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Properties such as provable security and correctness for randomized programs are naturally expressed
relationally as approximate equivalences. As a result, a number of relational program logics have been
developed to reason about such approximate equivalences of probabilistic programs. However, existing
approximate relational logics are mostly restricted to first-order programs without general state.

In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about
approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic
sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits
in the relational setting to reason about relational approximation, which allows for expressive notions of
modularity and composition, a range of new approximate relational rules, and an internalization of a standard
limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to
develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual
equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF
switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of
the results have been mechanized in the Coq proof assistant and the Iris separation logic framework.
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1 Introduction

Many important properties of probabilistic programs are naturally expressed as approximate equiv-
alence of two programs. For example, provable security [Goldwasser and Micali 1984] compares an
implementation of a cryptographic scheme to an idealized specification program that does not have
access to any sensitive information, and aims to show that an adversary can only distinguish them
with some small probability. In a similar spirit, many randomized algorithms and data structures
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can be specified by showing that they are approximately equivalent to their non-probabilistic
counterparts. Consequently, it is important to be able to reason about approximate equivalences
and so a number of relational program logics have been developed for first-order languages [Barthe
et al. 2017, 2016¢, 2012] or higher-order languages with first-order global state [Aguirre et al. 2021].

In this work, we develop Approxis, a higher-order approximate relational separation logic for
reasoning about approximate equivalence of RandML programs, an expressive ML-like language
with discrete random sampling, higher-order functions, and higher-order dynamically-allocated
state. A key point is that Approxis, inspired by the unary Eris logic [Aguirre et al. 2024], introduces
error credits in the relational setting to reason about approximation. Error credits are separation-
logic resources that bound the maximum approximation error between two programs. We introduce
a collection of novel approximate coupling rules, which consume error credits in order to relate
randomized transitions of two programs. By treating the relational approximation error as just
another separation-logic resource, Approxis provides modular reasoning principles that enable more
precise error accounting when composing proofs, much as Eris demonstrated in the non-relational
setting.

Surprisingly, error credits not only allow us to prove approximate equivalences, they also allow
us to prove exact equivalences that were beyond the scope of prior coupling-based relational
program logics. Just as in real analysis, where one can prove two numbers are equal by showing
that the distance between them is smaller than ¢ for all ¢ > 0, we can similarly show two probability
distributions are equivalent by showing the distance between them is bounded by ¢ for all € > 0.
Using Approxis, we show how to recover this technique internally in the logic through error
amplification [Aguirre et al. 2024] and thus prove exact equivalence of probabilistic programs by
means of approximation. Based on this, we develop a new binary logical relations model of a rich
type system for RandML with recursive types and impredicative polymorphism. The model supports
approximate reasoning and gives us a powerful and novel method for showing exact contextual
equivalence of higher-order probabilistic programs. For other existing approaches, including both
operational approaches, e.g., Clutch [Gregersen et al. 2024], and denotational approaches, e.g., pRHL
[Barthe et al. 2009] and HO-RHL [Aguirre et al. 2021], some of the examples that we consider would
be very complicated—if not impossible—to handle.

We show that Approxis scales to more involved approximate reasoning by showing the classical
PRP/PRF Switching Lemma [Bellare and Rogaway 2004; Hall et al. 1998] and IND$-CPA security
of a PRF-based symmetric encryption scheme. Moreover, we apply error amplification and our
logical relation to show contextual equivalences for a collection of rejection samplers, including a
sampling scheme for drawing a random sample from a B+ tree [Bayer and McCreight 1972].

Examples like the PRP/PRF Switching Lemma have been verified in many different settings, but
we emphasize the rich programming language we consider here. While some of these examples
might be expressible in simpler languages, features such as higher-order functions, higher-order
state, and polymorphism are all found in general-purpose programming languages, and are needed
for modern compositional software development. Moreover, cryptographic security can be more
naturally expressed in such higher-order languages and avoids the need for syntactic restrictions
on adversaries as seen, e.g., in EasyCrypt [Barthe et al. 2014]. As a consequence, verification
frameworks must handle these language features to reason about large applications and realistic
implementations. Higher-order separation logic is a powerful and well-tested abstraction for this
purpose, and Approxis shows how to beneficially apply it for approximate relational reasoning.
While the B+ tree case study, for example, is quite involved, the complexity is managed through
mostly-standard separation-logic reasoning. We see this as a significant strength of our approach.

At a technical level, our development builds upon the (non-approximate) probabilistic coupling
logic Clutch [Gregersen et al. 2024]. By incorporating error credits [Aguirre et al. 2024] in the
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Approximate Relational Reasoning for Higher-Order Probabilistic Programs 41:3

relational setting, our development generalizes the approach to approximate reasoning using
approximate couplings. In addition, we introduce two new coupling precondition connectives and a
notion of erasability. The erasability condition not only captures the soundness of asynchronous
couplings [Gregersen et al. 2024] in a more semantic way, but also allows for a more principled
approach to validating the new approximate and non-approximate coupling rules we introduce
and which are critical for the examples that we consider.

Contributions. In summary, we make the following contributions:

e The first higher-order approximate relational separation logic, Approxis, for reasoning about
approximate equivalence of RandML programs, an expressive ML-like language with proba-
bilistic sampling, higher-order functions, and higher-order state,

e Alogical internalization of a limiting argument that allows us to show exact equivalence of
higher-order probabilistic programs through approximation,

e A class of new approximate and non-approximate coupling rules, including the many-to-one
and fragmented coupling rules,

e A logical relations model of an expressive type system for RandML with recursive types
and impredicative polymorphism, which allows us to show (exact) contextual equivalence of
probabilistic programs through a limiting argument,

o A collection of case studies: the PRP/PRF Switching Lemma [Bellare and Rogaway 2004; Hall
et al. 1998], IND$-CPA security of a PRF-based symmetric encryption scheme, and contextual
equivalence of a selection of rejection samplers, including a sampling scheme for drawing
a random sample from a B+ tree [Bayer and McCreight 1972]. Several of these are, to the
best of our knowledge, beyond the scope of previous techniques, in particular for expressive
languages such as RandML.

e Full mechanization of all results in the Coq proof assistant [Team 2024], building on top of
the Iris separation logic framework [Jung et al. 2018] and the Coquelicot [Boldo et al. 2015]
library for real analysis.

Outline. In §2 we give high-level intuition for how to reason using Approxis. Here we discuss
the PRP/PRF Switching Lemma, a classical result in cryptography, and show how to use the limiting
argument on a simple rejection sampler. In §3 we recall some definitions from probability theory
and define the semantics of RandML. In § present a collection of program logic rules and coupling
rules of Approxis before developing our logical relations model in §5. In §6 we showcase Approxis
on a range of case studies, and in §7 we explain how the semantic model of Approxis is constructed
on top of the Iris base logic. Finally, we discuss related work and conclude in §8 and §9, respectively.

2 Key Ideas

In this section, we give a high-level overview of Approxis and introduce how error credits can be
used to do approximate relational reasoning. The primary specification assertion in Approxis is
the refinement weakest precondition, written rwp e; < e, {®}, where e; and e, are two randomized
programs, and @ is a relation on the return values and final program states of e; and e,. Informally,
this relational connective says that if executing e; terminates with a value v, then e; terminates
with value v, and the postcondition @ (v, v;) holds.

Because Approxis is a separation logic, when presenting the rules of the logic, we use infer-
ence rule-style notation with premises P, ..., P, and conclusion Q to stand for the entailment
Py % ... % P, + Q in the logic.

For reasoning about non-randomized steps of e; and e;, Approxis has a variety of rules that are
relational generalizations of usual separation logic rules, as in prior relational Hoare logics [Benton
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2004; Frumin et al. 2021; Turon et al. 2013]. For randomized steps, the first tool Approxis provides
are the so-called coupling rules pioneered by pRHL [Barthe et al. 2009]. A simple, specialized form
of such a rule is
Vn < N.rwp n 5 n{d}
rwp rand N 5 rand N {®}

where rand N is a command in the language that samples a value uniformly from {0, ..., N}. This
rule says that if both programs are sampling from rand N, then we may reason as if they both
returned the same sample value n, instead of having to consider all (N + 1)? possible combinations
of values they could have returned. This rule is justified by using the notion of couplings from
probability theory, and relies on the fact that the two sets being sampled from have the same size.

What if we want to reason about the case where the two sets being sampled from are not the same
size? For example, suppose the left program executes rand N and the right executes rand (N + 1).
We cannot exactly reason as if both programs sample the same value: there is a chance that the
program on the right samples N + 1, which the program on the left can never do! However, the
right program only draws this “bad” value of N + 1 with probability 1/(N + 2). If N is very large,
this probability will be small, so we might hope to argue that we can approximately reason as if
the two samples returned the same value, recovering an analogue of Wp-COUPLE-EXACT.

This idea of approximate relational reasoning has been developed in apRHL [Barthe et al. 2012].
In apRHL, relational Hoare triples are annotated with an additional parameter, ¢, which bounds the
approximation error.! Then, the coupling rules allow for relating two sampling commands from
distributions that are only equal up to some error ¢’ by adding ¢ to the total error on the Hoare
triple. However, Aguirre et al. [2024] have previously shown that tracking an error bound as an
additional parameter of a Hoare judgement has a number of limitations related to modularity and
precision of bounds. Instead, they proposed to track errors through a separation logic assertion
called an error credit, written # (¢), which represents a “permission” to incur an approximation
error of up to ¢. They developed this idea in a unary logic called Eris for bounding the probabilities
of events of a randomized program. A key aspect of the flexibility of error credits arises from the
fact that they can be split and joined, in the sense that 7 (&1 + €2) - £ (1) * £ (&;) for 1,6, > 0.

Approxis uses this idea of error credits to track approximation error in couplings. A special case
of Approxis’s approximate coupling rule applied to the scenario described above would be:

WP-COUPLE-EXACT

!(ﬁ) Vn < N.rwp n 5 n{d}

rwp rand N S rand (N + 1) {®}

which says that if we spend # () credits we may reason as if the two samples returned the same
value. Informally, we think of the error credits as being spent to “rule out” the case where the
program on the right returns N + 1.

In Approxis a derivation of the form £ (¢) + rwp e; < e, {®} implies that at most ¢ total error is
incurred in deriving the refinement weakest precondition. The soundness theorem for the logic
then says that to prove that the distributions corresponding to two programs are within ¢ distance
of one another (in a sense to be made precise later), it suffices to prove the refinement weakest
preconditions in both directions, each with error up to .

At a high level, tracking approximate coupling error using credits seems like a relatively simple
adaptation of Eris [Aguirre et al. 2024] to the relational setting. However, as we shall see later,
doing so in a sound manner involves addressing several new technical challenges that have no
analogue in the unary case. But first we shall look at an example of how the features of Approxis
can be used to reason about cryptographic security.

1apRHL has a second annotation for bounding another form of probabilistic approximation which we do not consider.
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2.1 Motivating Example: PRP/PRF Switching Lemma

To illustrate the different ideas coming together in Approxis, we explore a classic approximate
equivalence result from cryptography: the PRP/PRF Switching Lemma [Bellare and Rogaway 2004;
Hall et al. 1998]. A key part of this lemma involves showing that random permutations (RPs) are
hard to distinguish from random functions (RFs) by a client (the “adversary”) that can only make a
bounded number of queries to such functions. For finite sets X and Y, a random function f : X — Y
can be sampled by selecting, for each x € X, an independent, uniform sample from Y, to use as
the value for f(x). Sometimes it is desirable for f to be invertible (for modeling encryption and
decryption of a block cipher). We call such an f a random permutation. The difference between
a RP and a RF is then that a RF may have collisions, i.e., values x; # x; such that f(x;) = f(x2),
while a RP never produces collisions.

Consider the following task for an “adversary” A. They are given a function f which may be
either a RP or a RF, and their goal is to determine which one they are interacting with by querying
f up to Q times and observing the results, i.e., they are not allowed to, say, inspect the code of f.
Concretely, A should return true if it interacts with a RP and false for a RF.

How can A distinguish the two? If A finds a collision, then it knows that f cannot be a RP.
However, if the domain of f is very large compared to Q, then A cannot simply search the entire
domain for a collision, and its chances of finding a collision are low. Thus, the adversary will have a

low chance of correctly distinguishing the two scenarios. The switching lemma makes this formal
0(Q-1)

by showing that the probability that A returns true for either interaction differs by at most 21domf]

LEmMa 2.1 (PRP/PRF SWITCHING LEMMA). Let A be an adversary that asks at most Q queries and

let N = |dom RF| = |dom RP|. Then
|[Pr[ A(RP) = true] — Pr[A(RF) = true]| < % )

The Switching Lemma gained notoriety because several published proofs of the lemma were
found to contain mistakes [Bellare and Rogaway 2004]. This observation was among the motivations
for the development of a rigorous framework for cryptographic proofs such as the ones based on
“games” [Bellare and Rogaway 2004; Shoup 2004] and the subsequent development of mechanized
tools for such proofs [Barthe et al. 2014, 2009; Blanchet 2005].

To simplify the exposition, we first prove in Approxis an instantiation of the lemma with a
concrete weak adversary Aw, which picks the input for its Q queries x, ..., xo—1 uniformly at
random, without adapting to the response of the queries, and returns the list of outputs:

let Ayw N o f =
let xys = ref List.empty in
fori=0to(Q—-1)do
letx = rand (N — 1) in

lety = fxin
xys < (x,y) = Ixys
I'xys

LEmMMA 2.2 (WEAK PRP/PRF SwITCHING LEMMA). Let Aw (N, Q, ) be the weak adversary defined
above, and let N = |dom RF| = |dom RP|. Then, for any list of results Xy

L Q-1

[Pr[Aw (N, Q,RP) = xy] = Pr[Aw (N, Q. RF) = xy| >N

We will prove the full Switching Lemma for an arbitrary Q-query adversary later in §6.1.
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letirf N = letirp N =
let m = Map.init () in let m = Map.init () in
let |_unused = ref (List.seq 0 N) in
Ax. if Map.get m x = None then A x. if Map.get (! m) x = None then
lety =rand (N — 1) in let len = List.length (!]_unused) in
Map.set (!m) x y; letk =rand (len — 1) in
let y = List.nth (! [_unused) k in
Map.set (Im) xy;
|_unused « remove_nth (!|_unused) y;
Map.get m x Map.get m x

Fig. 1. Example implementation of idealized RF and RP, parameterized by N = |[dom irf| = |[dom irp|.

Random Functions and Permutations in RandML. First we need to model random functions
and permutations as programs in RandML. An example implementation of an idealized random
function with domain X = {0, ..., N —1} is given by irf in Figure 1. Upon initialization, irf N creates
a reference to an initially empty (finite) map m and returns a function rf. On every call to rf(x), if
rf has never been evaluated before on x, a new point y € X is sampled at random and stored into
m. Conversely, if x has been queried before, rf(x) looks up its value in m.

The idealized random permutation irp likewise initializes its internal state and returns a closure rp.
However, to sample a new element, rp randomly picks (the index k of) an element y of the list
|_unused of values in X that do not yet occur in the codomain of rp, removes y from |_unused, and
updates its internal map. Initially, all values in X are unused, but as rp is evaluated on new points,
|_unused shrinks. Since each element of X occurs only once in |_unused and gets removed the first
time it is picked, rp is guaranteed to remain collision-free.

The Mathematical Intuition. We first give an informal sketch of why the result holds—the
formal argument in Approxis will closely mirror this style of reasoning. We want to show that
with error probability at most ¢, Aw (N, Q,irp N) and Aw (N, Q, irf N) compute the same list of
results xys, where ¢ is the bound from Lemma 2.2. After initializing the weak adversary, both lists
are empty. We claim that the lists remain equal with high probability through each iteration of
the for loop. W.Lo.g, we can assume both random samplings of x return the same value. If x has
been sampled before, then no new information is gained from the call to f, and the results are
equal with the same probability as before. If x is fresh, then irf will sample a new response y out
of {0,..., N — 1}, while irp picks an element from |_unused. On the i-th loop iteration, |_unused
contains at least N — i elements, and hence the probability of irf sampling an element that does
not occur in |_unused and hence causes an observable collision is i/N. If irf remains collision free,
the probability that both programs compute the same result xys does not change. We can hence
establish an upper bound on the probability that Ay (N, Q, irp N) and Aw (N, Q, irf N) produce
different results by summing the probabilities that each loop iteration observes a collision. Since
Z?:El i/N = % Lemma 2.2 holds.

The Proof in Approxis. We derive Lemma 2.2 by proving the following pair of refinements.
LEMMA 2.3. Let Q,N €N, and let eg = % Then
?(eg) + rwp Aw (N, q,irp N) s Aw (N, Q,irf N) {x,y.x =y}, and (1)
#(eg) F rwp Aw (N, Q,irf N) 5 Aw (N, Q,irp N) {x,y.x =y} . ()
We sketch the proof of (1); the other direction is analogous. We prove (1) by reasoning backwards

from the conclusion. As a first step, we symbolically evaluate Ay (N, g, irp N). Evaluation order
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forces irp N to evaluate first, which allocates a map m and the list |_unused, and returns a function
rp. Afterwards, Ay allocates a list of results xys. Similarly, evaluating Ay (N, g, irf N) allocates
m’, substitutes rf for f, and then allocates xys’. Note that we will often prove refinements of the
style rwp e; < ez {®} where both e; and e; manipulate a variable x. We frequently write x and x’
for the left-hand side (e;) and right-hand side (e;) version of x. Both xys and xys’ point to the empty
list at this stage, and the maps vm and vm’ are empty. We use the traditional “points-to” connective
p — o from separation logic to say that in the left program, p points to v, and write p 5 v for the
analogous fact about the right program state. We are thus left to prove the following refinement

£ (eg) * xys > [] = xys’ 5 []

. I 4 =
wis rp0 [0, N] *isrf 0 Frwp (loopy, Q 5 'xys) 3 (loop,r Q ; !'xys’) {x,y.x =y},

where loopy Q stands for the for loop with bound Q, and rp and rf are the functions returned by
initializing irp and irf respectively. The proposition is_rp m [ means that m currently points to the
map m and |_unused points to the list [, and is_rf m likewise means that m” tracks the map m.

We can generalize the goal slightly, and instead show the refinement below. The proof goes by
induction on the number i of remaining loop iterations (initially Q):

£ (&) * (3m,Lis_rpm 1« len; < |l| % is_rf m) % ®pes — rwp (loopy, i) < (loop,s i) {Pres}  (3)

0-1  k _ i(20-i-1)
k=0-i N — 2N

A

where ¢; = )

, len; 2 N = (Q—1i), D £ (IXy. xys = Xy * xys’ g XY) .
This maintains the key loop invariant that both rp and rf currently have the same mapping m. The
base case i = 0 holds, since the loop terminates immediately and the postcondition ®,,s holds by
assumption. To show the inductive case i = j + 1, we have to (1) prove that unrolling the loop once
preserves @, and then (2) apply the induction hypothesis to the remaining j iterations.

By assumption, we start with £ (¢;41) error credits, which represent the “budget” we can spend
on avoiding collisions caused by calls to rf that would result in different results. From an easy
calculation if follows that ¢/, = % +¢;. Our first step is to split this budget resource into two parts
s (%) * £ (ej). We will use # (%) to “pay” for avoiding collisions in the current loop iteration
and £ (¢;) to account for the remaining j iterations.

We now focus on the first loop unrolling. The first instruction in the loop body samples an input
x from {0,..., N — 1} that will be used as the next query. Since both programs sample from the
same uniform distribution rand (N — 1), we can use the exact coupling rule Wp-COUPLE-EXACT seen
earlier to proceed under the assumption that both programs sample the same value n. Next, the
programs call rp n and rf n respectively. If n has been seen before, both functions return the same
value. If n is fresh on the other hand, rf samples y from {0, ..., N — 1} whereas rp picks an element
from the list of unused values . By assumption, the length of [ is (at least) len;. The probability that
rf produce a collision, i.e., sample an element that is not in [, is N_T[en’ = % Since this matches
the error credits we have, we can apply the following approximate coupling rule of Approxis, which
generalizes the simpler version seen earlier:

WP-COUPLE-RAND-RAND-ERR-LE
g:Nog — Ny injection £ (4=K) K<M  Vk<K.rwpkxg(k) {®}
rwp rand K 5 rand M {®}

We instantiate g with (A n. List.nth [ n), instantiate M with N — 1, and instantiate K with len; — 1 =
N — (Q — i) — 1. By giving up ownership of / (%) for the second premise, we can thus continue

the proof under the assumption that the rand (len —1) and rand (N — 1) resolve to a pair of values k
and g(k) such that g(k), the newly sampled element in rf, is exactly the k-th element of /. Since we
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assumed D, as a hypothesis in Equation (3), and since both programs add the same value (n, g(k))
to xys and xys’ respectively, ®,.; holds again after the first loop unfolding. We can thus conclude
our proof by appealing to the induction hypothesis, paying for the error credit premise with # (¢;).

2.2 Error Amplification for Exact Equivalences

As alluded to in the introduction, error credits not only allow us to prove approximate equivalences,
they also allow us to prove exact equivalences of probabilistic programs. To motivate this, consider
the following rejection sampler, where M < N.

rec sampler _ = letx =rand N inif x < M then x else sampler ()
By continuously rejecting samples which do not correspond to values in the target set {0, ..., M}
and retrying, sampler eventually produces values that are sampled uniformly from {0, ..., M}. We

can state this formally by proving that sampler is equivalent to the expression rand M, i.e., by
showing the following two refinements:

rwp sampler () < rand M {0y, v;.01 = 02}, and
rwp rand M < sampler () {v1,02.01 = v2}.

Perhaps surprisingly, although this kind of equivalence is a standard and important result in
randomized algorithms, no existing relational program logic can establish this with couplings, to
the best of our knowledge, even with approximate couplings.

To see what goes wrong, let us focus on trying to prove the second refinement, and consider
trying to apply a coupling rule to the step where the left program executes rand M and the right
executes rand N. If the right program’s sample is < M, then we want that value to be coupled and
equal to the value sampled on the left. On the other hand, if the right sample is > M, then it will be
rejected, so we do not want to couple the result of rand M on the left to this value at all. We only
want to couple the left sample to be equal to the eventual later value that ends up being accepted!
Trying to use an approximate coupling to force both samples to be equal will not work either, as
that would incur a large error, and we are trying to show an exact coupling.

Approxis overcomes this limitation by introducing a new form of couplings called fragmented
couplings, which can be combined with a technique called error amplification introduced by Eris.
To start, rather than proving the above refinements with no error credits, we instead merely have
to prove them starting with an arbitrarily small positive error credit. That is, we must show:

#(¢) F rwp rand M < sampler () {01,02.01 = 03}

for all ¢ > 0. The exact refinement then follows by a limiting argument, as ¢ — 0, c.f., Corollary 4.2.
But what can we do with an arbitrarily small error credit? After all, it may be too small to
apply the intended approximate coupling rule. The solution is that when reasoning about a rand N
command, the logic allows us to amplify and grow the ¢ credits along branches of the random
outcome, as long as the expected amount of error credit across all branches is still ¢. In particular,
the following expectation-preserving fragmented coupling will allow us to apply this principle.

M<N Z(¢)

Vm < M.rwp m 5 m{®} Vm > M. £ (22 - ) — rwp rand M 5 m{®}

rwp rand M : < rand N {®}

Here we present a simplified variant of a more general rule, and the ed out parts may be
ignored for now. We discuss the general rules in §4.1. The rule requires ¢ credits and lets us relate
two sampling operations, rand M and rand N. It asks us to consider two cases: (1) the outcome
of the two samplings agree and are within range, and (2) the right sampling is resolved to some
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m > M but the left does not sample anything; we also get to assume ownership of ny;/[ - £ error

credits. We call this a “fragmented” coupling because it allows for one of the coupled programs to
not necessarily execute its random sample, depending on what the other program drew.
Applying this rule to the rejection sampler, when the first case occurs, the sample will be
accepted and the proof will conclude. In the second case, the rejection sampler will loop. Now, for
any starting ¢, if we repeatedly increase our error credits by a factor of ny]tf by each loop iteration,
then eventually we will have a large enough error credit to apply an approximate coupling rule and
“force” the right-hand sample to be in range. By doing induction on the number of amplifications

needed, we can therefore conclude the proof.

3 Preliminaries

In this section, we recall some basic definitions in probability theory and a notion of approximate
couplings [Sato 2016]. We then introduce the syntax and semantics of RandML, the language of our
programs, and our notion of contextual equivalence.

3.1 Probability Theory
To account for possibly non-terminating behavior of programs, we define our operational semantics
using probability sub-distributions.

DEFINITION 3.1 (D1STRIBUTION). A discrete subdistribution (henceforth simply distribution) on a
countable set A is a function i : A — [0, 1] such that Y, ,c 4 pi(a) < 1. The collection of distributions
on A is denoted by D(A).

Given a predicate P, the Iverson bracket [P] evaluates to 1 if P is true and to 0 otherwise.

LEMMA 3.2 (DISCRETE DISTRIBUTION MONAD). We can equip D with a monadic structure, with
operations

ret: A — D(A) bind: (A — D(B)) — D(A) — D(B)
ret(a)(a’) = [a=d] bind(f, p)(b) = Zﬂ(a) - f(a)(b)
acA

We use the notation u >= f for bind(f, ).

DEFINITION 3.3 (EXPECTED VALUE). Let 1 € D(A) be a distribution and X : A — [0, 1] a random

A

variable. The expected value of X with respect to 1 is defined as B, [ X] = Y c4 pi(a) - X(a).

Many probabilistic relational program logics use probabilistic couplings [Lindvall 2002; Thorisson
2000; Villani 2008], a mathematical tool for reasoning about pairs of probabilistic processes. To
reason about approximate equivalence of probabilistic programs, we use a notion of approximate
probabilistic coupling [Sato 2016].

DEFINITION 3.4 (APPROXIMATE COUPLING). Let piy € D(A) and p; € D(B). Given some approx-
imation error ¢ € [0,1] and a relation R C A X B, we say that there exists an (¢, R)-coupling of
p1 and iy if for all [0, 1]-valued random variables X : A — [0,1] and Y : B — [0, 1], such that
(a,b) € R implies X (a) < Y(b), the expected value of X exceeds the expected value of Y by at most ¢,
ie, B, [X] <Ey[Y]+e Wewrite py <S¢ iz : R if an (&, R)-coupling exists between iy and jip.

Proving existence of (¢, R)-couplings for particular choices of R is useful to prove relations
between distributions. When R is the equality relation, couplings can be used to prove bounds on
the total variation distance, which has applications when reasoning about convergence properties,
as well as in security definitions.
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LEMMA 3.5. Let piy, g2 € D(A) such that there exists an e-coupling for the equality relation, i.e.,
M1 Se Ho = (=), then for all a € A we have pi1(a) < py(a) + €. If; in addition, yip S, i : (=), then the
total variation distance between y1; and i, is at most ¢, i.e., supgc 4 |11 (S) — p2(S)| < e.

COROLLARY 3.6. Let iy, iz € D(A). Then py <o pz = (=) implies that for alla € A, py(a) < py(a).
By completeness of the real numbers, we obtain the following limiting theorem.
LEMMA 3.7. Let py, pip € D(A) and e € [0,1]. If gy S p2 : R forall ¢’ > € then g <e o = R.

To construct couplings between program executions, we can compose couplings of single steps
of executions. This is possible because couplings compose along the bind of the distribution monad.
Let iy € D(A), 1o € D(B), f:A—> D(A'),g:B— D(B'),RCAXB,andR' C A’ X B'.

LEMMA 3.8. If iy <S¢ p2 : RandV(a,b) € R, f(a) Se g(b) : R, then (g 3= f) Sever (p2>=g) : R'.

We can strengthen this lemma by letting the grading ¢’ for the continuation vary depending on
the value that a takes, and consider its expected value w.r.t. y1; when composing the couplings:

LEMMA 39. Let & : A — [0,1]. If iy < p2 - R and V(a,b) € R, f(a) Sga) 9(b) = R, then
(1 7= f) Serer (g2 >=g) : R where ' =E,, [E].

Symmetrically, we can vary the error on B and consider its expected value w.r.t. yi,:

LEmMMA 3.10. Let & : B — [0,1]. If 1y <S¢ p2 - Rand V(a,b) € R, f(a) <Sgw) g(b) : R, then
(p1 3= f) Sever (H23=g) : R wheree’ =E,,[E].

To the best of our knowledge, the expectation-preserving composition lemmas 3.9 and 3.10 are
novel, at least in the context of program logics. We apply these results for rules such as the
expectation-preserving fragmented coupling rule presented in §2.2, where we can amplify the
error credit for certain branches as long as the expected amount of error credit across all branches
remains the same.

3.2 The RandML Language and Operational Semantics

The RandML language that we consider is an ML-like language with probabilistic uniform sampling,
higher-order functions, higher-order state, recursive types, and impredicative type polymorphism.
The syntax is defined by the grammar below.

o,weVal:=ze€eZ|beB|()|t€Loc|recfx=e|(v,w)]| inlo]| inro
ecExpri=uv|x|recfx=e|eje;|e1+ex|e1—e| ... |ifethenejelseey | (e,e2) | fste] ...
ref e; | le|e; < es|ej[ex] | rand e | packe | unpackeasxine]| ...
KeEctx:= — |eK|Kov|ref K|!'K|ee—K|K<«ov|randK| ...
o € State = Loc I Val p € Cfg = Expr X State
7 € Type == a | unit | bool | nat |int |t Xt |r+7|r—r|Va.r|Ja.t|pa. t|refr
The term language is mostly standard. We use ref e; to allocate a new reference containing the
value returned by ey, ! e to dereference the location e evaluates to, and e; « e, to evaluate e; and
assign the result to the location that e; evaluates to. We often refer to a recursive function value
rec f x = e by its name f. The operation rand N denotes uniform random sampling over {0,..., N}.
Finally, we have several terms related to typing operations e.g., pack e and unpack ey as x in e,
are used for introducing and eliminating existential types. We write © | I' + e: 7 to denote that e
has type 7 in the typing context © | I', which consists of a context of type variables © and a context

of program variables I'. The inference rules for the typing judgments are standard (see, e.g., Frumin
et al. [2021] or the Coq formalization).
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Operational Semantics. To define program execution, we define step(p) € D(Cfg), the distribu-
tion induced by the single step reduction of configuration p € Cfg. The semantics is mostly standard.
We first define head reductions and then lift it to reduction in an evaluation context K. All non-
probabilistic constructs reduce deterministically as usual, e.g., step((A x. €) v, 0) = ret(e[v/x], o).

. pure Lo R .
We write e ~» ¢’ if the evaluation is deterministic and holds independently of the state, e.g.,

(Ax.e)v P e[v/x] and fst(vy, v5) B 1. The probabilistic choice rand N reduces uniformly at
random, i.e.,

L f €{0,1,...,N},
step(rand N, 0)(n,0) 2 ¢ N+ orn .{ )
0 otherwise.

With the single step reduction step(—, —) defined, we next define a step-stratified execution
probability exec, : Cfg — D (Val) by induction on n:

Il>

1 ifeeValne=o,
execo(e, 0)(v) { peevane=o

0 otherwise.

>

execpq1(e, o) (v)

1 ifeecValne =0,
2 (e',0") eExprxstate Step (e, @) (e, 0”) - execy (e, 0”)(v)  otherwise.

That is, exec, (e, o) (v) is the probability of stepping from the configuration (e, o) to a value v in less
than n steps. The probability that a execution, starting from configuration p, reaches a value v is
taken as the limit of its stratified approximations, which exists by monotonicity and boundedness:

exec(p)(v) = lim,_exec,(p)(v)

The termination probability of an execution from configuration p is exec(p) = Zyeyurexec(p)(v).

The definition of program execution as a distribution leads to a natural notion of e-approximation.
We say that e; e-approximates e, if exec(eq, 0)(v) < exec(ey, 0)(v) + ¢ for all v, 0. By Lemma 3.5, we
can show such approximations by establishing an approximate coupling of the executions of ¢;
and e;. We say e; and e, are e-equivalent if both e; e-approximates e; and e, e-approximates e;. In
that case, we have |exec(e, 0)(v) — exec(es, 0)(v)| < e for all v, 0.

Example 3.11. Consider the program below
ezletx=randNinx <M
and assume M < N. Evaluation order dictates that the random sampling is resolved first. Then we
have, for any o: State and any 0 < n < N:
1
N+1

The probability of stepping to any other configuration is 0. Fixing a particular n, the next step is
deterministic, and therefore we have

step(e,o)(letx =ninx < M,0) =

step(letx =ninx < M, 0) =ret(n < M, o)
The final step is also deterministic and just evaluates the inequality n < M to either true or false.
Collecting all of the probabilities of the succesful comparisons together, we can show
M+1
N+1

execs(e, o) (true) =

and trivially at the limit

M+1
,o)(t =—
exec(e, o) (true) N1
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Note that, since the execution of e takes exactly 3 steps to reach to a value, executing e for fewer
steps returns the zero distribution on values:

execy(e, o) = execy(e, o) = execs(e, o) = 10.0

Presampling Tapes. Standard probabilistic coupling logics require aligning or “synchronizing”
sampling statements of the two programs under consideration. For example, both programs have to
be executing the sample statements we want to couple for their next step when applying a coupling
rule. However, it is not always possible to synchronize sampling statements in this way, especially
for higher-order programs. To address this issue, Gregersen et al. [2024] introduce asynchronous
coupling. As we will see, the same mechanisms are useful for approximate relational reasoning.

Asynchronous couplings are introduced through dynamically-allocated presampling tapes that
are added to the language. Intuitively, presampling tapes will allow us in the logic to presample (and
in turn couple) the outcome of future sampling statements. Formally, presampling tapes appear as
two new constructs added to the programming language.

veVal:= ... |1 € Label o € State = (Locﬁ'l\Val)X(Labelﬁrl\ Tape)
e € Expr:= ... | tape e| rande; e; t € Tape = {(N,n) | N e NA# € NLy}
KeEctxu= ... | tape K| rande K| randKov 7€ Type:= ... | tape

The tape N operation allocates a new fresh tape with label : and upper bound N, representing
future outcomes of rand N 1 operations. The rand primitive can now (optionally) be annotated
with the tape label . If the corresponding tape is empty, rand N i reduces to any n < N with equal
probability, just as if it had not been labeled. But if the tape is not empty, then rand N 1 reduces
deterministically by taking off the first element of the tape and returning it.

11>

= fresh N >
step(tape N, o) {ret([,a[, — (N,e)]) 1=fresh(o), N>0,

ret(, o[t (0,€)]) t=fresh(o), N<O0.

1>

1
step(rand N, o[t = (N, €)])(n, o[t +— (N, €)]) {N“ forn € {0.1,.... N},

0 otherwise.
step(rand N, o[t — (N,n = w)]) = ret(n, o[t — (N, w)])

Note that no primitives in the language add values to the tapes. Instead, values are added to
tapes as part of presampling steps that will be ghost operations appearing only in the logic. In fact,
labeled and unlabeled sampling operations are contextually equivalent [Gregersen et al. 2024]. This
result follows from the fact that the ghost operations for adding values to tapes are erasable in the
following sense:

DEFINITION 3.12 (ERASABLE). Let u € D(State) and o € State.
erasable(y, 0) £ Ve, n. exec,(e,0) = (u>= A0’ exec,(e,0”))

Erasability of y w.r.t. o intuitively captures that distribution i does not influence the probabilistic
outcome of any program execution from state o. For example, erasable(ret(o), o) trivially holds by
the left identity law of the distribution monad. More interestingly, in RandML, erasable(sstep, (o), o)
holds where sstep, (o) is the distribution of the ghost operation that samples a fresh value uniformly
onto the end of the presampling tape with label 1 in state o. This is the essence of the soundness of
asynchronous couplings and ultimately what allows us to validate rules such as WP-TAPE-TAPE-
APPEND and WP-MANY-TO-ONE, which we explain later in §4.1.
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3.3 Contextual Refinement and Equivalence

A program context C is an expression with a hole and we write C[e] for the term resulting from
replacing the hole in C by e. Contexts are also typed; we write (C: (© |+ 1) = (0" |T" + 7))
whenever @ | I + C[e]: 7’ for every well-typed © | T + e: 7.

The notion of contextual refinement that we use is standard and uses the termination probability
exec| as observation predicate. We say expression e; contextually refines expression e, if for all
well-typed program contexts C resulting in a closed program then the termination probability of
C|e] is bounded by the termination probability of C[e,]:

O|Tre Sexe2: 7=V, (C:(O|THT) = (0]0F 7)), 0. execy(Clei], 0) < execy(Clez], 0)

Note that contextual refinement is a precongruence, and that the statement itself is in the meta-logic
(e.g., Coq) and makes no mention of Approxis or Iris. We define contextual equivalence © | T’ +
e1 ~¢x €z : T as refinement in both directions, i.e, © | T Fe; Scix e2:7and © | T F ey Scix €1 : 7.

4 An Approximate Relational Logic

In this section, we introduce the relational Approxis logic and its soundness theorem, with an
emphasis on the novel relational rules that interact with error credits or with presampling tapes.
We then demonstrate the logic on a simple rejection sampler.

Approxis is built on top of the Iris separation logic framework [Jung et al. 2018] and hence
inherits many of Iris’s logical connectives. A selection of Approxis propositions is shown below.

P,Q € iProp :=True | False |[PAQ |PVQ|P=Q|Vx.P|3x.P|P+Q|P — Q|

toou|tso|i— (NA) | 1> (N,i)| £(e) |rwp e S e {vg,00. P} ...

Most of the propositions are standard, such as separating conjunction P % Q and separating im-
plication P — Q (the magic wand). As we saw earlier, the heap points-to assertion that denotes
ownership of location £ comes in two forms: £ +— o for the left-hand side, and ¢ +— v for the
right-hand side (the “specification” side). Similarly, since presampling tapes are part of the state,
we also have tape points-to assertions for both sides: 1 < (N, 1) and 1 <> (N, 1), respectively.

Inspired by Eris [Aguirre et al. 2024], we interpret errors as resources in our logic using the # (¢)
connective for € € [0, 1]. Intuitively, # (¢) denotes ownership of ¢ error credits that can be spent to do
e-approximate reasoning. Error credits can be split and combined, i.e., £ (e + &) 4F £ (e1) * £ (&2).
Another important fact is that ownership of 1 error credit immediately leads to a contradiction, i.e.,
# (1) + False. Intuitively, this is sound because there always exists a trivial (1, ¢)-coupling for any
two distributions and for any ¢.

To show that e; e-approximates e, we prove an entailment of the form £ (¢) + rwp e <
ez {v,v".0 = v’ }. The following soundness theorem says we may then conclude the existence of an
e-approximate coupling under the equality relation.

THEOREM 4.1 (ADEQUACY). Let ¢ C ValxVal be a relation and e € [0,1]. If £ (¢) F rwp e; S ex {p}
then exec(ey, 01) <. exec(eq, 02) : ¢ for all oy and 0.

The result is stated here to provide the reader with a semantic understanding of the rules we
will present in this section. In §7 we will explain the underlying model in more detail and discuss
the proof of this result.

As a corollary of the above, we get the following error-limiting result by appealing to Lemma 3.7.

COROLLARY 4.2 (ERROR-LIMITING ADEQUACY). Let ¢ C Val xVal be a relation and ¢ € [0,1]. If
(") Frwp es S e {@} foralle’ > ¢ then exec(eq, 01) S, exec(ez, 02) : ¢ for all oy and o».
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The corollary is similar to Theorem 4.1 in that we obtain an approximate (¢, ¢)-coupling of the
execution of the two programs. However, instead of establishing the weakest precondition given ¢
credits, one has to prove the weakest precondition given ¢’ credits for an arbitrary ¢ > ¢. Note that
by picking ¢ to be 0 this also allows us to establish exact equivalences as we demonstrate in §4.2.

4.1 Rules of Approxis

In this section, we present a selection of the rules of Approxis. The rules are categorized into
four classes. We start with program-logic rules that are the relatively standard laws that most
relational separation logics enjoy. We then discuss of (approximate and non-approximate) coupling
rules. Afterwards, we consider rules that use presampling tapes to reason about more complicated
couplings. We conclude with a discussion of the error amplification proof technique which Approxis
supports for reasoning about recursive programs.

Program-Logic Rules. We note that most rules (except where explicitly mentioned, in particular
wp-REC) have both left- and right-sided variants. For brevity, we present only left-sided variants,
right-sided variants are symmetric and use specification-side connectives (s and —5).

Although Approxis is a separation logic for reasoning about probabilistic programs, the rules
of the non-probabilistic fragment are identical to the structural and computational rules found
in most logics for non-probabilistic programs. A selection of rules for the deterministic fragment
is found in Figure 2. For example, Approxis satisfies the relational bind rule (wp-BIND), rules for
symbolically taking deterministic “pure” steps—steps that do not depend on state (wp-PURE-L), and
rules for interacting with the heap (wp-LoaD-L). The rule wp-REc is the standard recursive function
rule found in general program logics. (We do not have a “standard” recursive function rule for the
right-hand side program because of how our refinement weakest-precondition assertion is defined.
See §7 for more details.)

rwp e; S ex {¥} Yoy, 0z. ¥(01,02) — rwp K[o1] < K[v2] {®}
rwp Kle1] 3 K'[ez] {®}

‘WP-BIND

pure

e; w e} rwp e < e; {®} {0 L+ v —x rwpo 3 e{d}
WP-PURE-L WP-LOAD-L
rwp e; S e {®} rwp !¢ 3 e{d}

(Yw.rwp (rec fx=e) w s e {®}) + rwp er[o/x][(rec fx =e)/f] S ¢ {D}
Frwp (rec fx=¢e)v S e {®}

WP-REC

Fig. 2. A selection of the deterministic program-logic rules of Approxis.

The program-logic rules for the probabilistic fragment of RandML and presampling tapes are
shown in Figure 3. These rules reflect the operational semantics of RandML. For situations where
we only want to progress the left program’s random sampling without coupling, the rule wp-RAND-L
can be used. The rule wpr-aLLOC-TAPE-L allocates a fresh tape and returns its label. The rules for
sampling from a tape : depend on the contents of the tape: if the tape is not empty, we pop and
return the first value (Wp-RAND-TAPE-L). If the tape is empty, we sample an arbitrary integer from 0
to N (WP-RAND-TAPE-EMPTY-L), just as for rand N without a tape annotation.

We emphasize that all of the rules shown so far are also found in the relational logic of
Clutch [Gregersen et al. 2024], except that the right-hand-side rules in Clutch require that the
left-hand-side program is not a value. This side-condition is a limitation of the model of Clutch
that we eliminate in Approxis. (This seemingly small improvement required significant changes to
the model, which we detail in §7.)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 41. Publication date: January 2025.



Approximate Relational Reasoning for Higher-Order Probabilistic Programs 41:15

Vn < N.rwp n 5 e {d} Vi.t— (N,e) — rwp 1 5 e {D}
WP-RAND-L WP-ALLOC-TAPE-L
rwp rand N < e {®} rwp tape N 3 e {®}
1< (N,n-n) 1< (N,i) — rwp n 3 e{d}

WP-RAND-TAPE-L
rwp rand N1 5 e {®}

1= (N,¢) Vn < N.i— (N,e) = rwp n 5 e {d}
rwp rand N1 < e {®}

‘WP-RAND-TAPE-EMPTY-L

Fig. 3. A selection of program-logic rules of Approxis for the probabilistic operations.

Approximate Coupling Rules. The rules shown so far allow one to symbolically progress
either the left- or right-hand side program of the weakest precondition assertion, independently of
each other. However to prove interesting relational properties, we need to progress the programs
in a related manner using coupling rules, which we saw special cases of in §2.

First, we have WP-COUPLE-RAND-RAND-ERR-LE which relates sampling rand N with rand M
where N < M. Here f : Noy — Ny is an injective function (N<y denotes the natural numbers
< N) and by spending 1\}/\[411;] error credits, we may continue reasoning as if the return values are
“synchronized” and related by f. This is also the rule we used for proving the switching lemma
presented in §2. Note that in the special case where N = M, this generalizes the traditional coupling
rule found in exact coupling logics (e.g. Clutch [Gregersen et al. 2024]) where no error is incurred;
the wp-coUPLE-EXACT rule in §2 is an example of this special case.

The WP-COUPLE-RAND-RAND-ERR-GE rule works almost identically, except that the inequality of
the bound is reversed, i.e., N > M. (We mention that all the other rules we present in this paper have
symmetric versions, just as for WP-COUPLE-RAND-RAND-ERR-LE and WP-COUPLE-RAND-RAND-ERR-GE.
For the sake of brevity, we shall only present one direction of each pair of rules subsequently.)

WP-COUPLE-RAND-RAND-ERR-LE

f:Noy — Ny injection £ (M=) N<M Vn<N.rwpns f(n){®}

rwp rand N < rand M {®}

WP-COUPLE-RAND-RAND-ERR-GE

f :Neyr — Noy injection £ (524 N>M  V¥n<M.rwp f(n) 3n{d}

rwp rand N < rand M {®}

As in Clutch, Approxis also supports asynchronous coupling. For example, the wp-COUPLE-TAPE-
TAPE-ERR-GE rule below is a variant of WP-COUPLE-RAND-RAND-ERR-GE where, instead of two
program samplings, we couple two tape samplings.

WP-COUPLE-TAPE-TAPE-ERR-GE
f : Nopy — Noy injection N>M 1 (N, n) ! g (M, m)

FF) VRS Moo (NG f(n) x> (M- n) — rwp e 5 & {®)

rwp e; < ez {®}

Many-to-One and Fragmented Coupling Rules. The coupling rules shown so far allow one to
couple one sampling with another. However, in certain cases, we may need to couple one sampling
to zero or multiple possibly-non-adjacent samplings. Consider the following two programs as an
example: e; = 2-rand 1+ rand 1 and e, = rand 3. These programs are equivalent: e; samples two
bits and returns the result interpreted in base 2, while e, samples directly from the same distribution.
None of the coupling rules shown so far would allow us to relate these two programs.
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Presampling tapes turn out to be a succinct and uniform solution to this problem, as smoothly
enabled by the new and more flexible model of Approxis. By reasoning about values stored in tapes,
we can construct more intricate couplings that do not adhere to the one-to-one pattern exhibited
in our previous rules. This notion is captured by the following general rule:

‘WP-TAPE-TAPE-APPEND
7 (¢e) 1< (N, 1) ! g (M, m) unif (N + 1)? <, unif(M +1)9 : R
Y(o,w) ER. 1 (N,i#0) 1 <3 (M,m+w) — rwp e; S ez {}

rwp e; 3 e, {®}

Here unif (x)Y refers to the uniform distribution of lists in List(x, y), where List(x, y) denotes lists
of length y containing integers not larger than x. Assume we want to prove rwp e; < e, {®}, and
we are given £ (¢) error credits and tapes : and 1" of bounds N and M on the left and right side of the
refinement, respectively. Then the rule says it suffices to (1) choose two lengths p and g, and a relation
Rover List(N, p) and List(M, q), (2) prove an approximate coupling unif (N+1)? <, unif(M+1)9 : R,
and (3) show for all lists (v, w) € R, the refinement weakest-precondition assertion holds after v
and w are appended to some tapes ¢ and I/, respectively.

Intuitively, WP-TAPE-TAPE-APPEND is sound because appending lists sampled from the distribu-
tion unif (x)Y is an erasable action (see Definition 3.12), meaning that it does not influence the
probabilistic execution of any program. However, proving the asynchronous coupling iy <, p2 : R
for some arbitrary y, y, and R is generally not an easy task, so we provide various rules which are
special instances of WP-TAPE-TAPE-APPEND.

First, we introduce the wpP-MANY-TO-ONE rule, derived from WP-TAPE-TAPE-APPEND, that allows
us to couple one sampling onto a tape with multiple samplings onto another tape. This allows us to
handle the two programs e; and e, above that generate samples from {0, 1, 2, 3}.

WP-MANY-TO-ONE
(N+1)’ =M+1 1 — (N, 1) " > (M, m)
Vi length(l) = p * 1< (N,n+#1) /" <5 (M, m - decoder(N, 1)) — rwp e; < e; {®}

rwp e; < ez {®}

The meta-level function decoder takes as arguments an integer N and a list of integers [ whose
elements are smaller than or equal to N, and returns the integer represented by the list [ in base
N + 1. For example decoder(1, [1, 1, 0]) returns the value 6. Intuitively, given that (N +1)? = M +1,
WP-MANY-TO-ONE couples p samplings onto the tape | with a single sampling onto /, such that
they are related by the decoder function.

In addition to many-to-one couplings, Approxis also introduces a class of fragmented coupling
rules, which we briefly introduced in §2.2. Fragmented coupling is a novel kind of coupling rule
where the number of values inserted into the tapes are not uniform for all possible branches.
Fragmented coupling rule are derived from a stronger notion of Wp-TAPE-TAPE-APPEND, but the
underlying principle is the same, in that the actions of inserting lists to various tapes are erasable
and do not affect the probabilistic outcomes of program execution. The notion of fragmented
couplings is captured by the following rule WP-FRAGMENTED-R-EXP:

WP-FRAGMENTED-R-EXP
f :Nony — Ncy injection N<M 7 (¢e) 1 (N, n) " > (M, m)
if meimg(f)
Vm <M./ s (M,m-m) % | thent< (N,7i-f '(m)) —x rwp e; 3 ez {®}

else 1< (N,7i) * £(42 - )

rwp e; < e {®}
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Ignore for now the highlighted assertions, the rule is also sound without them. The rule states
that if we own tapes 1 and 1’ of type N and M where N < M, then for any injective function
f:Noy — Noyy, we add the value m to the / tape and—if it exists—the pre-image f~'(m) to the .
tape. At first glance, this rule may seem arbitrary, but this conditional adding of a sample to one
tape is crucial to reasoning about rejection samplers, as we saw in a simplified form in §2.2.

Fragmented couplings can be generalized to approximate reasoning and expectation-preserving
composition [Aguirre et al. 2024], now also considering the highlighted assertions. Namely, if we
own ¢ error credits we can distribute them uniformly across the branches that are not in the image
of f. That is, if the value is added to both tapes, no error is provided, and if a value is only added to
the tape on the right-hand side, we pass the error amplified by a factor of M_+11V

M

Error Amplification. Recall that the standard recursion rule wp-rEc only works for recursive
programs on the left-hand side of the refinement. To reason about recursive functions on the right-
hand side of the refinement in Approxis, one uses error amplification, which was first introduced in
the Eris logic [Aguirre et al. 2024]. Approxis supports the following induction principle for error
amplification.

0<e¢ 1<k Ve' (4(k-&) —P)x §(&)F P
f(e)r P

The rule states that to prove P given some positive error credits 7 (¢), it suffices to prove P given
some arbitrary amount of error credits # (¢’) and an inductive hypothesis for which we need for
pay £ (k - ¢') for some k > 1. Intuitively, ERR-aAMP is sound because given k > 1, one can amplify
any arbitrary positive error credit by k repeatedly until the error reaches 1, at which point we can
derive False by spending 1 error credit. This induction principle encapsulates the kind of repeated
amplification we alluded to at the end of §2.2, avoiding the need to manually track how many
rounds of amplification are needed.
We specialize the above rule to the following wp-ERR-aMP for reasoning about refinements:
WP-ERR-AMP
0<e¢ 1<k Vel (§(k-&) == rwpese {®}) « £(¢) Frwpe 5 e {D}

f(e) Frwpe e {®}

ERR-AMP

4.2 Revisiting Rejection Samplers

Now that we have seen the rules of Approxis, we return to the rejection sampler example from
§2.2 and describe its proof in more detail. Consider the two programs below, where M < N (for

now, it suffices to ignore the lines of code in ), which reproduce the example from before.
let direct _ = let reject _ =
rand M (rec sampler _ =

letx =rand N i, in

if x < M then x else sampler ()) ()

On the left, direct is a simple program that samples directly from rand M. On the right, reject
is a rejection sampler. We aim to prove that they compute the same distribution. To do so, we
include extra code (in ) to initialize and use presampling tapes. It is straightforward to use
Approxis to prove that the programs without tapes have the same execution distribution as their
tape-annotated counterparts (which we omit for brevity).
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By applying the error limiting adequacy result (Corollary 4.2), it is enough to assume we own an
arbitrary and positive amount ¢ of error credits, and prove the two following assertions:

e>0x* £(¢) Frwp direct () 3 reject () {o,0".0 =0}
e> 0= f(e) Frwp reject () 3 direct () {v,0".0=0"}.

We just show the first one, as the second one is mostly analogous (and in fact can be done
without error credits by using the wp-REc rule). We begin by applying symbolic execution rules
(wr-aLLoC-TAPE-1L) to allocate the tapes on both sides:

£>0x £(e) *1g > (M,€) * 1, <5 (N,e) - rwp rand M 13 < sampler () {v,0" .0 =0"}.

Although sampler is a recursive function, we cannot apply wp-REC as it appears on the right-hand
side. Instead, we leverage the error amplification proof technique and apply wp-ERR-AMP, with

amplification factor k = % Here @ represents the inductive hypothesis we obtain:

@« f(e) x1g > (M,e) x 1, 5 (N,e) - rwp rand M 15 < sampler () {v,0".0 =o'}
where ® £ (k- ¢') x 13— (M,€) * 1, <5 (N,€) — rwp rand M 15 < sampler () {v,0".0 =0"}

We now continue by applying Wp-FRAGMENTED-R-EXP, choosing f = Ax.x. This consumes our
error credit £ (¢”) and distributes it unevenly across the branches depending on the sampling result.
We then proceed with a case split. In our first case, both tapes presample the same v < M:

@ x 15— (M, [0]) * 1, <> (N, [0]) F rwp rand M 15 < sampler () {0,0".0 =0}

Then, by taking primitive steps we return the same v on both sides.
In our second case, we only push a value v > M into the right-hand side tape : and we additionally
have # (k - ¢’) error credits:

Ox f(k-&) *1g > (Me) 1, <5 (N, [v]) F rwp rand M 15 < sampler () {v,0".0 =0}

We can now take steps only on the right-hand side. The sampling instruction will read v from
the tape, and the conditional will evaluate to the else branch, which will leave us to prove:

Ox f(k-&') *1g— (Me€)x1, <5 (N,e) + rwp rand M 1y < sampler () {v,0".0 =o'}

Notice now we have amplified the error by a factor of exactly k, and hence we can directly apply
®, our hypothesis we obtained from wp-ERR-AMP to conclude the overall proof.

5 Logical Refinement

It is often hard to reason directly about contextual equivalence, due to the quantification over
contexts. As in previous work [Gregersen et al. 2024] we define a logical refinement relation to help
us reason about contextual refinement. Like contextual refinement, logical refinement is a typed
relation: it ranges over pairs of expressions ej, e; and types 7 such that e; and e, have type 7. As
we will show later, logical refinement implies contextual refinement. However, logical refinement
(as opposed to contextual refinement) is defined in terms of the relational logic, and thus we can
reason about it using the inference rules presented in previous sections:

AEe; Sey:r 2 Ve>0./4(e) = rwpe; Se {01,02.35’ >0. () = [[THA(Ul,Ug)}

Here, [7]a denotes the semantic interpretation of type 7, and A assigns a semantic interpretation
to type variables in the context. Intuitively speaking e; logically refines e, at type 7 if we can
couple their executions so that they return values related at the semantic interpretation of 7. The
key novelty with respect to prior work is the quantification over error credits: we get to assume
ownership of a positive amount of error credits in our proof, as long as we ensure that at the end
of it we still have a positive amount left. The quantification over error credits allows us to assume
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ownership of a non-zero amount of error credits whenever reasoning about logical refinement, in
particular we can prove the following rule:

Ve>0.(¢) =+ Are<e :1

; LOG-GET-ERR
Arex<e i1

Since LOG-GET-ERR always allows us to obtain a positive amount of error credits, we can internalize
a closed rule for error induction for proving logical refinements that assumes no previous ownership
of error credits. This can be seen as lifting the wp-ERR-AMP rule to the logical refinement level:

1<k Ve.(f(k-e) =« Arexse 1) = 4(e) «AEese :1

Arese :r

LOG-IND-ERR

The semantic interpretation [z]a(v1, v2) of a type 7 relates values (which do not need themselves
to be syntactically well-typed) that behave as if they were equivalent values of type 7. This definition
is mostly standard, and is defined as usual by induction on 7 and in mutual recursion with the
refinement relation, see Appendix A of [Gregersen et al. 2023], as well as [Timany et al. 2024] for a
general account. Semantic interpretation of a typing context [ (y1, y2) relates two substitutions
Y1, V2 whenever for all x € dom T, [T'(x)]a(y1(x), y2(x)). Logical refinement can then be extended
to open terms as usual:

AlTee Se:t2VyLye[Talyy2) = AEeiyi Sexys:t

We can prove a compatibility result, which intuitively states that all typing rules preserve the
relation. For example, in the case of function application we have:

AeEfish:t—o0o AFe Sey:rT
Arfiessfrer:o

The compatibility results can be combined into the fundamental lemma of the logical relation in
the usual way, i.e., by induction on the typing derivation.

LEMMAS5.1. If T+e:7 then TEe<Se: 1.

COMPAT-APP

This logical refinement is a strict extension of the one in Clutch [Gregersen et al. 2024]: we
can still prove the same refinements (by not using the error credits at all), but we can also prove
new refinements that were not provable in loc. cit., in particular refinements involving recursive
programs on the right. The refinement relation is still sound with respect to contextual equivalence,
as stated below:

THEOREM 5.2 (SOUNDNESS). Let E be a type variable context, and A a context assigning a relational
interpretation to all type variables in Z. If A | T E ey S ey : T thenZ | T Fep Sex €20 7.

The proof follows from compatibility of the logical refinement and the adequacy theorem of our
relational logic. In particular, we use Corollary 4.2 to erase the quantification over positive errors.

Example 5.3. Logical refinement can be used to prove contextual equivalence of the two samplers
considered in §4.2. The statements we have to prove are below:

E direct < reject : unit — nat, F reject < direct : unit — nat

Note that, as opposed to the proof in §4.2, there is no need to assume ownership of a positive
amount of error credits, and we can have a closed proof at the level of the logical refinement.

Using similar ideas, Appendix A.1 presents a proof of contextual equivalence between a direct
sampler over rand 5 (i.e., a die) and a rejection sampler that simulates it with 3 coin flips, encodes
the result as a number from 0 to 7 and returns it if it is 5 or less, retrying otherwise. In particular,
this example uses our many-to-one coupling rules (WP-MANY-TO-ONE).
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6 Case Studies

In this section we give an overview of several complex examples that we have verified using
Approxis. Complete details about each example can be found in the accompanying Coq development.

6.1 The PRP/PRF Switching Lemma, Revisited

In §2.1, we sketched a “weak Switching Lemma”, where we considered one particular adversary.
We are now ready to prove the “full” version of the switching lemma for arbitrary adversary A.
Of course, some restrictions on the adversary are still required. First, the adversary must treat the
RP/RF as a black box, and not directly access the underlying map that stores the function’s values.
Second, we must ensure that the RP/RF can only be queried up to Q times. To enforce the first
requirement, we require that A is a well-typed RandML program. For the second requirement,
we wrap the RP/RF with the higher-order function q_calls, which uses local state that tracks how
many queries have been performed:
let q_calls (Q :int) (f: o — P) : o« — P option =

let counter = ref 0 in

Ax.if (! counter < Q) then incr counter; Some (f x) else None
Our goal is then to prove the following logical refinement (as well as the other direction, the proof
of which is similar and omitted) for any A of type (int — int option) — bool,

7 () = £ A (q_calls Q (irp N)) 3 A (q_calls Q (irf N)) : bool (4)
where ¢ = Q(ZQN_ b, By unfolding the definition of the logical relation and applying the adequacy
theorem of Approxis to (4), these refinements imply Lemma 2.1.

In order to reason about the unknown program A, we leverage the logical relation. Specifically,
from the assumption that A is well typed together with the Fundamental Lemma (Lemma 5.1), we

derive an Approxis specification for A of the form ¥ A < A : ((int — int option) — bool). Using
this and the logical relation’s compatibility rule for function application leaves us to prove:

#(e) = E (q_calls Q (irp N)) < (q_calls Q (irf N)) : int — int option (5)

In other words, after using the logical relation, the goal that remains makes no reference to
the unknown code for the adversary, A. From here on, the proof is very similar to that of the
weak PRP/PRF Switching Lemma. We symbolically evaluate both programs, which results in the
allocation of the list of unused values in irp, the finite maps that both irp and irf use, and a counter
for each program. Let rp,, denote the function returned by q_calls Q (irp N), and likewise rf ,
for irf. The key difference with the proof in §2.1 is that, instead of proving the ¢-equivalence of
two for loops by induction on Q, we prove the e-equivalence of two functions by establishing an
invariant that holds before and after all calls to rp, and rf . This invariant we need states that
both counters point to the same value i, that the maps m and m’ are equal, and that the current
error budget is ¢; = 22;1 % when the counter is 0 < i < Q. Furthermore, the list of unused values
has length (at least) N — i. Since £ (¢;) is an ordinary proposition in Approxis, and since Approxis
is an impredicative higher-order logic, we can simply “store” error credits in the invariant.

The semantic interpretation of function types requires us to prove that both functions in (5) map
related arguments to related results. In other words, we can show the refinement by applying both

functions to the same integer n. Just as in §2.1, we can then argue that with probability at most?
N-(N-i) _
e ;
sample the same value by paying # (ﬁ) This is exactly the first element in the sum ¢;. The functions

ﬁ a collision occurs. By Wp-COUPLE-RAND-RAND-ERR-LE, we can force both functions to

2This “worst case” occurs if all previous calls to irp were made with different arguments and List.length |_unused = N — i.
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thus return the same results, as required. It remains to re-establish the function invariant. Since the
counters have been incremented to i + 1, we only need to give back ¢;,1 credits, which is exactly
what is left of 7 (¢;) after splitting off / (ﬁ)

In conclusion, thanks to the logical relation, proving the full Switching Lemma is as simple as
proving the weak version.

6.2 IND$-CPA Security of Symmetric Encryption

A key notion of security for a symmetric (i.e., private key) encryption scheme is “indistinguishability
from random under chosen-plaintext attacks” (IND$-CPA, a.k.a. CPA$). The IND$-CPA “advantage”
of an adversary A against an encryption scheme (keygen, enc, dec) is defined as the probability
that A is able to distinguish a ciphertext ¢ corresponding to a plain-text message msg from a
randomly chosen ciphertext ¢’, even if A can choose msg (see, e.g., [Rosulek 2021, Def. 7.2]). For
an adversary that can make only up to Q-queries to the encryption oracle, the advantage is thus
equal to

|Pr[A(q_calls Q (enc (keygen ()))) | — Pr[A(q_calls Q (rand_cipher))]| (6)

where rand_cipher = A msg. (rand N, rand N) produces random ciphertexts.

It is well-known that a deterministic encryption scheme cannot achieve IND$-CPA security [Katz
and Lindell 2021; Rosulek 2021]. A standard solution to obtain a IND$-CPA secure scheme is to
randomize the encryption function. We exemplify this idea by proving a bound on the IND$-CPA
advantage for the following textbook construction [Rosulek 2021, Def. 7.4][Katz and Lindell 2021,
Def. 3.28] of a symmetric scheme from a random function:

let enc prf key msg = letr =rand N in let keygen () = rand N
let pad = prf key rin let dec prf key (r,c) = let pad = prf key rin
let ¢ = xor msg pad in let msg = xor c pad in
(r,0) msg
In particular, we prove the following refinement (and its converse) in Approxis,
/ (Qz/(ZN)) — £ A (q_calls Q enc,r) 3 A (q_calls Q rand_cipher) : bool (7)

where enc,y = enc (let rf = irf N in A key. rf). Intuitively, the scheme is secure because prf
produces random-looking outputs. So long as pad = prf key r never repeats throughout the Q calls
to enc,r, the xor msg pad acts as a one-time pad, and the ciphertexts look random.

The proof of (7) thus hinges on the fact that the randomly sampled value r never repeats, since
this ensures that irf samples a new value for pad. Formally, we argue that after initialization of
irf and q_calls, the encryption oracle enc,y and the random cipher oracle satisfy the following
invariant, which ties the amount of error credits left to the counter value i.

i, m. i((Q2 - iz)/(ZN)) x counter - i x counter’ o i * is_rfm = |dom m| =i (8)

We use the approximate coupling rule to “pay off” the risk of a repeated use of r at the i-th oracle
call. The exact source of errors is different here from the Switching Lemma, since we have to argue
that the randomly sampled arguments to rf do not repeat, whereas in the Switching Lemma, we
are concerned with collisions that get sampled if fresh arguments are fed to rf and rp. The exact
rule that allows us to do this is given below, where the list [ is instantiated with the domain of the
map m which is tracked by rf in the invariant (8).

£(E0)  n<Nomgl— rwpnzn (e}

rwp rand N < rand N {®}
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Since the invariant is preserved throughout, the output of enc,r is thus ZQ—N—equivalent to that of

rand_cipher in Q oracle calls.

6.3 Sampling from B+ Trees

In this case study, we show the correctness of a rejection sampling scheme developed by Olken
and Rotem [1989] for drawing a random sample from a B+ tree. This case study demonstrates
how Approxis is able to handle complex mutable state and establish equivalences that rely on type
abstraction. A B+ tree [Bayer and McCreight 1972] is a height-balanced tree data structure that is
widely used for storing data in filesystems and databases. Unlike a binary search tree, a B+ tree’s
internal nodes may have more than 2 children, up to some maximum M.

If a B+ tree’s nodes include additional ranking information recording how many leaves are
descendants of each node, then it is straight-forward to draw a random element. For a tree with N
total elements, draw a random number uniformly from {0, ..., N — 1} and then use the ranks to
find the i-th element in the tree. However, maintaining the ranks has overhead.

Olken and Rotem [1989] developed a rejection sampling algorithm for sampling from a non-
ranked B+ tree. Starting from the root, the algorithm recursively descends down the tree. At each
non-leaf node, it samples a random number i uniformly from {0, 1, ..., M — 1}. If the node has an
i-th child, the algorithm recurses on it. If the node does not have an i-th child, it aborts early by
returning to the root and restarting. Once the algorithm reaches a leaf, it returns it as the selected
sample.

We have implemented the sampling algorithm for ranked B+ trees and the rejection sampler for
non-ranked trees as two functions called naive_sample and optimized_sample, respectively (see
Appendix A.2 for the full code). Our main result for this case study shows that these two functions
are equivalent. Of course, they are only equivalent when they operate over well-formed trees, so
we state this result as a contextual equivalence about two different implementations of an abstract
tree data type. To do so, we first define the following additional functions: init_tree, which takes
an integer and returns a B+ tree containing that integer, insert_tree, which inserts an integer into
a tree, and build_ranked, which takes a (non-ranked) B+ tree and returns a ranked B+ tree with
the same entries and shape. Then the following two packed tuples bundle the B+ tree operations:

opt = pack (init_tree, insert_tree, optimized_sample)
naive = pack (init_tree, insert_tree, At.naive_sample (build_ranked t))

where the sampling routine in naive takes a tree ¢, builds the ranked version of the tree, and
then uses the naive routine.> With these preliminaries in place, our main result can be stated as
F opt =~ naive : 7, where 7 2 3r. (Int = 7) X (r X Int — 1) X (r — Int).

This proof is described in more detail in Appendix A.2. At a high level, it has two components.
First, there is non-probabilistic reasoning showing that the various routines traverse and modify the
trees correctly. This makes up the bulk of the proof and consists of traditional separation-logic style
reasoning about trees. For this part, Approxis’s support for the rich reasoning principles developed
in earlier separation logics is essential. The second component is the actual probabilistic reasoning
using couplings. Here, the coupling reasoning in this proof is quite similar to the arguments we
have already seen using fragmented and many-to-one couplings in simpler rejection samplers.

7 Semantic Model and Soundness

The soundness of Approxis is justified by defining a semantic model of rwp e < e’ {®} in the
Iris base logic [Jung et al. 2018]. The base logic is a higher-order separation logic that lacks any

3Building a ranked tree each time is inefficient, but naive serves as a specification for opt, so its efficiency is not relevant.
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connectives for reasoning about programs. In this section, we define the semantic model of rwp
and discuss how it implies the existence of an approximate coupling of the execution of the two
programs.

The model of rwp is inspired by the model of the (non-approximate) coupling logic Clutch
[Gregersen et al. 2024]. We emphasize the following technical novelties and improvements over
Clutch’s model:

(1) The approach is generalized to approximate couplings and expectation-preserving composi-
tion by incorporating error credits [Aguirre et al. 2024] in the relational setting.

(2) The model allows for coupling rules and right-hand side rules to be applied when the left-hand
side is a value (a limitation of the general structure of the Clutch model).

(3) The model introduces two new coupling precondition connectives and a notion of erasability
that captures the essence of why asynchronous couplings [Gregersen et al. 2024] are sound.

7.1 Model

The semantic model of rwp is defined using two unary connectives: a weakest precondition wp e {®}
and a separation-logic resource spec(e’) that tracks the right-hand-side specification program, as
in prior work on refinement reasoning in separation logic [Gregersen et al. 2024; Timany et al.
2024; Turon et al. 2013]. The rwp is defined as

rwp e 3 ¢’ {®} £ VK. spec(K[e']) — wp e {v. 0. spec(K[v']) * ®(v,0")}.

By quantifying over evaluation contexts K, we close the definition under evaluation contexts on
the right-hand side; for the left-hand side this is not needed as the weakest precondition already
satisfies the bind rule. The main challenge of defining the relational connective is thus to define the
model of the unary weakest precondition in a suitable way.

In isolation, the weakest precondition wp e {®} encodes partial correctness: intuitively it means
that the execution of e is safe (i.e., the probability of crashing is zero) and for every possible return
value v, the postcondition ®(v) holds. Internally, however, in order to do approximate (relational)
reasoning, the weakest precondition pairs up of the probability distribution of individual steps of
the program with the probability distribution of individual steps of some other program, in such a
way that there exists an approximate coupling among them. Through separation-logic machinery,
we tie this “other” program to the program tracked by the spec(e’) resource, and the approximation
error to error credits £ (¢). The weakest precondition itself satisfies all the usual program logic
rules that one would expect and we refer to Figure 5 for an overview.

Weakest Precondition. The definition of the weakest precondition is shown below. As done
throughout this paper, we ignore the general connectives that are used for manipulating Iris-style
ghost resources and invariants, i.e., the update modality and invariant masks (&, () as found
in Iris [Jung et al. 2018], which are orthogonal to the core challenges that we address. Our use is
standard and the weakest precondition can be understood by omitting the grayed out parts. The
definition looks as follows.

wp., e; {®} = Vo, p1, 1. S(o1, p1, €1) —*
scpl o1 2, p1 {02, p3, €2
(e € Val * S(02, 3, €2) * D(er)) V
(e1 ¢ Val = pepl (e1,02) S, Py {€2, 03, p3, €3.

>scpl o3 3e p3 {0, i, 4. S(ou, ply e4) * wp ez {@}}})}
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The connective is defined as a guarded fixed point of the equation above, as is custom in many
program logics for partial correctness. The fixed point exists because the recursive occurrence of
the weakest precondition occurs under the later modality » [Jung et al. 2016].

The diagram below shows how the two programs are updated in a single unrolling of the weakest
precondition. This will contain a single execution step on the left-hand side, preceded and followed
by a sequence of execution steps on the right-hand side. Along these steps, the tapes can be updated
with new samples, with errors threaded through to construct approximate couplings between steps:

RHS execy,, LHS execy, RHS execy,, RHS execy,,
update tapes update tapes update tapes
(e1,01) ~¢ p; ——  (e1,02) ~¢, p;  ——— (€2,03) ~o p; ———  (e2,04) ~¢, P
scpl pepl scpl

We now explain the definition in detail. We first start by assuming ownership of a state interpreta-
tion S( o1, p}, €1). The state interpretation predicate S : State — Cfg — [0, 1] — iProp interprets the
physical state of the program, the specification program, and the approximation error as resources
in Approxis which, e.g., gives meaning to the points-to connective £ > v, the specification resource
spec(e’), and error credits # (¢). Our choice of resource algebras is standard (see Gregersen et al.
[2024] and Aguirre et al. [2024] for more details) and it is sufficient to know that they reflect the
(partial) knowledge that the logical connectives represent. For instance, for the heap points-to
connective we have that S(oy, p, £1) * £ = v + 01(£) = v; for the specification resource we have
S(oy, (e}, 07), €1) * spec(e’) + e = ¢’; and for error credits we have S(o1, p],€1) * £(¢€) F &1 > ¢.

Second, we have to prove a spec-coupling precondition scpl o1 3., p7 {...}. We define the
connective in Figure 4, but in essence it allows the right-hand-side program to be progressed.
Intuitively, scpl o1 3¢, p] {02, P35, gz.P} says that with error budget ¢; there exists a (possibly
empty) sequence of composable approximate couplings starting from state o7 and configuration
p; that ends up in some state o; and configuration p; with leftover error budget ¢;, such that the
proposition P holds. By allowing the left-hand-side state to be progressed with the right-hand-side
configuration, we permit certain asynchronous coupling rules as discussed below in detail.

Next, if e; is a value we have to return the updated state interpretation and prove the postcondition
®(e;).If ey is not a value, we have to prove a program-coupling precondition pcpl (e, 02) 3¢, py {.-.}-
We define the connective formally below, but it allows the left-hand-side program to take a single
step and the right-hand-side program to take a finite number of steps. Intuitively, pcpl p1 <.,
P1 { P2, Py, E2. P} says that with error budget ¢; there exists an approximate coupling of a single step
of configuration p; with a finite number of steps of configuration p; that ends up in configurations
p2 and p;, with leftover error budget ¢, such that the proposition P holds.

Finally, under a later modality (which signifies that a step of e; has been taken), we have to prove
another spec-coupling precondition before returning the updated state interpretation and showing
that wp e; {®} holds recursively. The second occurrence of the spec-coupling precondition can
mostly be ignored and is only required to validate the invariant opening rule which we omit.

Coupling Preconditions. The spec-coupling precondition is defined inductively by the infer-
ence rules shown in Figure 4. If the error budget is 1 or if the postcondition holds for the input
parameters, the spec-coupling precondition holds trivially (SPEC-COUPL-ERR-1 and SPEC-COUPL-RET,
respectively). The last constructor (SPEC-COUPL-EXP) is by far the most interesting: it allows us
to incorporate approximate couplings and requires the existence of an (¢1, R)-coupling of y; and
(1 >= A 05 step, (e}, o)) for prover-chosen y, yi; and n. Here step,: Cfg — D(Cfg) denotes n
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SPEC-COUPL-ERR-1 SPEC-COUPL-RET
®(o,p’,€)
scplo 51 p {®} scplo 5. p’ {®}

SPEC-COUPL-EXP
S (W) >= Aoy step, (e}, 03)) : R e +E[&E] <e
erasable(py, o) erasable(y}, o7) V(02, p3) € R. [=scpl oz 38,(py) Py {0}

scpl o1 3¢ (ep, 07) {@}

Fig. 4. Inductive definition of the specification-coupling precondition scpl o 5, p {®}.

steps of partial execution, i.e.,

ret(e, o) ifeeVal or n=0,

step, (e,0) =
Pu(e.0) {step(e, o) >=step(,_;) otherwise.
and yy, jij € D(State) are arbitrary erasable distributions (c.f., Definition 3.12) w.r.t. o1 and o7.
Finally, to allow expectation-preserving composition (c.f, Lemma 3.10), the prover picks an error
function &, such that ¢; + E[ ;] < ¢, where the expectation E[ &, ] is computed with respect to
the distribution (y] >= A 0. step,, (e}, 0;)). Then for all o and p} in the support of the coupling, the
spec-coupling precondition must hold recursively with the new error budget E;(p5).
The program-coupling precondition is defined in a similar style to the sPEC-coupPL-EXP constructor,
but the approximate coupling requires exactly one step on the left-hand side as seen below.

step(er, 01) Se, (4] >=A 0y step,(e1,07)) : R red (e, 1)
e +E[&] <e¢ erasable(y], o7) V((es, 02), (€5, 0)) € R. [= ®(ez, 02, €5, 05, E2(e2, 02))
pepl (e1,01) 3¢ (e}, 07) {@}

The left-hand side program is also required to be reducible (to guarantee safety), and for all
configurations in the support of the coupling, the postcondition must hold. Note that the expectation
E[&;] is taken with respect to the distribution step (e, o1). This guarantees that every recursive
unfolding of the weakest precondition corresponds to a single step of the left-hand-side program
which is essential to validating the standard program logic rules found in Figure 5.

The lemmas below illustrate how spec-coupling and program-coupling preconditions interact
with the operational semantics to allow us to construct couplings for program executions. First, we
see the case of the spec-coupling precondition:

LEMMA 7.1. Let (e, 01) and p| be configurations for the left-hand-side and right-hand-side programs,
and let ¢ CVal xVal be a relation on values. If, for some error e; € [0, 1],

scpl oy Z¢, P} {02, D, €9. €XeCy (€, 02) <, €XEC(P)) - (p},
then there exists a (&1, ¢)-coupling execy, (e, 1) <, exec(p]) : ¢.

The program-coupling precondition satisfies an analogous result, but notice the extra computa-
tion step in the conclusion:

LEMMA 7.2. Let (ey, 01) and p] be configurations for the left-hand-side and right-hand-side programs
where ey & Val, and let ¢ CVal xVal be a relation on values. If, for some error ¢,

pepl (e1,01) <¢, P] {eg, 02, Pys €2. €XEC (€2, 02) <S¢, €XEC(P)) q)},
then there exists a (&1, ¢)-coupling execp41(e1, 01) g, exec(p]) : @.

The proofs of these auxiliary lemmas rely on erasability as well as Lemmas 3.9 and 3.10 to
construct the coupling of the executions.
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pure

er ey xwp ez {@} + wp ey {®}
V. £ — 0 — O(f) F wp refo {O}
(v — P()*t—>orFwp ! {D}
(> w—®(()*xt—>oFwpl—w{d}
Vn < N.®(n) - wp rand N {}
D(v) - wp o {0}
wp e {v.wp K[v] {tI)}} Fwp K[e] {®}
(Vo. ¥(v) —« ®(v)) * wp e {¥} F wp e {D}
Pxwpe{d®}+wpe{v.P*d(v)}
Vi.t— (N,e) — ®(1) + wp tape N {d}
(Vn < N.1— (N,e) — ®(n)) 1 (N,¢e) - wp rand N 1 {d}
(1t (N, i) = ®(n)) * 1< (N,n-1) - wp rand N 1 {®}

Fig. 5. Standard weakest-precondition rules.

7.2 Soundness

Soundness of Approxis and the relational program logic follows from the adequacy theorem below.

THEOREM 7.3 (ADEQUACY). Let ¢ C Val X Val be a relation over values and let 0 < ¢ < 1. If
spec(e’) = £ (&) F wp e {v. To’. spec(v’) * ¢(v,0")} then Vo, o’. exec(e, o) S, exec(e’,0”’) : .

The proof has a similar structure to the soundness theorem of Clutch [Gregersen et al. 2024]. By
continuity, it suffices to show the following approximate coupling:

execp(e, 0) <. exec(e’,0’) 1 ¢

for all 0, ', and n. The theorem then follows by induction on n. The interesting case is the inductive
step, when n = m + 1. After unfolding the definition of the weakest precondition, we can apply
Lemma 7.1 and Lemma 7.2 to construct a coupling between execp,+1(e, o) and exec(e’, o”).

8 Related Work

Probabilistic Couplings. Relational reasoning about program via (exact) probabilistic couplings
can be traced back to pRHL [Barthe et al. 2015, 2009] and was later extended to support approximate
couplings in apRHL [Barthe et al. 2016a, 2012], apRHL+ [Barthe et al. 2016¢], and EpRHL [Barthe
et al. 2017]. These approximate logics can be used to reason about a wide range of properties such
as differential privacy and expected sensitivity, but they are limited to reasoning about first-order
programs. Aguirre et al. [2021] introduce HO-RHL, which use couplings to reason about adversarial
computations in a higher-order setting. HO-RHL, however, only allows synchronous couplings
and only supports first-order global state and structural recursion. Clutch [Gregersen et al. 2024]
introduces asynchronous couplings in a higher-order setting with higher-order local state. However,
Clutch does not support approximate or fragmented couplings.

Approximate Reasoning. Aside from relational approaches, approximate reasoning has also
been used in the unary setting. The unary logic aHL [Barthe et al. 2016b] is used to reason about
accuracy properties of first-order randomized algorithms, where errors are tracked by a grading
on Hoare triples. Eris [Aguirre et al. 2024] extends this to the higher-order setting and tracks
error probability as a separation logic resource. In a slightly different line of work, expectation-
based logics [Batz et al. 2019, 2023; Kaminski et al. 2016; Morgan et al. 1996] can also be used to
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reason about approximate correctness of first-order imperative probabilistic programs. In particular,
eRHL [Avanzini et al. 2024] supports reasoning about asynchronous samplings via x-couplings.

Resource Reasoning with Credits. Using sub-structural credits to track a program’s re-
source consumption was pioneered in type systems for automated amortized resource analy-
sis (AARA) [Hofmann and Jost 2003]. Subsequent research extends this approach to reason about
expected cost bounds in probabilistic programs [Das et al. 2023; Ngo et al. 2018; Wang et al. 2020].
Inspired by AARA, Atkey [2011] introduced resource-tracking credits in separation logic to reason
about amortized resource consumption. A variant of this idea is implemented as time credits in
Iris to reason about running time complexity of higher-order programs [Charguéraud and Pottier
2019; Mével et al. 2019; Pottier et al. 2024] and expected running time in Tachis [Haselwarter et al.
2024b]. Eris [Aguirre et al. 2024] uses error credits to reason about error bounds of higher-order
probabilistic programs, which Approxis adapts to the relational setting.

Logical Relations and Probability. Bizjak and Birkedal [2015] developed a logical relations
model of a higher-order probabilistic programming languages involving both state and discrete
probabilistic choice to reason contextual equivalence. The approach was then extended to support
continuous probabilistic choice [Culpepper and Cobb 2017; Wand et al. 2018], recursively nested
queries [Zhang and Amin 2022], and non-determinism [Aguirre and Birkedal 2023]. The logical
relation developed in Clutch [Gregersen et al. 2024] supports asynchronous couplings and is very
similar to the model in our work. Our logical relation, however, also supports proving contextual
equivalences by means of approximation. This is key to proving equivalences of rejection sampling
programs which, to our knowledge, is out of scope for previous models based on logical relations.

Besides contextual equivalence, logical relations are used to reason about contextual distance
between probabilistic programs [Crubillé and Dal Lago 2017; Crubillé and Dal Lago 2015]. Contex-
tual distance can be seen as a generalization of contextual equivalence into a metric for analyzing
distances between probabilistic programs. Using error credits to reason about contextual distances
is an interesting avenue for future work.

Separation Logic and Probability. In addition to Eris [Aguirre et al. 2024] and Clutch [Gregersen
et al. 2024], more tangentially to our work, Batz et al. [2019] developed a weakest precondition
calculus for quantitative reasoning about probabilistic pointer programs in QSL, a quantitative
analog of classical separation logic. A different line of work develop separation logics in which
separating conjunction models probabilistic independence. This was first explored in probabilistic
separation logic (PSL) [Barthe et al. 2019] and subsequently extended to reason about conditional
independence [Bao et al. 2021, 2024; Li et al. 2023] and negative dependence [Bao et al. 2022].

Program Logics for Cryptographic Security. CertiCrypt [Barthe et al. 2009, 2010] is a frame-
work implemented in Coq [Team 2024] for verifying code-based cryptographic proofs. Programs in
CertiCrypt are written in pWhile, a probabilistic imperative language, and the logic is based on
pRHL [Barthe et al. 2009]. CertiCrypt can prove approximate results such as the PRP/PRF lemma
only at the level of the Coq meta-logic, since the program logic itself is based on exact couplings.

Building on pRHL and CertiCrypt, EasyCrypt [Barthe et al. 2014] is a stand-alone tool for
cryptography, integrating automation via SMT solvers. Although EasyCrypt can reason about
simple rejection samplers [Almeida et al. 2023], existing proofs require analysing the probability of
each outcome, instead of a relational equivalence proof. Rejection samplers with dynamic references
or sophisticated early-abort, like the B+ tree sampler, would be difficult to do in this setting.

SSProve [Abate et al. 2021; Haselwarter et al. 2023] is a framework implemented in Coq [Team
2024] for writing so-called state-separating proofs [Brzuska et al. 2018]. Based on a monadic pRHL-
like logic [Maillard et al. 2020], games in SSProve are split into packages operating on disjoint
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states, which enables some amount of modular reasoning. In contrast to the language considered
by Approxis, SSProve is first order and does not support dynamically allocated local state.

9 Conclusion

We presented Approxis, the first higher-order separation logic for approximate relational reasoning.
In addition to establishing approximate bounds between probabilistic programs, we developed
a novel logical relation in Approxis for proving contextual refinement, by parameterizing over
arbitrary positive error. We demonstrated the strengths of Approxis on various case studies involving
higher-order, local state, and non-trivial rejection sampling behavior. Using Approxis, we proved
both approximate and exact examples, and also used the logical relation to establish contextual
refinements of examples that were previously out of scope.

We believe Approxis opens up numerous avenues for future work related to security of crypto-
graphic protocols. Firstly, we would like to extend Approxis to reason about concurrent programs
in order to prove security guarantees of distributed systems. Secondly, it would be interesting to
explore how Approxis can be further improved to reason about time complexity of programs, to
bound the computational power of adversaries. Finally, we aim to modify Approxis to reason about
several other security properties, including differential privacy and probabilistic sensitivity.
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A Extended Case Studies
A.1 Simulating Dice

Rejection samplers are a kind of Las Vegas algorithms used to simulate complicated probability
distributions with simple probabilistic primitives. These algorithms loop repeatedly, only terminat-
ing when it produces an acceptable value, one that correspond to a value in the target distribution.
Previously in §4.2, we showed how to prove a simple rejection sampler is equivalent to a rand
expression.

To show that our techniques scale, we show a slightly more complicated implementation of a
rejection sampler that simulates a 6-faced die roll (we assume faces are numbered from 0 to 5) with
fair coin flips. The naive implementation would flip three coins, interpret the result as a binary
number between 0 and 7, return the result if it is from 0 to 5, and restart the simulation otherwise.
A more efficient implementation would use an early abort strategy: after observing the first two
coin flips, if they are both 1 we can restart without the need for a third coin flip. We implement an
early abort rejection sampler dsim in Figure 6. We will show that this is contextually equivalent to
a uniform die roll, i.e., program droll in Figure 6. As an intermediate step, we prove that they are
both contextually equivalent to the simple rejection sampler drej in the same figure, which samples
a uniform number between 0 and 7, returns the result if it is 5 or below, and restarts otherwise.

dsim () =
drej () =
letb2 =rand1in droll () =
letbl =rand1:in letr =rand7 in
if (b1 ==1&& b2 ==1) then dsim if (r > 5) then drej rand 5
elselet b0 = rand 1 :in elser

4%b2+2%bl+Db0
Fig. 6. Three algorithms to sample a fair die

The proof thus requires showing the chains of logical refinements 0 + dsim < drej < droll: unit —
nat and O + droll < drej < dsim: unit — nat. The proofs of dsim < drej and drej < dsim are mostly
symmetric. The proof relies on using wp-REC and the wP-MANY-TO-ONE coupling rule, to ensure
that the three bits we sample to the tape with bound 1 are a binary encoding of the number sampled
to the tape with bound 7, and therefore both conditionals resolve to the same branch. In the case
they both take the branch with the recursive call, we can apply our inductive hypothesis, otherwise
both programs will terminate immediately and return equal values.

The proofs of drej < droll and droll < drej is almost identical to the proofs presented for the
rejection samplers (see §4.2), except that we are not only proving that the two programs are
equivalent when executed in isolation, but contextually equivalent under all contexts using our
logical relations. The former of the two uses wp-REC, and our novel rule for fragmented couplings.
Note that droll only consume a single sample on the tape. The rule for fragmented couplings ensures
that we will either sample to the tapes a value above 5 on the left and nothing on the right, or we
will sample the same value, between 0 and 5, to the tapes on both sides. In the first case, drej will
consume the value on the tape and call itself recursively, which allows us to use our inductive
hypothesis. In the second case, both programs will consume values on their tapes, read the same
number, and return equal values.

Finally, we show droll < drej. This proof cannot be done by applying wp-REC since the program
on the left is not recursive. We will instead use induction by error amplification, through the rule
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LOG-IND-ERR. Let us set k = 4/3. After applying this rule, we will get ownership of 7 (¢) for some
arbitrary ¢, plus the induction hypothesis

£((4/3) - €) = (0 + droll () < drej (): nat),

while our goal becomes
O+ droll () < drej (): nat.

We now use our rule for fragmented couplings with errors. This ensures that either (1) we sample
to the tapes a value above 5 on the right hand side, nothing on the left, and we amplify our credits
by 4/3, or (2) we sample identical values, between 0 and 5, to the tapes on both sides. In the first
case, the program on the right hand side will call itself recursively, but now we will own €(4/3) - ¢,
which is precisely what we need to apply our inductive hypothesis and conclude. Otherwise, both
values will have the same value on the tapes, and will terminate and return the same result.

While this example is conceptually simple, the reasoning patterns it uses, as well as the different
induction principles that we can use depending on the presence or absence of recursion are
important subtleties of our approach, and is fundamental to understanding other examples, such as
that of the B+ tree in Appendix A.2.

A.2 Sampling from B+ Trees

In this case study, we show the correctness of a rejection sampling scheme developed by Olken and
Rotem [1989] for drawing a random sample from a B+ tree. Up to this point, previous examples
have made use of only simple forms of state and the contextual equivalences were for simple type
signatures. This case study demonstrates how Approxis is able to handle complex mutable state
and establish equivalences that rely on type abstraction.

To motivate Olken and Rotem’s sampling algorithm, we first summarize some relevant facts
about B+ trees. A B+ tree [Bayer and McCreight 1972] is a tree data structure that is widely used
for storing data in filesystems and databases. In contrast to a binary search tree, a B+ tree’s internal
nodes may have more than 2 children. Random sampling from a B+ tree can be used to draw
random records from such databases in order to carry out a statistical analysis. Because the tree
may store many elements, it is not efficient when drawing a sample to first reprocess the entire
database into an alternate representation. Instead, the sample must be drawn working directly over
the tree structure.

The sampling algorithm we consider relies on 3 key properties of a B+ tree: (1) data elements are
only stored at the leaves of the tree, (2) the height of the tree is perfectly balanced, meaning that
the length of the path from the root to a leaf is the same for all leaves, (3) each node has at most M
children. Since the algorithm only requires these properties for correctness, our proof will work
with trees that are only assumed to satisfy these three properties, instead of assuming all of the
invariants of a B+ tree.

Before presenting Olken and Rotem’s algorithm, let us first consider a naive sampling algorithm
that will serve as a correctness specification. If we knew that the tree contained N total elements,
then one approach to drawing a random sample would be to first generate a random number
uniformly from {0, ..., N — 1} and then find and return the i-th element in the tree, numbering
the leaves from left to right. This approach correctly produces a uniform sample from the tree, but
the challenge lies in efficiently finding the i-th element in the tree. It is easy to find this element if
we assume that the tree is a ranked B+ tree, where intermediate notes are additionally annotated
with the total number of leaves that are descendants of the node. The function naive_sample in
Figure 7 implements this algorithm for sampling from a ranked B+ tree. However, maintaining this
rank information has a cost: every insertion in the tree requires modifying all of the nodes that are

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 41. Publication date: January 2025.



Approximate Relational Reasoning for Higher-Order Probabilistic Programs 41:31

naive_sample tree = optimized_sample tree =
let rec draw t 1 =
let i = rand (num_leaves tree — 1) 1 in match t with

let rec f t num = | Lf v = Some v
| Brl = letidx =rand (M —1) rin

rﬁftCh;Wlth match List.nth [ idx with
| Brzl) - 4 | Some child = draw (! child)
N N
let (prev, idx) = search [ numin |endone - one

let child = [[idx] in
f (Y child) (num — prev)
end in
f treei

end in
letrec f_=

match draw tree : with
| Some v = v

| None = f()
endin

f0

Fig. 7. Naive algorithm for sampling from a ranked B+ tree and the Olken and Rotem [1989] algorithm for
rejection sampling from a non-ranked B+ tree.

ancestors of the inserted node to increase the recorded leaf counts. In contrast, inserting into a
(non-ranked) B+ tree, most insertions only require modifying the parent of the inserted element.

Olken and Rotem developed a rejection sampling algorithm for sampling from a non-ranked
B+ tree. We call this the optimized algorithm, implemented as optimized_sample in Figure 7. This
function makes use of the early abort technique we saw in Appendix A.1. Starting from the root, it
samples a random number i uniformly from {0, 1,..., M — 1}, where M is the maximum number
of children a node can have. It selects the i-th child and recurses on it, until it reaches a leaf. If
the current node does not have an i-th child, we return to the root and restart the algorithm.
The intuition behind the correctness of the optimized algorithm is that it is somewhat similar to
sampling random leafs from a full multi-way tree, i.e. a B+ tree where each intermediate node holds
M branches. In the case where we walk down a branch that is not present in the original B+ tree,
we reject this branch and start all over again.

Our main result for this case study shows that the naive algorithm and the optimized algorithm
are equivalent. Of course, these algorithms are only equivalent when they operate over well-formed
trees, so we state this result as a contextual equivalence about two different implementations of
an abstract data type with operations for constructing and sampling from the tree. To state this
precisely, we first define the following functions (code omitted): init_tree, which takes an integer
and returns a B+ tree containing that single integer, insert_tree, which inserts an integer into a
tree, and build_ranked, which takes a (non-ranked) B+ tree and returns a ranked B+ tree with the
same entries and shape. Next, we define the following two packed tuples that bundle the operations
for the B+ tree:

pack (init_tree, insert_tree, optimized_sample)

1>

opt

naive = pack (init_tree, insert_tree, At.naive_sample (build_ranked t))
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intermediate_sample tree =
let d = get_depth tree in
let 1 =tape (M " d—1)in
let rec intermediate_sample’ ¢ =
letidx =rand (M " d—-1) tin
letrec ft numd =

match t with
| Lfo=0
| Brl = let idx = num “quot™ (M~ (d — 1)) in
match List.nth [ idx with
| Some child = f (! child) (num —idx- (M " (d —1))) (d - 1)
| None = intermediate_sample’ tree
end
end in

ftidxdin

intermediate_sample’ tree
Fig. 8. Intermediate algorithm for sampling from a non-ranked B+ tree.

where the sampling routine in naive takes a tree t, builds the ranked version of the tree, and
then uses the naive routine.* With these preliminaries in place, our main result can be stated as
F opt = naive : 7, where 7 is the following existential type:

2 3r. (Int - 1) X (r X Int > 1) X (r — Int)

The proof of this equivalence in our full Coq development is too long to fully explain here. However,
at a high level, the proof has two components. First, there is the non-probabilistic reasoning showing
that the various routines traverse and modify the trees correctly, e.g. that the height-balanced
invariant is maintained by insert_tree, or that build_ranked correctly computes ranks. This aspect
in fact makes up the bulk of the proof, and consists of using traditional separation-logic style
reasoning about trees. For this part, Approxis’s support for the rich reasoning principles developed
in earlier separation logics is essential.

The second component is the actual probabilistic reasoning using couplings. Here, the coupling
reasoning in this proof is quite similar to the arguments used for proving the equivalence of the
die sampling routines in Appendix A.1. To make this correspondence clearer, and to simplify the
reasoning, we introduce an intermediate sampling routine, intermediate_sample, shown in Figure 8.
The intermediate program takes in a tree, computes the depth d of its leaves, and samples a value
from rand(M¢ — 1). It then interprets this number as a path through the tree. To do so, the program
treats it after it were a d digit number written in base M, in which the i-th digit represents a child
to select at depth i. If, on reaching depth i it finds that the corresponding child does not exist, then
it rejects and repeats with a fresh sample.

We can see then that naive_sample is similar to droll: it always succeeds because it samples
an index of a valid leaf, just as droll always samples a number that is in range. Meanwhile,
intermediate_sample is like drej, as it samples a large number representing an entire path in
a tree, and then rejects if that path is invalid, much as drej rejects if its sample is too large.

40f course it would be highly inefficient to construct a ranked tree every time a sample is to be drawn, but naive here serves
as a correctness specification for opt, so its efficiency is not relevant.
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Finally, optimized_sample is like dsim, in that it samples the path layer-by-layer and rejects
early if the path is invalid, just as dsim samples bit-by-bit and rejects early if the number is
already too large. Thus for example, in proving that naive_sample < intermediate_sample, we
use fragmented couplings and error amplification, just as we did for droll < drej, while proving
optimized_sample < intermediate_sample, we use the wP-MANY-TO-ONE and WP-REC rule.
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