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Large language modules (LLMs) have great potential for auto-grading student written responses to physics 
problems due to their capacity to process and generate natural language. In this explorative study, we use a 
prompt engineering technique, which we name “scaffolded chain of thought (COT)”, to instruct GPT-3.5 to 
grade student written responses to a physics conceptual question. Compared to common COT prompting, 
scaffolded COT prompts GPT-3.5 to explicitly compare student responses to a detailed, well-explained rubric 
before generating the grading outcome. We show that when compared to human raters, the grading accuracy 
of GPT-3.5 using scaffolded COT is 20% - 30% higher than conventional COT. The level of agreement 
between AI and human raters can reach 70% - 80%, comparable to the level between two human raters. This 
shows promise that an LLM-based AI grader can achieve human-level grading accuracy on a physics 
conceptual problem using prompt engineering techniques alone.  

2024 PERC Proceedings edited by Ryan, Pawl, and Zwolak; Peer-reviewed, doi.org/10.1119/perc.2024.pr.Chen
Published by the American Association of Physics Teachers under a Creative Commons Attribution 4.0 license.

Further distribution must maintain the cover page and attribution to the article's authors.
 

97



I. INTRODUCTION 

Generative AI (GenAI), especially large language 
models (LLMs) such as GPT and Llama, has been 
increasingly applied in science education [1], due to their 
ability to generate natural language output based on natural 
language input from a human user. Prior research has 
demonstrated LLMs’ ability to solve physics [2] and math 
problems [3], provide personalized feedback to student 
written responses to a physics conceptual question [4], and 
grade student written responses to science questions [5]. 

In particular, LLMs’ ability to “understand” students’ 

written responses to a question and assign grades based on 
human-written rubric have a great potential to be widely 
applied in university physics and STEM classrooms, 
especially large enrollment courses. This would significantly 
reduce the grading loads of instructors and/or teaching 
assistants and enhance the quality of assessments. However, 
one of the well-known key drawbacks of LLMs is their 
tendency to “hallucinate”, which means LLMs can generate 
outputs that are factually false or contextually 
implausible [6]. In grading student written responses, 
hallucination can result in LLM generating erroneous 
grading outcomes (including grades and justifications) that 
have a low level of agreement with human graders. 

To reduce hallucination and increase the performance of 
LLMs, a few methods have been proposed in AI literature, 
including fine tuning [7], retrieval augmented generation 
(RAG) [8]few-shot learning [9], and prompt 
engineering [10]. Fine turning and RAG both require 
hundreds to thousands of pre-labeled data, which 
significantly hinders their applicability to grading, especially 
grading of new problems. Few-shot learning requires 
significantly less examples, but the outcome can be 
significantly impacted by the choice of examples. Prompt 
engineering, on the other hand, is a time- and cost-efficient 
method as it does not require examples or pre-labeled data.   

A prompt is the natural language input by a human user 
to an LLM. Prompt engineering is the process of developing 
and refining a prompt to optimize the output by LLMs [10]. 
Many prompting techniques have been suggested to improve 
LLMs’ ability for various tasks, such as Chain of thought 
(COT) prompting [11] and generated knowledge 
prompting [12]. A chain-of-thought prompt instructs an 
LLM to first generate a chain of intermediate reasoning steps 
before it generates the final answer. In some cases, LLM’s 

performance can be significantly improved simply by adding 
“let’s think step by step” at the end of the prompt.  However, 
as is demonstrated in this study, the simple COT technique 
is still not sufficient to eliminate hallucinations during 
grading to a satisfactory level. 

In this pilot study, we demonstrate that, by using a 
carefully engineered prompt, which we name “scaffolded 
COT”, the accuracy of an AI grader can increase by 20% - 
30% compared to simple COT prompting. The prompt with 

scaffolded COT is improved in two aspects. First, a detailed 
explanation of the rubric is provided together with the rubric. 
This is similar to explaining in detail each rubric item to a 
human rater. Second, the scaffolded COT prompt “forces” 

the LLM to first select the most relevant portion of the 
student answer, and then explicitly compare it to the rubric 
explanation before generating a grade. Using scaffolded 
COT, the level of agreement between an AI grader and 
human raters can reach 70% - 80%, which is comparable to 
the level between two human raters. This shows the potential 
that an LLM based AI grader can achieve human-level 
grading accuracy on a physics conceptual problem using 
prompt engineering techniques alone. 

II. METHODS 

A. Instructional context 

The study was carried out in a large public research 
university in the south-eastern U.S. The target course was a 
calculus-based introductory physics course that focuses on 
Mechanics. The course was taught in a studio mode, which 
integrates lecture, recitation (or tutorial), and laboratory. The 
course enrollment was 99. On a midterm exam, students 
were given an opportunity to provide their explanations to 
their answers on a multiple-choice question. Students were 
told that in the case that they chose the wrong answer to the 
problem, they would be awarded partial credit according to 
their explanation of their reasoning., 

B. Physics problem and grading rubric 

The multiple-choice question used in this study concerns 
two swimmers sliding down frictionless water slides as 
shown in Fig. 1. The slides have identical height, but one is 
straight and the other is curved. Students were asked which 
swimmer, if either, will have a greater speed at the end of the 
slide. In a follow-up question, students were asked to explain 
their reasoning. They were prompted to specify the physics 
principle they used, why they think the principle can be 
applied, and the steps they used to reach the conclusion. 

 
 
 
 
 
 
 
 
 
 
 

FIG. 1. The physics conceptual question used in GenAI grading. 

The rubric we provided to the LLM has 3 items. The first 
item requires students to state that they used conservation of 
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energy or work-energy theorem. The second item requires 
students to explain that because there is no non-conservative 
force doing work on the swimmer+earth system, the 
mechanical energy is conserved (or the work done by gravity 
causes the kinetic energy of the swimmer to change). The 
third item requires students to state that the potential energy 
is converted into kinetic energy of the system (or the work 
done by gravity is equal to the change in kinetic energy of 
the swimmer). Each rubric item has binary ratings, 1 or 0. 

C. Data collection 

On the exam, 94 students provided explanations to their 
answers on the multiple-choice question. In this pilot study, 
we only included explanations from students who answered 
the multiple-choice question incorrectly (N = 40). Two 
human raters (i.e., the authors) independently graded the 
student explanations using the rubric described above. There 
were two reasons for choosing only the explanations 
associated with incorrect choices. First, from a practical 
perspective, only students with incorrect choices required 
partial credit grading, so the instructor initially only graded 
the explanation of the incorrect answer choices. Second, 
from a research perspective, the reasoning used by those who 
selected incorrect answers had a wider variety, ranging from 
completely incorrect to mostly correct with a minor mistake. 
On the other hand, explanations associated with correct 
answer choices were overall more uniform. Therefore, to test 
GenAI’s ability to differentiate between different types of 

reasoning, we chose to focus on the reasoning for incorrect 
answers first.  

D. GenAI grading and prompt development 

We used GPT-3.5 Turbo in completion mode, developed 
by OpenAI and accessed through the Microsoft Azure 
platform. The specific deployment of the LLM is conducted 
by university IT and all the data remained on university 
owned business level secure server. Access to and 
communication with the LLM was done using the 
LangChain AzureOpenAI python API. 

The prompt given to GPT-3.5 Turbo consists of five 
components: (1) contextual information (e.g., introductory 
level physics course), (2) general grading instructions (e.g., 
binary ratings for each rubric item), (3) problem statement, 
(4) the rubric, and (5) specific grading requirements.  

The prompt was developed and refined iteratively using 
five student explanations that were randomly selected. We 
developed and tested three versions of the prompt, which we 
name Naïve COT, Detailed-rubric COT, and Scaffolded 
COT. Each version has identical components (1) – (3), but 
different components (4) and (5), which are explained 
below. 

Naïve COT: For component 4, the original rubric text is 
included with only minor modification. For component 5, 
the specific grading requirement states: “For each rubric 

item, first write step-by-step reasoning on why or why not 

the student explanation satisfies or contradicts the item, then 
conclude with a binary grade of either 1 or 0 for the rubric 
item.” 

Detailed-rubric COT: For component 4, each rubric item 
is accompanied by additional explanation text such as 
“student’s explanation must explicitly contain ‘frictionless’ 
or ‘smooth’ or a similar phrase.” The rubric items are also 
formatted slightly differently. For component 5, the grading 
requirement starts with the statement that “For each rubric 
item, first write a step-by-step reasoning that compares the 
student explanation to the rubric item and its contents.” 

Scaffolded COT: Component 4 is identical to that of 
Detailed-rubric COT. For component 5, the following text is 
provided. 
# For each rubric item, write the grading statement 
strictly following the order of the statements below: 
## First, state one of the following two 

“For item <<item number>>, the rubric states that 
<<quote from the rubric item description>>. The 
most relevant parts in the student explanation are 
<<direct quote or quotes from student 
explanation>>.” 
“For item <<item number>>, the rubric states that 
<<quote from the rubric item description>>. No part 
in the students' explanation is relevant to the 
rubric.” 

## then state one of the following: 
“the student explanation is similar to this part of 
the rubric description <<most similar part of the 
rubric>>,” 
“the student explanation and the rubric description 
are very different” 
“the student explanation and the rubric description 
are irrelevant” 

## Finally, conclude with a binary score:  
“so the grade is 1” 
“so the grade is 0” 

E. Evaluation of grading accuracy 

GPT-3.5 Turbo’s grading accuracy is evaluated based on 
the level of agreement with human raters. The level of 
agreement (or disagreement) is quantified using three 
different metrics: percent agreement (Pagree), mean simple 
matching distance (SMD)  [13,14], and quadratic weighted 
kappa (QWK)  [15]. We also use the same metrics to 
quantify agreement between the two human raters, which 
can be used as a baseline for comparison. 

Pagree is the percentage of cases in which two raters agree 
in grading out of all three rubric items for all student 
responses. We calculated the Pagree value between the AI 
grader and each human rater for each prompt version. To 
evaluate whether the three Pagree values between the three 
prompt versions are significantly different, we used 
Cochran’s Q test  [16], an extension of the McNemar’s test. 
A significant Q test result would indicate that fraction of 
complete agreement with human rater among the three 
prompt versions are not uniform. 

SMD for two objects of n binary attributes is defined as: 
𝑆𝑀𝐷 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑖𝑠𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠
. 
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In our case, the SMD for a single response between the two 
raters (either human or AI) with three rubric items (n = 3) 
can take any of the four values: 0,

1

3
,

2

3
, 1, with 0 representing 

perfect agreement and 1 representing complete 
disagreement. For each prompt version, we calculate SMD 
between the AI grader and one of the human raters for each 
student response, resulting in a set of 40 SMD values for 
each prompt version against one human rater. To compare 
the distributions of SMD values resulting from the three 
different prompt versions, we use the Friedman’s test  [17], 
an extension of the Wilcoxon signed-rank test. The 
Friedman’s test in this case examines whether one of the sets 
of SMD values are consistently larger or smaller compared 
to the other sets. This is a non-parametric test that does not 
rely on the distribution of the underlying data set. 

QWK, sometime referred to as the weighted Cohen’s 

Kappa, measures the similarity in total score between two 
raters. Cohen’s Kappa is used for categorical variables, 
while QWK is used for ordinal variables (i.e., variables that 
can be sorted or ranked). The total score assigned to a student 
response can be 0, 1, 2, or 3, and thus it is an ordinal variable. 
QWK is widely reported in auto-grading literature and 
reflects the agreement in total score that is assigned to a 
student response. The interpretation of the QWK result is the 
same as that of Cohen’s Kappa. However, it must be noted 
that since QWK is generated based on the total score rather 
than the score of each rubric, it may not reflect the level of 
agreement when two raters assign the same total score but 
differ on individual rubric items.   

III. RESULTS 

Table I shows the quantified agreement or disagreement 
between the AI grader and a human rater measured by the 

three metrics. The agreement or disagreement between the 
two human raters is also shown for comparison. Results of 
all three metrics show the same trend: Naïve COT prompting 
is somewhat less accurate than Detailed-rubric COT, and 
Scaffolded COT grading is significantly more accurate than 
the other two prompts.  

It is worth noting that the level of agreement measured 
by Pagree between Scaffolded COT and the human graders are 
comparable to the level of agreement between the human 
raters, between 70% - 80%, which is significantly higher 
than that of the other two prompts. The same can be said 
regarding the mean SMD metric for measuring 
disagreement.  

Statistical tests also confirmed that the agreement (or 
disagreement) with human rater 1 was improved by refining 
the prompt (p = 0.004 for Cochran’s Q and p = 0.031 for 
Friedman’s). That is, the agreement for the Scaffolded COT 
with human rater 1 was higher than the agreement for at least 
one of the other two prompt versions. When compared with 
human rater 2, the result from the Cochran’s Q test (p = 
0.050) is very close to the significance threshold, while the 
result from Friedman’s test (p = 0.062) shows that the 
improvement is not significant. Nonetheless, the QWK 
results show that the Scaffolded COT has an improved level 
of agreement with both human raters (from substantial to 
almost perfect for human rater 1, and from moderate to 
substantial for rater 2). 

Another interesting observation is that the Scaffolded 
COT results seem to agree with human rater 1 more than 
human rater 2. It may be because human rater 1 developed 
the detailed rubric explanations used in both Detailed-rubric 
COT and Scaffolded COT. 

 

 

IV. CONCLUSIONS AND FUTURE DIRECTIONS 

In this study, we demonstrated that a significant increase 
in grading accuracy of students’ written responses to a 
conceptual question can be achieved solely through prompt 
engineering, without the need for more sophisticated 

techniques such as few-shot learning, fine-tuning, or RAG. 
For the one problem tested in this study, the accuracy of the 
grading using the Scaffolded COT prompt is comparable to 
human raters. The results could help develop an AI-based 
grading system with significantly lower cost using better 
designed prompts. 

TABLE I. Agreement or disagreement between the AI grader, for each prompt version, and each human rater measured by three metrics. 
The agreement between the two human raters as a baseline is also shown. 

  
Percent Agreement Mean Simple Matching Distance Quadratic Weighted Kappa† 
Rater 1** Rater 2‡ Rater 1* Rater 2 Rater 1 Rater 2 

Naïve COT vs. Human Rater 55% 50% 0.21 0.22 0.68 0.58 

Detailed-rubric COT vs Human Rater 60% 60% 0.21 0.22 0.66 0.57 

Scaffolded COT vs. Human Rater 83% 70% 0.08 0.11 0.84 0.66 

Human Rater 1 vs. Human Rater 2 75% 0.09 0.73 
†0.41-0.60, moderate; 0.61-0.80, substantial; 0.81-1, almost perfect. *p < 0.05. **p < 0.01. ‡p = 0.05. Note that the statistical 
significance pertains to the differences in human agreement level between the three prompt versions.  
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Scaffolded COT can be seen as a stronger form of COT 
that integrates some of the features of generated knowledge 
prompting, which prompts LLMs to first generate relevant 
and useful information before the final answer. We 
hypothesize that the superior performance of this prompt 
style results from two factors. First, the scaffold structure 
forces the LLM to consistently generate the reasoning prior 
to making the conclusion, whereas Naïve COT prompt did 
not consistently produce this behavior. Second, Scaffolded 
COT strongly forces the LLM to generate reasoning based 
on an explicit comparison between a student answer to the 
detailed rubric explanations, which prevents the LLM from 
making up reasons that superficially seems legitimate. 

However, it must also be pointed out that since LLMs are 
stochastic systems, the study needs to be re-conducted in the 
future multiple times to test whether the results are 
reproducible. Moreover, this explorative study only tested 

the grading of responses from students who chose the wrong 
answers, of which more than a half received 0 for all three 
rubric items. In fact, the authors have recently experimented 
with grading the complete dataset of 99 responses, using 
both GPT-3.5 Turbo in chat mode, as well as GPT-4o in chat 
mode. Preliminary data found that the performance of 
Scaffolded COT prompt is not stable on multiple runs, but 
GPT-4o is able to reliably deliver the same level of 
performance (~75% agreement with human raters) using 
Detailed-Rubric COT. This updated result will be reported 
in a future publication. 

Finally, in the current study the first author designed the 
prompt and also graded students’ responses. The design of 
prompts, especially the detailed rubric in the prompt, could 
have been biased by having seen the student responses. In 
future studies it will be more desirable if grading and prompt 
designing could be conducted by two different people.
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