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This paper studies the instability of deployable structures consisting of open-section thin-
shells with a non-uniform transverse curvature subjected to pure bending moments. Typically,
cylindrical shells have been made from uniformly curved thin-shells for their simplicity, such as
tubular extendable booms and tape springs. However, recent consideration has been given to
general curved thin-shell structures, which possess a more complex geometry to meet structural
and geometric requirements. This paper investigates the buckling instability of two deployable
structures: deployable airfoil with continuously varying transverse curvature and deployable
boom having a constant-curvature flange and a flat web. An analytical model is presented to
predict the buckled cross-section shape based on the variational method. The reaction forces
and bending moments are calculated with this analytical model and compared against finite
element analysis.

I. Nomenclature

𝐿 = Strip length for all samples
𝑊1 = Chord length of deployable airfoil
𝑊2 = Web width of deployable boom
𝑅3 = Flange radius of deployable boom
𝛼3 = Flange subtending of deployable boom
𝑡 = Thickness for all samples

II. Introduction
Thin-shell structures are widely used for deployable structures by virtue of their geometrically nonlinear behavior.

The classic example is a tape spring, also called carpenter’s tape, which is a straight strip with a uniform curved
cross-section. The performance of high stiffness during small deflection and compliant behavior after buckling makes
this structure attractive for deployable applications. The simplicity of thin-shell structures improves reliability during
folding and deployment, eliminates the need for additional support mechanisms, and allows for a compact folded
configuration, facilitating easier launching.

The investigation of open thin-shell structures began with analytical developments linking the rotation angle and
moment of initially curved strips, which were firstly introduced by Mansfield [1]. These include a transversely and
longitudinally curved strip without twist and a twisted strip without initial longitudinal and transverse curvatures,
Fig 1(b,c). The transversely curved thin-shell without longitudinal curvature and twisting has received the most
widespread attention. It later became known as the tape spring Fig 1(e). A classical shell model with large displacements
and large rotations was defined through a dynamic physics-based simulation model, with the equation for the steady-state
moment of the tape spring derived theoretically [2, 3]. Based on standard shell theory [4], the buckling behavior and
moment-rotation angle relationship under pure bending have been studied theoretically and experimentally [5]. The
study later extended the two-dimensional folding of the tape spring to three-dimensional folding. The emphasis was
also given to the relationships between moment responses, curvatures, and twist angles [6, 7].

Deployable structures with a non-uniform transverse curvature have been employed for spacecraft masts, including
shear-less outrigger booms [8], collapsible tubular mast booms[9, 10] and triangular foldable and collapsible booms [11],
shown in Fig 1(f). In these cases, the cross section becomes a symmetrical O and omega shape, or an asymmetrical Y
shape. Compared to uniform curved tape spring, these booms have higher bending stiffness performance and multi-stable
properties. At the same time, these collapsible and rollable boom can be stowed in a smaller space. However, the
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Fig. 1 Different deployable thin-shell structures.

buckling behavior of these structures has not received adequate attention. Buckling can compromise the structural
integrity and deployment accuracy, which are crucial for their performance. Specifically, some non-uniform curved
thin-shell structures lose their "snap" behavior and convert to limit point buckling due to the non-uniformity of the
transverse curvature, which is a critical aspect for ensuring their stability and functionality during deployment.

Deployable structures with a varying curvature are also relevant for aviation applications, such as the recently
proposed deployable propeller blade that utilizes buckling to achieve folding [12, 13]. This blade has an airfoil
cross-section geometry to generate thrust and lift from the pressure difference during spinning and a spanwise twist.

Present studies are limited to straight and uniformly curved thin-shells. For more general surfaces with non-uniform
curvature and twisting, buckling instability is not well understood. These non-uniformly curved thin-shell structures can
open up the design space for deployable structures to meet a larger set of geometric and structural requirements. It is
important to understand the buckling behavior principle of such complex geometry. This paper aims at developing an
analytical model for non-uniformly curved thin-shell structures.

The paper is arranged as follows. Section III shows two deployable structures with non-uniform curvature and
explains the analytical model for non-uniform curvature buckling based on variation method. Section IV shows the
analytical solution for two samples and the comparison with finite element analysis. Section V concludes the paper.

III. Analysis
Two surfaces were investigated in this paper. The first is a deployable airfoil, which is the top part of NACA 4412

airfoil cross-section, with strip length 𝐿 = 200𝑚𝑚, chord length 𝑊1 = 50.8𝑚𝑚, thickness 𝑡1 = 0.1𝑚𝑚. The second
sample is a deployable boom, which is a half of TRAC boom with strip length 𝐿 = 200𝑚𝑚, flange radius 𝑅3 = 2𝑚𝑚,
web width 𝑊2 = 2𝑚𝑚, thickness 𝑡2 = 𝑡3 = 0.1𝑚𝑚, shown in Fig 2. Both of these two samples are non-uniform curved
in the transverse direction.

A global coordinate system (X, Y, Z) is specified, where X is normal and vertical to the sample’s highest position
pointing outward, Y and Z axis correspond to the longitudinal and transverse directions of the sample, respectively. End
effects and torsional deformations are neglected under pure bending condition. End effects are neglected, there are no
applied surface loads, nor residual stresses. Uniform transverse curvature, denoted by 𝜅𝑡 , is assumed. longitudinal

2

D
ow

nl
oa

de
d 

by
 P

ur
du

e 
U

ni
ve

rs
ity

 o
n 

M
ar

ch
 3

1,
 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I: 
10

.2
51

4/
6.

20
25

-0
80

9 



Fig. 2 Geometry model for two strip samples.

curvature is zero. We also neglect torsional deformations.
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Fig. 3 Definition of coordinate system and stress resultants.

For post-buckling state, we write a general expression for the strain energy density per unit length of the strip. By
taking the first variation of strain energy is zero at equilibrium, the governing differential equations for the deformed
shape of the cross-section is obtained. This differential equations is then solved subject to boundary conditions under
pure bending.

A. Total Strain Energy functional
The strain energy density due to bending is

𝑈𝑏 =
𝐷

2

î
(Δ𝜅𝑡 + Δ𝜅𝑙)2 − 2(1 − 𝜈)Δ𝜅𝑡Δ𝜅𝑙

ó
(1)

where 𝐷 = 𝐸𝑡3

12(1−𝑣2) , 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. Then, we denote 𝑢(𝑧) is the deformed cross-section
shape. Then the curvature of the deformed tape spring can be written as a positive second-order derivative of u,
𝜅𝑡1 =

��� 𝑑2𝑢
𝑑𝑧2

���. Therefore, the change of transverse curvature is Δ𝜅𝑡 =

��� 𝑑2𝑢
𝑑𝑧2

��� − 𝜅𝑡0(𝑧). An uniform longitudinal radius,
denoted by 𝑟1, is assumed. Because the initial longitudinal curvature is zero, the longitudinal curvature change is
Δ𝑘𝑙 =

1
𝑟1

. The bending energy density can be expressed as
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𝑈𝑏 =
𝐷

2

Ç𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧) + 1
𝑟1

å2

− 2(1 − 𝜈)
Ç
𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧)
åÅ

1
𝑟1

ã . (2)

The strain energy density due to stretching can be calculated by principal in-plane stress resultants, 𝑁𝑡 and 𝑁𝑙 .
There is no stress on the transverse direction, which means 𝑁𝑡 = 0.

The longitudinal stress is

𝑁𝑙 = 𝐸𝑡𝜅𝑙𝑦 =
𝐸𝑡𝑦

𝑟1
, (3)

where 𝑦 is the vertical distance of a point on the tape spring cross-section from the neutral axis. It is important to notice
that 𝑢(𝑧) is equivalent to 𝑦 because we set the coordinate based on neutral axis. The strain energy density is written as

𝑈𝑠 =
1

2𝐸𝑡

î
(𝑁𝑡 + 𝑁𝑙)2 − 2(1 + 𝜈)𝑁𝑡𝑁𝑙

ó
=

𝑁2
𝑙

2𝐸𝑡
=

𝐸𝑡

2𝑟2
1
𝑢2 (4)

The total energy density is the sum of bending and stretching energy, then integral along the whole cross-section.
The total strain energy per unit length of the tape spring is therefore

L =

∫ 𝑧1

𝑧0

𝐷

2

Ç𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧) + 1
𝑟1

å2

− 2(1 − 𝜈)
Å

1
𝑟1

ãÇ
𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧)
å + 𝐸𝑡

2𝑟2
1
𝑢2

 𝑑𝑧 (5)

where L is the total strain energy, 𝑧0, 𝑧1 are the two locations of two edges of the tape-spring.
Consider a small change in total potential energy of the system is given by

𝛿Π = 𝛿L − 𝛿𝑊 (6)

where 𝑊 is the external work done. Equilibrium of the system is satisfied when 𝛿Π = 0. In the propagation analysis,
external work is equated to internal work, thus 𝛿L = 𝛿𝑊 , hence satisfying 𝛿Π = 0. The energy minimization analysis
occurs at a fixed extension, setting 𝛿𝑊 = 0, and minimizes the internal strain energy by setting 𝛿L = 0.

B. Variational method
L is considered as a functional of 𝑢, 𝑑2𝑢

𝑑𝑧2 , 𝜅𝑡0(𝑧). We need to solve 𝑢(𝑧) when the functional reaches an extreme
value. According to the principle of variational method, the partial differential equation about 𝑢(𝑧) is derived by
Euler-Lagrange equation.

Calculate all terms based on eq. 5 and substitute into the Euler-Lagrange equation. Simplify the equation with
𝐷 = 𝐸𝑡3

12(1−𝜇2) and 𝛾4 =
3(1−𝜇2)
𝑡2𝑟2

1
. The final partial differential equation for 𝑢(𝑧) is:

1
4𝛾4

𝑑4𝑢

𝑑𝑧4 + 𝑢 =
1

4𝛾4 𝜅
′′
𝑡0(𝑧). (7)

C. Deformed shape
The homogeneous case is given by

1
4𝛾4

𝑑4𝑢

𝑑𝑧4 + 𝑢 = 0. (8)

A general solution expressing the deformed shape is given by

𝑢(𝑧) = 𝐶1 cos 𝛾𝑧 cosh 𝛾𝑧 + 𝐶2 cos 𝛾𝑧 sinh 𝛾𝑧 + 𝐶3 sin 𝛾𝑧 cosh 𝛾𝑧 + 𝐶4 sin 𝛾𝑧 sinh 𝛾𝑧. (9)

Four constants 𝐶1 − 𝐶4 need to be determined by four boundary conditions. Form the pure bending boundary
condition, the moment 𝑚𝑧𝑦 and the shear force 𝑠𝑧 equal to zero at the two edges of the tape spring. And from standard
shell theory, the bending moment per unit length 𝑚𝑧𝑦 and shear force are related to the changes of transverse and
longitudinal curvature by the standard expressions.
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𝑚𝑧𝑦 = 𝐷[
𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧) + 𝜈
1
𝑟1

] = 0, 𝑤ℎ𝑒𝑛 𝑧 = 𝑧0 𝑎𝑛𝑑 𝑧 = 𝑧1 (10)

𝑠𝑧 =
𝑑3𝑢

𝑑𝑧3 = 0, 𝑤ℎ𝑒𝑛 𝑧 = 𝑧0 𝑎𝑛𝑑 𝑧 = 𝑧1 (11)

D. End moment
The deformed shape 𝑢(𝑧) only depends on the initial strip curvature and the longitudinal curvature after bending.

The cross-sectional shape of strip was obtained by solving the differential equation with boundary conditions. The
moment per unit length 𝑚𝑦𝑧 can be calculated by:

𝑚𝑦𝑧 = 𝐷[
1
𝑟1

+ 𝜈(
𝑑2𝑢

𝑑𝑧2 − 𝜅𝑡0(𝑧))] (12)

The end bending moment Mz applied to the strip are obtained by integrating 𝑚𝑦𝑧 with the effect of normal force
over the whole cross-section. Wuest [14] used the following expression:

𝑀𝑧 =

∫
𝑐

(𝑚𝑦𝑧 − 𝑁𝑙𝑢(𝑧)) 𝑑𝑧 (13)

In-plane moment My is the net moment from the normal force 𝑁𝑙 along the cross-section about the neutral axis in in
Z direction, which is X axis in this coordinate. Therefore, the distance from the normal force 𝑁𝑙 to the neutral axis is the
z value. We get the net in-plane moment by integral 𝑁𝑙 · 𝑧 about the whole cross-section.

𝑀𝑦 =

∫
𝑐

𝐸𝑡𝑢(𝑧)
𝑟1

· 𝑧 𝑑𝑧 (14)

IV. Model predictions

A. Airfoil
The initial geometry of NACA 4412 is fitted by polynomial functions at first. Then, the transverse curvature function

is obtained by taking the second derivative of these fitted polynomial functions with respect to z. By comparing three to
five order polynomial function, the quartic polynomial is chosen for subsequent calculations because it offers higher
accuracy and does not overly complicate the subsequent partial differential equations, as shown in Fig. 4.

For a quartic polynomial geometry, the initial curvature is a quadratic function. The right hand side of the partial
differential equation equ. 7 is the coefficient of the quadratic term. Consequently, the particular solution is the quartic
term coefficient. The solution for the partial differential equation is

𝑢(𝑧) = 𝐶1 cos 𝛾𝑧 cosh 𝛾𝑧 + 𝐶2 cos 𝛾𝑧 sinh 𝛾𝑧 + 𝐶3 sin 𝛾𝑧 cosh 𝛾𝑧 + 𝐶4 sin 𝛾𝑧 sinh 𝛾𝑧 + 𝑢𝑝 (15)
where 𝑢𝑝 is the quadratic term.

B. TRAC boom
The TRAC boom contains two distinct sections with different transverse curvature, 1

𝑟1
at the flange section and zero

at the web section. Therefore, the transverse curvature about z axis is a piece-wise function.

𝜅𝑡0(𝑧) =

{
1
𝑟1

𝑧 ≤ 0
0 𝑧 ≥ 0

(16)

To simplify the calculation in solving the partial differential equation, the piece-wise function is converted to a non
piece-wise function by hyperbolic function. The final transverse curvature function for TRAC boom can be expressed as:

𝑘𝑡0(𝑧) ≈ 1
2
∗ 1 − tanh(𝑘𝑧)

𝑅3
(17)

The parameter 𝑘 = 10 is chosen for sharp the steepness of the transition. The right hand side of partial differential
equation is zero was assumed.
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Fig. 4 Airfoil shape polynomial function fitting.

C. Comparison between analytical prediction with finite element model
For a uniformly curved strip, the longitudinal radius after buckling is the same as its original transverse radius.

However, this longitudinal radius is an unknown quantity for a buckled non-uniform curved strip. Because different
sections with different curvature is trying to buckle to its original curvature to minimize the strain energy. Therefore,
the final buckled configuration for non-uniformly curved strip minimizes the net strain energy for the whole structure,
which makes the longitudinal radius 𝑟1 after buckling is an unknown quantity in the analytical solution. But this 𝑟1 is a
constant during the buckled area propagation. This is similar as a uniformly curved strip, shown in Fig 5.

Fig. 5 Buckled area propagates with constant longitudinal curvature.

A group of initial predictions for longitudinal curvature were made based on the original transverse curvature for
two samples. All deformed cross-section with different 𝑟1 were obtained. The moment per unit length 𝑚𝑦𝑧 and 𝑚𝑧𝑦

were calculated based on equ. 12 and 10. Fig 6 shows the comparison between the analytical predictions with the finite
element analysis results.

Table 1 End moments comparison for two samples.

Structures Analytical
prediction (Nmm)

Finite element
result (Nmm)

Error

Deployable airfoil Mz 146.3 146.2 0.1
Mx -1.8 -0.2 1.6

Deployable boom Mz 106.4 106.3 0.1
Mx 2.3 0.1 2.2

This analytical model predicts that the middle part of two samples are almost flattened. However, this flattened
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Fig. 6 Comparison for deformed cross-section shape, 𝑚𝑦𝑧 and 𝑚𝑧𝑦 for two samples .

cross-section is tilted in simulation for both two samples. This because the longitudinal radius 𝑟1 is not uniform along
the transverse direction in simulation. The 𝑚𝑦𝑧 and 𝑚𝑧𝑦 followed a similar path with the simulation for both two
samples and satisfied the boundary condition 𝑚𝑧𝑦 = 0 at the leading and trailing edges.

By comparing the out-of-plane bending moment 𝑀𝑧 and in-plane moment 𝑀𝑥 , good agreement was obtained for
both the airfoil and TRAC boom, as shown in Table 1. It is important to mention that this in-plane moment 𝑀𝑥 is
zero for bending a symmetry strip such as tape spring. Because the deformed cross-section and normal force is also
symmetry so that the net moment can be canceled.

V. Conclusion
The present paper presents a buckling analysis about non-uniform curved thin-shells under pure bending. Start with

the strain energy, an analytical solution for deformed cross-section is given using variation method. It only depends on
the second derivative of the original transverse curvature. The normal force, end bending moment and in-plane moment
are also derived based on standard shell theory. Two verification samples, a deployable boom and a deployable airfoil,
are designed. The buckling behavior non-uniform curvature thin-shell are simulated using the finite element method.
Good agreements are observed for the deformed cross-section, end bending moment and in-plane moment.
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