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Properties such as provable security and correctness for randomized programs are naturally expressed

relationally as approximate equivalences. As a result, a number of relational program logics have been

developed to reason about such approximate equivalences of probabilistic programs. However, existing

approximate relational logics are mostly restricted to first-order programs without general state.

In this paper we develop Approxis, a higher-order approximate relational separation logic for reasoning about
approximate equivalence of programs written in an expressive ML-like language with discrete probabilistic

sampling, higher-order functions, and higher-order state. The Approxis logic recasts the concept of error credits
in the relational setting to reason about relational approximation, which allows for expressive notions of

modularity and composition, a range of new approximate relational rules, and an internalization of a standard

limiting argument for showing exact probabilistic equivalences by approximation. We also use Approxis to

develop a logical relation model that quantifies over error credits, which can be used to prove exact contextual
equivalence. We demonstrate the flexibility of our approach on a range of examples, including the PRP/PRF

switching lemma, IND$-CPA security of an encryption scheme, and a collection of rejection samplers. All of

the results have been mechanized in the Coq proof assistant and the Iris separation logic framework.
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1 Introduction
Many important properties of probabilistic programs are naturally expressed as approximate equiv-
alence of two programs. For example, provable security [Goldwasser and Micali 1984] compares an

implementation of a cryptographic scheme to an idealized specification program that does not have

access to any sensitive information, and aims to show that an adversary can only distinguish them

with some small probability. In a similar spirit, many randomized algorithms and data structures
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can be specified by showing that they are approximately equivalent to their non-probabilistic

counterparts. Consequently, it is important to be able to reason about approximate equivalences

and so a number of relational program logics have been developed for first-order languages [Barthe

et al. 2017, 2016c, 2012] or higher-order languages with first-order global state [Aguirre et al. 2021].

In this work, we develop Approxis, a higher-order approximate relational separation logic for
reasoning about approximate equivalence of RandML programs, an expressive ML-like language

with discrete random sampling, higher-order functions, and higher-order dynamically-allocated

state. A key point is that Approxis, inspired by the unary Eris logic [Aguirre et al. 2024], introduces

error credits in the relational setting to reason about approximation. Error credits are separation-

logic resources that bound the maximum approximation error between two programs. We introduce

a collection of novel approximate coupling rules, which consume error credits in order to relate

randomized transitions of two programs. By treating the relational approximation error as just

another separation-logic resource, Approxis provides modular reasoning principles that enable more

precise error accounting when composing proofs, much as Eris demonstrated in the non-relational

setting.

Surprisingly, error credits not only allow us to prove approximate equivalences, they also allow

us to prove exact equivalences that were beyond the scope of prior coupling-based relational

program logics. Just as in real analysis, where one can prove two numbers are equal by showing

that the distance between them is smaller than 𝜀 for all 𝜀 > 0, we can similarly show two probability

distributions are equivalent by showing the distance between them is bounded by 𝜀 for all 𝜀 > 0.

Using Approxis, we show how to recover this technique internally in the logic through error
amplification [Aguirre et al. 2024] and thus prove exact equivalence of probabilistic programs by

means of approximation. Based on this, we develop a new binary logical relations model of a rich

type system for RandMLwith recursive types and impredicative polymorphism. Themodel supports

approximate reasoning and gives us a powerful and novel method for showing exact contextual
equivalence of higher-order probabilistic programs. For other existing approaches, including both

operational approaches, e.g., Clutch [Gregersen et al. 2024], and denotational approaches, e.g., pRHL
[Barthe et al. 2009] and HO-RHL [Aguirre et al. 2021], some of the examples that we consider would

be very complicated—if not impossible—to handle.

We show that Approxis scales to more involved approximate reasoning by showing the classical

PRP/PRF Switching Lemma [Bellare and Rogaway 2004; Hall et al. 1998] and IND$-CPA security

of a PRF-based symmetric encryption scheme. Moreover, we apply error amplification and our

logical relation to show contextual equivalences for a collection of rejection samplers, including a

sampling scheme for drawing a random sample from a B+ tree [Bayer and McCreight 1972].

Examples like the PRP/PRF Switching Lemma have been verified in many different settings, but

we emphasize the rich programming language we consider here. While some of these examples

might be expressible in simpler languages, features such as higher-order functions, higher-order

state, and polymorphism are all found in general-purpose programming languages, and are needed

for modern compositional software development. Moreover, cryptographic security can be more

naturally expressed in such higher-order languages and avoids the need for syntactic restrictions

on adversaries as seen, e.g., in EasyCrypt [Barthe et al. 2014]. As a consequence, verification

frameworks must handle these language features to reason about large applications and realistic

implementations. Higher-order separation logic is a powerful and well-tested abstraction for this

purpose, and Approxis shows how to beneficially apply it for approximate relational reasoning.

While the B+ tree case study, for example, is quite involved, the complexity is managed through

mostly-standard separation-logic reasoning. We see this as a significant strength of our approach.

At a technical level, our development builds upon the (non-approximate) probabilistic coupling

logic Clutch [Gregersen et al. 2024]. By incorporating error credits [Aguirre et al. 2024] in the
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relational setting, our development generalizes the approach to approximate reasoning using

approximate couplings. In addition, we introduce two new coupling precondition connectives and a

notion of erasability. The erasability condition not only captures the soundness of asynchronous

couplings [Gregersen et al. 2024] in a more semantic way, but also allows for a more principled

approach to validating the new approximate and non-approximate coupling rules we introduce

and which are critical for the examples that we consider.

Contributions. In summary, we make the following contributions:

• The first higher-order approximate relational separation logic, Approxis, for reasoning about

approximate equivalence of RandML programs, an expressive ML-like language with proba-

bilistic sampling, higher-order functions, and higher-order state,

• A logical internalization of a limiting argument that allows us to show exact equivalence of

higher-order probabilistic programs through approximation,

• A class of new approximate and non-approximate coupling rules, including the many-to-one
and fragmented coupling rules,

• A logical relations model of an expressive type system for RandML with recursive types

and impredicative polymorphism, which allows us to show (exact) contextual equivalence of
probabilistic programs through a limiting argument,

• A collection of case studies: the PRP/PRF Switching Lemma [Bellare and Rogaway 2004; Hall

et al. 1998], IND$-CPA security of a PRF-based symmetric encryption scheme, and contextual

equivalence of a selection of rejection samplers, including a sampling scheme for drawing

a random sample from a B+ tree [Bayer and McCreight 1972]. Several of these are, to the

best of our knowledge, beyond the scope of previous techniques, in particular for expressive

languages such as RandML.

• Full mechanization of all results in the Coq proof assistant [Team 2024], building on top of

the Iris separation logic framework [Jung et al. 2018] and the Coquelicot [Boldo et al. 2015]

library for real analysis.

Outline. In §2 we give high-level intuition for how to reason using Approxis. Here we discuss

the PRP/PRF Switching Lemma, a classical result in cryptography, and show how to use the limiting

argument on a simple rejection sampler. In §3 we recall some definitions from probability theory

and define the semantics of RandML. In §4 present a collection of program logic rules and coupling

rules of Approxis before developing our logical relations model in §5. In §6 we showcase Approxis

on a range of case studies, and in §7 we explain how the semantic model of Approxis is constructed

on top of the Iris base logic. Finally, we discuss related work and conclude in §8 and §9, respectively.

2 Key Ideas
In this section, we give a high-level overview of Approxis and introduce how error credits can be

used to do approximate relational reasoning. The primary specification assertion in Approxis is

the refinement weakest precondition, written rwp 𝑒1 ≾ 𝑒2 {Φ}, where 𝑒1 and 𝑒2 are two randomized

programs, and Φ is a relation on the return values and final program states of 𝑒1 and 𝑒2. Informally,

this relational connective says that if executing 𝑒1 terminates with a value 𝑣1, then 𝑒2 terminates

with value 𝑣2 and the postcondition Φ(𝑣1, 𝑣2) holds.
Because Approxis is a separation logic, when presenting the rules of the logic, we use infer-

ence rule-style notation with premises 𝑃1, . . . , 𝑃𝑛 and conclusion 𝑄 to stand for the entailment

𝑃1 ∗ . . . ∗ 𝑃𝑛 ⊢ 𝑄 in the logic.

For reasoning about non-randomized steps of 𝑒1 and 𝑒2, Approxis has a variety of rules that are

relational generalizations of usual separation logic rules, as in prior relational Hoare logics [Benton
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2004; Frumin et al. 2021; Turon et al. 2013]. For randomized steps, the first tool Approxis provides

are the so-called coupling rules pioneered by pRHL [Barthe et al. 2009]. A simple, specialized form

of such a rule is

∀𝑛 ≤ 𝑁 . rwp 𝑛 ≾ 𝑛 {Φ}
rwp rand𝑁 ≾ rand𝑁 {Φ}

wp-couple-exact

where rand𝑁 is a command in the language that samples a value uniformly from {0, . . . , 𝑁 }. This
rule says that if both programs are sampling from rand𝑁 , then we may reason as if they both

returned the same sample value 𝑛, instead of having to consider all (𝑁 + 1)2 possible combinations

of values they could have returned. This rule is justified by using the notion of couplings from

probability theory, and relies on the fact that the two sets being sampled from have the same size.

What if we want to reason about the case where the two sets being sampled from are not the same

size? For example, suppose the left program executes rand𝑁 and the right executes rand (𝑁 + 1).
We cannot exactly reason as if both programs sample the same value: there is a chance that the

program on the right samples 𝑁 + 1, which the program on the left can never do! However, the

right program only draws this “bad” value of 𝑁 + 1 with probability 1/(𝑁 + 2). If 𝑁 is very large,

this probability will be small, so we might hope to argue that we can approximately reason as if

the two samples returned the same value, recovering an analogue of wp-couple-exact.

This idea of approximate relational reasoning has been developed in apRHL [Barthe et al. 2012].

In apRHL, relational Hoare triples are annotated with an additional parameter, 𝜀, which bounds the

approximation error.
1
Then, the coupling rules allow for relating two sampling commands from

distributions that are only equal up to some error 𝜀′ by adding 𝜀′ to the total error on the Hoare

triple. However, Aguirre et al. [2024] have previously shown that tracking an error bound as an

additional parameter of a Hoare judgement has a number of limitations related to modularity and

precision of bounds. Instead, they proposed to track errors through a separation logic assertion

called an error credit, written E (𝜀), which represents a “permission” to incur an approximation

error of up to 𝜀. They developed this idea in a unary logic called Eris for bounding the probabilities

of events of a randomized program. A key aspect of the flexibility of error credits arises from the

fact that they can be split and joined, in the sense that E (𝜀1 + 𝜀2) ⊣⊢ E (𝜀1) ∗ E (𝜀2) for 𝜀1, 𝜀2 ≥ 0.

Approxis uses this idea of error credits to track approximation error in couplings. A special case

of Approxis’s approximate coupling rule applied to the scenario described above would be:

E
(

1

𝑁+2
)

∀𝑛 ≤ 𝑁 . rwp 𝑛 ≾ 𝑛 {Φ}
rwp rand𝑁 ≾ rand (𝑁 + 1) {Φ}

which says that if we spend E
(

1

𝑁+2
)
credits we may reason as if the two samples returned the same

value. Informally, we think of the error credits as being spent to “rule out” the case where the

program on the right returns 𝑁 + 1.
In Approxis a derivation of the form E (𝜀) ⊢ rwp 𝑒1 ≾ 𝑒2 {Φ} implies that at most 𝜀 total error is

incurred in deriving the refinement weakest precondition. The soundness theorem for the logic

then says that to prove that the distributions corresponding to two programs are within 𝜀 distance

of one another (in a sense to be made precise later), it suffices to prove the refinement weakest

preconditions in both directions, each with error up to 𝜀.

At a high level, tracking approximate coupling error using credits seems like a relatively simple

adaptation of Eris [Aguirre et al. 2024] to the relational setting. However, as we shall see later,

doing so in a sound manner involves addressing several new technical challenges that have no

analogue in the unary case. But first we shall look at an example of how the features of Approxis

can be used to reason about cryptographic security.

1
apRHL has a second annotation for bounding another form of probabilistic approximation which we do not consider.
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2.1 Motivating Example: PRP/PRF Switching Lemma
To illustrate the different ideas coming together in Approxis, we explore a classic approximate

equivalence result from cryptography: the PRP/PRF Switching Lemma [Bellare and Rogaway 2004;

Hall et al. 1998]. A key part of this lemma involves showing that random permutations (RPs) are

hard to distinguish from random functions (RFs) by a client (the “adversary”) that can only make a

bounded number of queries to such functions. For finite sets𝑋 and 𝑌 , a random function 𝑓 : 𝑋 → 𝑌

can be sampled by selecting, for each 𝑥 ∈ 𝑋 , an independent, uniform sample from 𝑌 , to use as

the value for 𝑓 (𝑥). Sometimes it is desirable for 𝑓 to be invertible (for modeling encryption and

decryption of a block cipher). We call such an 𝑓 a random permutation. The difference between

a RP and a RF is then that a RF may have collisions, i.e., values 𝑥1 ≠ 𝑥2 such that 𝑓 (𝑥1) = 𝑓 (𝑥2),
while a RP never produces collisions.

Consider the following task for an “adversary” A. They are given a function 𝑓 which may be

either a RP or a RF, and their goal is to determine which one they are interacting with by querying

𝑓 up to 𝑄 times and observing the results, i.e., they are not allowed to, say, inspect the code of 𝑓 .

Concretely, A should return true if it interacts with a RP and false for a RF.
How can A distinguish the two? If A finds a collision, then it knows that 𝑓 cannot be a RP.

However, if the domain of 𝑓 is very large compared to 𝑄 , then A cannot simply search the entire

domain for a collision, and its chances of finding a collision are low. Thus, the adversary will have a

low chance of correctly distinguishing the two scenarios. The switching lemma makes this formal

by showing that the probability thatA returns true for either interaction differs by at most
𝑄 (𝑄−1)
2 |dom𝑓 | .

Lemma 2.1 (PRP/PRF Switching Lemma). Let A be an adversary that asks at most 𝑄 queries and
let 𝑁 = |dom RF| = |dom RP|. Then

|Pr[A(RP) = true] − Pr[A(RF) = true] | ≤ 𝑄 (𝑄 − 1)
2𝑁

.

The Switching Lemma gained notoriety because several published proofs of the lemma were

found to contain mistakes [Bellare and Rogaway 2004]. This observation was among the motivations

for the development of a rigorous framework for cryptographic proofs such as the ones based on

“games” [Bellare and Rogaway 2004; Shoup 2004] and the subsequent development of mechanized

tools for such proofs [Barthe et al. 2014, 2009; Blanchet 2005].

To simplify the exposition, we first prove in Approxis an instantiation of the lemma with a

concrete weak adversary A𝑊 , which picks the input for its 𝑄 queries 𝑥0, . . . , 𝑥𝑄−1 uniformly at

random, without adapting to the response of the queries, and returns the list of outputs:

letA𝑊 𝑁 𝑄 𝑓 =

let xys = ref List.empty in
for 𝑖 = 0 to (𝑄 − 1) do
let x = rand (𝑁 − 1) in
let y = 𝑓 x in
xys← (x, y) :: ! xys

! xys

Lemma 2.2 (Weak PRP/PRF Switching Lemma). Let A𝑊 (𝑁,𝑄, ·) be the weak adversary defined
above, and let 𝑁 = |dom RF| = |dom RP|. Then, for any list of results ®𝑥𝑦

|Pr[A𝑊 (𝑁,𝑄, RP) = ®𝑥𝑦 ] − Pr[A𝑊 (𝑁,𝑄, RF) = ®𝑥𝑦 ] | ≤
𝑄 (𝑄 − 1)

2𝑁
.

We will prove the full Switching Lemma for an arbitrary 𝑄-query adversary later in §6.1.
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let irf 𝑁 =

let m = Map.init () in

λ x. if Map.get m x = None then
let y = rand (𝑁 − 1) in
Map.set (!m) x y ;

Map.get m x

let irp 𝑁 =

let m = Map.init () in
let l_unused = ref (List.seq 0 𝑁 ) in
λ x. if Map.get (!m) x = None then

let len = List.length (! l_unused) in
let k = rand (len − 1) in
let y = List.nth (! l_unused) k in
Map.set (!m) x y ;
l_unused← remove_nth (! l_unused) y ;

Map.get m x

Fig. 1. Example implementation of idealized RF and RP, parameterized by 𝑁 = |dom irf | = |dom irp|.

Random Functions and Permutations in RandML. First we need to model random functions

and permutations as programs in RandML. An example implementation of an idealized random

function with domain𝑋 = {0, . . . , 𝑁 −1} is given by irf in Figure 1. Upon initialization, irf 𝑁 creates

a reference to an initially empty (finite) map m and returns a function rf . On every call to rf (𝑥), if
rf has never been evaluated before on 𝑥 , a new point 𝑦 ∈ 𝑋 is sampled at random and stored into

m. Conversely, if 𝑥 has been queried before, rf (𝑥) looks up its value in m.

The idealized random permutation irp likewise initializes its internal state and returns a closure rp.
However, to sample a new element, rp randomly picks (the index 𝑘 of) an element 𝑦 of the list

l_unused of values in 𝑋 that do not yet occur in the codomain of rp, removes 𝑦 from l_unused, and
updates its internal map. Initially, all values in 𝑋 are unused, but as rp is evaluated on new points,

l_unused shrinks. Since each element of 𝑋 occurs only once in l_unused and gets removed the first

time it is picked, rp is guaranteed to remain collision-free.

The Mathematical Intuition. We first give an informal sketch of why the result holds—the

formal argument in Approxis will closely mirror this style of reasoning. We want to show that

with error probability at most 𝜀, A𝑊 (𝑁,𝑄, irp 𝑁 ) and A𝑊 (𝑁,𝑄, irf 𝑁 ) compute the same list of

results xys, where 𝜀 is the bound from Lemma 2.2. After initializing the weak adversary, both lists

are empty. We claim that the lists remain equal with high probability through each iteration of

the for loop. W.l.o.g, we can assume both random samplings of x return the same value. If x has
been sampled before, then no new information is gained from the call to 𝑓 , and the results are

equal with the same probability as before. If x is fresh, then irf will sample a new response y out

of {0, . . . , 𝑁 − 1}, while irp picks an element from l_unused. On the 𝑖-th loop iteration, l_unused
contains at least 𝑁 − 𝑖 elements, and hence the probability of irf sampling an element that does
not occur in l_unused and hence causes an observable collision is 𝑖/𝑁 . If irf remains collision free,

the probability that both programs compute the same result xys does not change. We can hence

establish an upper bound on the probability that A𝑊 (𝑁,𝑄, irp 𝑁 ) and A𝑊 (𝑁,𝑄, irf 𝑁 ) produce
different results by summing the probabilities that each loop iteration observes a collision. Since∑𝑄−1
𝑖=0

𝑖/𝑁 =
𝑄 (𝑄−1)

2𝑁
, Lemma 2.2 holds.

The Proof in Approxis. We derive Lemma 2.2 by proving the following pair of refinements.

Lemma 2.3. Let 𝑄, 𝑁 ∈ N, and let 𝜀𝑄 ≜ 𝑄 (𝑄−1)
2𝑁

. Then

E
(
𝜀𝑄

)
⊢ rwp A𝑊 (𝑁,𝑞, irp 𝑁 ) ≾ A𝑊 (𝑁,𝑄, irf 𝑁 ) {𝑥,𝑦. 𝑥 = 𝑦} , and (1)

E
(
𝜀𝑄

)
⊢ rwp A𝑊 (𝑁,𝑄, irf 𝑁 ) ≾ A𝑊 (𝑁,𝑄, irp 𝑁 ) {𝑥,𝑦. 𝑥 = 𝑦} . (2)

We sketch the proof of (1); the other direction is analogous. We prove (1) by reasoning backwards

from the conclusion. As a first step, we symbolically evaluate A𝑊 (𝑁,𝑞, irp 𝑁 ). Evaluation order

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 41. Publication date: January 2025.



Approximate Relational Reasoning for Higher-Order Probabilistic Programs 41:7

forces irp 𝑁 to evaluate first, which allocates a mapm and the list l_unused, and returns a function
rp. Afterwards, A𝑊 allocates a list of results xys. Similarly, evaluating A𝑊 (𝑁,𝑞, irf 𝑁 ) allocates
m′, substitutes rf for 𝑓 , and then allocates xys′. Note that we will often prove refinements of the

style rwp 𝑒1 ≾ 𝑒2 {Φ} where both 𝑒1 and 𝑒2 manipulate a variable 𝑥 . We frequently write 𝑥 and 𝑥 ′

for the left-hand side (𝑒1) and right-hand side (𝑒2) version of 𝑥 . Both xys and xys′ point to the empty

list at this stage, and the maps 𝑣𝑚 and 𝑣𝑚′ are empty. We use the traditional “points-to” connective

𝑝 ↦→ 𝑣 from separation logic to say that in the left program, 𝑝 points to 𝑣 , and write 𝑝 ↦→s 𝑣 for the

analogous fact about the right program state. We are thus left to prove the following refinement

E
(
𝜀𝑄

)
∗ xys ↦→ [] ∗ xys′ ↦→s []

∗ is_rp ∅ [0, . . . , 𝑁 ] ∗ is_rf ∅
⊢ rwp (𝑙𝑜𝑜𝑝rp 𝑄 ; ! xys) ≾ (𝑙𝑜𝑜𝑝rf 𝑄 ; ! xys′) {𝑥,𝑦. 𝑥 = 𝑦} ,

where 𝑙𝑜𝑜𝑝 𝑓 𝑄 stands for the for loop with bound 𝑄 , and rp and rf are the functions returned by

initializing irp and irf respectively. The proposition is_rp𝑚 𝑙 means that m currently points to the

map𝑚 and l_unused points to the list 𝑙 , and is_rf 𝑚 likewise means that m′ tracks the map𝑚.

We can generalize the goal slightly, and instead show the refinement below. The proof goes by

induction on the number 𝑖 of remaining loop iterations (initially 𝑄):

E (𝜀𝑖 ) ∗ (∃𝑚, 𝑙 . is_rp𝑚 𝑙 ∗ len𝑖 ≤ |𝑙 | ∗ is_rf 𝑚) ∗ Φres ∗ rwp (𝑙𝑜𝑜𝑝rp 𝑖) ≾ (𝑙𝑜𝑜𝑝rf 𝑖) {Φres} (3)

where 𝜀𝑖 ≜
∑𝑄−1
𝑘=𝑄−𝑖

𝑘
𝑁

=
𝑖 (2𝑄−𝑖−1)

2𝑁
, len𝑖 ≜ 𝑁 − (𝑄 − 𝑖) , Φres ≜ (∃ ®𝑥𝑦. xys ↦→ ®𝑥𝑦 ∗ xys′ ↦→s ®𝑥𝑦) .

This maintains the key loop invariant that both 𝑟𝑝 and 𝑟 𝑓 currently have the same mapping𝑚. The

base case 𝑖 = 0 holds, since the loop terminates immediately and the postcondition Φres holds by

assumption. To show the inductive case 𝑖 = 𝑗 + 1, we have to (1) prove that unrolling the loop once

preserves Φres and then (2) apply the induction hypothesis to the remaining 𝑗 iterations.

By assumption, we start with E
(
𝜀 𝑗+1

)
error credits, which represent the “budget” we can spend

on avoiding collisions caused by calls to rf that would result in different results. From an easy

calculation if follows that 𝜀 𝑗+1 =
𝑄−𝑖
𝑁
+𝜀 𝑗 . Our first step is to split this budget resource into two parts

E
(
𝑄−𝑖
𝑁

)
∗ E

(
𝜀 𝑗
)
. We will use E

(
𝑄−𝑖
𝑁

)
to “pay” for avoiding collisions in the current loop iteration

and E
(
𝜀 𝑗
)
to account for the remaining 𝑗 iterations.

We now focus on the first loop unrolling. The first instruction in the loop body samples an input

𝑥 from {0, . . . , 𝑁 − 1} that will be used as the next query. Since both programs sample from the

same uniform distribution rand (𝑁 − 1), we can use the exact coupling rule wp-couple-exact seen

earlier to proceed under the assumption that both programs sample the same value 𝑛. Next, the

programs call rp 𝑛 and rf 𝑛 respectively. If 𝑛 has been seen before, both functions return the same

value. If 𝑛 is fresh on the other hand, rf samples y from {0, . . . , 𝑁 − 1} whereas rp picks an element

from the list of unused values 𝑙 . By assumption, the length of 𝑙 is (at least) len𝑖 . The probability that

rf produce a collision, i.e., sample an element that is not in 𝑙 , is 𝑁−len𝑖
𝑁

=
𝑄−𝑖
𝑁

. Since this matches

the error credits we have, we can apply the following approximate coupling rule of Approxis, which
generalizes the simpler version seen earlier:

wp-couple-rand-rand-err-le

𝑔 : N≤𝐾 → N≤𝑀 injection E
(
𝑀−𝐾
𝑀+1

)
𝐾 ≤ 𝑀 ∀𝑘 ≤ 𝐾. rwp 𝑘 ≾ 𝑔(𝑘) {Φ}

rwp rand𝐾 ≾ rand𝑀 {Φ}
We instantiate 𝑔 with (𝜆 𝑛. List.nth 𝑙 𝑛), instantiate𝑀 with 𝑁 − 1, and instantiate 𝐾 with len𝑖 − 1 =
𝑁 − (𝑄 − 𝑖) − 1. By giving up ownership of E

(
𝑄−𝑖
𝑁

)
for the second premise, we can thus continue

the proof under the assumption that the rand (len−1) and rand (𝑁 −1) resolve to a pair of values 𝑘
and 𝑔(𝑘) such that 𝑔(𝑘), the newly sampled element in rf , is exactly the 𝑘-th element of 𝑙 . Since we
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assumed Φres as a hypothesis in Equation (3), and since both programs add the same value (𝑛,𝑔(𝑘))
to xys and xys′ respectively, Φres holds again after the first loop unfolding. We can thus conclude

our proof by appealing to the induction hypothesis, paying for the error credit premise with E
(
𝜀 𝑗
)
.

2.2 Error Amplification for Exact Equivalences
As alluded to in the introduction, error credits not only allow us to prove approximate equivalences,

they also allow us to prove exact equivalences of probabilistic programs. To motivate this, consider

the following rejection sampler, where𝑀 < 𝑁 .

rec sampler _ = let 𝑥 = rand𝑁 in if 𝑥 ≤ 𝑀 then 𝑥 else sampler ()
By continuously rejecting samples which do not correspond to values in the target set {0, . . . , 𝑀}
and retrying, sampler eventually produces values that are sampled uniformly from {0, . . . , 𝑀}. We

can state this formally by proving that sampler is equivalent to the expression rand𝑀 , i.e., by
showing the following two refinements:

rwp sampler () ≾ rand𝑀 {𝑣1, 𝑣2. 𝑣1 = 𝑣2}, and
rwp rand𝑀 ≾ sampler () {𝑣1, 𝑣2. 𝑣1 = 𝑣2}.

Perhaps surprisingly, although this kind of equivalence is a standard and important result in

randomized algorithms, no existing relational program logic can establish this with couplings, to

the best of our knowledge, even with approximate couplings.

To see what goes wrong, let us focus on trying to prove the second refinement, and consider

trying to apply a coupling rule to the step where the left program executes rand𝑀 and the right

executes rand𝑁 . If the right program’s sample is ≤ 𝑀 , then we want that value to be coupled and

equal to the value sampled on the left. On the other hand, if the right sample is > 𝑀 , then it will be

rejected, so we do not want to couple the result of rand𝑀 on the left to this value at all. We only

want to couple the left sample to be equal to the eventual later value that ends up being accepted!

Trying to use an approximate coupling to force both samples to be equal will not work either, as

that would incur a large error, and we are trying to show an exact coupling.

Approxis overcomes this limitation by introducing a new form of couplings called fragmented
couplings, which can be combined with a technique called error amplification introduced by Eris.

To start, rather than proving the above refinements with no error credits, we instead merely have

to prove them starting with an arbitrarily small positive error credit. That is, we must show:

E (𝜀) ⊢ rwp rand𝑀 ≾ sampler () {𝑣1, 𝑣2. 𝑣1 = 𝑣2}
for all 𝜀 > 0. The exact refinement then follows by a limiting argument, as 𝜀 → 0, c.f., Corollary 4.2.

But what can we do with an arbitrarily small error credit? After all, it may be too small to

apply the intended approximate coupling rule. The solution is that when reasoning about a rand𝑁
command, the logic allows us to amplify and grow the 𝜀 credits along branches of the random

outcome, as long as the expected amount of error credit across all branches is still 𝜀. In particular,

the following expectation-preserving fragmented coupling will allow us to apply this principle.

𝑀 < 𝑁 E (𝜀) 𝜄 ↩→ (𝑀, 𝜀)
∀𝑚 ≤ 𝑀. rwp𝑚 ≾𝑚 {Φ} ∀𝑚 > 𝑀. 𝜄 ↩→ (𝑀, 𝜀) ∗ E

(
𝑁+1
𝑁−𝑀 · 𝜀

)
∗ rwp rand 𝑀 𝜄 ≾𝑚 {Φ}

rwp rand 𝑀 𝜄 ≾ rand 𝑁 {Φ}
Here we present a simplified variant of a more general rule, and the grayed out parts may be

ignored for now. We discuss the general rules in §4.1. The rule requires 𝜀 credits and lets us relate

two sampling operations, rand𝑀 and rand𝑁 . It asks us to consider two cases: (1) the outcome

of the two samplings agree and are within range, and (2) the right sampling is resolved to some
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𝑚 > 𝑀 but the left does not sample anything; we also get to assume ownership of
𝑁+1
𝑁−𝑀 · 𝜀 error

credits. We call this a “fragmented” coupling because it allows for one of the coupled programs to

not necessarily execute its random sample, depending on what the other program drew.

Applying this rule to the rejection sampler, when the first case occurs, the sample will be

accepted and the proof will conclude. In the second case, the rejection sampler will loop. Now, for

any starting 𝜀, if we repeatedly increase our error credits by a factor of
𝑁+1
𝑁−𝑀 by each loop iteration,

then eventually we will have a large enough error credit to apply an approximate coupling rule and

“force” the right-hand sample to be in range. By doing induction on the number of amplifications

needed, we can therefore conclude the proof.

3 Preliminaries
In this section, we recall some basic definitions in probability theory and a notion of approximate
couplings [Sato 2016]. We then introduce the syntax and semantics of RandML, the language of our

programs, and our notion of contextual equivalence.

3.1 Probability Theory
To account for possibly non-terminating behavior of programs, we define our operational semantics

using probability sub-distributions.

Definition 3.1 (Distribution). A discrete subdistribution (henceforth simply distribution) on a
countable set 𝐴 is a function 𝜇 : 𝐴→ [0, 1] such that

∑
𝑎∈𝐴 𝜇 (𝑎) ≤ 1. The collection of distributions

on 𝐴 is denoted by D(𝐴).

Given a predicate 𝑃 , the Iverson bracket [𝑃] evaluates to 1 if 𝑃 is true and to 0 otherwise.

Lemma 3.2 (Discrete Distribution Monad). We can equip D with a monadic structure, with
operations

ret : 𝐴→ D(𝐴) bind : (𝐴→ D(𝐵)) → D(𝐴) → D(𝐵)

ret(𝑎) (𝑎′) ≜ [𝑎 = 𝑎′] bind(𝑓 , 𝜇) (𝑏) ≜
∑︁
𝑎∈𝐴

𝜇 (𝑎) · 𝑓 (𝑎) (𝑏)

We use the notation 𝜇 ≫= 𝑓 for bind(𝑓 , 𝜇).

Definition 3.3 (Expected value). Let 𝜇 ∈ D(𝐴) be a distribution and 𝑋 : 𝐴→ [0, 1] a random
variable. The expected value of 𝑋 with respect to 𝜇 is defined as E𝜇 [𝑋 ] ≜

∑
𝑎∈𝐴 𝜇 (𝑎) · 𝑋 (𝑎).

Many probabilistic relational program logics use probabilistic couplings [Lindvall 2002; Thorisson
2000; Villani 2008], a mathematical tool for reasoning about pairs of probabilistic processes. To

reason about approximate equivalence of probabilistic programs, we use a notion of approximate
probabilistic coupling [Sato 2016].

Definition 3.4 (Approximate Coupling). Let 𝜇1 ∈ D(𝐴) and 𝜇2 ∈ D(𝐵). Given some approx-
imation error 𝜀 ∈ [0, 1] and a relation 𝑅 ⊆ 𝐴 × 𝐵, we say that there exists an (𝜀, 𝑅)-coupling of
𝜇1 and 𝜇2 if for all [0, 1]-valued random variables 𝑋 : 𝐴 → [0, 1] and 𝑌 : 𝐵 → [0, 1], such that
(𝑎, 𝑏) ∈ 𝑅 implies 𝑋 (𝑎) ≤ 𝑌 (𝑏), the expected value of 𝑋 exceeds the expected value of 𝑌 by at most 𝜀,
i.e., E𝜇1 [𝑋 ] ≤ E𝜇2 [𝑌 ] + 𝜀. We write 𝜇1 ≲𝜀 𝜇2 : 𝑅 if an (𝜀, 𝑅)-coupling exists between 𝜇1 and 𝜇2.

Proving existence of (𝜀, 𝑅)-couplings for particular choices of 𝑅 is useful to prove relations

between distributions. When 𝑅 is the equality relation, couplings can be used to prove bounds on

the total variation distance, which has applications when reasoning about convergence properties,

as well as in security definitions.
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Lemma 3.5. Let 𝜇1, 𝜇2 ∈ D(𝐴) such that there exists an 𝜀-coupling for the equality relation, i.e.,
𝜇1 ≲𝜀 𝜇2 : (=), then for all 𝑎 ∈ 𝐴 we have 𝜇1 (𝑎) ≤ 𝜇2 (𝑎) + 𝜀. If, in addition, 𝜇2 ≲𝜀 𝜇1 : (=), then the
total variation distance between 𝜇1 and 𝜇2 is at most 𝜀, i.e., sup𝑆⊆𝐴 |𝜇1 (𝑆) − 𝜇2 (𝑆) | ≤ 𝜀.
Corollary 3.6. Let 𝜇1, 𝜇2 ∈ D(𝐴). Then 𝜇1 ≲0 𝜇2 : (=) implies that for all 𝑎 ∈ 𝐴, 𝜇1 (𝑎) ≤ 𝜇2 (𝑎).
By completeness of the real numbers, we obtain the following limiting theorem.

Lemma 3.7. Let 𝜇1, 𝜇2 ∈ D(𝐴) and 𝜀 ∈ [0, 1]. If 𝜇1 ≲𝜀′ 𝜇2 : 𝑅 for all 𝜀′ > 𝜀 then 𝜇1 ≲𝜀 𝜇2 : 𝑅.

To construct couplings between program executions, we can compose couplings of single steps

of executions. This is possible because couplings compose along the bind of the distribution monad.

Let 𝜇1 ∈ D(𝐴), 𝜇2 ∈ D(𝐵), 𝑓 : 𝐴→ D(𝐴′), 𝑔 : 𝐵 → D(𝐵′), 𝑅 ⊆ 𝐴 × 𝐵, and 𝑅′ ⊆ 𝐴′ × 𝐵′.
Lemma 3.8. If 𝜇1 ≲𝜀 𝜇2 : 𝑅 and ∀(𝑎, 𝑏) ∈ 𝑅, 𝑓 (𝑎) ≲𝜀′ 𝑔(𝑏) : 𝑅′, then (𝜇1 ≫= 𝑓 ) ≲𝜀+𝜀′ (𝜇2 ≫= 𝑔) : 𝑅′.
We can strengthen this lemma by letting the grading 𝜀′ for the continuation vary depending on

the value that 𝑎 takes, and consider its expected value w.r.t. 𝜇1 when composing the couplings:

Lemma 3.9. Let E : 𝐴 → [0, 1]. If 𝜇1 ≲𝜀 𝜇2 : 𝑅 and ∀(𝑎, 𝑏) ∈ 𝑅, 𝑓 (𝑎) ≲E(𝑎) 𝑔(𝑏) : 𝑅′, then
(𝜇1 ≫= 𝑓 ) ≲𝜀+𝜀′ (𝜇2 ≫= 𝑔) : 𝑅′ where 𝜀′ = E𝜇1 [E ].
Symmetrically, we can vary the error on 𝐵 and consider its expected value w.r.t. 𝜇2:

Lemma 3.10. Let E : 𝐵 → [0, 1]. If 𝜇1 ≲𝜀 𝜇2 : 𝑅 and ∀(𝑎, 𝑏) ∈ 𝑅, 𝑓 (𝑎) ≲E(𝑏 ) 𝑔(𝑏) : 𝑅′, then
(𝜇1 ≫= 𝑓 ) ≲𝜀+𝜀′ (𝜇2 ≫= 𝑔) : 𝑅′ where 𝜀′ = E𝜇2 [E ].
To the best of our knowledge, the expectation-preserving composition lemmas 3.9 and 3.10 are

novel, at least in the context of program logics. We apply these results for rules such as the

expectation-preserving fragmented coupling rule presented in §2.2, where we can amplify the

error credit for certain branches as long as the expected amount of error credit across all branches

remains the same.

3.2 The RandML Language and Operational Semantics
The RandML language that we consider is an ML-like language with probabilistic uniform sampling,

higher-order functions, higher-order state, recursive types, and impredicative type polymorphism.

The syntax is defined by the grammar below.

𝑣,𝑤 ∈Val ::= 𝑧 ∈ Z | 𝑏 ∈ B | () | ℓ ∈ Loc | rec f x = 𝑒 | (𝑣,𝑤) | inl 𝑣 | inr 𝑣
𝑒 ∈ Expr ::= 𝑣 | x | rec f x = 𝑒 | 𝑒1 𝑒2 | 𝑒1 + 𝑒2 | 𝑒1 − 𝑒2 | . . . | if 𝑒 then 𝑒1 else 𝑒2 | (𝑒1, 𝑒2) | fst 𝑒 | . . .

ref 𝑒1 | ! 𝑒 | 𝑒1 ← 𝑒2 | 𝑒1 [𝑒2] | rand 𝑒 | pack 𝑒 | unpack 𝑒 as 𝑥 in 𝑒 | . . .
𝐾 ∈ Ectx ::= − | 𝑒 𝐾 | 𝐾 𝑣 | ref 𝐾 | !𝐾 | 𝑒 ← 𝐾 | 𝐾 ← 𝑣 | rand𝐾 | . . .
𝜎 ∈ State ≜ Loc fin−⇀Val 𝜌 ∈ Cfg ≜ Expr × State
𝜏 ∈ Type ::= 𝛼 | unit | bool | nat | int | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏 → 𝜏 | ∀𝛼. 𝜏 | ∃𝛼. 𝜏 | 𝜇 𝛼. 𝜏 | ref 𝜏
The term language is mostly standard. We use ref 𝑒1 to allocate a new reference containing the

value returned by 𝑒1, ! 𝑒 to dereference the location 𝑒 evaluates to, and 𝑒1 ← 𝑒2 to evaluate 𝑒2 and

assign the result to the location that 𝑒1 evaluates to. We often refer to a recursive function value

rec f x = 𝑒 by its name f. The operation rand 𝑁 denotes uniform random sampling over {0, . . . , 𝑁 }.
Finally, we have several terms related to typing operations e.g., pack 𝑒 and unpack 𝑒1 as 𝑥 in 𝑒2

are used for introducing and eliminating existential types. We write Θ | Γ ⊢ 𝑒 : 𝜏 to denote that 𝑒

has type 𝜏 in the typing context Θ | Γ, which consists of a context of type variables Θ and a context

of program variables Γ. The inference rules for the typing judgments are standard (see, e.g., Frumin

et al. [2021] or the Coq formalization).
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Operational Semantics. To define program execution, we define step(𝜌) ∈ D(Cfg), the distribu-
tion induced by the single step reduction of configuration 𝜌 ∈ Cfg. The semantics is mostly standard.

We first define head reductions and then lift it to reduction in an evaluation context 𝐾 . All non-

probabilistic constructs reduce deterministically as usual, e.g., step((λ x. 𝑒) 𝑣, 𝜎) = ret(𝑒 [𝑣/x], 𝜎).
We write 𝑒

pure

⇝ 𝑒′ if the evaluation is deterministic and holds independently of the state, e.g.,

(λ x. 𝑒) 𝑣
pure

⇝ 𝑒 [𝑣/x] and fst(𝑣1, 𝑣2)
pure

⇝ 𝑣1. The probabilistic choice rand𝑁 reduces uniformly at

random, i.e.,

step(rand𝑁, 𝜎) (𝑛, 𝜎) ≜
{

1

𝑁+1 for 𝑛 ∈ {0, 1, . . . , 𝑁 },
0 otherwise.

With the single step reduction step(−,−) defined, we next define a step-stratified execution

probability exec𝑛 : Cfg→ D(Val) by induction on 𝑛:

exec0 (𝑒, 𝜎) (𝑣) ≜
{
1 if 𝑒 ∈Val ∧ 𝑒 = 𝑣,
0 otherwise.

exec𝑚+1 (𝑒, 𝜎) (𝑣) ≜
{
1 if 𝑒 ∈Val ∧ 𝑒 = 𝑣,∑
(𝑒′,𝜎 ′ ) ∈Expr×State step(𝑒, 𝜎) (𝑒′, 𝜎 ′) · exec𝑚 (𝑒′, 𝜎 ′) (𝑣) otherwise.

That is, exec𝑛 (𝑒, 𝜎) (𝑣) is the probability of stepping from the configuration (𝑒, 𝜎) to a value 𝑣 in less

than 𝑛 steps. The probability that a execution, starting from configuration 𝜌 , reaches a value 𝑣 is

taken as the limit of its stratified approximations, which exists by monotonicity and boundedness:

exec(𝜌) (𝑣) ≜ lim𝑛→∞exec𝑛 (𝜌) (𝑣)
The termination probability of an execution from configuration 𝜌 is exec⇓ (𝜌) ≜ Σ𝑣∈Valexec(𝜌) (𝑣).

The definition of program execution as a distribution leads to a natural notion of 𝜀-approximation.

We say that 𝑒1 𝜀-approximates 𝑒2 if exec(𝑒1, 𝜎) (𝑣) ≤ exec(𝑒2, 𝜎) (𝑣) + 𝜀 for all 𝑣, 𝜎 . By Lemma 3.5, we

can show such approximations by establishing an approximate coupling of the executions of 𝑒1
and 𝑒2. We say 𝑒1 and 𝑒2 are 𝜀-equivalent if both 𝑒1 𝜀-approximates 𝑒2 and 𝑒2 𝜀-approximates 𝑒1. In

that case, we have |exec(𝑒1, 𝜎) (𝑣) − exec(𝑒2, 𝜎) (𝑣) | ≤ 𝜀 for all 𝑣, 𝜎 .

Example 3.11. Consider the program below

𝑒 ≜ let 𝑥 = rand𝑁 in 𝑥 ≤ 𝑀
and assume𝑀 ≤ 𝑁 . Evaluation order dictates that the random sampling is resolved first. Then we

have, for any 𝜎 : State and any 0 ≤ 𝑛 ≤ 𝑁 :

step(𝑒, 𝜎) (let 𝑥 = 𝑛 in 𝑥 ≤ 𝑀,𝜎) = 1

𝑁 + 1
The probability of stepping to any other configuration is 0. Fixing a particular 𝑛, the next step is

deterministic, and therefore we have

step(let 𝑥 = 𝑛 in 𝑥 ≤ 𝑀,𝜎) = ret(𝑛 ≤ 𝑀,𝜎)
The final step is also deterministic and just evaluates the inequality 𝑛 ≤ 𝑀 to either true or false.
Collecting all of the probabilities of the succesful comparisons together, we can show

exec3 (𝑒, 𝜎) (true) =
𝑀 + 1
𝑁 + 1

and trivially at the limit

exec(𝑒, 𝜎) (true) = 𝑀 + 1
𝑁 + 1
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Note that, since the execution of 𝑒 takes exactly 3 steps to reach to a value, executing 𝑒 for fewer

steps returns the zero distribution on values:

exec0 (𝑒, 𝜎) = exec1 (𝑒, 𝜎) = exec2 (𝑒, 𝜎) = 𝜆𝑣.0

Presampling Tapes. Standard probabilistic coupling logics require aligning or “synchronizing”

sampling statements of the two programs under consideration. For example, both programs have to

be executing the sample statements we want to couple for their next step when applying a coupling

rule. However, it is not always possible to synchronize sampling statements in this way, especially

for higher-order programs. To address this issue, Gregersen et al. [2024] introduce asynchronous
coupling. As we will see, the same mechanisms are useful for approximate relational reasoning.

Asynchronous couplings are introduced through dynamically-allocated presampling tapes that
are added to the language. Intuitively, presampling tapes will allow us in the logic to presample (and

in turn couple) the outcome of future sampling statements. Formally, presampling tapes appear as

two new constructs added to the programming language.

𝑣 ∈Val ::= . . . | 𝜄 ∈ Label
𝑒 ∈ Expr ::= . . . | tape 𝑒 | rand 𝑒1 𝑒2
𝐾 ∈ Ectx ::= . . . | tape 𝐾 | rand 𝑒 𝐾 | rand𝐾 𝑣

𝜎 ∈ State ≜ (Loc fin−⇀Val) × (Label fin−⇀ Tape)
𝑡 ∈ Tape ≜ {(𝑁, ®𝑛) | 𝑁 ∈ N ∧ ®𝑛 ∈ N∗≤𝑁 }
𝜏 ∈ Type ::= . . . | tape

The tape𝑁 operation allocates a new fresh tape with label 𝜄 and upper bound 𝑁 , representing

future outcomes of rand𝑁 𝜄 operations. The rand primitive can now (optionally) be annotated

with the tape label 𝜄. If the corresponding tape is empty, rand𝑁 𝜄 reduces to any 𝑛 ≤ 𝑁 with equal

probability, just as if it had not been labeled. But if the tape is not empty, then rand𝑁 𝜄 reduces
deterministically by taking off the first element of the tape and returning it.

step(tape𝑁, 𝜎) ≜
{
ret(𝜄, 𝜎 [𝜄 ↦→ (𝑁, 𝜖)]) 𝜄 = fresh(𝜎), 𝑁 ≥ 0 ,

ret(𝜄, 𝜎 [𝜄 ↦→ (0, 𝜖)]) 𝜄 = fresh(𝜎), 𝑁 < 0 .

step(rand𝑁 𝜄, 𝜎 [𝜄 ↦→ (𝑁, 𝜖)]) (𝑛, 𝜎 [𝜄 ↦→ (𝑁, 𝜖)]) ≜
{

1

𝑁+1 for 𝑛 ∈ {0, 1, . . . , 𝑁 },
0 otherwise.

step(rand𝑁 𝜄, 𝜎 [𝜄 ↦→ (𝑁,𝑛 :: 𝑤)]) ≜ ret(𝑛, 𝜎 [𝜄 ↦→ (𝑁,𝑤)])

Note that no primitives in the language add values to the tapes. Instead, values are added to

tapes as part of presampling steps that will be ghost operations appearing only in the logic. In fact,

labeled and unlabeled sampling operations are contextually equivalent [Gregersen et al. 2024]. This

result follows from the fact that the ghost operations for adding values to tapes are erasable in the

following sense:

Definition 3.12 (Erasable). Let 𝜇 ∈ D(State) and 𝜎 ∈ State.

erasable(𝜇, 𝜎) ≜ ∀𝑒, 𝑛. exec𝑛 (𝑒, 𝜎) = (𝜇 ≫= 𝜆 𝜎 ′ . exec𝑛 (𝑒, 𝜎 ′))

Erasability of 𝜇 w.r.t. 𝜎 intuitively captures that distribution 𝜇 does not influence the probabilistic

outcome of any program execution from state 𝜎 . For example, erasable(ret(𝜎), 𝜎) trivially holds by

the left identity law of the distributionmonad.More interestingly, in RandML, erasable(sstep𝜄 (𝜎), 𝜎)
holds where sstep𝜄 (𝜎) is the distribution of the ghost operation that samples a fresh value uniformly

onto the end of the presampling tape with label 𝜄 in state 𝜎 . This is the essence of the soundness of

asynchronous couplings and ultimately what allows us to validate rules such as wp-tape-tape-

append and wp-many-to-one, which we explain later in §4.1.
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3.3 Contextual Refinement and Equivalence
A program context C is an expression with a hole and we write C[𝑒] for the term resulting from

replacing the hole in C by 𝑒 . Contexts are also typed; we write (C : (Θ | Γ ⊢ 𝜏) ⇒ (Θ′ | Γ′ ⊢ 𝜏 ′))
whenever Θ′ | Γ′ ⊢ C[𝑒] : 𝜏 ′ for every well-typed Θ | Γ ⊢ 𝑒 : 𝜏 .

The notion of contextual refinement that we use is standard and uses the termination probability

exec⇓ as observation predicate. We say expression 𝑒1 contextually refines expression 𝑒2 if for all
well-typed program contexts C resulting in a closed program then the termination probability of

C[𝑒1] is bounded by the termination probability of C[𝑒2]:

Θ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏 ≜ ∀𝜏 ′, (C : (Θ | Γ ⊢ 𝜏) ⇒ (∅ | ∅ ⊢ 𝜏 ′)), 𝜎 . exec⇓ (C[𝑒1], 𝜎) ≤ exec⇓ (C[𝑒2], 𝜎)

Note that contextual refinement is a precongruence, and that the statement itself is in the meta-logic

(e.g., Coq) and makes no mention of Approxis or Iris. We define contextual equivalence Θ | Γ ⊢
𝑒1 ≃ctx 𝑒2 : 𝜏 as refinement in both directions, i.e., Θ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏 and Θ | Γ ⊢ 𝑒2 ≾ctx 𝑒1 : 𝜏 .

4 An Approximate Relational Logic
In this section, we introduce the relational Approxis logic and its soundness theorem, with an

emphasis on the novel relational rules that interact with error credits or with presampling tapes.

We then demonstrate the logic on a simple rejection sampler.

Approxis is built on top of the Iris separation logic framework [Jung et al. 2018] and hence

inherits many of Iris’s logical connectives. A selection of Approxis propositions is shown below.

𝑃,𝑄 ∈ iProp ::= True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 | ∀𝑥 . 𝑃 | ∃𝑥 . 𝑃 | 𝑃 ∗ 𝑄 | 𝑃 ∗ 𝑄 |
ℓ ↦→ 𝑣 | ℓ ↦→s 𝑣 | 𝜄 ↩→ (𝑁, ®𝑛) | 𝜄 ↩→s (𝑁, ®𝑛) | E (𝜀) | rwp 𝑒1 ≾ 𝑒2 {𝑣1, 𝑣2. 𝑃} | . . .

Most of the propositions are standard, such as separating conjunction 𝑃 ∗ 𝑄 and separating im-

plication 𝑃 ∗ 𝑄 (the magic wand). As we saw earlier, the heap points-to assertion that denotes

ownership of location ℓ comes in two forms: ℓ ↦→ 𝑣 for the left-hand side, and ℓ ↦→s 𝑣 for the

right-hand side (the “specification” side). Similarly, since presampling tapes are part of the state,

we also have tape points-to assertions for both sides: 𝜄 ↩→ (𝑁, ®𝑛) and 𝜄 ↩→s (𝑁, ®𝑛), respectively.
Inspired by Eris [Aguirre et al. 2024], we interpret errors as resources in our logic using the E (𝜀)

connective for 𝜀 ∈ [0, 1]. Intuitively, E (𝜀) denotes ownership of 𝜀 error credits that can be spent to do
𝜀-approximate reasoning. Error credits can be split and combined, i.e., E (𝜀1 + 𝜀2) ⊣⊢ E (𝜀1) ∗ E (𝜀2).
Another important fact is that ownership of 1 error credit immediately leads to a contradiction, i.e.,
E (1) ⊢ False. Intuitively, this is sound because there always exists a trivial (1, 𝜑)-coupling for any

two distributions and for any 𝜑 .

To show that 𝑒1 𝜀-approximates 𝑒2 we prove an entailment of the form E (𝜀) ⊢ rwp 𝑒1 ≾
𝑒2 {𝑣, 𝑣 ′ .𝑣 = 𝑣 ′}. The following soundness theorem says we may then conclude the existence of an

𝜀-approximate coupling under the equality relation.

Theorem 4.1 (Adeqacy). Let 𝜑 ⊆Val ×Val be a relation and 𝜀 ∈ [0, 1]. If E (𝜀) ⊢ rwp 𝑒1 ≾ 𝑒2 {𝜑}
then exec(𝑒1, 𝜎1) ≲𝜀 exec(𝑒2, 𝜎2) : 𝜑 for all 𝜎1 and 𝜎2.

The result is stated here to provide the reader with a semantic understanding of the rules we

will present in this section. In §7 we will explain the underlying model in more detail and discuss

the proof of this result.

As a corollary of the above, we get the following error-limiting result by appealing to Lemma 3.7.

Corollary 4.2 (Error-Limiting Adeqacy). Let 𝜑 ⊆Val ×Val be a relation and 𝜀 ∈ [0, 1]. If
E (𝜀′) ⊢ rwp 𝑒1 ≾ 𝑒2 {𝜑} for all 𝜀′ > 𝜀 then exec(𝑒1, 𝜎1) ≲𝜀 exec(𝑒2, 𝜎2) : 𝜑 for all 𝜎1 and 𝜎2.
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The corollary is similar to Theorem 4.1 in that we obtain an approximate (𝜀, 𝜑)-coupling of the

execution of the two programs. However, instead of establishing the weakest precondition given 𝜀

credits, one has to prove the weakest precondition given 𝜀′ credits for an arbitrary 𝜀′ > 𝜀. Note that
by picking 𝜀 to be 0 this also allows us to establish exact equivalences as we demonstrate in §4.2.

4.1 Rules of Approxis
In this section, we present a selection of the rules of Approxis. The rules are categorized into

four classes. We start with program-logic rules that are the relatively standard laws that most

relational separation logics enjoy. We then discuss of (approximate and non-approximate) coupling

rules. Afterwards, we consider rules that use presampling tapes to reason about more complicated

couplings. We conclude with a discussion of the error amplification proof technique which Approxis

supports for reasoning about recursive programs.

Program-Logic Rules. We note that most rules (except where explicitly mentioned, in particular

wp-rec) have both left- and right-sided variants. For brevity, we present only left-sided variants,

right-sided variants are symmetric and use specification-side connectives ( ↦→s and ↩→s).

Although Approxis is a separation logic for reasoning about probabilistic programs, the rules

of the non-probabilistic fragment are identical to the structural and computational rules found

in most logics for non-probabilistic programs. A selection of rules for the deterministic fragment

is found in Figure 2. For example, Approxis satisfies the relational bind rule (wp-bind), rules for

symbolically taking deterministic “pure” steps—steps that do not depend on state (wp-pure-l), and

rules for interacting with the heap (wp-load-l). The rule wp-rec is the standard recursive function

rule found in general program logics. (We do not have a “standard” recursive function rule for the

right-hand side program because of how our refinement weakest-precondition assertion is defined.

See §7 for more details.)

rwp 𝑒1 ≾ 𝑒2 {Ψ} ∀𝑣1, 𝑣2 . Ψ(𝑣1, 𝑣2) ∗ rwp 𝐾 [𝑣1] ≾ 𝐾 [𝑣2] {Φ}
rwp 𝐾 [𝑒1] ≾ 𝐾 ′ [𝑒2] {Φ}

wp-bind

𝑒1
pure

⇝ 𝑒′
1

rwp 𝑒′
1
≾ 𝑒2 {Φ}

rwp 𝑒1 ≾ 𝑒2 {Φ}
wp-pure-l

ℓ ↦→ 𝑣 ℓ ↦→ 𝑣 ∗ rwp 𝑣 ≾ 𝑒 {Φ}
rwp ! ℓ ≾ 𝑒 {Φ}

wp-load-l

(∀𝑤. rwp (rec 𝑓 𝑥 = 𝑒) 𝑤 ≾ 𝑒′ {Φ}) ⊢ rwp 𝑒1 [𝑣/𝑥] [(rec 𝑓 𝑥 = 𝑒)/𝑓 ] ≾ 𝑒′ {Φ}
⊢ rwp (rec 𝑓 𝑥 = 𝑒) 𝑣 ≾ 𝑒′ {Φ}

wp-rec

Fig. 2. A selection of the deterministic program-logic rules of Approxis.
The program-logic rules for the probabilistic fragment of RandML and presampling tapes are

shown in Figure 3. These rules reflect the operational semantics of RandML. For situations where

we only want to progress the left program’s random sampling without coupling, the rule wp-rand-l

can be used. The rule wp-alloc-tape-l allocates a fresh tape and returns its label. The rules for

sampling from a tape 𝜄 depend on the contents of the tape: if the tape is not empty, we pop and

return the first value (wp-rand-tape-l). If the tape is empty, we sample an arbitrary integer from 0

to 𝑁 (wp-rand-tape-empty-l), just as for rand 𝑁 without a tape annotation.

We emphasize that all of the rules shown so far are also found in the relational logic of

Clutch [Gregersen et al. 2024], except that the right-hand-side rules in Clutch require that the

left-hand-side program is not a value. This side-condition is a limitation of the model of Clutch

that we eliminate in Approxis. (This seemingly small improvement required significant changes to
the model, which we detail in §7.)
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∀𝑛 ≤ 𝑁 . rwp 𝑛 ≾ 𝑒 {Φ}
rwp rand𝑁 ≾ 𝑒 {Φ}

wp-rand-l

∀𝜄. 𝜄 ↩→ (𝑁, 𝜖) ∗ rwp 𝜄 ≾ 𝑒 {Φ}
rwp tape𝑁 ≾ 𝑒 {Φ}

wp-alloc-tape-l

𝜄 ↩→ (𝑁,𝑛 · ®𝑛) 𝜄 ↩→ (𝑁, ®𝑛) ∗ rwp 𝑛 ≾ 𝑒 {Φ}
rwp rand𝑁 𝜄 ≾ 𝑒 {Φ}

wp-rand-tape-l

𝜄 ↩→ (𝑁, 𝜖) ∀𝑛 ≤ 𝑁 . 𝜄 ↩→ (𝑁, 𝜖) ∗ rwp 𝑛 ≾ 𝑒 {Φ}
rwp rand𝑁 𝜄 ≾ 𝑒 {Φ}

wp-rand-tape-empty-l

Fig. 3. A selection of program-logic rules of Approxis for the probabilistic operations.

Approximate Coupling Rules. The rules shown so far allow one to symbolically progress

either the left- or right-hand side program of the weakest precondition assertion, independently of

each other. However to prove interesting relational properties, we need to progress the programs

in a related manner using coupling rules, which we saw special cases of in §2.

First, we have wp-couple-rand-rand-err-le which relates sampling rand𝑁 with rand𝑀
where 𝑁 ≤ 𝑀 . Here 𝑓 : N≤𝑁 → N≤𝑀 is an injective function (N≤𝑁 denotes the natural numbers

≤ 𝑁 ) and by spending
𝑀−𝑁
𝑀+1 error credits, we may continue reasoning as if the return values are

“synchronized” and related by 𝑓 . This is also the rule we used for proving the switching lemma

presented in §2. Note that in the special case where 𝑁 = 𝑀 , this generalizes the traditional coupling

rule found in exact coupling logics (e.g. Clutch [Gregersen et al. 2024]) where no error is incurred;

the wp-couple-exact rule in §2 is an example of this special case.

The wp-couple-rand-rand-err-ge rule works almost identically, except that the inequality of

the bound is reversed, i.e., 𝑁 ≥ 𝑀 . (We mention that all the other rules we present in this paper have

symmetric versions, just as for wp-couple-rand-rand-err-le and wp-couple-rand-rand-err-ge.

For the sake of brevity, we shall only present one direction of each pair of rules subsequently.)

wp-couple-rand-rand-err-le

𝑓 : N≤𝑁 → N≤𝑀 injection E
(
𝑀−𝑁
𝑀+1

)
𝑁 ≤ 𝑀 ∀𝑛 ≤ 𝑁 . rwp 𝑛 ≾ 𝑓 (𝑛) {Φ}

rwp rand𝑁 ≾ rand𝑀 {Φ}

wp-couple-rand-rand-err-ge

𝑓 : N≤𝑀 → N≤𝑁 injection E
(
𝑁−𝑀
𝑁+1

)
𝑁 ≥ 𝑀 ∀𝑛 ≤ 𝑀. rwp 𝑓 (𝑛) ≾ 𝑛 {Φ}

rwp rand𝑁 ≾ rand𝑀 {Φ}

As in Clutch, Approxis also supports asynchronous coupling. For example, the wp-couple-tape-

tape-err-ge rule below is a variant of wp-couple-rand-rand-err-ge where, instead of two

program samplings, we couple two tape samplings.

wp-couple-tape-tape-err-ge

𝑓 : N≤𝑀 → N≤𝑁 injection 𝑁 ≥ 𝑀 𝜄 ↩→ (𝑁, ®𝑛) 𝜄′ ↩→s (𝑀, ®𝑚)
E
(
𝑁−𝑀
𝑁+1

)
∀𝑛 ≤ 𝑀. 𝜄 ↩→ (𝑁, ®𝑛 · 𝑓 (𝑛)) ∗ 𝜄′ ↩→s (𝑀, ®𝑚 · 𝑛) ∗ rwp 𝑒1 ≾ 𝑒2 {Φ}

rwp 𝑒1 ≾ 𝑒2 {Φ}

Many-to-One and Fragmented Coupling Rules. The coupling rules shown so far allow one to

couple one sampling with another. However, in certain cases, we may need to couple one sampling

to zero or multiple possibly-non-adjacent samplings. Consider the following two programs as an

example: 𝑒1 ≜ 2 · rand 1 + rand 1 and 𝑒2 ≜ rand 3. These programs are equivalent: 𝑒1 samples two

bits and returns the result interpreted in base 2, while 𝑒2 samples directly from the same distribution.

None of the coupling rules shown so far would allow us to relate these two programs.
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Presampling tapes turn out to be a succinct and uniform solution to this problem, as smoothly

enabled by the new and more flexible model of Approxis. By reasoning about values stored in tapes,

we can construct more intricate couplings that do not adhere to the one-to-one pattern exhibited

in our previous rules. This notion is captured by the following general rule:

wp-tape-tape-append

E (𝜀) 𝜄 ↩→ (𝑁, ®𝑛) 𝜄′ ↩→s (𝑀, ®𝑚) unif (𝑁 + 1)𝑝 ≲𝜀 unif (𝑀 + 1)𝑞 : 𝑅

∀(𝑣,𝑤) ∈ 𝑅. 𝜄 ↩→ (𝑁, ®𝑛 ++ 𝑣) ∗ 𝜄′ ↩→s (𝑀, ®𝑚 ++𝑤) ∗ rwp 𝑒1 ≾ 𝑒2 {Φ}
rwp 𝑒1 ≾ 𝑒2 {Φ}

Here unif (𝑥)𝑦 refers to the uniform distribution of lists in List(𝑥,𝑦), where List(𝑥,𝑦) denotes lists
of length 𝑦 containing integers not larger than 𝑥 . Assume we want to prove rwp 𝑒1 ≾ 𝑒2 {Φ}, and
we are given E (𝜀) error credits and tapes 𝜄 and 𝜄′ of bounds 𝑁 and𝑀 on the left and right side of the

refinement, respectively. Then the rule says it suffices to (1) choose two lengths 𝑝 and𝑞, and a relation

𝑅 over List(𝑁, 𝑝) and List(𝑀,𝑞), (2) prove an approximate coupling unif (𝑁+1)𝑝 ≲𝜀 unif (𝑀+1)𝑞 : 𝑅,

and (3) show for all lists (𝑣,𝑤) ∈ 𝑅, the refinement weakest-precondition assertion holds after 𝑣

and𝑤 are appended to some tapes 𝜄 and 𝜄′, respectively.
Intuitively, wp-tape-tape-append is sound because appending lists sampled from the distribu-

tion unif (𝑥)𝑦 is an erasable action (see Definition 3.12), meaning that it does not influence the

probabilistic execution of any program. However, proving the asynchronous coupling 𝜇1 ≲𝜀1 𝜇2 : 𝑅
for some arbitrary 𝜇1, 𝜇2, and 𝑅 is generally not an easy task, so we provide various rules which are

special instances of wp-tape-tape-append.

First, we introduce the wp-many-to-one rule, derived from wp-tape-tape-append, that allows

us to couple one sampling onto a tape with multiple samplings onto another tape. This allows us to

handle the two programs 𝑒1 and 𝑒2 above that generate samples from {0, 1, 2, 3}.
wp-many-to-one

(𝑁 + 1)𝑝 = 𝑀 + 1 𝜄 ↩→ (𝑁, ®𝑛) 𝜄′ ↩→s (𝑀, ®𝑚)
∀𝑙 . length(𝑙) = 𝑝 ∗ 𝜄 ↩→ (𝑁, ®𝑛 ++ 𝑙) ∗ 𝜄′ ↩→s (𝑀, ®𝑚 · decoder(𝑁, 𝑙)) ∗ rwp 𝑒1 ≾ 𝑒2 {Φ}

rwp 𝑒1 ≾ 𝑒2 {Φ}

The meta-level function decoder takes as arguments an integer 𝑁 and a list of integers 𝑙 whose

elements are smaller than or equal to 𝑁 , and returns the integer represented by the list 𝑙 in base

𝑁 + 1. For example decoder(1, [1, 1, 0]) returns the value 6. Intuitively, given that (𝑁 + 1)𝑝 = 𝑀 + 1,
wp-many-to-one couples 𝑝 samplings onto the tape 𝜄 with a single sampling onto 𝜄′, such that

they are related by the decoder function.
In addition to many-to-one couplings, Approxis also introduces a class of fragmented coupling

rules, which we briefly introduced in §2.2. Fragmented coupling is a novel kind of coupling rule

where the number of values inserted into the tapes are not uniform for all possible branches.

Fragmented coupling rule are derived from a stronger notion of wp-tape-tape-append, but the

underlying principle is the same, in that the actions of inserting lists to various tapes are erasable

and do not affect the probabilistic outcomes of program execution. The notion of fragmented

couplings is captured by the following rule wp-fragmented-r-exp:

wp-fragmented-r-exp

𝑓 : N≤𝑁 → N≤𝑀 injection 𝑁 < 𝑀 E (𝜀) 𝜄 ↩→ (𝑁, ®𝑛) 𝜄′ ↩→s (𝑀, ®𝑚)

∀𝑚 ≤ 𝑀. 𝜄′ ↩→s (𝑀, ®𝑚 ·𝑚) ∗ ©­«
if 𝑚 ∈ img(𝑓 )
then 𝜄 ↩→ (𝑁, ®𝑛 · 𝑓 −1 (𝑚))
else 𝜄 ↩→ (𝑁, ®𝑛) ∗ E

(
𝑀+1
𝑀−𝑁 · 𝜀

) ª®¬ ∗ rwp 𝑒1 ≾ 𝑒2 {Φ}
rwp 𝑒1 ≾ 𝑒2 {Φ}
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Ignore for now the highlighted assertions, the rule is also sound without them. The rule states

that if we own tapes 𝜄 and 𝜄′ of type 𝑁 and 𝑀 where 𝑁 < 𝑀 , then for any injective function

𝑓 : N≤𝑁 → N≤𝑀 , we add the value𝑚 to the 𝜄′ tape and—if it exists—the pre-image 𝑓 −1 (𝑚) to the 𝜄

tape. At first glance, this rule may seem arbitrary, but this conditional adding of a sample to one

tape is crucial to reasoning about rejection samplers, as we saw in a simplified form in §2.2.

Fragmented couplings can be generalized to approximate reasoning and expectation-preserving

composition [Aguirre et al. 2024], now also considering the highlighted assertions. Namely, if we

own 𝜀 error credits we can distribute them uniformly across the branches that are not in the image

of 𝑓 . That is, if the value is added to both tapes, no error is provided, and if a value is only added to

the tape on the right-hand side, we pass the error amplified by a factor of
𝑀+1
𝑀−𝑁 .

Error Amplification. Recall that the standard recursion rule wp-rec only works for recursive

programs on the left-hand side of the refinement. To reason about recursive functions on the right-

hand side of the refinement in Approxis, one uses error amplification, which was first introduced in

the Eris logic [Aguirre et al. 2024]. Approxis supports the following induction principle for error

amplification.

0 < 𝜀 1 < 𝑘 ∀𝜀′ .(E (𝑘 · 𝜀′) ∗ 𝑃) ∗ E (𝜀′) ⊢ 𝑃
E (𝜀) ⊢ 𝑃

err-amp

The rule states that to prove 𝑃 given some positive error credits E (𝜀), it suffices to prove 𝑃 given

some arbitrary amount of error credits E (𝜀′) and an inductive hypothesis for which we need for

pay E (𝑘 · 𝜀′) for some 𝑘 > 1. Intuitively, err-amp is sound because given 𝑘 > 1, one can amplify

any arbitrary positive error credit by 𝑘 repeatedly until the error reaches 1, at which point we can

derive False by spending 1 error credit. This induction principle encapsulates the kind of repeated

amplification we alluded to at the end of §2.2, avoiding the need to manually track how many

rounds of amplification are needed.

We specialize the above rule to the following wp-err-amp for reasoning about refinements:

wp-err-amp

0 < 𝜀 1 < 𝑘 ∀𝜀′ .(E (𝑘 · 𝜀′) ∗ rwp 𝑒 ≾ 𝑒′ {Φ}) ∗ E (𝜀′) ⊢ rwp 𝑒 ≾ 𝑒′ {Φ}
E (𝜀) ⊢ rwp 𝑒 ≾ 𝑒′ {Φ}

4.2 Revisiting Rejection Samplers
Now that we have seen the rules of Approxis, we return to the rejection sampler example from

§2.2 and describe its proof in more detail. Consider the two programs below, where 𝑀 < 𝑁 (for

now, it suffices to ignore the lines of code in gray), which reproduce the example from before.

let direct _ =

let 𝜄𝑑 = tape𝑀 in

rand𝑀 𝜄𝑑

let reject _ =

let 𝜄𝑟 = tape𝑁 in

(rec sampler _ =

let x = rand𝑁 𝜄𝑟 in

if x ≤ 𝑀 then x else sampler ()) ()

On the left, direct is a simple program that samples directly from rand𝑀 . On the right, reject
is a rejection sampler. We aim to prove that they compute the same distribution. To do so, we

include extra code (in gray) to initialize and use presampling tapes. It is straightforward to use

Approxis to prove that the programs without tapes have the same execution distribution as their

tape-annotated counterparts (which we omit for brevity).
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By applying the error limiting adequacy result (Corollary 4.2), it is enough to assume we own an

arbitrary and positive amount 𝜀 of error credits, and prove the two following assertions:

𝜀 > 0 ∗ E (𝜀) ⊢ rwp direct () ≾ reject () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
𝜀 > 0 ∗ E (𝜀) ⊢ rwp reject () ≾ direct () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′} .

We just show the first one, as the second one is mostly analogous (and in fact can be done

without error credits by using the wp-rec rule). We begin by applying symbolic execution rules

(wp-alloc-tape-l) to allocate the tapes on both sides:

𝜀 > 0 ∗ E (𝜀) ∗ 𝜄𝑑 ↩→ (𝑀, 𝜖) ∗ 𝜄𝑟 ↩→s (𝑁, 𝜖) ⊢ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′} .
Although sampler is a recursive function, we cannot apply wp-rec as it appears on the right-hand

side. Instead, we leverage the error amplification proof technique and apply wp-err-amp, with

amplification factor 𝑘 ≜ 𝑁+1
𝑁−𝑀 . Here Φ represents the inductive hypothesis we obtain:

Φ ∗ E (𝜀′) ∗ 𝜄𝑑 ↩→ (𝑀, 𝜖) ∗ 𝜄𝑟 ↩→s (𝑁, 𝜖) ⊢ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
where Φ ≜ E (𝑘 · 𝜀′) ∗ 𝜄𝑑 ↩→ (𝑀, 𝜖) ∗ 𝜄𝑟 ↩→s (𝑁, 𝜖) ∗ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
We now continue by applying wp-fragmented-r-exp, choosing 𝑓 ≜ 𝜆𝑥 .𝑥 . This consumes our

error credit E (𝜀′) and distributes it unevenly across the branches depending on the sampling result.

We then proceed with a case split. In our first case, both tapes presample the same 𝑣 ≤ 𝑀 :

Φ ∗ 𝜄𝑑 ↩→ (𝑀, [𝑣]) ∗ 𝜄𝑟 ↩→s (𝑁, [𝑣]) ⊢ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
Then, by taking primitive steps we return the same 𝑣 on both sides.

In our second case, we only push a value 𝑣 > 𝑀 into the right-hand side tape 𝜄 and we additionally

have E (𝑘 · 𝜀′) error credits:
Φ ∗ E (𝑘 · 𝜀′) ∗ 𝜄𝑑 ↩→ (𝑀, 𝜖) ∗ 𝜄𝑟 ↩→s (𝑁, [𝑣]) ⊢ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
We can now take steps only on the right-hand side. The sampling instruction will read 𝑣 from

the tape, and the conditional will evaluate to the else branch, which will leave us to prove:

Φ ∗ E (𝑘 · 𝜀′) ∗ 𝜄𝑑 ↩→ (𝑀, 𝜖) ∗ 𝜄𝑟 ↩→s (𝑁, 𝜖) ⊢ rwp rand𝑀 𝜄𝑑 ≾ sampler () {𝑣, 𝑣 ′ . 𝑣 = 𝑣 ′}
Notice now we have amplified the error by a factor of exactly 𝑘 , and hence we can directly apply

Φ, our hypothesis we obtained from wp-err-amp to conclude the overall proof.

5 Logical Refinement
It is often hard to reason directly about contextual equivalence, due to the quantification over

contexts. As in previous work [Gregersen et al. 2024] we define a logical refinement relation to help

us reason about contextual refinement. Like contextual refinement, logical refinement is a typed

relation: it ranges over pairs of expressions 𝑒1, 𝑒2 and types 𝜏 such that 𝑒1 and 𝑒2 have type 𝜏 . As

we will show later, logical refinement implies contextual refinement. However, logical refinement

(as opposed to contextual refinement) is defined in terms of the relational logic, and thus we can

reason about it using the inference rules presented in previous sections:

Δ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 ≜ ∀𝜀 > 0. E (𝜀) ∗ rwp 𝑒1 ≾ 𝑒2
{
𝑣1, 𝑣2. ∃𝜀′ > 0. E (𝜀′) ∗ J𝜏KΔ (𝑣1, 𝑣2)

}
Here, J𝜏KΔ denotes the semantic interpretation of type 𝜏 , and Δ assigns a semantic interpretation

to type variables in the context. Intuitively speaking 𝑒1 logically refines 𝑒2 at type 𝜏 if we can

couple their executions so that they return values related at the semantic interpretation of 𝜏 . The

key novelty with respect to prior work is the quantification over error credits: we get to assume

ownership of a positive amount of error credits in our proof, as long as we ensure that at the end

of it we still have a positive amount left. The quantification over error credits allows us to assume
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ownership of a non-zero amount of error credits whenever reasoning about logical refinement, in

particular we can prove the following rule:

∀𝜀 > 0. E (𝜀) ∗ Δ ⊨ 𝑒 ≾ 𝑒′ : 𝜏
Δ ⊨ 𝑒 ≾ 𝑒′ : 𝜏

log-get-err

Since log-get-err always allows us to obtain a positive amount of error credits, we can internalize

a closed rule for error induction for proving logical refinements that assumes no previous ownership

of error credits. This can be seen as lifting the wp-err-amp rule to the logical refinement level:

1 < 𝑘 ∀𝜀. (E (𝑘 · 𝜀) ∗ Δ ⊨ 𝑒 ≾ 𝑒′ : 𝜏) ∗ E (𝜀) ∗ Δ ⊨ 𝑒 ≾ 𝑒′ : 𝜏
Δ ⊨ 𝑒 ≾ 𝑒′ : 𝜏

log-ind-err

The semantic interpretation J𝜏KΔ (𝑣1, 𝑣2) of a type 𝜏 relates values (which do not need themselves

to be syntactically well-typed) that behave as if theywere equivalent values of type 𝜏 . This definition
is mostly standard, and is defined as usual by induction on 𝜏 and in mutual recursion with the

refinement relation, see Appendix A of [Gregersen et al. 2023], as well as [Timany et al. 2024] for a

general account. Semantic interpretation of a typing context JΓKΔ (𝛾1, 𝛾2) relates two substitutions

𝛾1, 𝛾2 whenever for all 𝑥 ∈ dom Γ, JΓ(𝑥)KΔ (𝛾1 (𝑥), 𝛾2 (𝑥)). Logical refinement can then be extended

to open terms as usual:

Δ | Γ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 ≜ ∀𝛾1, 𝛾2.JΓKΔ (𝛾1, 𝛾2) ∗ Δ ⊨ 𝑒1𝛾1 ≾ 𝑒2𝛾2 : 𝜏
We can prove a compatibility result, which intuitively states that all typing rules preserve the

relation. For example, in the case of function application we have:

Δ ⊨ 𝑓1 ≾ 𝑓2 : 𝜏 → 𝜎 Δ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏

Δ ⊨ 𝑓1 𝑒1 ≾ 𝑓2 𝑒2 : 𝜎
compat-app

The compatibility results can be combined into the fundamental lemma of the logical relation in

the usual way, i.e., by induction on the typing derivation.

Lemma 5.1. If Γ ⊢ 𝑒 : 𝜏 then Γ ⊨ 𝑒 ≾ 𝑒 : 𝜏 .

This logical refinement is a strict extension of the one in Clutch [Gregersen et al. 2024]: we

can still prove the same refinements (by not using the error credits at all), but we can also prove

new refinements that were not provable in loc. cit., in particular refinements involving recursive

programs on the right. The refinement relation is still sound with respect to contextual equivalence,

as stated below:

Theorem 5.2 (Soundness). Let Ξ be a type variable context, and Δ a context assigning a relational
interpretation to all type variables in Ξ. If Δ | Γ ⊨ 𝑒1 ≾ 𝑒2 : 𝜏 then Ξ | Γ ⊢ 𝑒1 ≾ctx 𝑒2 : 𝜏 .

The proof follows from compatibility of the logical refinement and the adequacy theorem of our

relational logic. In particular, we use Corollary 4.2 to erase the quantification over positive errors.

Example 5.3. Logical refinement can be used to prove contextual equivalence of the two samplers

considered in §4.2. The statements we have to prove are below:

⊨ direct ≾ reject : unit→ nat, ⊨ reject ≾ direct : unit→ nat

Note that, as opposed to the proof in §4.2, there is no need to assume ownership of a positive

amount of error credits, and we can have a closed proof at the level of the logical refinement.

Using similar ideas, Appendix A.1 presents a proof of contextual equivalence between a direct

sampler over rand 5 (i.e., a die) and a rejection sampler that simulates it with 3 coin flips, encodes

the result as a number from 0 to 7 and returns it if it is 5 or less, retrying otherwise. In particular,

this example uses our many-to-one coupling rules (wp-many-to-one).
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6 Case Studies
In this section we give an overview of several complex examples that we have verified using

Approxis. Complete details about each example can be found in the accompanying Coq development.

6.1 The PRP/PRF Switching Lemma, Revisited
In §2.1, we sketched a “weak Switching Lemma”, where we considered one particular adversary.

We are now ready to prove the “full” version of the switching lemma for arbitrary adversary A.

Of course, some restrictions on the adversary are still required. First, the adversary must treat the

RP/RF as a black box, and not directly access the underlying map that stores the function’s values.

Second, we must ensure that the RP/RF can only be queried up to 𝑄 times. To enforce the first

requirement, we require that A is a well-typed RandML program. For the second requirement,

we wrap the RP/RF with the higher-order function q_calls, which uses local state that tracks how

many queries have been performed:

let q_calls (𝑄 : int) (f : α→ β) : α→ β option =

let counter = ref 0 in

λ x. if (! counter < 𝑄) then incr counter ; Some (f x) else None

Our goal is then to prove the following logical refinement (as well as the other direction, the proof

of which is similar and omitted) for any A of type (int→ int option) → bool,

E (𝜀) ∗ ⊨ A (q_calls 𝑄 (irp 𝑁 )) ≾ A (q_calls 𝑄 (irf 𝑁 )) : bool (4)

where 𝜀 =
𝑄 (𝑄−1)

2𝑁
. By unfolding the definition of the logical relation and applying the adequacy

theorem of Approxis to (4), these refinements imply Lemma 2.1.

In order to reason about the unknown program A, we leverage the logical relation. Specifically,

from the assumption that A is well typed together with the Fundamental Lemma (Lemma 5.1), we

derive an Approxis specification forA of the form ⊨ A ≾ A : ((int→ int option) → bool). Using
this and the logical relation’s compatibility rule for function application leaves us to prove:

E (𝜀) ∗ ⊨ (q_calls 𝑄 (irp 𝑁 )) ≾ (q_calls 𝑄 (irf 𝑁 )) : int→ int option (5)

In other words, after using the logical relation, the goal that remains makes no reference to

the unknown code for the adversary, A. From here on, the proof is very similar to that of the

weak PRP/PRF Switching Lemma. We symbolically evaluate both programs, which results in the

allocation of the list of unused values in irp, the finite maps that both irp and irf use, and a counter

for each program. Let rp𝑄 denote the function returned by q_calls 𝑄 (irp 𝑁 ), and likewise rf 𝑄
for irf. The key difference with the proof in §2.1 is that, instead of proving the 𝜀-equivalence of

two for loops by induction on 𝑄 , we prove the 𝜀-equivalence of two functions by establishing an

invariant that holds before and after all calls to rp𝑄 and rf 𝑄 . This invariant we need states that

both counters point to the same value 𝑖 , that the maps m and m′ are equal, and that the current

error budget is 𝜀𝑖 =
∑𝑄−1
𝑘=𝑖

𝑘
𝑁

when the counter is 0 ≤ 𝑖 ≤ 𝑄 . Furthermore, the list of unused values

has length (at least) 𝑁 − 𝑖 . Since E (𝜀𝑖 ) is an ordinary proposition in Approxis, and since Approxis

is an impredicative higher-order logic, we can simply “store” error credits in the invariant.

The semantic interpretation of function types requires us to prove that both functions in (5) map

related arguments to related results. In other words, we can show the refinement by applying both

functions to the same integer 𝑛. Just as in §2.1, we can then argue that with probability at most
2

𝑁−(𝑁−𝑖 )
𝑁

= 𝑖
𝑁

a collision occurs. By wp-couple-rand-rand-err-le, we can force both functions to

sample the same value by paying E
(
𝑖
𝑁

)
. This is exactly the first element in the sum 𝜀𝑖 . The functions

2
This “worst case” occurs if all previous calls to irp were made with different arguments and List.length l_unused = 𝑁 − 𝑖 .
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thus return the same results, as required. It remains to re-establish the function invariant. Since the

counters have been incremented to 𝑖 + 1, we only need to give back 𝜀𝑖+1 credits, which is exactly

what is left of E (𝜀𝑖 ) after splitting off E
(
𝑖
𝑁

)
.

In conclusion, thanks to the logical relation, proving the full Switching Lemma is as simple as

proving the weak version.

6.2 IND$-CPA Security of Symmetric Encryption
A key notion of security for a symmetric (i.e., private key) encryption scheme is “indistinguishability

from random under chosen-plaintext attacks” (IND$-CPA, a.k.a. CPA$). The IND$-CPA “advantage”

of an adversary A against an encryption scheme (keygen, enc, dec) is defined as the probability

that A is able to distinguish a ciphertext c corresponding to a plain-text message msg from a

randomly chosen ciphertext c′, even if A can choose msg (see, e.g., [Rosulek 2021, Def. 7.2]). For

an adversary that can make only up to 𝑄-queries to the encryption oracle, the advantage is thus

equal to

|Pr[A(q_calls 𝑄 (enc (keygen ()))) ] − Pr[A(q_calls 𝑄 (rand_cipher)) ] | (6)

where rand_cipher = λmsg. (rand𝑁, rand𝑁 ) produces random ciphertexts.

It is well-known that a deterministic encryption scheme cannot achieve IND$-CPA security [Katz

and Lindell 2021; Rosulek 2021]. A standard solution to obtain a IND$-CPA secure scheme is to

randomize the encryption function. We exemplify this idea by proving a bound on the IND$-CPA

advantage for the following textbook construction [Rosulek 2021, Def. 7.4][Katz and Lindell 2021,

Def. 3.28] of a symmetric scheme from a random function:

let enc prf key msg = let r = rand𝑁 in
let pad = prf key r in
let c = xor msg pad in
(r, c)

let keygen () = rand𝑁
let dec prf key (r, c) = let pad = prf key r in

let msg = xor c pad in
msg

In particular, we prove the following refinement (and its converse) in Approxis,

E
(
𝑄2/(2𝑁 )

)
∗ ⊨ A (q_calls 𝑄 encrf ) ≾ A (q_calls 𝑄 rand_cipher) : bool (7)

where encrf = enc (let rf = irf 𝑁 in λ key. rf ). Intuitively, the scheme is secure because prf
produces random-looking outputs. So long as pad = prf key r never repeats throughout the 𝑄 calls

to encrf , the xor msg pad acts as a one-time pad, and the ciphertexts look random.

The proof of (7) thus hinges on the fact that the randomly sampled value r never repeats, since
this ensures that irf samples a new value for pad. Formally, we argue that after initialization of

irf and q_calls, the encryption oracle encrf and the random cipher oracle satisfy the following

invariant, which ties the amount of error credits left to the counter value 𝑖 .

∃𝑖,𝑚. E
(
(𝑄2 − 𝑖2)/(2𝑁 )

)
∗ counter ↦→ 𝑖 ∗ counter′ ↦→s 𝑖 ∗ is_rf𝑚 ∗ |dom𝑚 | = 𝑖 (8)

We use the approximate coupling rule to “pay off” the risk of a repeated use of r at the 𝑖-th oracle

call. The exact source of errors is different here from the Switching Lemma, since we have to argue

that the randomly sampled arguments to rf do not repeat, whereas in the Switching Lemma, we

are concerned with collisions that get sampled if fresh arguments are fed to rf and rp. The exact
rule that allows us to do this is given below, where the list 𝑙 is instantiated with the domain of the

map𝑚 which is tracked by rf in the invariant (8).

E
(
length(𝑙 )
𝑁+1

)
∀𝑛 ≤ 𝑁 . 𝑛 ∉ 𝑙 ∗ rwp 𝑛 ≾ 𝑛 {Φ}

rwp rand𝑁 ≾ rand𝑁 {Φ}
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Since the invariant is preserved throughout, the output of encrf is thus
𝑄2

2𝑁
-equivalent to that of

rand_cipher in 𝑄 oracle calls.

6.3 Sampling from B+ Trees
In this case study, we show the correctness of a rejection sampling scheme developed by Olken

and Rotem [1989] for drawing a random sample from a B+ tree. This case study demonstrates

how Approxis is able to handle complex mutable state and establish equivalences that rely on type

abstraction. A B+ tree [Bayer and McCreight 1972] is a height-balanced tree data structure that is

widely used for storing data in filesystems and databases. Unlike a binary search tree, a B+ tree’s

internal nodes may have more than 2 children, up to some maximum𝑀 .

If a B+ tree’s nodes include additional ranking information recording how many leaves are

descendants of each node, then it is straight-forward to draw a random element. For a tree with 𝑁

total elements, draw a random number uniformly from {0, . . . , 𝑁 − 1} and then use the ranks to

find the 𝑖-th element in the tree. However, maintaining the ranks has overhead.

Olken and Rotem [1989] developed a rejection sampling algorithm for sampling from a non-
ranked B+ tree. Starting from the root, the algorithm recursively descends down the tree. At each

non-leaf node, it samples a random number 𝑖 uniformly from {0, 1, . . . , 𝑀 − 1}. If the node has an
𝑖-th child, the algorithm recurses on it. If the node does not have an 𝑖-th child, it aborts early by

returning to the root and restarting. Once the algorithm reaches a leaf, it returns it as the selected

sample.

We have implemented the sampling algorithm for ranked B+ trees and the rejection sampler for

non-ranked trees as two functions called naive_sample and optimized_sample, respectively (see

Appendix A.2 for the full code). Our main result for this case study shows that these two functions

are equivalent. Of course, they are only equivalent when they operate over well-formed trees, so

we state this result as a contextual equivalence about two different implementations of an abstract

tree data type. To do so, we first define the following additional functions: init_tree, which takes

an integer and returns a B+ tree containing that integer, insert_tree, which inserts an integer into

a tree, and build_ranked, which takes a (non-ranked) B+ tree and returns a ranked B+ tree with

the same entries and shape. Then the following two packed tuples bundle the B+ tree operations:

opt ≜ pack (init_tree, insert_tree, optimized_sample)
naive ≜ pack (init_tree, insert_tree, 𝜆𝑡 .naive_sample (build_ranked 𝑡))

where the sampling routine in naive takes a tree 𝑡 , builds the ranked version of the tree, and

then uses the naïve routine.
3
With these preliminaries in place, our main result can be stated as

⊢ opt ≃ctx naive : 𝜏 , where 𝜏 ≜ ∃𝜏 . (Int→ 𝜏) × (𝜏 × Int→ 1) × (𝜏 → Int).
This proof is described in more detail in Appendix A.2. At a high level, it has two components.

First, there is non-probabilistic reasoning showing that the various routines traverse and modify the

trees correctly. This makes up the bulk of the proof and consists of traditional separation-logic style

reasoning about trees. For this part, Approxis’s support for the rich reasoning principles developed

in earlier separation logics is essential. The second component is the actual probabilistic reasoning

using couplings. Here, the coupling reasoning in this proof is quite similar to the arguments we

have already seen using fragmented and many-to-one couplings in simpler rejection samplers.

7 Semantic Model and Soundness
The soundness of Approxis is justified by defining a semantic model of rwp 𝑒 ≾ 𝑒′ {Φ} in the

Iris base logic [Jung et al. 2018]. The base logic is a higher-order separation logic that lacks any

3
Building a ranked tree each time is inefficient, but naive serves as a specification for opt, so its efficiency is not relevant.
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connectives for reasoning about programs. In this section, we define the semantic model of rwp
and discuss how it implies the existence of an approximate coupling of the execution of the two

programs.

The model of rwp is inspired by the model of the (non-approximate) coupling logic Clutch

[Gregersen et al. 2024]. We emphasize the following technical novelties and improvements over

Clutch’s model:

(1) The approach is generalized to approximate couplings and expectation-preserving composi-

tion by incorporating error credits [Aguirre et al. 2024] in the relational setting.

(2) The model allows for coupling rules and right-hand side rules to be applied when the left-hand

side is a value (a limitation of the general structure of the Clutch model).

(3) The model introduces two new coupling precondition connectives and a notion of erasability
that captures the essence of why asynchronous couplings [Gregersen et al. 2024] are sound.

7.1 Model
The semantic model of rwp is defined using two unary connectives: a weakest preconditionwp 𝑒 {Φ}
and a separation-logic resource spec(𝑒′) that tracks the right-hand-side specification program, as

in prior work on refinement reasoning in separation logic [Gregersen et al. 2024; Timany et al.

2024; Turon et al. 2013]. The rwp is defined as

rwp 𝑒 ≾ 𝑒′ {Φ} ≜ ∀𝐾. spec(𝐾 [𝑒′]) ∗ wp 𝑒 {𝑣 . ∃𝑣 ′ . spec(𝐾 [𝑣 ′]) ∗ Φ(𝑣, 𝑣 ′)}.

By quantifying over evaluation contexts 𝐾 , we close the definition under evaluation contexts on

the right-hand side; for the left-hand side this is not needed as the weakest precondition already

satisfies the bind rule. The main challenge of defining the relational connective is thus to define the

model of the unary weakest precondition in a suitable way.

In isolation, the weakest precondition wp 𝑒 {Φ} encodes partial correctness: intuitively it means

that the execution of 𝑒 is safe (i.e., the probability of crashing is zero) and for every possible return

value 𝑣 , the postcondition Φ(𝑣) holds. Internally, however, in order to do approximate (relational)

reasoning, the weakest precondition pairs up of the probability distribution of individual steps of

the program with the probability distribution of individual steps of some other program, in such a

way that there exists an approximate coupling among them. Through separation-logic machinery,

we tie this “other” program to the program tracked by the spec(𝑒′) resource, and the approximation

error to error credits E (𝜀). The weakest precondition itself satisfies all the usual program logic

rules that one would expect and we refer to Figure 5 for an overview.

Weakest Precondition. The definition of the weakest precondition is shown below. As done

throughout this paper, we ignore the general connectives that are used for manipulating Iris-style

ghost resources and invariants, i.e., the update modality |⇛ and invariant masks (E, ∅) as found
in Iris [Jung et al. 2018], which are orthogonal to the core challenges that we address. Our use is

standard and the weakest precondition can be understood by omitting the grayed out parts. The

definition looks as follows.

wpE 𝑒1 {Φ} ≜ ∀𝜎1, 𝜌
′
1
, 𝜀1. 𝑆 (𝜎1, 𝜌 ′1, 𝜀1) ∗

|⇛E ∅ scpl 𝜎1 ≾𝜀1 𝜌
′
1
{𝜎2, 𝜌 ′2, 𝜀2.(

𝑒1 ∈Val ∗ |⇛∅ E 𝑆 (𝜎2, 𝜌 ′2, 𝜀2) ∗ Φ(𝑒1)
)
∨(

𝑒1 ∉Val ∗ pcpl (𝑒1, 𝜎2) ≾𝜀2 𝜌 ′2 {𝑒2, 𝜎3, 𝜌 ′3, 𝜀3.
⊲ scpl 𝜎3 ≾𝜀3 𝜌

′
3
{𝜎4, 𝜌 ′4, 𝜀4 . |⇛∅ E 𝑆 (𝜎4, 𝜌 ′4, 𝜀4) ∗ wpE 𝑒2 {Φ}}}

)
}
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The connective is defined as a guarded fixed point of the equation above, as is custom in many

program logics for partial correctness. The fixed point exists because the recursive occurrence of

the weakest precondition occurs under the later modality ⊲ [Jung et al. 2016].

The diagram below shows how the two programs are updated in a single unrolling of the weakest

precondition. This will contain a single execution step on the left-hand side, preceded and followed

by a sequence of execution steps on the right-hand side. Along these steps, the tapes can be updated

with new samples, with errors threaded through to construct approximate couplings between steps:

(𝑒1, 𝜎1) ∼𝜀1 𝜌 ′1 (𝑒1, 𝜎2) ∼𝜀2 𝜌 ′2 (𝑒2, 𝜎3) ∼𝜀3 𝜌 ′3 (𝑒2, 𝜎4) ∼𝜀4 𝜌 ′4

RHS exec𝑛 ,
update tapes

scpl

LHS exec1, RHS exec𝑛 ,
update tapes

pcpl

RHS exec𝑛 ,
update tapes

scpl

We now explain the definition in detail. We first start by assuming ownership of a state interpreta-
tion 𝑆 (𝜎1, 𝜌 ′1, 𝜀1). The state interpretation predicate 𝑆 : State→ Cfg→ [0, 1] → iProp interprets the
physical state of the program, the specification program, and the approximation error as resources

in Approxis which, e.g., gives meaning to the points-to connective ℓ ↦→ 𝑣 , the specification resource

spec(𝑒′), and error credits E (𝜀). Our choice of resource algebras is standard (see Gregersen et al.

[2024] and Aguirre et al. [2024] for more details) and it is sufficient to know that they reflect the

(partial) knowledge that the logical connectives represent. For instance, for the heap points-to

connective we have that 𝑆 (𝜎1, 𝜌 ′1, 𝜀1) ∗ ℓ ↦→ 𝑣 ⊢ 𝜎1 (ℓ) = 𝑣 ; for the specification resource we have

𝑆 (𝜎1, (𝑒′1, 𝜎 ′1), 𝜀1) ∗ spec(𝑒′) ⊢ 𝑒′1 = 𝑒′; and for error credits we have 𝑆 (𝜎1, 𝜌 ′1, 𝜀1) ∗ E (𝜀) ⊢ 𝜀1 ≥ 𝜀.
Second, we have to prove a spec-coupling precondition scpl 𝜎1 ≾𝜀1 𝜌 ′

1
{. . .}. We define the

connective in Figure 4, but in essence it allows the right-hand-side program to be progressed.

Intuitively, scpl 𝜎1 ≾𝜀1 𝜌
′
1

{
𝜎2, 𝜌

′
2
, 𝜀2. 𝑃

}
says that with error budget 𝜀1 there exists a (possibly

empty) sequence of composable approximate couplings starting from state 𝜎1 and configuration

𝜌 ′
1
that ends up in some state 𝜎2 and configuration 𝜌 ′

2
with leftover error budget 𝜀2, such that the

proposition 𝑃 holds. By allowing the left-hand-side state to be progressed with the right-hand-side

configuration, we permit certain asynchronous coupling rules as discussed below in detail.

Next, if 𝑒1 is a value we have to return the updated state interpretation and prove the postcondition

Φ(𝑒1). If 𝑒1 is not a value, we have to prove a program-coupling precondition pcpl (𝑒1, 𝜎2) ≾𝜀2 𝜌 ′2 {. . .}.
We define the connective formally below, but it allows the left-hand-side program to take a single

step and the right-hand-side program to take a finite number of steps. Intuitively, pcpl 𝜌1 ≾𝜀1
𝜌 ′
1

{
𝜌2, 𝜌

′
2
, 𝜀2. 𝑃

}
says that with error budget 𝜀1 there exists an approximate coupling of a single step

of configuration 𝜌1 with a finite number of steps of configuration 𝜌 ′
1
that ends up in configurations

𝜌2 and 𝜌
′
2
with leftover error budget 𝜀2, such that the proposition 𝑃 holds.

Finally, under a later modality (which signifies that a step of 𝑒1 has been taken), we have to prove

another spec-coupling precondition before returning the updated state interpretation and showing

that wp 𝑒2 {Φ} holds recursively. The second occurrence of the spec-coupling precondition can

mostly be ignored and is only required to validate the invariant opening rule which we omit.

Coupling Preconditions. The spec-coupling precondition is defined inductively by the infer-

ence rules shown in Figure 4. If the error budget is 1 or if the postcondition holds for the input

parameters, the spec-coupling precondition holds trivially (spec-coupl-err-1 and spec-coupl-ret,

respectively). The last constructor (spec-coupl-exp) is by far the most interesting: it allows us

to incorporate approximate couplings and requires the existence of an (𝜀1, 𝑅)-coupling of 𝜇1 and
(𝜇′

1

≫= 𝜆 𝜎 ′
2
. step𝑛 (𝑒′1, 𝜎 ′2)) for prover-chosen 𝜇1, 𝜇′1 and 𝑛. Here step𝑛 : Cfg → D(Cfg) denotes 𝑛
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spec-coupl-err-1

scpl 𝜎 ≾1 𝜌 {Φ}

spec-coupl-ret

Φ(𝜎, 𝜌 ′, 𝜀)
scpl 𝜎 ≾𝜀 𝜌 ′ {Φ}

spec-coupl-exp

𝜇1 ≲𝜀1 (𝜇′1 ≫= 𝜆 𝜎 ′2 . step𝑛 (𝑒′1, 𝜎 ′2)) : 𝑅 𝜀1 + E[E2 ] ≤ 𝜀
erasable(𝜇1, 𝜎1) erasable(𝜇′

1
, 𝜎 ′

1
) ∀(𝜎2, 𝜌 ′2) ∈ 𝑅. |⇛∅ scpl 𝜎2 ≾E2 (𝜌 ′

2
) 𝜌
′
2
{Φ}

scpl 𝜎1 ≾𝜀 (𝑒′1, 𝜎 ′1) {Φ}

Fig. 4. Inductive definition of the specification-coupling precondition scpl 𝜎 ≾𝜀 𝜌 {Φ}.
steps of partial execution, i.e.,

step𝑛 (𝑒, 𝜎) ≜
{
ret(𝑒, 𝜎) if 𝑒 ∈Val or 𝑛 = 0,

step(𝑒, 𝜎) ≫= step(𝑛−1) otherwise.

and 𝜇1, 𝜇
′
1
∈ D(State) are arbitrary erasable distributions (c.f., Definition 3.12) w.r.t. 𝜎1 and 𝜎

′
1
.

Finally, to allow expectation-preserving composition (c.f., Lemma 3.10), the prover picks an error

function E2 such that 𝜀1 + E[E2 ] ≤ 𝜀, where the expectation E[E2 ] is computed with respect to

the distribution (𝜇′
1

≫= 𝜆 𝜎 ′
2
. step𝑛 (𝑒′1, 𝜎 ′2)). Then for all 𝜎2 and 𝜌

′
2
in the support of the coupling, the

spec-coupling precondition must hold recursively with the new error budget E2 (𝜌 ′2).
The program-coupling precondition is defined in a similar style to the spec-coupl-exp constructor,

but the approximate coupling requires exactly one step on the left-hand side as seen below.

step(𝑒1, 𝜎1) ≲𝜀1 (𝜇′1 ≫= 𝜆 𝜎 ′2. step𝑛 (𝑒′1, 𝜎 ′2)) : 𝑅 red(𝑒1, 𝜎1)
𝜀1 + E[E2 ] ≤ 𝜀 erasable(𝜇′

1
, 𝜎 ′

1
) ∀((𝑒2, 𝜎2), (𝑒′2, 𝜎 ′2)) ∈ 𝑅. |⇛∅Φ(𝑒2, 𝜎2, 𝑒′2, 𝜎 ′2, E2 (𝑒2, 𝜎2))

pcpl (𝑒1, 𝜎1) ≾𝜀 (𝑒′1, 𝜎 ′1) {Φ}
The left-hand side program is also required to be reducible (to guarantee safety), and for all

configurations in the support of the coupling, the postcondition must hold. Note that the expectation

E[E2 ] is taken with respect to the distribution step(𝑒1, 𝜎1). This guarantees that every recursive

unfolding of the weakest precondition corresponds to a single step of the left-hand-side program

which is essential to validating the standard program logic rules found in Figure 5.

The lemmas below illustrate how spec-coupling and program-coupling preconditions interact

with the operational semantics to allow us to construct couplings for program executions. First, we

see the case of the spec-coupling precondition:

Lemma 7.1. Let (𝑒, 𝜎1) and 𝜌 ′1 be configurations for the left-hand-side and right-hand-side programs,
and let 𝜑 ⊆Val ×Val be a relation on values. If, for some error 𝜀1 ∈ [0, 1],

scpl 𝜎1 ≾𝜀1 𝜌
′
1

{
𝜎2, 𝜌

′
2
, 𝜀2. exec𝑚 (𝑒, 𝜎2) ≲𝜀2 exec(𝜌 ′2) : 𝜑

}
,

then there exists a (𝜀1, 𝜑)-coupling exec𝑚 (𝑒, 𝜎1) ≲𝜀1 exec(𝜌 ′1) : 𝜑 .
The program-coupling precondition satisfies an analogous result, but notice the extra computa-

tion step in the conclusion:

Lemma 7.2. Let (𝑒1, 𝜎1) and 𝜌 ′1 be configurations for the left-hand-side and right-hand-side programs
where 𝑒1 ∉Val, and let 𝜑 ⊆Val ×Val be a relation on values. If, for some error 𝜀1,

pcpl (𝑒1, 𝜎1) ≾𝜀1 𝜌 ′1
{
𝑒2, 𝜎2, 𝜌

′
2
, 𝜀2 . exec𝑚 (𝑒2, 𝜎2) ≲𝜀2 exec(𝜌 ′2) : 𝜑

}
,

then there exists a (𝜀1, 𝜑)-coupling exec𝑚+1 (𝑒1, 𝜎1) ≲𝜀1 exec(𝜌 ′1) : 𝜑 .
The proofs of these auxiliary lemmas rely on erasability as well as Lemmas 3.9 and 3.10 to

construct the coupling of the executions.
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𝑒1
pure

⇝ 𝑒2 ∗ wp 𝑒2 {Φ} ⊢ wp 𝑒1 {Φ}
∀ℓ . ℓ ↦→ 𝑣 ∗ Φ(ℓ) ⊢ wp ref 𝑣 {Φ}

(ℓ ↦→ 𝑣 ∗ Φ(𝑣)) ∗ ℓ ↦→ 𝑣 ⊢ wp ! ℓ {Φ}
(ℓ ↦→ 𝑤 ∗ Φ(())) ∗ ℓ ↦→ 𝑣 ⊢ wp ℓ ← 𝑤 {Φ}

∀𝑛 ≤ 𝑁 . Φ(𝑛) ⊢ wp rand𝑁 {Φ}
Φ(𝑣) ⊢ wp 𝑣 {Φ}

wp 𝑒
{
𝑣 .wp 𝐾 [𝑣] {Φ}

}
⊢ wp 𝐾 [𝑒] {Φ}

(∀𝑣 . Ψ(𝑣) ∗ Φ(𝑣)) ∗ wp 𝑒 {Ψ} ⊢ wp 𝑒 {Φ}
𝑃 ∗ wp 𝑒 {Φ} ⊢ wp 𝑒 {𝑣 . 𝑃 ∗ Φ(𝑣)}

∀𝜄. 𝜄 ↩→ (𝑁, 𝜖) ∗ Φ(𝜄) ⊢ wp tape𝑁 {Φ}
(∀𝑛 ≤ 𝑁 . 𝜄 ↩→ (𝑁, 𝜖) ∗ Φ(𝑛)) ∗ 𝜄 ↩→ (𝑁, 𝜖) ⊢ wp rand𝑁 𝜄 {Φ}

(𝜄 ↩→ (𝑁, ®𝑛) ∗ Φ(𝑛)) ∗ 𝜄 ↩→ (𝑁,𝑛 · ®𝑛) ⊢ wp rand𝑁 𝜄 {Φ}

Fig. 5. Standard weakest-precondition rules.

7.2 Soundness
Soundness of Approxis and the relational program logic follows from the adequacy theorem below.

Theorem 7.3 (Adeqacy). Let 𝜑 ⊆ Val ×Val be a relation over values and let 0 ≤ 𝜀 ≤ 1. If
spec(𝑒′) ∗ E (𝜀) ⊢ wp 𝑒 {𝑣 . ∃𝑣 ′ . spec(𝑣 ′) ∗ 𝜑 (𝑣, 𝑣 ′)} then ∀𝜎, 𝜎 ′ . exec(𝑒, 𝜎) ≲𝜀 exec(𝑒′, 𝜎 ′) : 𝜑 .

The proof has a similar structure to the soundness theorem of Clutch [Gregersen et al. 2024]. By

continuity, it suffices to show the following approximate coupling:

exec𝑛 (𝑒, 𝜎) ≲𝜀 exec(𝑒′, 𝜎 ′) : 𝜑
for all 𝜎 , 𝜎 ′, and 𝑛. The theorem then follows by induction on 𝑛. The interesting case is the inductive

step, when 𝑛 = 𝑚 + 1. After unfolding the definition of the weakest precondition, we can apply

Lemma 7.1 and Lemma 7.2 to construct a coupling between exec𝑚+1 (𝑒, 𝜎) and exec(𝑒′, 𝜎 ′).

8 Related Work
Probabilistic Couplings. Relational reasoning about program via (exact) probabilistic couplings

can be traced back to pRHL [Barthe et al. 2015, 2009] and was later extended to support approximate

couplings in apRHL [Barthe et al. 2016a, 2012], apRHL+ [Barthe et al. 2016c], and EpRHL [Barthe

et al. 2017]. These approximate logics can be used to reason about a wide range of properties such

as differential privacy and expected sensitivity, but they are limited to reasoning about first-order

programs. Aguirre et al. [2021] introduce HO-RHL, which use couplings to reason about adversarial

computations in a higher-order setting. HO-RHL, however, only allows synchronous couplings

and only supports first-order global state and structural recursion. Clutch [Gregersen et al. 2024]

introduces asynchronous couplings in a higher-order setting with higher-order local state. However,

Clutch does not support approximate or fragmented couplings.

Approximate Reasoning. Aside from relational approaches, approximate reasoning has also

been used in the unary setting. The unary logic aHL [Barthe et al. 2016b] is used to reason about

accuracy properties of first-order randomized algorithms, where errors are tracked by a grading

on Hoare triples. Eris [Aguirre et al. 2024] extends this to the higher-order setting and tracks

error probability as a separation logic resource. In a slightly different line of work, expectation-

based logics [Batz et al. 2019, 2023; Kaminski et al. 2016; Morgan et al. 1996] can also be used to
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reason about approximate correctness of first-order imperative probabilistic programs. In particular,

eRHL [Avanzini et al. 2024] supports reasoning about asynchronous samplings via ★-couplings.

Resource Reasoning with Credits. Using sub-structural credits to track a program’s re-

source consumption was pioneered in type systems for automated amortized resource analy-

sis (AARA) [Hofmann and Jost 2003]. Subsequent research extends this approach to reason about

expected cost bounds in probabilistic programs [Das et al. 2023; Ngo et al. 2018; Wang et al. 2020].

Inspired by AARA, Atkey [2011] introduced resource-tracking credits in separation logic to reason

about amortized resource consumption. A variant of this idea is implemented as time credits in

Iris to reason about running time complexity of higher-order programs [Charguéraud and Pottier

2019; Mével et al. 2019; Pottier et al. 2024] and expected running time in Tachis [Haselwarter et al.

2024b]. Eris [Aguirre et al. 2024] uses error credits to reason about error bounds of higher-order

probabilistic programs, which Approxis adapts to the relational setting.

Logical Relations and Probability. Bizjak and Birkedal [2015] developed a logical relations

model of a higher-order probabilistic programming languages involving both state and discrete

probabilistic choice to reason contextual equivalence. The approach was then extended to support

continuous probabilistic choice [Culpepper and Cobb 2017; Wand et al. 2018], recursively nested

queries [Zhang and Amin 2022], and non-determinism [Aguirre and Birkedal 2023]. The logical

relation developed in Clutch [Gregersen et al. 2024] supports asynchronous couplings and is very

similar to the model in our work. Our logical relation, however, also supports proving contextual

equivalences by means of approximation. This is key to proving equivalences of rejection sampling

programs which, to our knowledge, is out of scope for previous models based on logical relations.

Besides contextual equivalence, logical relations are used to reason about contextual distance

between probabilistic programs [Crubillé and Dal Lago 2017; Crubillé and Dal Lago 2015]. Contex-

tual distance can be seen as a generalization of contextual equivalence into a metric for analyzing

distances between probabilistic programs. Using error credits to reason about contextual distances

is an interesting avenue for future work.

Separation Logic andProbability. In addition to Eris [Aguirre et al. 2024] andClutch [Gregersen
et al. 2024], more tangentially to our work, Batz et al. [2019] developed a weakest precondition

calculus for quantitative reasoning about probabilistic pointer programs in QSL, a quantitative

analog of classical separation logic. A different line of work develop separation logics in which

separating conjunction models probabilistic independence. This was first explored in probabilistic

separation logic (PSL) [Barthe et al. 2019] and subsequently extended to reason about conditional

independence [Bao et al. 2021, 2024; Li et al. 2023] and negative dependence [Bao et al. 2022].

Program Logics for Cryptographic Security. CertiCrypt [Barthe et al. 2009, 2010] is a frame-

work implemented in Coq [Team 2024] for verifying code-based cryptographic proofs. Programs in

CertiCrypt are written in pWhile, a probabilistic imperative language, and the logic is based on

pRHL [Barthe et al. 2009]. CertiCrypt can prove approximate results such as the PRP/PRF lemma

only at the level of the Coq meta-logic, since the program logic itself is based on exact couplings.

Building on pRHL and CertiCrypt, EasyCrypt [Barthe et al. 2014] is a stand-alone tool for

cryptography, integrating automation via SMT solvers. Although EasyCrypt can reason about

simple rejection samplers [Almeida et al. 2023], existing proofs require analysing the probability of

each outcome, instead of a relational equivalence proof. Rejection samplers with dynamic references

or sophisticated early-abort, like the B+ tree sampler, would be difficult to do in this setting.

SSProve [Abate et al. 2021; Haselwarter et al. 2023] is a framework implemented in Coq [Team

2024] for writing so-called state-separating proofs [Brzuska et al. 2018]. Based on a monadic pRHL-

like logic [Maillard et al. 2020], games in SSProve are split into packages operating on disjoint
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states, which enables some amount of modular reasoning. In contrast to the language considered

by Approxis, SSProve is first order and does not support dynamically allocated local state.

9 Conclusion
We presented Approxis, the first higher-order separation logic for approximate relational reasoning.

In addition to establishing approximate bounds between probabilistic programs, we developed

a novel logical relation in Approxis for proving contextual refinement, by parameterizing over

arbitrary positive error.We demonstrated the strengths of Approxis on various case studies involving

higher-order, local state, and non-trivial rejection sampling behavior. Using Approxis, we proved

both approximate and exact examples, and also used the logical relation to establish contextual

refinements of examples that were previously out of scope.

We believe Approxis opens up numerous avenues for future work related to security of crypto-

graphic protocols. Firstly, we would like to extend Approxis to reason about concurrent programs

in order to prove security guarantees of distributed systems. Secondly, it would be interesting to

explore how Approxis can be further improved to reason about time complexity of programs, to

bound the computational power of adversaries. Finally, we aim to modify Approxis to reason about

several other security properties, including differential privacy and probabilistic sensitivity.
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A Extended Case Studies
A.1 Simulating Dice
Rejection samplers are a kind of Las Vegas algorithms used to simulate complicated probability

distributions with simple probabilistic primitives. These algorithms loop repeatedly, only terminat-

ing when it produces an acceptable value, one that correspond to a value in the target distribution.

Previously in §4.2, we showed how to prove a simple rejection sampler is equivalent to a rand
expression.

To show that our techniques scale, we show a slightly more complicated implementation of a

rejection sampler that simulates a 6-faced die roll (we assume faces are numbered from 0 to 5) with

fair coin flips. The naïve implementation would flip three coins, interpret the result as a binary

number between 0 and 7, return the result if it is from 0 to 5, and restart the simulation otherwise.

A more efficient implementation would use an early abort strategy: after observing the first two
coin flips, if they are both 1 we can restart without the need for a third coin flip. We implement an

early abort rejection sampler dsim in Figure 6. We will show that this is contextually equivalent to

a uniform die roll, i.e., program droll in Figure 6. As an intermediate step, we prove that they are

both contextually equivalent to the simple rejection sampler drej in the same figure, which samples

a uniform number between 0 and 7, returns the result if it is 5 or below, and restarts otherwise.

dsim () ≜
let 𝜄 = tape 1 in

let 𝑏2 = rand 1 𝜄 in

let 𝑏1 = rand 1 𝜄 in

if (𝑏1 == 1 && 𝑏2 == 1) then dsim
else let 𝑏0 = rand 1 𝜄 in

4 ∗ 𝑏2 + 2 ∗ 𝑏1 + 𝑏0

drej () ≜
let 𝜄 = tape 7 in

let 𝑟 = rand 7 𝜄 in

if (𝑟 > 5) then drej
else 𝑟

droll () ≜
let 𝜄 = tape 5 in

rand 5 𝜄

Fig. 6. Three algorithms to sample a fair die

The proof thus requires showing the chains of logical refinements ∅ ⊢ dsim ≾ drej ≾ droll : unit→
nat and ∅ ⊢ droll ≾ drej ≾ dsim : unit→ nat. The proofs of dsim ≾ drej and drej ≾ dsim are mostly

symmetric. The proof relies on using wp-rec and the wp-many-to-one coupling rule, to ensure

that the three bits we sample to the tape with bound 1 are a binary encoding of the number sampled

to the tape with bound 7, and therefore both conditionals resolve to the same branch. In the case

they both take the branch with the recursive call, we can apply our inductive hypothesis, otherwise

both programs will terminate immediately and return equal values.

The proofs of drej ≾ droll and droll ≾ drej is almost identical to the proofs presented for the

rejection samplers (see §4.2), except that we are not only proving that the two programs are

equivalent when executed in isolation, but contextually equivalent under all contexts using our

logical relations. The former of the two uses wp-rec, and our novel rule for fragmented couplings.

Note that droll only consume a single sample on the tape. The rule for fragmented couplings ensures

that we will either sample to the tapes a value above 5 on the left and nothing on the right, or we

will sample the same value, between 0 and 5, to the tapes on both sides. In the first case, drej will
consume the value on the tape and call itself recursively, which allows us to use our inductive

hypothesis. In the second case, both programs will consume values on their tapes, read the same

number, and return equal values.

Finally, we show droll ≾ drej. This proof cannot be done by applying wp-rec since the program

on the left is not recursive. We will instead use induction by error amplification, through the rule
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log-ind-err. Let us set 𝑘 = 4/3. After applying this rule, we will get ownership of E (𝜀) for some

arbitrary 𝜀, plus the induction hypothesis

E ((4/3) · 𝜀) ∗ (∅ ⊢ droll () ≾ drej () : nat) ,

while our goal becomes

∅ ⊢ droll () ≾ drej () : nat .
We now use our rule for fragmented couplings with errors. This ensures that either (1) we sample

to the tapes a value above 5 on the right hand side, nothing on the left, and we amplify our credits

by 4/3, or (2) we sample identical values, between 0 and 5, to the tapes on both sides. In the first

case, the program on the right hand side will call itself recursively, but now we will own 𝜀 (4/3) · 𝜀,
which is precisely what we need to apply our inductive hypothesis and conclude. Otherwise, both

values will have the same value on the tapes, and will terminate and return the same result.

While this example is conceptually simple, the reasoning patterns it uses, as well as the different

induction principles that we can use depending on the presence or absence of recursion are

important subtleties of our approach, and is fundamental to understanding other examples, such as

that of the B+ tree in Appendix A.2.

A.2 Sampling from B+ Trees
In this case study, we show the correctness of a rejection sampling scheme developed by Olken and

Rotem [1989] for drawing a random sample from a B+ tree. Up to this point, previous examples

have made use of only simple forms of state and the contextual equivalences were for simple type

signatures. This case study demonstrates how Approxis is able to handle complex mutable state

and establish equivalences that rely on type abstraction.

To motivate Olken and Rotem’s sampling algorithm, we first summarize some relevant facts

about B+ trees. A B+ tree [Bayer and McCreight 1972] is a tree data structure that is widely used

for storing data in filesystems and databases. In contrast to a binary search tree, a B+ tree’s internal

nodes may have more than 2 children. Random sampling from a B+ tree can be used to draw

random records from such databases in order to carry out a statistical analysis. Because the tree

may store many elements, it is not efficient when drawing a sample to first reprocess the entire

database into an alternate representation. Instead, the sample must be drawn working directly over

the tree structure.

The sampling algorithm we consider relies on 3 key properties of a B+ tree: (1) data elements are

only stored at the leaves of the tree, (2) the height of the tree is perfectly balanced, meaning that

the length of the path from the root to a leaf is the same for all leaves, (3) each node has at most𝑀

children. Since the algorithm only requires these properties for correctness, our proof will work

with trees that are only assumed to satisfy these three properties, instead of assuming all of the

invariants of a B+ tree.

Before presenting Olken and Rotem’s algorithm, let us first consider a naïve sampling algorithm

that will serve as a correctness specification. If we knew that the tree contained 𝑁 total elements,

then one approach to drawing a random sample would be to first generate a random number

uniformly from {0, . . . , 𝑁 − 1} and then find and return the 𝑖-th element in the tree, numbering

the leaves from left to right. This approach correctly produces a uniform sample from the tree, but

the challenge lies in efficiently finding the 𝑖-th element in the tree. It is easy to find this element if

we assume that the tree is a ranked B+ tree, where intermediate notes are additionally annotated

with the total number of leaves that are descendants of the node. The function naive_sample in
Figure 7 implements this algorithm for sampling from a ranked B+ tree. However, maintaining this

rank information has a cost: every insertion in the tree requires modifying all of the nodes that are
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naive_sample tree ≜

let 𝜄 = tape (num_leaves tree − 1) in
let 𝑖 = rand (num_leaves tree − 1) 𝜄 in
let rec 𝑓 𝑡 num =

match 𝑡 with
| Lf 𝑣 ⇒ 𝑣

| Br 𝑙 ⇒
let (prev, idx) = search 𝑙 num in
let child = 𝑙 [idx] in
𝑓 (! child) (num − prev)

end in

𝑓 tree 𝑖

optimized_sample tree ≜
let rec draw 𝑡 𝜄 =

match 𝑡 with
| Lf 𝑣 ⇒ Some 𝑣
| Br 𝑙 ⇒ let idx = rand (𝑀 − 1) 𝜄 in

match List.nth 𝑙 idx with
| Some child ⇒ draw (! child)
| None ⇒ None
end

end in

let rec 𝑓 _ =

let 𝜄 = tape (𝑀 − 1) in
match draw tree 𝜄 with
| Some 𝑣 ⇒ 𝑣

| None ⇒ 𝑓 ()
end in

𝑓 ()
Fig. 7. Naïve algorithm for sampling from a ranked B+ tree and the Olken and Rotem [1989] algorithm for
rejection sampling from a non-ranked B+ tree.

ancestors of the inserted node to increase the recorded leaf counts. In contrast, inserting into a

(non-ranked) B+ tree, most insertions only require modifying the parent of the inserted element.

Olken and Rotem developed a rejection sampling algorithm for sampling from a non-ranked

B+ tree. We call this the optimized algorithm, implemented as optimized_sample in Figure 7. This

function makes use of the early abort technique we saw in Appendix A.1. Starting from the root, it

samples a random number 𝑖 uniformly from {0, 1, . . . , 𝑀 − 1}, where𝑀 is the maximum number

of children a node can have. It selects the 𝑖-th child and recurses on it, until it reaches a leaf. If

the current node does not have an 𝑖-th child, we return to the root and restart the algorithm.

The intuition behind the correctness of the optimized algorithm is that it is somewhat similar to

sampling random leafs from a full multi-way tree, i.e. a B+ tree where each intermediate node holds

𝑀 branches. In the case where we walk down a branch that is not present in the original B+ tree,

we reject this branch and start all over again.

Our main result for this case study shows that the naïve algorithm and the optimized algorithm

are equivalent. Of course, these algorithms are only equivalent when they operate over well-formed

trees, so we state this result as a contextual equivalence about two different implementations of

an abstract data type with operations for constructing and sampling from the tree. To state this

precisely, we first define the following functions (code omitted): init_tree, which takes an integer

and returns a B+ tree containing that single integer, insert_tree, which inserts an integer into a

tree, and build_ranked, which takes a (non-ranked) B+ tree and returns a ranked B+ tree with the

same entries and shape. Next, we define the following two packed tuples that bundle the operations

for the B+ tree:

opt ≜ pack (init_tree, insert_tree, optimized_sample)
naive ≜ pack (init_tree, insert_tree, 𝜆𝑡 .naive_sample (build_ranked 𝑡))
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intermediate_sample tree ≜

let d = get_depth tree in

let 𝜄 = tape (𝑀 ˆ d − 1) in
let rec intermediate_sample′ 𝑡 =

let idx = rand (𝑀 ˆ d − 1) 𝜄 in
let rec 𝑓 𝑡 num 𝑑 =

match 𝑡 with
| Lf 𝑣 ⇒ 𝑣

| Br 𝑙 ⇒ let idx = num `quot` (𝑀 ˆ (𝑑 − 1)) in
match List.nth 𝑙 idx with
| Some child ⇒ 𝑓 (! child) (num − idx · (𝑀 ˆ (𝑑 − 1))) (𝑑 − 1)
| None ⇒ intermediate_sample′ tree
end

end in

𝑓 𝑡 idx d in

intermediate_sample′ tree

Fig. 8. Intermediate algorithm for sampling from a non-ranked B+ tree.

where the sampling routine in naive takes a tree 𝑡 , builds the ranked version of the tree, and

then uses the naïve routine.
4
With these preliminaries in place, our main result can be stated as

⊢ opt ≃ctx naive : 𝜏 , where 𝜏 is the following existential type:
𝜏 ≜ ∃𝜏 . (Int→ 𝜏) × (𝜏 × Int→ 1) × (𝜏 → Int)

The proof of this equivalence in our full Coq development is too long to fully explain here. However,

at a high level, the proof has two components. First, there is the non-probabilistic reasoning showing

that the various routines traverse and modify the trees correctly, e.g. that the height-balanced
invariant is maintained by insert_tree, or that build_ranked correctly computes ranks. This aspect

in fact makes up the bulk of the proof, and consists of using traditional separation-logic style

reasoning about trees. For this part, Approxis’s support for the rich reasoning principles developed

in earlier separation logics is essential.

The second component is the actual probabilistic reasoning using couplings. Here, the coupling

reasoning in this proof is quite similar to the arguments used for proving the equivalence of the

die sampling routines in Appendix A.1. To make this correspondence clearer, and to simplify the

reasoning, we introduce an intermediate sampling routine, intermediate_sample, shown in Figure 8.
The intermediate program takes in a tree, computes the depth d of its leaves, and samples a value

from rand(𝑀d − 1). It then interprets this number as a path through the tree. To do so, the program

treats it after it were a d digit number written in base𝑀 , in which the 𝑖-th digit represents a child

to select at depth 𝑖 . If, on reaching depth 𝑖 it finds that the corresponding child does not exist, then

it rejects and repeats with a fresh sample.

We can see then that naive_sample is similar to droll: it always succeeds because it samples

an index of a valid leaf, just as droll always samples a number that is in range. Meanwhile,

intermediate_sample is like drej, as it samples a large number representing an entire path in

a tree, and then rejects if that path is invalid, much as drej rejects if its sample is too large.

4
Of course it would be highly inefficient to construct a ranked tree every time a sample is to be drawn, but naive here serves
as a correctness specification for opt, so its efficiency is not relevant.
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Finally, optimized_sample is like dsim, in that it samples the path layer-by-layer and rejects

early if the path is invalid, just as dsim samples bit-by-bit and rejects early if the number is

already too large. Thus for example, in proving that naive_sample ≾ intermediate_sample, we
use fragmented couplings and error amplification, just as we did for droll ≾ drej, while proving
optimized_sample ≾ intermediate_sample, we use the wp-many-to-one and wp-rec rule.
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