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ABSTRACT

We introduce the new audio analysis task of pedestrian detection and
present a new large-scale dataset for this task. While the preliminary
results prove the viability of using audio approaches for pedestrian
detection, they also show that this challenging task cannot be easily
solved with standard approaches.

Index Terms— pedestrian detection, audio classification, dataset

1. INTRODUCTION

The intelligent analysis of urban soundscapes plays an increasingly
important role in the design of smart cities. Microphones can com-
plement or even replace other forms of sensors because (i) they are
affordable, (ii) have low power requirements, (iii) can cover large
angles up to 360 degrees, and (iv) are not negatively impacted by
light conditions, weather patterns such as fog, or obstacles blocking
the angle of view.

In this paper, we propose a new challenging task in urban sound
analysis: the detection of pedestrians from audio-only signals. The
detection of pedestrians helps in alleviating bottlenecks and in trigger-
ing advance warnings about potential dislocations. Understanding the
temporal and spatial variation in demand for pedestrian infrastructure
can also lead to better resource use, more equitable service deliv-
ery, and greater sustainability and resilience. Detecting pedestrians
through audio poses some unique challenges. The audio signal pedes-
trians produce are often low volume and can be as diverse as steps and
speech. These signals have to be detected in a poly-timbral and time-
varying mixture of multiple urban sound sources with overlapping
frequency content.

To allow investigation of the viability of this novel task as well
as to enable and encourage future research on the task of pedes-
trian detection through audio signals, we present a new, large-scale
dataset containing audio and video data recorded in multiple separate
recording sessions at different locations at the Georgia Tech campus,
Atlanta.1 The number of pedestrians in proximity to the microphones
is annotated through video analysis with three different proximity
radii.

The main contributions of this paper are (i) the introduction of a
new task in urban sound analysis: pedestrian detection, (ii) the publi-
cation of a new large-scale audio dataset for this task called ASPED
(Audio Sensing for PEdestrian Detection), and (iii) the presentation
of baseline results for benchmarking and for viability analysis.

This work was funded by NSF Award 2203408.
1urbanaudiosensing.github.io/ASPED, last access date Sep 6, 2023

2. RELATED WORK

Identifying the environmental context through Sound Event Detec-
tion (SED) has been an active area of research in the past decade
[1, 2]. The challenge of SED in a typical outdoor environment is
the detection of an event from multiple known and unknown sources
of sound that are emitted simultaneously. Initial approaches to SED
have used Mel-frequency cepstral coefficients (MFCC) or other time-
frequency representations such as Fourier transform and the wavelet
transform [3, 4]. Other approaches included non-negative matrix
transformations (NMF) and spectrogram analysis with image pro-
cessing techniques [5, 6, 7]. Recent advances in feedforward neural
networks (FNN) and multilabel recurrent neural networks (RNN)
have been particularly promising for SED [8, 9, 3].

The advances in SED have led to a small but emerging field fo-
cusing on the detection and classification of urban sounds [1, 2]. This
research has been instrumental in the automatic detection of crime
indicators such as screams and gunshots and in monitoring urban
noise pollution [10, 11, 12, 13]. A large-scale research effort in this
domain has been an NSF-funded project called SONYC for detecting
noise and tagging urban sound sources [14]. This project has pro-
vided a large dataset of audio recordings tagged by citizen science
volunteers who annotated the presence of 23 fine-grained categories
of events. Another such dataset is AudioSet, which was developed
by the Machine Perception Research Organization at Google [15].
AudioSet is a large-scale collection of human-labeled 10 s sound
clips from over 2 million YouTube videos and contain 527 classes of
annotated sounds. The same group at Google has also released the
YouTube-100M data set labeled with one or more topic identifiers
from a set of 30,871 labels [16]. These labels are assigned automati-
cally based on the metadata and image content. A number of labeled
data sets for SED have also been developed from contributions to
freesound.org, including ESC-50 and FSD50K [17, 18]. In addition,
VGGSound is another audio-visual dataset released in 2020 contain-
ing more than 310 audio classes [19]. However, previous research
have not focused on sensing pedestrians using SED techniques. Thus,
existing datasets are not annotated with pedestrian counts and can-
not be easily relabeled. Furthermore, capturing meaningful audio
data from pedestrians is particularly difficult because it is not clear
what kind of sound can clearly identify pedestrian movement – is it
footsteps, conversation, rustling of clothes, or a combination of these
components? The challenge also is to detect such sound in a loud
multilayered soundscape within a street environment with vehicular
noise.

3. DATASET

We aimed to reach the following goals by planning and creating the
dataset: (i) large scale: large amount of data to accommodate ad-
vanced data-hungry machine learning models, (ii) high quality: to
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Fig. 1: Research team installing audio recorders in the field.

allow for investigation of the impact of audio quality levels (sam-
ple rate, word length), recordings should be provided in high audio
quality, and (iii) diversity: different recording locations and times to
account for a variety of scenarios.

3.1. Data acquisition

Two hardware setups were used for data acquisition. The audio col-
lection setup consisted of multiple Tascam DR-05X audio recorders
with power banks for extended duration recording, Saramonic SR-
XM1 microphones, and 5L OverBoard Waterproof Dry Flat Bags
for audio permeable weatherproofing. The video setup is a GoPro
HERO9 Black cameras with power banks (housed in a Seahorse 56
OEM Micro Hard Case) for extended duration recording.

Multiple audio sensors and cameras were deployed for each data
collection session. For each session, the recorders were placed in
their weatherproof bags once started, then secured to their recording
locations using zip ties. Recorders were secured at approx. chest
height as it was determined that sub-meter variation in height did
not affect audio quality. Figure 1 shows the installation of one audio
recorder.

The cameras were set to time-lapse mode with a 1 s duration. Wi-
Fi functionality was disabled to extend battery life. Multiple cameras
were utilized to keep all recorders in view. The camera mounts were
secured at →2.5m using zip ties.

In order to time sync the cameras, the time as listed on
www.time.gov was shown on a mobile device to each camera
after starting recording. A fox 40 pearl whistle was then blown and
the precise time was recorded. This whistle was used to sync the
audio recorders. In deployment locations over larger areas, multiple
whistle blows were conducted.

Recorders were deployed at two on-campus locations, the Cadell
Courtyard, and the Tech Walkway. Both locations are near areas with
restaurants and cafes but are off-limits to vehicular traffic. The battery
life of the recording devices limited the length of each recording
session to approx. 2 days per session.

In total, we captured 1-fps video recordings that sum up to
3,406,229 frames and the corresponding audio recordings of nearly
2,600 hours. All but one recorded days are weekdays.

3.2. Annotations

The number of pedestrians that actually passed the audio recorders
was detected and annotated by applying the Masked-attention Mask
Transformer (Mask2Former) [20], with a prediction threshold of 0.7

Fig. 2: Pedestrian detection video setup.

Pedestrian Counts

Radius 0 1 2 3 4+

1 99.4757 0.4723 0.0453 0.0058 0.0008
3 97.2538 2.1906 0.4075 0.0962 0.0519
6 91.9113 5.2566 1.7578 0.6262 0.4481
9 86.6895 7.7196 3.0175 1.2999 1.2734

Table 1: Percentage proportion of each pedestrian count per the labels
for each recorder radius

on video the recordings. This study used a Mask2Former implemen-
tation by OpenMMLab,2 trained on Microsoft COCO [21].

For each video frame, bounding boxes of the detected ‘person’
class were first extracted from the prediction from Mask2Former.
Next, circular buffers of different radius r ↑ [1m, 3m, 6m, 9m]
were overlaid on the video frames around the poles to which audio
recorders were attached. The buffers were angled to match the per-
spective of each video recording instance. Finally, the number of
pedestrians with the bottom center of the bounding box intersecting
with recorder buffers was counted and labeled in each frame. Figure 2
visualizes an example buffer and pedestrians with bounding boxes.

Each frame has four sets of annotation data for the four different
recording radii (see Sect. 3.2). Among the annotated videos, frames
without any detected pedestrians were the most common. Frames
with one pedestrian were next most frequent, followed by those with
two, then three, four pedestrians, and so on. Proportions of each
count within the labels for each radius are displayed in Table 1. The
labeled data contains more pedestrians detected during the daytime
as shown in Fig. 3. Pedestrian activities were at peak around noon,
especially during lunch time (11AM–14PM).

4. EXPERIMENTS

4.1. Experimental setup

We determine a baseline level of performance for this task with
three different models, all targeting a binary classification (pedestri-
ans present/not present) at different microphone radius settings and
for different pedestrian count thresholds separating the present/not
present classes. We aim to investigate the effects of these permuta-
tions to establish an understanding of how a basic classifier responds
to the change of data parameters of this task.

2openmmlab.com, last access date Sep 5, 2023
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Fig. 3: Number of pedestrians radius r = 6m by hour of day.

4.1.1. Model architectures

First, we investigate using the VGGish embeddings [16], pre-trained
on AudioSet [15], as input to a transformer encoder to learn temporal
relationships across each segment (referred to as VGGISH). Second,
we use a convolutional encoder with a log-mel spectrogram input,
followed by the aforementioned transformer encoder (referred to
as CONV). Third, we explore using the Audio Spectrogram Trans-
former, which has been shown to deliver state-of-the-art performance
for audio scene classification tasks [22] (referred to as AST). All mod-
els compute class output probabilities through an appended linear
classification layer with a sigmoid activation function.

4.1.2. Feature extraction

All network inputs are extracted in time frames of approx. 1 s length.
Both VGGISH and CONV follow the pre-processing procedure for
the pre-trained VGGish network [16], resulting in a 128-dimensional
VGGish embedding or a 96 ↓ 64 dimensional (time ↓ freq) log-
mel spectrogram, respectively. The AST input is a spectrogram
with dimensionality 100↓ 128 (time ↓ freq), following the original
publication [22].

The input of the VGGish and CONV models are a sequence of 10
concurrent features, corresponding to each 1 s frame per 10 s audio
segment. The input to the AST are single features per 1 s frame. Each
classification is done per frame, for every second of audio.

4.1.3. Training procedure

As our data contains pedestrian counts per frame, we create classifi-
cation labels where values of 0 are counted as negative-activity, and
any value above 0 is counted as positive-activity.

The dataset was randomly split into train/test/validation subsets
with 80/10/10 proportion, respectively. For testing and validation,
any overlapping segments are removed so that labels are not re-used
multiple times.

The loss function for all models is binary cross-entropy. As Fig. 3
shows, the label distribution is highly skewed towards no-activity;
To promote the learning of pedestrian activity, we use the following
augmentations for the underrepresented classes: (i) weighted batch
sampling — in each mini batch, audio segments are sampled with
replacement such that roughly half will contain at least one pedes-
trian activity event; (ii) variable weighted loss — each classes loss is
weighted dynamically per batch relative to its density in the training

Fig. 4: Recall for each class over recording radius. Positive and
negative classes are denoted by ”+” and ”-”, respectively.

samples, such that both positive and negative pedestrian-activity con-
tribute roughly equally to the loss per batch. The weighting function
used is shown below:

L = ωLBCE+ + (1↔ ω)LBCE→ (1)

ω =

{
1/num+

1/num++1/num→ , if num+ ↗= 0

0, if num+ = 0
(2)

4.1.4. Hyperparameters and implementation

For CONV and VGGISH, we use 1 transformer encoder with 4
attention heads, with a hidden dimensionality of 128. CONV contains
6 convolutional blocks each containing a conv2D, batchnorm, and
leakyReLU layer. Both networks are trained with a learning rate of
0.0005. For the AST, we use the base configuration per the authors
implementation3 pre-trained on ImageNet [23] and AudioSet [15]
with hidden dimensionality of 768, and a learning rate of 5e-7. We
train the CONV and VGGISH models for 20 epochs and the AST for
10 epochs, with the best performing model selected via performance
on the validation set. Parameters are optimized using the ADAM
optimizer [24]. We use a batch size of 256 for VGGISH and CONV,
and 32 for AST.

4.1.5. Experiments

We evaluate the baseline performance measured by class-level and
macro-average recall with the following experiments:

E1 — Comparison of baseline architectures: In order to cap-
ture task performance using general audio classification methods
as well as to evaluate performance across architectures of varying
complexity, the three models introduced above are compared. The
complexity ranges from ↘ 100K trainable parameters (VGGISH) to
↘ 80M trainable parameters (AST).

E2 — Impact of recording radius on accuracy: With this
experiment, the impact of the recording radius on the performance is
investigated. Spatial consideration for determining pedestrian activity
affects both the count and diversity of pedestrian noises: smaller radii

3github.com/YuanGongND/ast, last access date Sep 5, 2023
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Fig. 5: Macro average accuracy using the VGGISH, CONV, and AST
models.

contain a lower number of pedestrians that should be easier to classify
while larger radii contain a higher number of pedestrians with harder
to classify samples. As such, larger radii should provide a greater
diversity of pedestrian signals to our models with the downside that
counted pedestrians are more difficult to detect.

E3 — Impact of pedestrian count during training and testing

on performance: As the threshold for binary classification can be
set at arbitrary pedestrian counts, it does not necessarily have to
be identical for both training and testing. Therefore, we determine
the impact of different training thresholds on different inference
thresholds and thus investigate the model generalizability to different
pedestrian activity. This experiment utilizes a CONV model at radius
r = 6m while thresholding labels with values pT ↑ [1,2,3,4] such
that any value lower than pT is set to 0. We then test each trained
model on the 4 resulting test sets.

4.2. Results

E1: Figures 4 and 5 detail the results using the VGGISH, CONV, and
AST models, respectively. We can make the following observations.
First, the VGGISH model is in most cases outperformed by both
the CONV and AST models, which is expected as the pre-trained
VGGish embeddings are not fine-tuned for pedestrian detection. Sec-
ond, in terms of macro accuracy, the performance of the VGGISH
and AST model are fairly constant across radii 3 to 9m, while the
CONV model achieves highest performance on radii 3 and 6m. The
reasons for these radii working better could be a combination of
less imbalanced class distribution and reasonable proximity to the
microphone. Third, the AST generally has closest parity between
performance on both classes. Lastly, the negative class recall seems
to slightly outperform the recall for the positive (pedestrian) activity,
although the dramatic class imbalance observed in the data is not
reflected in the results showing the effectiveness of the sampling and
loss weighting applied during training.

E2: When attempting to compare the performance across dif-
ferent radii in Fig. 4, it is important to note that the test sets are not
identical; although all audio content is identical, the labels and, there-
fore, class-proportions differ. The performance per class tends to be
most balanced using radii 3 and 6m. The performance for radius 1m
likely suffers due to pedestrian signals just outside the radius being
labeled as no-activity, while radii 6 and 9m see a slight decline from

Fig. 6: Macro average accuracy over each train and test pedestrian
count threshold for radius r = 6m.

the opposite issue: low-volume pedestrian signals on the edge are
labeled as pedestrians while potentially not detectable from audio.

E3: Figure 6 visualizes the macro accuracy for each permutation
of combinations of train threshold and test threshold for pedestrian
count. We can make the following observations. First, as the threshold
for the test pedestrian count increases, a greater proportion of the
samples are classified correctly. It is unsurprising that the classifier
can perform better as an increased pedestrian count likely correlates
to stronger signals and thus more easily detected frames. Second,
performance generally decreases with increasing threshold for the
training pedestrian count, indicating that the classifier benefits from
harder to classify training samples. In general, the performance
seems to be best when trained with a low pedestrian count threshold
and evaluated with a high pedestrian count threshold (upper right
triangle).

5. CONCLUSION

We have introduced the new large-scale dataset ASPED for the chal-
lenging task of detecting pedestrians from audio data. The dataset
includes high quality audio recordings plus the video recordings used
for labeling the data with pedestrians counts. The baseline results
indicate the feasibility of using audio sensors for pedestrian track-
ing, although the performance needs to be improved before systems
become practically usable.

Plans for future work include extending the dataset to additional
environment such as locations with car traffic. Future directions of
inquiry will include (i) robustness against noise, (ii) impact of the
recording quality (sample rate etc.), (iii) impact of weather such as
wind on rain on the performance, (iv) accuracy of regression ap-
proaches to predict exact pedestrian counts, and (v) the performance
of more sophisticated classification approaches for pedestrian detec-
tion. Accurate detection of pedestrians can offer valuable information
and guidance for transportation infrastructure planning and urban
planning in general. Knowing why people choose to walk in cer-
tain urban areas and the destinations they prefer can help improve
pedestrian infrastructure, reduce overcrowding, and provide informa-
tion about untapped opportunities for economic development. Future
plans also include using the ASPED dataset for pedestrian route
prediction using network flow models.
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