the level of agreement with human raters. The level of
agreement (or disagreement) is quantified using three
different metrics: percent agreement (Pagree), mean simple
matching distance (SMD) [13,14], and quadratic weighted
kappa (QWK) [15]. We also use the same metrics to
quantify agreement between the two human raters, which
can be used as a baseline for comparison.

Pagree 1s the percentage of cases in which two raters agree
in grading out of all three rubric items for all student
responses. We calculated the Pige. value between the Al
grader and each human rater for each prompt version. To
evaluate whether the three Pag.. values between the three
prompt versions are significantly different, we used
Cochran’s Q test [16], an extension of the McNemar’s test.
A significant Q test result would indicate that fraction of
complete agreement with human rater among the three
prompt versions are not uniform.

SMD for two objects of n binary attributes is defined as:
SMD = number of mismatched attributes

total number of attributes



In our case, the SMD for a single response between the two
raters (either human or AI) with three rubric items (n = 3)

12 . .
can take any of the four values: 0, 33 1, with 0 representing

perfect agreement and 1 representing complete
disagreement. For each prompt version, we calculate SMD
between the Al grader and one of the human raters for each
student response, resulting in a set of 40 SMD values for
each prompt version against one human rater. To compare
the distributions of SMD values resulting from the three
different prompt versions, we use the Friedman’s test [17],
an extension of the Wilcoxon signed-rank test. The
Friedman’s test in this case examines whether one of the sets
of SMD values are consistently larger or smaller compared
to the other sets. This is a non-parametric test that does not
rely on the distribution of the underlying data set.

QWK, sometime referred to as the weighted Cohen’s
Kappa, measures the similarity in total score between two
raters. Cohen’s Kappa is used for categorical variables,
while QWK is used for ordinal variables (i.e., variables that
can be sorted or ranked). The total score assigned to a student
response can be 0, 1, 2, or 3, and thus it is an ordinal variable.
QWK is widely reported in auto-grading literature and
reflects the agreement in total score that is assigned to a
student response. The interpretation of the QWK result is the
same as that of Cohen’s Kappa. However, it must be noted
that since QWK is generated based on the total score rather
than the score of each rubric, it may not reflect the level of
agreement when two raters assign the same total score but
differ on individual rubric items.

III. RESULTS

Table I shows the quantified agreement or disagreement
between the Al grader and a human rater measured by the

three metrics. The agreement or disagreement between the
two human raters is also shown for comparison. Results of
all three metrics show the same trend: Naive COT prompting
is somewhat less accurate than Detailed-rubric COT, and
Scaffolded COT grading is significantly more accurate than
the other two prompts.

It is worth noting that the level of agreement measured
by Pagrec between Scaffolded COT and the human graders are
comparable to the level of agreement between the human
raters, between 70% - 80%, which is significantly higher
than that of the other two prompts. The same can be said
regarding the mean SMD metric for measuring
disagreement.

Statistical tests also confirmed that the agreement (or
disagreement) with human rater 1 was improved by refining
the prompt (p = 0.004 for Cochran’s Q and p = 0.031 for
Friedman’s). That is, the agreement for the Scaffolded COT
with human rater 1 was higher than the agreement for at least
one of the other two prompt versions. When compared with
human rater 2, the result from the Cochran’s Q test (p =
0.050) is very close to the significance threshold, while the
result from Friedman’s test (p = 0.062) shows that the
improvement is not significant. Nonetheless, the QWK
results show that the Scaffolded COT has an improved level
of agreement with both human raters (from substantial to
almost perfect for human rater 1, and from moderate to
substantial for rater 2).

Another interesting observation is that the Scaffolded
COT results seem to agree with human rater 1 more than
human rater 2. It may be because human rater 1 developed
the detailed rubric explanations used in both Detailed-rubric
COT and Scaffolded COT.

TABLE 1. Agreement or disagreement between the Al grader, for each prompt version, and each human rater measured by three metrics.
The agreement between the two human raters as a baseline is also shown.

Percent Agreement

Mean Simple Matching Distance

Quadratic Weighted Kappa®

Rater 1™ Rater 24 Rater 1* Rater 2 Rater 1 Rater 2
Naive COT vs. Human Rater 55% 50% 0.21 0.22 0.68 0.58
Detailed-rubric COT vs Human Rater 60% 60% 0.21 0.22 0.66 0.57
Scaffolded COT vs. Human Rater 83% 70% 0.08 0.11 0.84 0.66
Human Rater 1 vs. Human Rater 2 75% 0.09 0.73

0.41-0.60, moderate; 0.61-0.80, substantial; 0.81-1, almost perfect. “p < 0.05. “p < 0.01. fp = 0.05. Note that the statistical
significance pertains to the differences in human agreement level between the three prompt versions.

IV. CONCLUSIONS AND FUTURE DIRECTIONS

In this study, we demonstrated that a significant increase
in grading accuracy of students’ written responses to a
conceptual question can be achieved solely through prompt
engineering, without the need for more sophisticated
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techniques such as few-shot learning, fine-tuning, or RAG.
For the one problem tested in this study, the accuracy of the
grading using the Scaffolded COT prompt is comparable to
human raters. The results could help develop an Al-based
grading system with significantly lower cost using better
designed prompts.



Scaffolded COT can be seen as a stronger form of COT
that integrates some of the features of generated knowledge
prompting, which prompts LLMs to first generate relevant
and useful information before the final answer. We
hypothesize that the superior performance of this prompt
style results from two factors. First, the scaffold structure
forces the LLM to consistently generate the reasoning prior
to making the conclusion, whereas Naive COT prompt did
not consistently produce this behavior. Second, Scaffolded
COT strongly forces the LLM to generate reasoning based
on an explicit comparison between a student answer to the
detailed rubric explanations, which prevents the LLM from
making up reasons that superficially seems legitimate.

However, it must also be pointed out that since LLMs are
stochastic systems, the study needs to be re-conducted in the
future multiple times to test whether the results are
reproducible. Moreover, this explorative study only tested

the grading of responses from students who chose the wrong
answers, of which more than a half received 0 for all three
rubric items. In fact, the authors have recently experimented
with grading the complete dataset of 99 responses, using
both GPT-3.5 Turbo in chat mode, as well as GPT-40 in chat
mode. Preliminary data found that the performance of
Scaffolded COT prompt is not stable on multiple runs, but
GPT-40 is able to reliably deliver the same level of
performance (~75% agreement with human raters) using
Detailed-Rubric COT. This updated result will be reported
in a future publication.

Finally, in the current study the first author designed the
prompt and also graded students’ responses. The design of
prompts, especially the detailed rubric in the prompt, could
have been biased by having seen the student responses. In
future studies it will be more desirable if grading and prompt
designing could be conducted by two different people.
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