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Abstract

Estimates of plant traits derived from hyperspectral reflectance data have the poten-
tial to efficiently substitute for traits, which are time or labor intensive to manually
score. Typical workflows for estimating plant traits from hyperspectral reflectance
data employ supervised classification models that can require substantial ground
truth datasets for training. We explore the potential of an unsupervised approach,
autoencoders, to extract meaningful traits from plant hyperspectral reflectance data
using measurements of the reflectance of 2151 individual wavelengths of light from
the leaves of maize (Zea mays) plants harvested from 1658 field plots in a repli-
cated field trial. A subset of autoencoder-derived variables exhibited significant
repeatability, indicating that a substantial proportion of the total variance in these
variables was explained by difference between maize genotypes, while other autoen-
coder variables appear to capture variation resulting from changes in leaf reflectance
between different batches of data collection. Several of the repeatable latent vari-
ables were significantly correlated with other traits scored from the same maize field
experiment, including one autoencoder-derived latent variable (LV8) that predicted

plant chlorophyll content modestly better than a supervised model trained on the
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1 | INTRODUCTION

Mendel’s laws of genetics (law of segregation; law of indepen-
dent assortment; law of dominance) were discovered through
the analysis of qualitative traits (Biffen, 1905; Weldon, 1902).
The principles first discovered via study of whether peas were
yellow or green, among other traits, formed the foundation
for the modern field of genetics, which, in turn, lead to dra-
matic advances in crop productivity and stress tolerance via
genetics-informed breeding over the last century. However,
while the initial traits studied by the founders of the field were
qualitative in nature, many traits of interest to both scientists
and stakeholders are quantitative traits that can vary over a
continuous range (e.g., flowering time or yield), and quantita-
tive genetic approaches have been developed to both identify
the genes responsible for controlling variation in continuous
traits and build models to predict trait values from genetic
data. These quantitative genetic approaches use measure-
ments of traits of interest across large populations, combined
with genetic marker data from the same population, to iden-
tify individual genes or genomic segments associated with
variation in target traits. Collecting trait data from large plant
field experiments are labor intensive and frequently represent
the most expensive portion of quantitative genetics experi-
ments of plant breeding efforts (Tibbs Cortes et al., 2021).
Advances in high-throughput phenotyping technologies have
the potential to reduce the cost of identifying genomic loci
controlling traits of interest by either decreasing the resources
required to score each plant/plot or reducing the marginal cost
of collecting additional traits in parallel from a single field
experiment (Fahlgren et al., 2015). Automated phenotyping
strategies require solving two separate problems: collection
of sensor data (e.g., RGB images, light detection and ranging
[LIDAR] point clouds, and hyperspectral reflectance patterns)
from plants of interest and using the collected sensor data to
generate quantitative or qualitative estimates of specific traits
(Furbank & Tester, 2011; Yang et al., 2020).

Among many sensor modalities commonly used for high-
throughput plant phenotyping, spectrometers that collect
leaf-level hyperspectral data in the visible, near-infrared, and
shortwave-infrared regions are increasingly used to estimate a
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same data. In at least one case, genome-wide association study hits for variation in
autoencoder-derived variables were proximal to genes with known or plausible links
to leaf phenotypes expected to alter hyperspectral reflectance. In aggregate, these
results suggest that an unsupervised, autoencoder-based approach can identify mean-
ingful and genetically controlled variation in high-dimensional, high-throughput

phenotyping data and link identified variables back to known plant traits of interest.

wide range of plant chemical and physiological traits. Numer-
ous studies have shown that VIS-NIR-SWIR can estimate
leaf pigments, nitrogen content, water content, photosynthe-
sis parameters, various metabolites, and nutrient contents (M.
Grzybowski et al., 2021). Many of these spectrometers are
portable, enabling data collection from field-grown plants, a
clear advantage compared to many lab-only instruments. Raw
measurements of many individual spectral reflectance values
are typically processed to generate predicted values for differ-
ent traits of interest. Widely employed processing techniques
for estimating known plant traits from raw spectral intensity
values include narrow-band spectral indices, including the
chlorophyll index (Wu et al., 2008) and the anthocyanin index
(Steele et al., 2009), partial least squares regression (PLSR)
(Burnett et al., 2021), and more recently, approaches based
on machine-learning and deep learning methodologies (Fur-
bank et al., 2021). Both PLSR and the set of machine-learning
methods described in Furbank et al. (2021) are classified
as “supervised” approaches, indicating that the models are
trained using a population of data points where both the spec-
tral reflectance values and the true values for the trait of
interest (labels) are already known.

Unsupervised methods can discern variation in sensor data
gathered from various populations without the need to con-
struct models targeting specific a priori traits or relying on
labeled training data. This approach is particularly useful
when dealing with datasets that exhibit high dimensionality,
often with only a few degrees of variability. To boost predic-
tive accuracy, implementing low-dimensional representations
is advantageous, as these highlight the fundamental charac-
teristics of the data while filtering out unnecessary details.
Techniques such as principal component analysis (PCA) and
neural networks (NNs) with auto-encoding are frequently uti-
lized for this type of dimensionality reduction. While these
methods might be abstract and sometimes challenging to
interpret biologically, they are effective in uncovering hid-
den patterns in phenotypic and genetic variations (Ubbens
et al., 2020). PCA focuses on linear transformations to extract
latent features, whereas NNs use a mix of linear and nonlinear
transformations. Studies by Wang et al. (2016) and Fournier
and Aloise (2019) have empirically demonstrated the greater
effectiveness of NNs over PCA in dimensionality reduction.
In the realm of plant science, the efficiency of NNs has been
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confirmed by several researchers. Classifications and ordering
of shape categories in strawberries using 2D images achieved
heritabilities comparable to direct human measurement (Feld-
mann et al., 2020). Gage and coworkers demonstrated that
quantitative latent phenotypes extracted from LIDAR point
clouds in maize fields can exhibit heritabilities similar to
hand-measured traits (Gage et al., 2019). Autoencoder NNs
are an unsupervised approach that reduce high-dimensional
data to a smaller set of latent variables that will, ideally, repre-
sent patterns of variation present in the original higher dimen-
sional dataset (Baldi, 2012; Rumelhart et al., 1985; Wang
et al., 2016). Autoencoders comprise two NNs, an encoder
and a decoder. The encoder takes as input the values of all
dimensions from a single sample in the dataset and reduces the
dimensionality down to a configured amount of latent vari-
ables. The decoder then takes the latent variables as input and
tries to reconstruct the sample to the original dimensionality.
The reconstructed data from the decoder is then compared to
the input of the encoder and the reconstruction loss is cal-
culated. The loss is then backpropagated into the encoder and
decoder networks to improve the parameters in the direction of
better reconstructions. Through many iterations using numer-
ous samples, the encoder is able to produce latent phenotypes
that are representative of the original data. Here, we extract
latent phenotypes from hyperspectral leaf reflectance sensor
data in a maize (Zea mays) diversity panel. We demonstrate
how these latent phenotypes can be annotated and used as a
proxy for traits with limited to no ground truth data and that
the model we trained to extract these traits from hyperspectral
leaf reflectance data exhibits transferability between maize
and a related crop species, sorghum (Sorghum bicolor).

2 | MATERIALS AND METHODS

2.1 | Field experiment and data collection

A previously described field experiment consisting of 1680
plots subdivided into two complete replicates of a popula-
tion of 752 maize inbred genotypes comprising a subset of
the Wisconsin Diversity panel (Mazaheri et al., 2019), and a
single repeated check genotype was planted on May 6, 2020
at the Havelock Farm Research Facility at the University of
Nebraska-Lincoln (40.852 N, 96.616 W) (Sun et al., 2022).
Briefly, each plot consisted of two rows with approximately 20
plants per row. Rows were 7.5-ft long, with 30-in. row spac-
ing and 2.5-ft alleyways between sequential plots. Published
plant-level phenotypes for the same experiment were taken
from Mural et al. (2022). To minimize variation introduced
by differences in environmental conditions or developmen-
tal stage, we sought to collect hyperspectral reflectance from
the entire field experiment in the shortest interval possible.
Given constraints on labor and field access in the summer
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Core Ideas

* Autoencoder latent variables show stronger cor-
relations with chlorophyll content than principal
components.

* Autoencoder-derived latent variable exhibits mod-
estly better performance than partial least squares
regression supervised model.

e Latent variables derived from autoencoders are
significantly associated with genetic markers.

* Latent variables capture variance in traits that are
transferrable across species and years.

* Significant proportions of total variance in individ-
ual latent variables are attributable to genetics.

of 2020 as the result of the coronavirus pandemic and asso-
ciated lockdown procedures, collecting data from the entire
field required 9 days of work, spread over a 13-day interval
from July 8 to July 20, 2020. Hyperspectral reflectance was
collected from a single fully expanded leaf from a represen-
tative plant per plot avoiding edge plants when possible using
a spectroradiometer (FieldSpec4; Malvern Panalytical Ltd.,
formerly Analytical Spectral Devices) with a contact probe,
following a previously described protocol (Ge et al., 2019).
Leaf spectral was collected as described previously (Wije-
wardane et al., 2023). Briefly, a single plot level value was
generated for each of 2151 reflectance values. Each value rep-
resented the proportion of light reflected in a 1 nm increment
of light wavelengths between 350 and 2500 nm. Data from
1665 plots were initially collected. Seven plots with abnormal
spectra, estimated as leaf reflectance <0 or >1, were removed
from the analysis, resulting in a final dataset of 1658 plot-level
reflectance spectra.

Molecular leaf traits were collected from subsets of
between 243 and 318 of the leaves employed above.
Chlorophyll concentration (CHL), equivalent water thickness
(EWT), leaf water content (LWC, %), and specific leaf area
(SLA, m?/kg) were collected from these leaves using the
methods adopted by Ge et al. (2019) and Li et al. (2023).
Briefly, CHL was measured using a handheld chlorophyll
meter (MC-100; Apogee Instruments, Inc.); EWT was cal-
culated using the following formula: (fresh weight of leaves
- dry weight of leaves)/leaf area; LWC was calculated using
the following formula: (dry weight of leaves/fresh weight of
leaves) X 100%; and SLLA was calculated using the follow-
ing formula: leaf area/dry weight of leaves. Phosphorus (P),
nitrogen (N), potassium (K), magnesium (Mg), calcium (Ca),
sulfur (S), iron (Fe), manganese (Mn), boron (B), copper (Cu),
and zinc (Zn) were quantified from dried leaf samples by a
commercial provider (Midwest Laboratories, Inc.).

d ‘1 ‘vT0T “€0LTSLST

osoe//:sdny woiy papeoy!

5U0DI] SO0 2ANEAI) d[qeatidde ay) Kq PaUIGAOS aIE SA[ONIE V() (SN JO SIJMI 10§ AIRIQUT AUIUQ) ASJLAN UO (SUONIPUOd-PUB-SULWI0Y Ka[1 AIbaqiour[uo//:sdiiy) SUONIPUOS) pue suia] oyl 208 “[S707/€0/1¢] U0 A1eqr aunuQ AojiAy *A1eiqr] AISIAtun o1eig emof £q 90107 2(dd/z001°01/10p w00 Kapim'



4of13 The Plant Phenome Journal ..

The sorghum leaf hyperspectral and molecular trait dataset
used to assess model transferability was collected from two
experiments, one in the field under two nitrogen treatments
and one under greenhouse conditions. The field experiment
was conducted at the University of Nebraska-Lincoln’s Have-
lock Farm facility (N 40.861, W 96.598) in 2020, where one
row plots of sorghum genotypes from the sorghum associa-
tion panel were grown with either 0 pounds per acre (low
nitrogen) or 80 pounds per acre (high nitrogen) of supplemen-
tal nitrogen (M. W. Grzybowski et al., 2022). Hyperspectral
reflectance was collected from the second leaf, counting
downward from the last fully extended leaf, of a single plant
per plot. Ground truth measurements of molecular leaf traits
were collected for 266 samples (130 from the high nitro-
gen treatment and 136 from the low nitrogen treatments).
The greenhouse experiment was conducted at the Univer-
sity of Nebraska-Lincoln’s automated phenotyping facility
at the Nebraska Innovation Campus. Data were collected
from 321 plants, representing 236 unique sorghum genotypes,
which were grown in a single common experiment in the
greenhouse (Tross et al., 2021). Ground truth and hyper-
spectral measurements were collected as described above for
maize.

2.2 | Dimensional reduction
The dimensionality of the 1658 plot-level hyperspectral
reflectance values was reduced using both PCA and a trained
autoencoder NN. For PCA, the values were reduced to 10
principal components (PCs) using the scikit-learn package
(Pedregosaetal., 2011). These 10 components were sufficient
to summarize 99% of variance in the dataset. An autoencoder
architecture was implemented in Keras (v2.8.0) (Bank et al.,
2020; Chollet, 2015). The empirically determined network
architecture consisted of an encoder with five dense layers
with 2151, 2200, 3000, 2024, and 10 neurons, respectively,
and a decoder with five dense layers with 1024, 1536, 2500,
2500, and 2151 neurons (Figure S1). A scaled exponential
linear unit activation function was employed for all dense lay-
ers, with the exception of the final dense layer of the decoder
network, which employed a tanh activation function. Both
the encoder and decoder were trained using a mean absolute
error loss function, the standard gradient descent optimizer,
and a learning rate of 0.1. The raw set of 1658 plot-level
hyperspectral reflectance values was split 5:1 into training
and validation data. Autoencoders were trained for up to 1000
epochs, or until 100 epochs passed without further improve-
ment, whichever came first. The final autoencoder described
in this manuscript was trained for 413 epochs before stopping
based on a lack of further improvement.

To enable apples-to-apples comparisons of autoencoder
latent variables to current state-of-the art methods for chloro-
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phyll estimation, a PLSR model (Helland, 1990) was imple-
mented using scikit-learn and trained using ground truth
chlorophyll content measurements collected from 318 plots.
The performance of the model was evaluated using fivefold
cross-validation, a widely adopted approach for interpreting
hyperspectral reflectance data (Chen et al., 2020, 2021; Juola
etal.,2023; Manna et al., 2018; Shi et al., 2022). Comparisons
to latent variable data were conducted after subsetting latent
variables to only data from the same 318 plots to allow for a
direct comparison between methods.

A random forest model was implemented in scikit-learn
where separate instances of the model were trained to predict
the value for each latent variable generated by the autoencoder
given data on the values of 30 conventionally measured plant
phenotypes (Mural et al., 2022). After training, the impor-
tance of each conventionally measured trait in predicting the
value for a given latent variable was determined using scikit-
learn’s built-in feature importance function for random forest
models (Breiman, 2001; Ho, 1995). Here, “feature impor-
tance” refers to mean decrease in impurity, a metric for how
much each feature contributes to organizing the data into more
homogeneous or pure groups at each split in the decision tree
nodes (Louppe et al., 2013).

2.3 | Quantitative genetic analyses

The repeatability of plant phenotypes in this study was calcu-
lated using the equation p = 6> /(6> + 0°,/2), where 6> ; is
the total amount of variance explained by genetics and 62, is
the total amount of residual variance. Variance components
were derived by fitting a linear model with the formula yi = u
+ ti + ei, where yi is the mean value of the genotype, p is
the overall mean, #i is the effect of genotype i, and ei is the
residual error of genotype i. Linear models were fit to each
dataset using software package Ime4 (v1.1-23) (Bates et al.,
2015) implemented in the R programming language (V4.0.4)
(R Core Team, 2020).

Genome-wide association studies were conducted using
the mixed linear model approach implemented within the
GEMMA software package (v0.98.1) (Zhou & Stephens,
2012) with a set of 16.6 million segregating genetic markers,
a subset from the set of genetic markers published in M. W.
Grzybowski et al. (2023), and filtered to include only those
with a minor allele frequency >0.05 and a proportion of het-
erozygous calls <0.05. A total of three PCs of variation in the
genetic marker data were calculated using PLINK (v1.90b4)
software package (Purcell et al., 2007) and incorporated
as covariates into the model employed for genome-wide
associations. The threshold for statistical significance in
this study, 2.20 x 1078, was determined by applying the
Bonferroni correction to the estimated 2,269,711 effective
number of independent statistical tests represented by the
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16.6 million markers employed in this study. The effective
number of independent markers was calculated by pruning
those initial 16.6 million markers using a sliding window of
500 bp, step size of 100, and removing all single-nucleotide
polymorphisms (SNPs) above a linkage disequilibrium of 0.2
using PLINK. For the spatially corrected analysis of latent
variable 3, best linear unbiased predictors (Robinson, 1991)
were calculated using spatial modeling R package SpATS
(Velazco et al., 2017) with day of collection included as an
additional fixed effect. Genome-wide association studies
were then conducted as described above.

An expression quantitative trait loci (eQTL) mapping anal-
ysis as described in Torres-Rodriguez et al. (2023) was
conducted using the rIMVP (V1.0.6) (Yin et al., 2021) imple-
mentation of the mixed linear model. Briefly, gene expression
for the Zm00001eb29707 gene model across genotypes was
transformed using the Box-Cox method (Osborne, 2010),
and the genetic marker dataset was processed as previously
described. A kinship matrix generated using the VanRaden
method (VanRaden, 2008) and three PCs of variation in the
genetic marker dataset were used as covariates in the analysis.

3 | RESULTS

3.1 | Hyperspectral leaf reflectance values
The proportion of light reflected by the adaxial surfaces of
maize leaves was measured for leaves harvested from a repli-
cated field study including more than 700 genotypes. This
reflectance varied between 0.2% and 52% for individual 1 nm
wide bands of light between 350 and 2500 nm (3,566,358
observations, 2151 individual wavelengths X 1658 leaves).
Pairwise correlations between the intensity with which dif-
ferent 1 nm wide wavelengths of light were reflected by
different maize leaves in the dataset ranged from —0.1 to 0.99
(Spearman’s rho) with blocks of wavelengths exhibiting high
correlations (Figure 1 A). The proportion of the variance in the
reflectance of individual 1 nm wide wavelengths, which could
be explained by differences between maize genotypes ranged
from 0 to 0.45 (Figure 1B).

The substantial correlations observed among the
reflectance values of many individual wavelengths of
light suggested the potential to summarize leaf reflectance
using a smaller number of variables. Variation in reflectance
across all 2151 individual wavelengths was summarized
using autoencoders trained to summarize individual leaf
reflectance spectra between 1 and 20 latent variables, and
then reconstruct the original 2151 variable data from the
smaller number of variables. The architecture of these
autoencoders differed only in the number of variables passed
from the encoder to the decoder (see Methods). The resulting
models were assessed in two ways: first, by the reconstruction

The Plant Phenome Journal :: Sof13
loss observed on validation data not used to train the autoen-
coders, and second, by the correlation of the autoencoder
variables with a set of 15 molecular leaf traits we quantified
from maize plants in the same field experiment. The five
lowest minimum reconstruction losses on the validation
data of 20 trained models were 0.0122, 0.0132, 0.0128,
0.0129, and 0.0125 for models having 5, 7, 10, 11, and 17
latent variables, respectively (Figure S2). The maximum
correlation of each latent variable with any of the molecular
traits was determined, resulting in one maximum correlation
value for each latent variable. The maximum value of these
per-latent variables across all latent variables (the maximum
of maximums) was employed as a metric for evaluating the
relationship between modeled variables and observed plant
properties. The five highest maximum correlation values
were observed for models employing 3, 8, 9, 10, and 13
latent variables. The specific maximum correlation values
produced by these models were 0.65, 0.66, 0.61, 0.66, and
0.63, respectively. Based on a combination of minimizing
reconstruction loss and maximizing correlation with molec-
ular traits measured from the same field experiment, the 10
latent variables model was selected for the analyses presented
below.

The final trained encoder was used to summarize leaf
reflectance data from each of 1658 plots as 10 total latent
variables. The repeatability of four of these 10 latent vari-
ables exceeded that of any individually measured wavelength.
The highest observed repeatability of a latent variable was
0.64, while the highest observed repeatability of an individ-
ual wavelength was 0.45 (Figure 2). A control was employed
using PCA to summarize the same dataset to 10 PCs. Among
the first 10 PCs, one had a repeatability of at least 0.5 (two
less than the autoencoder approach) and a maximum repeata-
bility of 0.59 (0.64 for the autoencoder model) (Figure S3). In
several cases, latent variables and a few PCs with low repeata-
bility appeared to represent variation between leaves analyzed
on different days (Figures S4 and S5). The latent variable
most correlated with chlorophyll content exhibited a correla-
tion of (R = 0.59) (Figure 2F), which was much greater than
the highest correlation observed between any of the first 10
PCs and chlorophyll (R = 0.31) (Figure S6). It matched, and
in fact modestly exceeded, the predictive accuracy of super-
vised models (partial least squares) individually trained on
different 80% subsets of the same 318 ground truth chloro-
phyll measurements used to evaluate both models (R> = 0.58)
(Figure 2E).

The transferability of the autoencoder-derived variables
with plant traits was assessed using two sorghum leaf
reflectance datasets and associated ground truth data (M.
W. Grzybowski et al., 2022; Wijewardane et al., 2023). The
pre-trained encoder described above was used to summarize
variation from hyperspectral leaf reflectance collected from
321 sorghum plants grown under greenhouse conditions in
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FIGURE 2 Association of latent variables with genetic, environmental, and plant phenotype factors. (A) Comparison of the repeatability of

each of the 10 latent variables derived from hyperspectral leaf reflectance measured in this study. (B) Latent variable 10 value of the leaf reflectance

compared with the day of collection of leaf reflectance for each plot. (C) Latent variable 3 value of the leaf reflectance compared with the day of

collection of the leaf reflectance for each plot. (D) Associations measured by Spearman’s rho between individual latent variables and ground truth
measurements for 15 traits each scored in subsets of between 243 and 318 maize plots from which leaf reflectance data were also collected in 2020.

(E) Association between observed chlorophyll content and fivefold cross-validation predictions from partial least squares regression model for all

experimental plots. (F) Association between observed chlorophyll content and latent variable 8 of the leaf reflectance values for all experimental

plots. CHL, chlorophyll concentration.
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mmm Maize (n = 245) mmm Sorghum Greenhouse (n = 321) B Sorghum ALL (n = 587) mmm Sorghum Field HN (n = 130) mmm Sorghum Field LN (n = 136)

Latent variable 3

Specific leaf area

Associations between latent variables of leaf hyperspectral reflectance of sorghum populations with the same traits across species

and years. All latent variables are derived from the same autoencoder model trained on hypersepctral reflectance data from a maize species. Latent

variables derived from maize field reflectance data (2020), sorghum leaf reflectance field data (2020) (Grzybowski et al., 2022) and greenhouse data

(2018) (Wijewardane et al., 2023), predicted from a model trained on leaf reflectance in maize (2020) were all associated with the same molecular

traits. ALL, all the samples including sorgham greenhouse, sorgum low nitrogen (LN), and sorghum high nitrogen (HN).

2018, 130 sorghum plants grown in the field in 2020 under
sufficient nitrogen conditions, and 136 sorghum plants grown
in the field under nitrogen-deficient conditions in 2020. The
same latent variable continued to exhibit correlations with
ground truth chlorophyll measurements in greenhouse grown
sorghum (R> = 0.24), field-grown sorghum with optimal
nitrogen conditions (R*> = 0.63), and field-grown sorghum
under nitrogen-deficient conditions (R*> = 0.65) (Figure 3).

3.2 | Latent variables capture information
on variation in organismal traits

Random forest models were trained to predict latent vari-
ables from a suite of 30 traits measured from maize plants
in the same field experiment. This was done to determine if
latent variables were associated with variation in other traits
of interest in the same maize population. Feature importance
(mean decrease in gini impurity) was assessed for each organ-
ismal trait in random forest models trained to predict each
latent variable. This produced an assessment of which plant
traits contained significant information about the value of
each latent variable. Leaf width exhibited the highest mean
decrease in impurity across five folds (0.12) for latent vari-
able 3, with the second largest decrease exhibited by the trait
number of branches per tassel (0.08) (Figure 4). The severity
of southern rust lesions, a leaf pathogen observed later in the
growing season in the same field, emerged as the most influ-
ential organismal trait in predicting latent variable 8 (Figure
S7). On the other hand, flowering time (measured as the num-
ber of days to pollen and the number of days to silking) played
a more significant role in predicting the two latent variables
with the highest repeatabilities (Figure 2A) (latent variables 1
and 6) (Figure S7).

3.3 | Linking latent variables to causal genes
via genome-wide association

Many latent variables were not strongly associated with
molecular or organismal traits. Genome-wide association
studies were conducted on all latent variables to better under-
stand what types of mechanisms might underlie the variation
captured by each variable. Most latent variables exhibited
statistically significant association with at least one genetic
marker in the maize genome (Figure S8). Latent variable
3 had a significant marker that was located 15,811 base
pairs downstream from Zm00001eb134990. The Arabidopsis
ortholog of this gene, CYCDS5;1 (AT4G37630), is believed
to play a role in controlling endoreduplication during leaf
development, a process associated with trichomes and other
specialized protruding cells from the leaf surface (Sterken
et al., 2012). A genetic marker 7713 base pairs upstream of
Zm00001eb297070 was significantly associated with vari-
ation in latent variable 5 (Figure 5G). Notably, this signal
was also only 988 base pairs away from the peak SNP of
an eQTL-associated variation in the expression of that same
gene (Zm00001eb297070) (Torres-Rodriguez et al., 2023) in
mature leaf tissue (Figure 5H). A significant hit for latent
variable 6 was located within the annotated gene model for
Zm00001eb434330 (Figure 5F), a gene expressed primarily
in developing leaves in maize (Hoopes et al., 2019; Stelpflug
et al., 2016).

4 | DISCUSSION

The cost and throughput of collecting accurate measurements
of plant traits across large field experiments is increasingly the
rate-limiting step in both plant quantitative genetics research
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FIGURE 4

The relative importance of 30 hand-measured traits in predicting latent variable 3 of the hyperspectral leaf reflectance values. This

importance is derived from the mean decrease in impurity of each node in the decision trees within a trained random forest model, attributed to each

feature (trait). X-axis indicates the fivefold mean decrease in impurity calculated for each trait. Error bars represent standard error across the five

folds for each trait. Y-axis indicates the 30 hand-measured traits traits used to predict the latent variable 3.

and plant breeding. Approaches that substitute sensor data and
prediction models for direct human measurements of traits
have been adopted for some applications and show promise in
others. However, common approaches to training models to
predict traits for sensor data using supervised models require
large and expensive datasets to train, making them inaccessi-
ble to many researchers working on specialty crops, genetic
models, or previously poorly studied traits. Here, we aimed
to quantify traits using a high-dimensional hyperspectral leaf
reflectance dataset combined with data-driven approaches,
which have the potential to mitigate some of the logistical
challenges of supervised training models.

A greater proportion of latent variables produced by
autoencoder-based summaries of leaf reflectance data exhib-
ited higher repeatabilities than PCs calculated from the same

leaf reflectance dataset (Figure S3). However, repeatable
traits can still be of limited utility for plant breeding and genet-
ics if those traits are not linked to known plant properties.
One autoencoder-derived latent variable captured variation
in chlorophyll content with an accuracy that matched or
modestly exceeded that of a supervised model trained with
labeled data, while none of the top 10 PCs approached the
performance of the supervised model (Figure 2 and Figure
S6). For many large quantitative genetics studies, variation in
phenotypic measurements due to variation in the time during
which different plants or plots are scored creates additional
non-genetic variance and reduces power to either identify
causal genes or build trait prediction models. One potential
avenue to further improve performance not investigated
in this paper would be to adopt widely used methods to
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Alleles (chr6:178256233)

Genetic markers are significantly associated with latent variables 3, 5, and 6 of the autoencoder trained on reflectance data. Each

point indicates the statistical significance of a marker (y axis) and its exact position on the genome (x axis). The dashed black lines indicate the

statistical threshold cut off of 2.20 X 108, which was derived from an a value of 0.05 with a Bonferonni adjustment for 2,269,711 effective genetic

markers. Annotated black arrows indicate the position of the nearest gene/gene model. Blue rectangles indicate the untranslated regions while green

rectangles indicate the coding sequence of the gene models. Genome-wide association studies of (A) latent variable 3; (B) latent variable 5; (C)

latent variable 6; (D) zoomed in region of the significant markers on chromosome 3 of latent variable 3 starting at 113,809 — 116,809 kb. Red

bounding box indicates the region of the most significant single-nucleotide polymorphism (SNP); (E) zoomed in region of the significant markers on

chromosome 3 of latent variable 3 and the nearest gene/gene model starting at 114,799 — 114,829 kb. Red bounding box indicates the region of the

most significant SNP; (F) zoomed in region of the of the significant markers on chromosome 10 of latent variable 6 and the nearest gene/gene model;

(G) zoomed in region of the significant markers on chromosome 6 for latent variable 5 and the nearest gene/gene model; (H) eQTL analysis of the

Zm00001eb297070 gene model; and (I) comparisons of the distributions of latent variable 5 for genotypes that are homozygous for the “C” reference

allele versus the “T” alternate allele.

control for spatial variation across field experiments as a
pre-processing step prior to feeding data to an autoencoder.
In principle, by reducing the impact of non-genetic effects,
this approach might result in latent variables that better
represent variation in traits attributable to genetics. However,
current approaches to correcting for spatial variation typically
operate on individual traits. Given the amount of information
captured by the relationships between the reflectance inten-
sities of individual wavelengths within hyperspectral spectra,
an optional approach to correcting for spatial variation would
be spatially correct entire vectors of reflectance intensities
jointly, rather than treating each individual wavelength
separately. Until such approaches become feasible, the
apparent partitioning of genetic and non-genetic sources of
variance into separate latent variables that we observe here is
encouraging (Figure 2B,C and Figure S4), and we observed
largely comparable results when conducting genome-wide
association study (GWAS) either using a latent variable
directly or applying spatial correction to reported latent
variable values prior to GWAS (Figure S9). The variance
partition-like behavior of the autoencoder model employed in
this study may explain, at least in part, the greater correlation

of some latent variables with other, ground truth, plant
phenotypes.

Beyond chlorophyll, a trait that can already be predicted
with high accuracy with a number of linear models trained
on large datasets, the strongest correlation of any of the latent
variables calculated in this study with a panel of molecular
traits was approximately R> = 0.2. Similarly, low correla-
tions were observed with a panel of whole-plant phenotypes
(Figure S10). However, linear regression may not capture non-
linear relationships between traits or cases where a single
latent variable reflects variation across multiple molecular
or whole-plant traits. Feature importance values calculated
from random forest models, which can capture both non-
linear relationships and the influence of multiple traits on
single latent variables, enabled the identification of whole-
plant phenotypes, including leaf width, flowering time, and
susceptibility to a specific foliar pathogen, associated with
multiple individual latent variables (Figure S7). However,
it must be noted that this approach was unsuccessful for a
number of latent variables. Success depended on access to
large datasets of conventionally scored traits from the same
populations from which leaf reflectance data were collected,
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potentially reducing the logistical advantages of this approach
relative to training supervised models. Another potential strat-
egy for linking autoencoder-derived latent variables to known
plant properties is via quantitative genetics (Ubbens et al.,
2020). If a given latent variable is associated with multiple
genes known to control a specific plant trait of interest, this
would serve as significant evidence that the latent variable
reflects variation in the same trait. We were successful in iden-
tifying one or more genomic intervals that were significantly
associated with variation in seven out of 10 latent variables.
In at least one case, a GWAS hit was associated with genes
with plausible links to leaf-reflectance-related phenotypes. A
genetic marker significantly associated with latent variable
3 (Figure 5A) was identified as 16 kb from a maize gene
whose Arabidopsis ortholog is associated with leaf develop-
ment and differential organ growth in different environments
(Sterken et al., 2012). In another case, a genetic marker associ-
ated with latent variable 5 (Figures 5B,G) was also associated
with cis-eQTL for a variable in the expression of an adjacent
(approximately 1 kb distant) gene (Figure SH). However, this
approach was limited by both the number of GWAS hits iden-
tified per latent variable and the relatively modest number of
maize genes linked with high confidence to roles in deter-
mining plant phenotypes. The former issue can potentially
be addressed in the future by collecting hyperspectral leaf
reflectance data from larger populations, experiments with
higher levels of biological replication within a single environ-
ment, and/or across greater numbers of environments. Each of
these would increase our power to identify significant associ-
ations in genome-wide association studies. The capacity of
encoders trained on a single environment to continue to accu-
rately reflect variation in the same plant phenotype across
datasets collected in multiple environments and from multiple
species (e.g., maize and sorghum) suggests that this approach
may indeed be feasible (Figure 3). Underlying distributions of
trait values can influence reported R? values even from iden-
tical models. An example of this is apparent in assessing the
transferability of the maize autoencoder’s ability to predict
chlorophyll content to several different sorghum field exper-
iments (Figure S11A). The two field studies exhibit a more
dispersed distribution of ground truth chlorophyll values and
thus higher R> with the autoencoder-derived latent variable,
while the greenhouse experiment consisted largely of plants
with similar chlorophyll values, so the same latent variable,
produced using the same methodology, exhibits a lower R>
(Figure S11B).

Employing autoencoders for dimensionality reduction
requires a substantially greater amount of user time and input
than PCA. Data conversion, network architecture design,
hyperparameter tuning, and access to the necessary types
and scale of computer resources are all barriers of entry
relative to current widely used methods of dimensionality

TROSS ET AL.

reduction in plant biology applications, including PCA and
current widely used supervised classification models such
as PLSR. In addition, while the collection of leaf hyper-
spectral reflectance data for large plant populations is less
labor intensive than manual scoring of large panels of plant
traits from the same population, the costs of the necessary
equipment are high and the labor requirements are nontriv-
ial. However, current rapid advances in robotics and imaging
technologies have the potential to address the challenge of
data collection. Improved artificial intelligence and machine-
learning frameworks may address the first challenges of data
conversion, network architecture design, hyperparameter tun-
ing, and scaling of computer resources. If so, the approaches
described here may provide significant utility in assisting
plant geneticists and plant breeding in extracting the max-
imum amount of useful information from these new data

types.
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