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ABSTRACT

The goal of this study was to develop an image analysis algorithm for quantifying the effects of
remodelling on cortical bone during early fracture healing. An adaptive thresholding technique with
boundary curvature and tortuosity control was developed to automatically identify the endocortical and
pericortical boundaries in the presence of high-gradient bone mineral density (BMD) near the healing
zone. The algorithm successfully detected boundaries in more than 47,000 microCT images from 12 pairs
of healing ovine osteotomies and intact contralateral tibiae. Resampling techniques were used to achieve
data dimensionality reduction on the segmented images, allowing characterisation of radial, circumfer-
ential, and axial distributions of cortical BMD. Local (transverse slice) and total (whole bone) remodelling
scores were produced. These surrogate measures of cortical remodelling derived from BMD revealed that
cortical changes were detectable throughout the region covered by callus and that the localised loss of
cortical BMD was highest near the osteotomy. Total remodelling score was moderately and significantly
correlated with callus volume and mineral composition (r > 0.64, p < 0.05), suggesting that the cortex may
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be a source of mineral needed to build callus.

Introduction

Secondary bone healing is widely described as a four-stage
process: 1) inflammation, 2) soft callus formation, 3) hard
callus formation, and finally 4) remodelling (Schindeler et al.
2008; Pivonka and Dunstan 2012; Claes et al. 2012; Einhorn
and Gerstenfeld 2015; Ghiasi et al. 2017). However, radio-
graphic and mechanical analysis have revealed that the
mineralised collagen matrix undergoes dynamic remodelling
during the active repair stage (Tobita et al. 2012). In addi-
tion, cortical bone adjacent to the callus undergoes
a remodelling process in parallel with - not after - callus
formation. Nanoindentation testing of sectioned samples
and non-destructive image analysis both reveal localised
increases in porosity and decreases in bone mineral density
(BMD) in cortical bone immediately adjacent to the fracture
line (Preininger et al. 2011; Ren et al. 2022).

Previous investigators have speculated about the mechan-
istic origins of cortical adaptation during fracture repair. The
calcium and phosphate needed for callus mineralisation could
be provided from the immediately adjacent intact bone matrix
(Preininger et al. 2011). Cortical adaptation could also arise in
response to mechanoregulatory signals that induce resorption
at the fractured bone ends to reduce gap strain in early healing
(Augat et al. 2021). In ovine osteotomies, histology suggests
that cortical porosification and bone end resorption may be
occurring simultaneously, but these observations are qualita-
tive and restricted to single slices with a limited field of view

(Kaspar 2005; Manjubala et al. 2009; Peters et al. 2010; Einhorn
and Gerstenfeld 2015; Inglis et al. 2022; Ren et al. 2022).

A major barrier to the advancement of fundamental
research on coupled bone repair and remodelling is the tech-
nical challenge of measuring remodelling without destroying
a sample. Previously, we used micro computed tomography
(uCT) data from osteotomized sheep to measure an average
23% drop in cortical BMD just proximal to the osteotomy
compared to the contralateral limb (Ren et al. 2022). In these
samples, there was almost no difference between the limbs at
the proximal and distal ends of the bones, far from the injury
site. This finding suggests that remodelling intensity decays as
the distance from the osteotomy increases. However, the glo-
bal extent of cortical remodelling could not be evaluated using
our previous image processing method because the remodel-
ling activity itself presents a significant challenge for image
segmentation and boundary detection between old cortical
bone and callus.

The existing methods in the literature for segmenting the
image of a fractured bone have drawbacks. One previous study
(Lujan et al. 2010) measured callus size accurately, but was not
automatic and required multiple inputs, such as manually
selecting a region of interest (ROI), and relied on a fixed thresh-
old. Further, it was applicable to only coronal/sagittal X-rays,
rather than axial slices from CT scans. Automatic segmentation
of cross sectional images was successful in other studies (Buie
et al. 2007; Bissinger et al. 2017; Ren et al. 2022; Hopkinson et al.
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2023), but these were again based on selection of fixed seg-
mentation thresholds and therefore applied to a relatively short
span of bone near fracture line or to an intact bone, leaving
their applicability to more proximal and distal images of frac-
tured bones undetermined. In our exploratory attempts to
implement methods based on these prior studies, we con-
firmed that methods that rely on a constant set of thresholds
struggle to accurately detect tissue boundaries in the presence
of variable cortical resorption or callus mineralisation.

Accordingly, the technical objective of this study was to
develop a new algorithm for adaptive image segmentation to
measure the axial dependency of cortical remodelling in osteo-
tomized sheep. Our goal was to automatically segment images
across the entire diaphyseal region. To this end, challenges
needed to be addressed regarding threshold selection, bound-
ary detection and correction, data sampling, and dimensional-
ity reduction for extraction of summary parameters that define
remodelling. The scientific objective of this study was to assess
whether the extent of cortical BMD loss during fracture repair is
explained by variations in the mineral composition of the callus
formed. Specifically, we hypothesised that image-derived mea-
sures of cortical remodelling are positively correlated with
callus mineral density.

Materials and methods
Animal specimens and imaging

Data from 12 adult female Swiss alpine sheep with an age
range of 24-30 months and an average bodyweight of 63-77
kg was obtained in a previously completed experiment
(Schwarzenberg et al. 2021). Briefly, all animals had a tibial
osteotomy with a 3-mm interfragmentary gap in one limb at
mid-diaphysis and an intact contralateral tibia. The fractures
were stabilised using stainless steel 12-hole straight veterinary
locking compression plates and 3.5-mm locking screws.
Animals were maintained for 9weeks before sacrifice.
Implants were removed prior to uCT scanning using an
XtremeCT Il Micro-CT scanner (Scanco Medical AG,
Bruettisellen, Switzerland) with an X-ray voltage of 68 kVp
and X-ray current of 1470 pA). The diaphyseal segments (length
150-162 mm) of the operated and intact tibiae were scanned at
an isotropic resolution (L,) of 60.7 um. Each square slice image
had 1654 or 1660 pixels along its row/column. Grayscale image
pixels contained a 16-bit integer as pixel value (v). A phantom
(Scanco KP70 phantom, QRM) was scanned in the same scanner
at identical settings to quantify the constants needed for con-
verting Hounsfield units (HU) to calibrated BMD. Animal experi-
ments were conducted according to the Swiss laws of animal
protection and welfare and authorised by the local governmen-
tal veterinary authorities (License No. ZH 183/17).

Image preparation and registration

Each pCT scan contained about 2500 slice images in
a structured DICOM format. The images were analysed in
Python 3.11.1 using pydicom 2.3.1 package, numpy 1.24.2
package, and opencv-python 4.7.0.72 library.

The initial processing step was a registration procedure to
match slices in each operated (op) limb to slices in the corre-
sponding intact contralateral (con) limb. Axial registration was
challenging because although sheep have bilaterally sym-
metric skeletal anatomy, subtle left-right differences in cortical
area and shape are known to emerge during development
(Becker et al. 2020). The excised and scanned samples were
also irregular in length. Therefore, the tibial nutrient artery
canal (NAC) was identified as a common anatomical feature
that can be easily paired to repeatably achieve axial registration
between left-right limb pairs, before any segmentation (bound-
ary detection) has been performed. The NAC appears as an
intraosseous hole over several consecutive axial slices and its
location was used to define the axial offset (ho) between the
operated and intact contralateral image sets:

hotr = hmnc - hmc M

where hyc is the distance between the first proximal slice and
the first slice showing a full NAC hole. The absolute value of the
axial offset ranged from 70 slices (4 mm) to 530 slices (35 mm).
Figure 1 illustrates the registration procedure for
a representative operated-contralateral pair.

Segmentation and cortical boundary detection

The paired operated-contralateral slice images had differences
that introduced challenges for segmentation and cortical
boundary detection. The contralateral scans contained only
cortical bone, with high-contrast boundaries in every slice. In
contrast, the operated scans had callus of varying density inside
and/or outside the cortex. Remodeling at the endocortical and/
or pericortical boundaries was an obvious barrier to boundary
detection (Figure 1, operated slice #1320). Slices near the
osteotomy were sometimes discontinuous (operated slice
#1340). Screw holes also created discontinuities in the cortical
boundary (operated slices #820, #1260, and #2340). For these
reasons, two types of slices were excluded in the operated
scans: 1) slices within the osteotomy region and 2) slices with
a screw-hole discontinuity.

Boundary detection in the operated and contralateral limbs
shared some principal steps, which are depicted by Figure 2 in
an example slice image from an operated limb taken just
proximal to the osteotomy. First, each image (I) was convolved
with a square Gaussian kernel (G) of size n =31 with standard
deviation of 0 =10 to remove noise. Next, image binarization
was carried out, with pixel values higher than a specified
threshold (1) assigned a binary 1 and the remaining pixels
assigned a binary 0. The pericortical, endocortical, and callus
boundaries were detected from the binarized images and
a medullary centroid was defined as the mean of the endocor-
tical boundary. The resulting boundaries were in a Cartesian
coordinate system with uneven point angular spacing. To cre-
ate a uniform boundary discretisation and to define radial paths
from the medullary centroid outward, we resampled the as-
detected boundary in polar coordinates using a linear interpo-
lation at every integer angle from 0 to 359. A Savitzky-Golay
filter was then applied on the resampled points to produce
a more physiologically realistic smooth boundary.
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axial slice registration

Figure 1. Quantitative analysis of remodelling in an operated ovine tibia relative to the intact contralateral tibia from the same animal required axial registration of pCT
slices from two separate scans. Scans were aligned by matching the level of the nutrient artery canal (annotated NAC) in the two scans. In this example animal, the axial
offset is hyp = 135 slices. Numbers on each image refer to the slice position in image stack, with white text for intact and red text for operated.

Images with callus required additional steps for boundary
detection. Simple threshold-based segmentation produced an
as-detected pericortical boundary that could be locally con-
cave, where the true mid-diaphyseal cortex cross-section
should be convex. Therefore, a convexity constraint was
imposed prior to interpolation to resample with regularly
spaced points. The convexity constraint was not applied to
images proximal to the most proximal screw or distal to the
most distal screw because the native bone outer boundary can
be naturally concave near its ends. The focus of this algorithm
was on detecting remodelling changes in cortical bone, so in
instances of complex outer boundary of callus, only the inner
point of the callus boundary was preserved along each radial
path line before converting boundaries back to Cartesian
coordinates.

Boundaries needed final touch-ups in two circumstances. First,
the imposition of the convexity constraint on the pericortical
boundary followed by linear interpolation occasionally resulted

in a pericortical boundary with a larger local radius than the
calculated callus boundary. To correct this error, the pericortical
boundary was collapsed onto the callus boundary wherever the
former extended beyond the latter. Second, far from the osteot-
omy, a thin pericortical false callus was sometimes detected. To
correct for this artefact, the pericortical boundary was dilated onto
the callus boundary when callus thickness at all the 360 profile
lines was smaller than 15 pixels (~0.9 mm).

Adaptive thresholding

A critical step of the boundary detection process described
above is selection of appropriate thresholds (1) for differentia-
tion between higher- and lower-density regions of tissue. In
preliminary testing of our algorithm, we observed that a fixed
threshold (r=4,250) could be used for identifying boundaries
in slice images without callus, but this fixed threshold did not
correctly detect the old pericortical boundary in many slices of
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Figure 2. Representative example of the boundary detection procedure for a single slice of an operated limb, segmented using non-adaptive thresholding. The raw
slice image (a) was de-noised by applying a Gaussian filter, with a structural similarity index measure (SSIM) of 0.98 with respect to the raw image (b). In this example,
preliminary pericortical (c), endocortical (d), and callus (e) boundaries were detected after segmenting with thresholds ™" = 7,000, "% = 5950, and 1" = 4,250 that
differentiated higher density bone from the combined region of all mineralised tissue including callus. The preliminary pericortical boundary (c) was not correct due to
cortical remodelling, so a convexity constraint was enforced to produce a more physiological shape (f). Boundaries were then uniformly resampled (g) and smoothed
with a savitsky-golay filter (h), which were subsequently cleaned up to remove redundant points (i). Wherever the corrected pericortical boundary was larger than the
detected callus boundary, the pericortical radius was collapsed to the detected callus radius (j). In this example, no further change was needed because callus was

thicker than 15 pixels along most radial lines (k).

the operated limbs. Callus density is heterogeneous at this
stage of healing, with generally higher BMD at the proximal
and distal ends and lower BMD near the osteotomy line. For this
reason, it was impossible to identify one threshold that could
reliably distinguish between callus and bone in all images.
Hence, we introduced an algorithm to adaptively determine
appropriate endocortical (re"9°) and pericortical (t7¢7) thresh-
olds on a slice-by-slice basis.

The presence of callus inside the cortex near the osteotomy
was irregular, occasionally filling the entire medullary space

with a porous structure. When the endocortical threshold
(te"%) was not high enough, this internal callus was interpreted
as cortical bone. The endocortical boundary detected in this
manner would be non-physiologically tortuous and a poor
estimate of the true endocortical boundary. Conversely, when
the endocortical threshold (1°7%°) was too high, the inner wall of
the cortex was identified as callus, leading to an overly tight but
smooth boundary. This observation suggested that boundary
tortuosity could be used to help identify the optimal endocor-
tical segmentation threshold (1¢"%). The adaptive algorithm
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needed to increase the candidate endocortical threshold (r¢")
from an initial value until an acceptable detection of endocor-
tical boundary was achieved. To evaluate the acceptability of
a detected endocortical boundary, we defined endocortical

curve tortuosity (¢ {Lf}) as follows:

21 ”
de
(= I—"ZHK )
I3 rd6

where K[L;‘} is the local curvature and r[L,] is the interpolated
radius, just before being smoothed by a Savitzky-Golay filter,
both expressed in pixel units. Adaptive endocortical threshold-
ing started from the lower bound of endocortical threshold
(Tf,’,’,.ﬂ°=4,250) and increased in increments of 50 until either
tortuosity was less than or equal to an acceptable value ({4, to
be determined) or it reached an upper bound (tendo = 6,750).

max

Increasing the endocortical threshold beyond its upper bound
(t479°) consistently produced overly tight boundaries, even
though possibly smoother. In the presence of dense callus in
the medullary canal, the best-detected endocortical boundary
was not necessarily perfectly smooth, unlike other images in
which the endocortical boundaries were perfectly smooth. To
address this variability, the definition of maximum acceptable
tortuosity ((q,p) Needed to be context-sensitive and dependent
on the endosteal callus density. Therefore, it was taken as
a linear function of the local endocortical threshold (1¢"%)
divided by a constant ¢, empirically calibrated as 2.5 x 1072,
Use of a constant value for the maximum acceptable tortuosity
(Cacp) did not stop the algorithm at an ideal endocortical thresh-
old (t¢"%) in images with substantial callus and generated an
overly tight endocortical boundary. The chosen linear function
definition leniently allowed for a higher boundary tortuosity as
endocortical threshold rose.

Tortuosity proved to be useful for adaptive detection of
endocortical boundaries, but our initial investigations indicated
that there was no consistent relationship between tortuosity
and the quality of pericortical boundary detection in an oper-
ated limb. This suggested the need for a different criterion for
adaptive thresholding of the pericortical boundary. Slice
images before the first and after the last screws typically did
not have any callus, so their pericortical boundaries were
detected by the same threshold used in contralateral images
(tP¢ = 4,250). Due to the absence of callus in these images, the
detected boundaries with this threshold were physiological, so
the convexity constraint was not imposed on them. In fact,
imposing convexity would hurt the correctly detected bound-
aries because slice images in the proximal and distal regions
were not necessarily convex in shape (e.g. operated slices #100,
#2340 and contralateral slice #235, #2475 in Figure 1). For
images in the central diaphysis, the proper pericortical thresh-
old (") was iteratively identified by calculating a cross-
sectional area ratio (ks) within each single slice image:

ky = Aendo 3)

Aperi

where the enclosed area of endocortical boundary (Acngo {Lf,})

was divided by the enclosed area of the pericortical boundary

Table 1. Thresholding parameters and their roles in the algorithm for adaptive
boundary detection.

Boundary Parameter  Value Explanation
Endocortical Tf,?,-Z" 4250 Lower bound of threshold
rendo 6750 Upper bound of threshold
At 50 Increment of threshold
4 0.025 Calibration constant for tortuosity limit
Pericortical 1 4250 Threshold before/after first/last screw
Tﬁ’n’ 7000 Lower bound of threshold
e 7600  Upper bound of threshold
At 50 Increment of threshold

(Aperi {Lﬂ). We assumed that the ideal pericortical threshold

(tP2") would minimize the difference in calculated area ratios
between axially registered slices in the intact (k") and oper-
ated (k;”) limbs. The algorithm increased the threshold (77%") for

pericortical boundary detection from a lower bound (??% =
7,000) iteratively in increments of 50 until either the area ratio
in the operated image (k;”) equaled/exceeded that in the con-
tralateral image (k§°") or until the pericortical threshold (Per)

reached the upper bound (t%% = 7,600). The upper and lower
bounds of the endocortical and pericortical threshold search

ranges (r2190, gendo fPerl rberly were empirically determined by
visually examining the results during algorithm development
to determine the limits of segmentation quality. Table 1 con-

tains the values selected for the constants.

BMD calibration and radial sampling for dimensionality
reduction

After boundary detection, the final endocortical and cortical
boundaries were defined by points spaced at every integer
angle. Using these points, radial profile lines were used to
sample bone mineral density (BMD). Hounsfield unit (HU)
values in each pixel were calculated using a linear conversion
from pixel value (v) according to the information provided in
the DICOM file metadata:

HU = 0.515v — 1000 (4)

BMD (p) was obtained from a linear conversion of pixel HU
values based on a calibration curve defined from
a radiological phantom, which in this case was:

p = 0.38010HU — 7.37444 (5)

To measure circumferential changes, the radial line average
BMD (pg) was calculated along each profile line and represents
BMD at the corresponding angle (6). Similarly, circumferential
line average BMD (p,) was computed at incremental normalized
radii from the endocortical to pericortical boundary and repre-
sents BMD at the corresponding radius. Figure 3 illustrates the
paths used for calculating these quantities. To enable global
analysis, we extracted a representative density (P) from each
slice image, defined as the maximum of circumferential line
average BMD (p,). The representative density (P) of each oper-
ated or contralateral slice image was divided by its maximum in
the contralateral limb to obtain normalized representative den-
sity (P). This normalized representative density (P) was
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Figure 3. Examples of paths over which circumferential line average (p,), maximum circumferential line average (P), and radial line average (pg) BMD were calculated.

a function of axial position (z) and was interpreted to assess
spatial remodeling effects in 1D (axial position relative to
osteotomy), thereby achieving dimensionality reduction from
the 3D imaging dataset. For subsequent analysis, the normal-
ized representative density for contralateral scans (P©") was
smoothed by a seventh-degree polynomial (P<°"), but represen-
tative density for operated images (P°P) was not smoothed to
avoid obscuring local remodeling features. A slicewise remo-
deling index (R) as a function of axial position (z) was calcu-
lated by:

pcon poP

R(Z) — P§ (5) —-P (Z) (6)
Pen(2)

Summary parameters defining the spatial variation of cortical
remodelling activity were then extracted from the remodelling
index data. The slices corresponding to the upper 10% of
calculated R(z) values defined a region of high remodelling
activity. Maximum remodelling index (M) and its axial position
(zw) were defined as the average of remodelling index (R) and
axial position (z) within the region of high remodelling activity.
The height of this region (H) became another global
characteristic.

Finally, the summed total remodelling activity for the entire
scan (S) was calculated through numerical integration as
follows:

. [2re peon(z) — P*(2)dz )
- Zmax T
Izm,-n peon(z)dz

where z,qc and zy,;n are the axial positions of the most proximal
and distal paired slices for the operated and contralateral scans
in each animal.

Callus morphometric measurements

To enable a global analysis of the association between remo-
delling activity and callus production, the following morpho-
metric measures were also obtained for each animal: total
callus volume (V) [cm3], callus median density (o) [mgHA/
cm?], and callus mineral composition (V. x p.) [mgHA]. These
morphometric measurements were calculated from callus seg-
mentation described previously (Schwarzenberg et al. 2019,
2021).

Statistical analysis

All statistical analyses were performed in IBM SPSS Statistics
(v.29; IBM Corp., Armonk, NY). To assess whether cortical remo-
delling (loss of BMD) was related to the quantity of new miner-
alised tissue in the callus, we performed Pearson’s correlations
between all calculated remodelling parameters and all callus
morphometric measurements, a total of 21 correlations.

Results

The algorithm successfully detected boundaries in a total of
16,496 operated and 31,168 contralateral slice images from 12
sheep. Table 2 reports the number of included and excluded
slice images for each scan. All available slice images from
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Table 2. The number of slice images classified according to sheep and limb.

Contralateral Operated
Sheep Included Paired Excluded Included
A 2476 1309 0 1309
B 2477 1221 0 1221
C 2477 1289 0 1289
D 2477 1064 3 1061
E 2671 1490 0 1490
F 2671 1447 8 1439
G 2671 1518 0 1518
H 2639 1606 0 1606
/ 2631 1546 16 1530
J 2670 1324 0 1324
K 2670 1453 0 1453
L 2638 1256 0 1256
Total 31168 16523 27 16496

contralateral limbs were included. A few slice images in oper-
ated limbs showed completely incorrect detection of bound-
aries (negative cortical thickness) and were excluded
automatically. One sheep (L) had a region of slice images with
distinctly high and spatially irregular remodelling, which were
left out manually (this animal is discussed ahead).

Representative boundary detection and data sampling
results are presented in Figure 4 (example with substantial
callus present) and Figure 5 (example with little callus present).
Circumferential variations of radial line average BMD (p,) were
generally minimal. Notably, in the operated limb of Figure 5,
slices close to screw holes showed loss of BMD close to the
screws. The presence of the NAC hole also lowered the radial
line average BMD (pg) over a small angular span in a limited
number of slices. These effects aside, circumferential variations
in BMD were largely negligible and consistent between oper-
ated and contralateral limbs, so the subsequent analysis was
focused on radial and axial variations.

Radial-direction cortical remodelling depended on the axial
position (2) relative to the osteotomy, with the most substantial
cortical changes occurring close to the osteotomy. To compare
remodeling patterns between individual slices at different axial
positions, point clouds containing BMD values for all 360 radial
paths were plotted using a normalized radial coordinate (r) that
takes a value of 0 at the pericortical boundary and —1 and the
endocortical boundary. Collapsing the radial data in this way
revealed the higher remodeling activity close to the osteotomy
(Figure 4) compared to far from the osteotomy (Figure 5). The
large red dots in Figures 4e and 5e illustrate representative
density in each operated image (P°P), while the large black
dots illustrate representative density in the matched contralat-
eral slice (P*°"). These quantities represent BMD (p) in the paired
images concisely and combine to produce the remodeling
index (R) at this axial location (z). Closer to the osteotomy, the
representative density marker (large red dot) is farther from
the pericortical surface and lower in magnitude relative to the
intact representative density (large black dot) (Figure 4e versus
Figure 5e), indicating greater radial erosion of cortical BMD
relative to the contralateral bone.

To enable a global analysis of the differences between limbs
and the relationship between axial position and remodelling
activity, the slice-by-slice normalised representative densities
(P) and remodeling indices (R) were plotted with respect to the

axial position of the slice images. A representative example for
sheep (A) is provided in Figure 6. The intact limb cortical
density was highest and relatively constant across the midsec-
tion of the diaphysis, a distance of approximately 70 mm, and
dropped slightly to a normalized value of ~ 0.94 in both prox-
imal and distal ends. In contrast, the density variations in the
operated limb were complex. Furthest from the osteotomy,
density was nearly equivalent between the operated and con-
tralateral limbs, resulting in a remodeling index (R) that
approached zero. Closer to the osteotomy, remodeling activity
increased substantially, peaking close to the osteotomy. For
this example animal (A), the remodeling zone height was
H=19.0 mm, peaking at M=9.39% at z,, =—-83 mm, on the
distal side. The summed total remodeling activity for this ani-
mal was S=3.24%. BMD also exhibited variability between
screw holes, generally following a global trend of increasing
remodeling activity closest to the osteotomy, but reflecting
a localised loss of mineral near screws. Global comparison of
limbs in the other 11 animals in this study are shown in the
Supplemental Digital Content: Appendix.

Calculated global remodelling parameters for all animals as
well as their averages are summarised in Table 3. The average
remodelling zone height (H) was 31.5mm (SD=28.9) and
accounted for~21% of the diaphyseal segment (150 mm).
The average maximum remodeling index (M) was 11.2%
(SD = 1.6) occurring at a 4.4 mm distal to the center of osteot-
omy (SD =4.9). Summed total remodeling activity (S) was 4.6%
on average (SD = 1.1). Morphometric parameters for each callus
are summarized in Table 4. The average total callus volume,
callus median density, and callus mineral composition were
11.2cm? (SD=6.2), 697 mgHA/cm3 (SD=284.0), and 7,725
mgHA (SD = 4,024), respectively.

Pearson’s correlation coefficient (r) and the corresponding
p-value is provided in Table 5 for each combination of remo-
delling (Table 3) and callus morphometry (Table 4) parameters.
All the remodelling parameters except axial position of max-
imum remodelling (zy) were highly and significantly correlated
with each other (r >0.61, p <0.05). Among the morphometric
parameters, total callus volume (V,) and callus mineral compo-
sition (V. x p.) were highly and significantly correlated (r=
0.961, p >0.001), which is expected because total mineral com-
position is the product of callus volume and mineral density.
The strongest correlation between the two groups of indepen-
dent parameters (remodeling and morphometric measures)
was between summed total remodeling activity (S) and total
callus volume (V) (r =0.687, p = 0.020), followed by the correla-
tion between summed total remodeling activity (S) and callus
mineral composition (V. x p.) (r=0.644, p =0.033).

Discussion

The newly developed adaptive boundary detection algorithm
successfully detected the endocortical and pericortical bound-
aries of intact and operated ovine tibiae and enabled calcula-
tion of summary metrics to characterise the spatial variation of
cortical remodelling during fracture repair. A key observation
from the development of this procedure was the need for
adaptive thresholding to detect regions corresponding to old
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Figure 4. Comparison of paired slices from operated and contralateral limbs located just proximal to the osteotomy where substantial callus is present. a/b) images

after boundary detection and resampling in 1-degree circumferential increments. c/d) radial line average BMD (pg) superimposed over the cortical cross-section shape
in each image for reference. e) point cloud of BMD (p) distribution in each cross section. Representative densities for operated (P°P) and contralateral (P°) slice images

are indicated by the large dots. Considerable cortical remodeling was measured for this slice (R = 10%).
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Figure 5. Comparison of paired slices from operated and contralateral limbs located ~68 mm proximal to the centre of osteotomy where little callus is present. a/b)
images after boundary detection and resampling in 1-degree circumferential increments. c/d) radial line average BMD (pg) superimposed over the cortical cross-section
shape in each image for reference. e) point cloud of BMD (p) distribution in each cross section. Representative densities for operated (P°P) and contralateral (P<) slice
images are indicated by the large dots. Moderate cortical remodeling was measured for this slice (R = 5%).
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Figure 6. Global differences between the operated and contralateral limb of one animal were evaluated based on the changes of a) normalised representative densities
(P) in each limb and b) remodelling index (R) with characteristic measures obtained from its scatter.

Table 3. Summary of the characteristic measures obtained from the global

Table 4. Summary of the callus morphometric measures for the sheep in this

assessment of remodelling for the sheep in this study. study.
Maximum Axial Position of  Summed Total Total Callus Callus Median Callus Mineral

Remodeling Remodeling Maximum Remodeling Volume Density Composition
Zone Height Index Remodeling Activity Animal ID V. [cm3] Oc [mgHA/cm3] Ve x p. [mgHA]

Animal ID H [mm] M [%] zy [mm] S [%] A 7.7 643 4,930

A 19.0 9.4 -83 3.2 B 16.0 724 11,576

B 36.0 13.5 —4.5 5.9 C 5.6 646 3,631

C 25.0 12.3 -9.3 4.6 D 231 570 13,170

D 36.0 13.0 2.8 6.2 E 15 636 939

E 48.0 11.3 -2.4 46 F 13.0 695 9,047

F 41.0 13.4 -14.6 55 G 6.6 682 4,475

G 23.0 9.1 -0.9 33 H 6.3 842 5,341

H 31.0 1.1 -2.8 3.2 / 16.3 656 10,698

I} 36.0 10.8 —4.9 5.0 J 14.3 838 11,936

J 29.0 10.2 0.9 5.2 K 12.5 736 9,235

K 220 9.3 —4.9 3.6 Average 11.2 697 7,725

Average 31.5 11.2 -4.4 4.6 Std. Dev. 6.2 84.0 4,024

Std. Dev. 8.9 1.6 4.9 1.1

cortical bone. While fixed thresholding successfully detected
boundaries in contralateral images, operated images had wide
variations of bone and callus objects within and between
sheep, necessitating a flexible method of boundary detection.

Figure 7 illustrates the importance of choosing the endocortical
threshold (1¢"%) adaptively by showing two example images with
different cross sections in an operated limb. In both cases, the
adaptively-determined endocortical threshold (r°"®) for each

Table 5. Pearson’s correlation coefficients and the corresponding p-values (italicised) for all possible pairs of remodelling and callus morphometry parameters.

H 2 P Ve % p,
Summed Total Remodeling Activity 0.080 0.618* 0.687* —0.268 0.644*
(S [%]) 0.815 0.043 0.020 0.425 0.033
Maximum Remodeling Index —-0.241 0.636* 0.372 —-0.230 0.306
M [%] 0.475 0.035 0.259 0.496 0.361
Axial Position of Maximum Remodeling 0.017 0.254 0.089 0.240
zy [mm] 0.961 0.452 0.794 0.477
Remodeling Zone Height 0.102 -0.177 0.060
H [mm] 0.764 0.602 0.862
Total Callus Volume —0.130 0.961%**
Ve [em?] 0.702 <0.001
Callus Median Density 0.124
o, [mgHA/cm?] 0717

Callus Mineral Composition

Ve x p, [mgHA]

*Correlation is significant at the 0.05 level (2-tailed).
**Correlation is significant at the 0.01 level (2-tailed).



COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 1

Figure 7. Successful detection of endocortical boundaries in different slice images within one operated limb required adaptive endocortical thresholding (tendo). a/b) for
a slice located ~11 mm distal to the osteotomy centre with no endosteal callus, the endocortical boundary was properly detected with T2 = 4,250, but improperly
detected with 1¢"% = 6,650 (correct threshold in d). ¢/d) for a slice located 4 mm proximal to the osteotomy centre with endosteal callus, the endocortical boundary was
incorrectly detected with 7edo = 4,250 (correct threshold in a), but properly detected with 7endo — 6 650.

Figure 8. Detection of pericortical boundaries in the same slice images of figure 7. a/b) pericortical boundary was properly detected with 17" = 7,600, but was
improperly dilated with 7 = 7,000 (correct threshold in d). c/d) pericortical boundary was severely eroded with 7 = 7,600 (correct threshold in a), but correctly
follows pericortical wall with 77" = 7,000.
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image detected the endocortical boundary accurately, while the
swapped endocortical threshold (t°"%) from the other image
failed. Similarly, Figure 8 highlights the importance of adaptive
determination of pericortical threshold (1P%") using the same
images as in Figure 7 and their correct endocortical boundaries.
Again, adaptive thresholding successfully detected the pericortical
boundary, but swapping the pericortical thresholds (77*") between
images within this animal failed.

In all intact tibiae, our results did not show any substantial
circumferential variations of radial line average BMD (pg) (exam-
ples: Figures 4 and 5). This finding is in contrast with recent reports
of spatial variations in femoral cortical bone of 4-month-old sheep
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(Manandhar et al. 2023) and of foals younger than 1 year old
(Moshage et al. 2020). The difference might be rooted in the use
of skeletally mature rather than juvenile animals in this study.

In the fractured tibiae, we found widespread cortical remo-
delling consistent with findings from prior image analysis (Ren
et al. 2022) and nanoindentation measurements (Preininger
et al. 2011). Cortical remodelling was substantial close to the
osteotomy and almost negligible near the ends of the operated
bone (Figure 6). Since all the animals had mid-diaphyseal osteo-
tomies, our results cannot reveal how the location of the
osteotomy may affect the remodelling pattern. Notably, the
measure of remodelling here is different from that in (Ren

mgHA
cm3)

1200

1000

Figure 9. Noteworthy pattern of extreme remodelling in the sheep L. Remodelling at the outer wall of cortical bone (slice #1500) formed a ring of low BMD at the outer
wall (#1638) extending inward to the core (#1783) and reaching the inner wall partially (#1883) before occupying an irregular region of cortex (#2032 and #2132).
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et al. 2022) due our inclusion of the full-length bone image set,
so the numbers reported cannot be directly compared.
However, our large region of interest was useful because it
revealed both global effects of remodelling related to the injury
repair, and confirmed the presence of localised effects near
screws that may be attributable to microdamage (G. Wang
et al. 2014a; L. Wang et al. 2014b; Yu et al. 2014). BMD changes
we observed near screws could be related to the pre-strain
existing around bone screws due to the mechanical interaction
of screw threads and bone, which is intensified upon loading
the bone (MacLeod et al. 2012). This mechanical environment
might have caused microdamage in the vicinity of the screw,
triggering the remodelling patterns observed in our data
between screw holes.

Formation of callus requires a source of minerals. We identified
a significant correlation between the global remodelling score and
the total mineral composition of the callus. This finding supports
the hypothesis that rapid anabolic activity to form the callus is
enabled in part by catabolic depletion over a large region of the
cortical bone. In reviewing the analyzed images to look for this
effect, we discovered an interesting pattern of remodelling in
some animals. While cortical bone was expected to lose its mineral
content near its walls to supply callus formation, some animals
exhibited a noteworthy drop in BMD within the cortical core, rather
than near the walls. This pattern of remodelling was evident in
multiple animals but was extremely pronounced in one animal
(Sheep L) and is shown in Figure 9. The presence of this ring-like
cortical remodelling effect produced spurious pericortical segmen-
tations in this animal close to the osteotomy because the outer
cortex was too extensively remodelled to be detectable.
Consequently, Table 3 lacks the remodelling measures of this
animal and it was left out of the statistical analysis.

This study has limitations that suggest promising future direc-
tions for continuing research. First, slices with screw hole defects
were excluded, which may forfeit some useful insights about
remodelling near screws. The number of excluded slices also
varied slightly due to minor variations in the alignment of the
plates and screws for each animal at the time of surgery. While the
slicewise remodelling index (R) was not affected by exclusion of
slices, the summed total remodelling activity (S) is a global mea-
sure and it could be more sensitive to slice exclusion if comparing
results between animals with different implant types and numbers
of screws. Second, we registered the operated and contralateral
image sets using the NAC and used the intact cortical area ratio to
adapt the segmentation thresholds in the operated limbs. This
assumption was reasonable, but the natural asymmetry existing
between the limbs potentially introduces errors in the detection of
periosteum. This method is also limited in that periocortical
boundary detection in the operated limb is tied to that in the
contralateral limb, so both must be excised and scanned.

Future alternatives to address these limitations include active
contour models that start with an initial guess of the boundary and
deform until fitting an edge (Kass et al. 1988). Such a model can
outline the entire cortex bifurcated by a screw (Williams and Shah
1992), unlike what happens in thresholding. Further, it can be
constrained to produce physiological shapes similar to
a database of boundaries (Cootes and Taylor 1992). A larger data-
base of intact bone scans could also enable development of

statistical shape models (Patil et al. 2023) for cortical boundary
mapping in the presence of callus, even in cases of extreme
irregular remodelling where threshold-based methods are unsui-
table (e.g. Sheep L of this study).

Finally, it is important to note that the BMD-derived measures
of cortical bone change reported here are surrogate measures of
the net effects of remodelling activity (coupled bone resorption
and formation) at 9 weeks after surgery. The voxelized BMD mea-
surement itself is also a surrogate measure of cortical microstruc-
ture (e.g. porosity) and mineral composition. In the future, higher
resolution and time-series imaging may be helpful for direct
assessment of coupled remodelling at the microstructural level.

Conclusion

In this study, cortical bone density changes during ovine fracture
healing were quantified using an adaptive boundary detection
procedure over the entire diaphyseal segment, a much larger
region of interest than in other prior studies. Global effects of
cortical resorption related to the injury repair occurred concur-
rently with the localised effects near screws related to microdam-
age. The findings suggested that cortical adaptation occurs over
an extensive region of bone and that cortical bone may be serving
as a local source of the mineral needed to build callus. Future
applications of this work include evaluation of end-stage fracture
repair to assess the temporal pattern of fracture line consolidation
and cortical BMD recovery, processes that are important for long-
term recovery of bone strength after early stiffness has been
achieved through callus bridging.
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