


RESEARCH ARTICLE

Adaptive image segmentation reveals substantial cortical bone remodelling during 
early fracture repair

Alireza Ariyanfara, Karina Kleinb, Brigitte von Rechenbergb,c, Salim Darwicheb,c and Hannah L. Daileya

aMechanical Engineering & Mechanics, Lehigh University, Bethlehem, PA, USA; bMusculoskeletal Research Unit (MSRU), Vetsuisse Faculty, University 
of Zurich, Zurich, Switzerland; cCenter for Applied Biotechnology and Molecular Medicine (CABMM), University of Zurich, Zurich, Switzerland

ABSTRACT

The goal of this study was to develop an image analysis algorithm for quantifying the effects of 
remodelling on cortical bone during early fracture healing. An adaptive thresholding technique with 
boundary curvature and tortuosity control was developed to automatically identify the endocortical and 
pericortical boundaries in the presence of high-gradient bone mineral density (BMD) near the healing 
zone. The algorithm successfully detected boundaries in more than 47,000 microCT images from 12 pairs 
of healing ovine osteotomies and intact contralateral tibiae. Resampling techniques were used to achieve 
data dimensionality reduction on the segmented images, allowing characterisation of radial, circumfer-
ential, and axial distributions of cortical BMD. Local (transverse slice) and total (whole bone) remodelling 
scores were produced. These surrogate measures of cortical remodelling derived from BMD revealed that 
cortical changes were detectable throughout the region covered by callus and that the localised loss of 
cortical BMD was highest near the osteotomy. Total remodelling score was moderately and significantly 
correlated with callus volume and mineral composition (r > 0.64, p < 0.05), suggesting that the cortex may 
be a source of mineral needed to build callus.
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Introduction

Secondary bone healing is widely described as a four-stage 

process: 1) inflammation, 2) soft callus formation, 3) hard 

callus formation, and finally 4) remodelling (Schindeler et al.  

2008; Pivonka and Dunstan 2012; Claes et al. 2012; Einhorn 

and Gerstenfeld 2015; Ghiasi et al. 2017). However, radio-

graphic and mechanical analysis have revealed that the 

mineralised collagen matrix undergoes dynamic remodelling 

during the active repair stage (Tobita et al. 2012). In addi-

tion, cortical bone adjacent to the callus undergoes 

a remodelling process in parallel with – not after – callus 

formation. Nanoindentation testing of sectioned samples 

and non-destructive image analysis both reveal localised 

increases in porosity and decreases in bone mineral density 

(BMD) in cortical bone immediately adjacent to the fracture 

line (Preininger et al. 2011; Ren et al. 2022).

Previous investigators have speculated about the mechan-

istic origins of cortical adaptation during fracture repair. The 

calcium and phosphate needed for callus mineralisation could 

be provided from the immediately adjacent intact bone matrix 

(Preininger et al. 2011). Cortical adaptation could also arise in 

response to mechanoregulatory signals that induce resorption 

at the fractured bone ends to reduce gap strain in early healing 

(Augat et al. 2021). In ovine osteotomies, histology suggests 

that cortical porosification and bone end resorption may be 

occurring simultaneously, but these observations are qualita-

tive and restricted to single slices with a limited field of view 

(Kaspar 2005; Manjubala et al. 2009; Peters et al. 2010; Einhorn 

and Gerstenfeld 2015; Inglis et al. 2022; Ren et al. 2022).

A major barrier to the advancement of fundamental 

research on coupled bone repair and remodelling is the tech-

nical challenge of measuring remodelling without destroying 

a sample. Previously, we used micro computed tomography 

(µCT) data from osteotomized sheep to measure an average 

23% drop in cortical BMD just proximal to the osteotomy 

compared to the contralateral limb (Ren et al. 2022). In these 

samples, there was almost no difference between the limbs at 

the proximal and distal ends of the bones, far from the injury 

site. This finding suggests that remodelling intensity decays as 

the distance from the osteotomy increases. However, the glo-

bal extent of cortical remodelling could not be evaluated using 

our previous image processing method because the remodel-

ling activity itself presents a significant challenge for image 

segmentation and boundary detection between old cortical 

bone and callus.

The existing methods in the literature for segmenting the 

image of a fractured bone have drawbacks. One previous study 

(Lujan et al. 2010) measured callus size accurately, but was not 

automatic and required multiple inputs, such as manually 

selecting a region of interest (ROI), and relied on a fixed thresh-

old. Further, it was applicable to only coronal/sagittal X-rays, 

rather than axial slices from CT scans. Automatic segmentation 

of cross sectional images was successful in other studies (Buie 

et al. 2007; Bissinger et al. 2017; Ren et al. 2022; Hopkinson et al.  
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2023), but these were again based on selection of fixed seg-

mentation thresholds and therefore applied to a relatively short 

span of bone near fracture line or to an intact bone, leaving 

their applicability to more proximal and distal images of frac-

tured bones undetermined. In our exploratory attempts to 

implement methods based on these prior studies, we con-

firmed that methods that rely on a constant set of thresholds 

struggle to accurately detect tissue boundaries in the presence 

of variable cortical resorption or callus mineralisation.

Accordingly, the technical objective of this study was to 

develop a new algorithm for adaptive image segmentation to 

measure the axial dependency of cortical remodelling in osteo-

tomized sheep. Our goal was to automatically segment images 

across the entire diaphyseal region. To this end, challenges 

needed to be addressed regarding threshold selection, bound-

ary detection and correction, data sampling, and dimensional-

ity reduction for extraction of summary parameters that define 

remodelling. The scientific objective of this study was to assess 

whether the extent of cortical BMD loss during fracture repair is 

explained by variations in the mineral composition of the callus 

formed. Specifically, we hypothesised that image-derived mea-

sures of cortical remodelling are positively correlated with 

callus mineral density.

Materials and methods

Animal specimens and imaging

Data from 12 adult female Swiss alpine sheep with an age 

range of 24–30 months and an average bodyweight of 63–77  

kg was obtained in a previously completed experiment 

(Schwarzenberg et al. 2021). Briefly, all animals had a tibial 

osteotomy with a 3-mm interfragmentary gap in one limb at 

mid-diaphysis and an intact contralateral tibia. The fractures 

were stabilised using stainless steel 12-hole straight veterinary 

locking compression plates and 3.5-mm locking screws. 

Animals were maintained for 9 weeks before sacrifice. 

Implants were removed prior to µCT scanning using an 

XtremeCT II Micro-CT scanner (Scanco Medical AG, 

Bruettisellen, Switzerland) with an X-ray voltage of 68 kVp 

and X-ray current of 1470 µA). The diaphyseal segments (length 

150–162 mm) of the operated and intact tibiae were scanned at 

an isotropic resolution (Lp) of 60.7 µm. Each square slice image 

had 1654 or 1660 pixels along its row/column. Grayscale image 

pixels contained a 16-bit integer as pixel value (v). A phantom 

(Scanco KP70 phantom, QRM) was scanned in the same scanner 

at identical settings to quantify the constants needed for con-

verting Hounsfield units (HU) to calibrated BMD. Animal experi-

ments were conducted according to the Swiss laws of animal 

protection and welfare and authorised by the local governmen-

tal veterinary authorities (License No. ZH 183/17).

Image preparation and registration

Each µCT scan contained about 2500 slice images in 

a structured DICOM format. The images were analysed in 

Python 3.11.1 using pydicom 2.3.1 package, numpy 1.24.2 

package, and opencv-python 4.7.0.72 library.

The initial processing step was a registration procedure to 

match slices in each operated (op) limb to slices in the corre-

sponding intact contralateral (con) limb. Axial registration was 

challenging because although sheep have bilaterally sym-

metric skeletal anatomy, subtle left-right differences in cortical 

area and shape are known to emerge during development 

(Becker et al. 2020). The excised and scanned samples were 

also irregular in length. Therefore, the tibial nutrient artery 

canal (NAC) was identified as a common anatomical feature 

that can be easily paired to repeatably achieve axial registration 

between left-right limb pairs, before any segmentation (bound-

ary detection) has been performed. The NAC appears as an 

intraosseous hole over several consecutive axial slices and its 

location was used to define the axial offset (hoff Þ between the 

operated and intact contralateral image sets: 

where hNAC is the distance between the first proximal slice and 

the first slice showing a full NAC hole. The absolute value of the 

axial offset ranged from 70 slices (4 mm) to 530 slices (35 mm). 

Figure 1 illustrates the registration procedure for 

a representative operated-contralateral pair.

Segmentation and cortical boundary detection

The paired operated-contralateral slice images had differences 

that introduced challenges for segmentation and cortical 

boundary detection. The contralateral scans contained only 

cortical bone, with high-contrast boundaries in every slice. In 

contrast, the operated scans had callus of varying density inside 

and/or outside the cortex. Remodeling at the endocortical and/ 

or pericortical boundaries was an obvious barrier to boundary 

detection (Figure 1, operated slice #1320). Slices near the 

osteotomy were sometimes discontinuous (operated slice 

#1340). Screw holes also created discontinuities in the cortical 

boundary (operated slices #820, #1260, and #2340). For these 

reasons, two types of slices were excluded in the operated 

scans: 1) slices within the osteotomy region and 2) slices with 

a screw-hole discontinuity.

Boundary detection in the operated and contralateral limbs 

shared some principal steps, which are depicted by Figure 2 in 

an example slice image from an operated limb taken just 

proximal to the osteotomy. First, each image (I) was convolved 

with a square Gaussian kernel (G) of size n = 31 with standard 

deviation of σ = 10 to remove noise. Next, image binarization 

was carried out, with pixel values higher than a specified 

threshold (τ) assigned a binary 1 and the remaining pixels 

assigned a binary 0. The pericortical, endocortical, and callus 

boundaries were detected from the binarized images and 

a medullary centroid was defined as the mean of the endocor-

tical boundary. The resulting boundaries were in a Cartesian 

coordinate system with uneven point angular spacing. To cre-

ate a uniform boundary discretisation and to define radial paths 

from the medullary centroid outward, we resampled the as- 

detected boundary in polar coordinates using a linear interpo-

lation at every integer angle from 0 to 359. A Savitzky-Golay 

filter was then applied on the resampled points to produce 

a more physiologically realistic smooth boundary.
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Images with callus required additional steps for boundary 

detection. Simple threshold-based segmentation produced an 

as-detected pericortical boundary that could be locally con-

cave, where the true mid-diaphyseal cortex cross-section 

should be convex. Therefore, a convexity constraint was 

imposed prior to interpolation to resample with regularly 

spaced points. The convexity constraint was not applied to 

images proximal to the most proximal screw or distal to the 

most distal screw because the native bone outer boundary can 

be naturally concave near its ends. The focus of this algorithm 

was on detecting remodelling changes in cortical bone, so in 

instances of complex outer boundary of callus, only the inner 

point of the callus boundary was preserved along each radial 

path line before converting boundaries back to Cartesian 

coordinates.

Boundaries needed final touch-ups in two circumstances. First, 

the imposition of the convexity constraint on the pericortical 

boundary followed by linear interpolation occasionally resulted 

in a pericortical boundary with a larger local radius than the 

calculated callus boundary. To correct this error, the pericortical 

boundary was collapsed onto the callus boundary wherever the 

former extended beyond the latter. Second, far from the osteot-

omy, a thin pericortical false callus was sometimes detected. To 

correct for this artefact, the pericortical boundary was dilated onto 

the callus boundary when callus thickness at all the 360 profile 

lines was smaller than 15 pixels (~0.9 mm).

Adaptive thresholding

A critical step of the boundary detection process described 

above is selection of appropriate thresholds (τ) for differentia-

tion between higher- and lower-density regions of tissue. In 

preliminary testing of our algorithm, we observed that a fixed 

threshold (τ = 4,250) could be used for identifying boundaries 

in slice images without callus, but this fixed threshold did not 

correctly detect the old pericortical boundary in many slices of 

Figure 1. Quantitative analysis of remodelling in an operated ovine tibia relative to the intact contralateral tibia from the same animal required axial registration of µCT 
slices from two separate scans. Scans were aligned by matching the level of the nutrient artery canal (annotated NAC) in the two scans. In this example animal, the axial 
offset is hoff = 135 slices. Numbers on each image refer to the slice position in image stack, with white text for intact and red text for operated.
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the operated limbs. Callus density is heterogeneous at this 

stage of healing, with generally higher BMD at the proximal 

and distal ends and lower BMD near the osteotomy line. For this 

reason, it was impossible to identify one threshold that could 

reliably distinguish between callus and bone in all images. 

Hence, we introduced an algorithm to adaptively determine 

appropriate endocortical (τendo) and pericortical (τperi) thresh-

olds on a slice-by-slice basis.

The presence of callus inside the cortex near the osteotomy 

was irregular, occasionally filling the entire medullary space 

with a porous structure. When the endocortical threshold 

(τendo) was not high enough, this internal callus was interpreted 

as cortical bone. The endocortical boundary detected in this 

manner would be non-physiologically tortuous and a poor 

estimate of the true endocortical boundary. Conversely, when 

the endocortical threshold (τendo) was too high, the inner wall of 

the cortex was identified as callus, leading to an overly tight but 

smooth boundary. This observation suggested that boundary 

tortuosity could be used to help identify the optimal endocor-

tical segmentation threshold (τendo). The adaptive algorithm 

Figure 2. Representative example of the boundary detection procedure for a single slice of an operated limb, segmented using non-adaptive thresholding. The raw 
slice image (a) was de-noised by applying a Gaussian filter, with a structural similarity index measure (SSIM) of 0.98 with respect to the raw image (b). In this example, 
preliminary pericortical (c), endocortical (d), and callus (e) boundaries were detected after segmenting with thresholds τperi = 7,000, τendo = 5950, and τcall = 4,250 that 
differentiated higher density bone from the combined region of all mineralised tissue including callus. The preliminary pericortical boundary (c) was not correct due to 
cortical remodelling, so a convexity constraint was enforced to produce a more physiological shape (f). Boundaries were then uniformly resampled (g) and smoothed 
with a savitsky-golay filter (h), which were subsequently cleaned up to remove redundant points (i). Wherever the corrected pericortical boundary was larger than the 
detected callus boundary, the pericortical radius was collapsed to the detected callus radius (j). In this example, no further change was needed because callus was 
thicker than 15 pixels along most radial lines (k).
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needed to increase the candidate endocortical threshold (τendo) 

from an initial value until an acceptable detection of endocor-

tical boundary was achieved. To evaluate the acceptability of 

a detected endocortical boundary, we defined endocortical 

curve tortuosity (ζ L�5
p

h i

) as follows: 

where κ L�1
p

h i

is the local curvature and r½Lp� is the interpolated 

radius, just before being smoothed by a Savitzky-Golay filter, 

both expressed in pixel units. Adaptive endocortical threshold-

ing started from the lower bound of endocortical threshold 

(τendo
min = 4,250) and increased in increments of 50 until either 

tortuosity was less than or equal to an acceptable value (ζacp, to 

be determined) or it reached an upper bound (τendo
max = 6,750). 

Increasing the endocortical threshold beyond its upper bound 

(τendo
max ) consistently produced overly tight boundaries, even 

though possibly smoother. In the presence of dense callus in 

the medullary canal, the best-detected endocortical boundary 

was not necessarily perfectly smooth, unlike other images in 

which the endocortical boundaries were perfectly smooth. To 

address this variability, the definition of maximum acceptable 

tortuosity (ζacp) needed to be context-sensitive and dependent 

on the endosteal callus density. Therefore, it was taken as 

a linear function of the local endocortical threshold (τendo) 

divided by a constant c, empirically calibrated as 2:5 � 10�2. 

Use of a constant value for the maximum acceptable tortuosity 

(ζacp) did not stop the algorithm at an ideal endocortical thresh-

old (τendo) in images with substantial callus and generated an 

overly tight endocortical boundary. The chosen linear function 

definition leniently allowed for a higher boundary tortuosity as 

endocortical threshold rose.

Tortuosity proved to be useful for adaptive detection of 

endocortical boundaries, but our initial investigations indicated 

that there was no consistent relationship between tortuosity 

and the quality of pericortical boundary detection in an oper-

ated limb. This suggested the need for a different criterion for 

adaptive thresholding of the pericortical boundary. Slice 

images before the first and after the last screws typically did 

not have any callus, so their pericortical boundaries were 

detected by the same threshold used in contralateral images 

(τperi
1 = 4,250). Due to the absence of callus in these images, the 

detected boundaries with this threshold were physiological, so 

the convexity constraint was not imposed on them. In fact, 

imposing convexity would hurt the correctly detected bound-

aries because slice images in the proximal and distal regions 

were not necessarily convex in shape (e.g. operated slices #100, 

#2340 and contralateral slice #235, #2475 in Figure 1). For 

images in the central diaphysis, the proper pericortical thresh-

old (τperi) was iteratively identified by calculating a cross- 

sectional area ratio (kA) within each single slice image: 

where the enclosed area of endocortical boundary (Aendo L2
p

h i

) 

was divided by the enclosed area of the pericortical boundary 

(Aperi L2
p

h i

). We assumed that the ideal pericortical threshold 

(τperi) would minimize the difference in calculated area ratios 

between axially registered slices in the intact (kcon
A ) and oper-

ated (k
op
A ) limbs. The algorithm increased the threshold (τperi) for 

pericortical boundary detection from a lower bound (τ
peri
min =  

7,000) iteratively in increments of 50 until either the area ratio 

in the operated image (k
op
A ) equaled/exceeded that in the con-

tralateral image (kcon
A ) or until the pericortical threshold (τperi) 

reached the upper bound (τ
peri
max = 7,600). The upper and lower 

bounds of the endocortical and pericortical threshold search 

ranges (τendo
min ; τendo

max ; τ
peri
min; τ

peri
max) were empirically determined by 

visually examining the results during algorithm development 

to determine the limits of segmentation quality. Table 1 con-

tains the values selected for the constants.

BMD calibration and radial sampling for dimensionality 

reduction

After boundary detection, the final endocortical and cortical 

boundaries were defined by points spaced at every integer 

angle. Using these points, radial profile lines were used to 

sample bone mineral density (BMD). Hounsfield unit (HU) 

values in each pixel were calculated using a linear conversion 

from pixel value (v) according to the information provided in 

the DICOM file metadata: 

BMD (ρ) was obtained from a linear conversion of pixel HU 

values based on a calibration curve defined from 

a radiological phantom, which in this case was: 

To measure circumferential changes, the radial line average 

BMD (�ρθ) was calculated along each profile line and represents 

BMD at the corresponding angle (θ). Similarly, circumferential 

line average BMD (�ρr) was computed at incremental normalized 

radii from the endocortical to pericortical boundary and repre-

sents BMD at the corresponding radius. Figure 3 illustrates the 

paths used for calculating these quantities. To enable global 

analysis, we extracted a representative density (P) from each 

slice image, defined as the maximum of circumferential line 

average BMD (�ρr). The representative density (P) of each oper-

ated or contralateral slice image was divided by its maximum in 

the contralateral limb to obtain normalized representative den-

sity (�P). This normalized representative density (�P) was 

Table 1. Thresholding parameters and their roles in the algorithm for adaptive 
boundary detection.

Boundary Parameter Value Explanation

Endocortical τendo
min

4250 Lower bound of threshold

τendo
max

6750 Upper bound of threshold

Δτ 50 Increment of threshold
c 0.025 Calibration constant for tortuosity limit

Pericortical τ1 4250 Threshold before/after first/last screw

τ
peri
min

7000 Lower bound of threshold

τ
peri
max

7600 Upper bound of threshold

Δτ 50 Increment of threshold
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a function of axial position (z) and was interpreted to assess 

spatial remodeling effects in 1D (axial position relative to 

osteotomy), thereby achieving dimensionality reduction from 

the 3D imaging dataset. For subsequent analysis, the normal-

ized representative density for contralateral scans (�Pcon) was 

smoothed by a seventh-degree polynomial (�Pcon
s ), but represen-

tative density for operated images (�Pop) was not smoothed to 

avoid obscuring local remodeling features. A slicewise remo-

deling index (R) as a function of axial position (z) was calcu-

lated by: 

Summary parameters defining the spatial variation of cortical 

remodelling activity were then extracted from the remodelling 

index data. The slices corresponding to the upper 10% of 

calculated R zð Þ values defined a region of high remodelling 

activity. Maximum remodelling index (M) and its axial position 

(zM) were defined as the average of remodelling index (R) and 

axial position (z) within the region of high remodelling activity. 

The height of this region (H) became another global 

characteristic.

Finally, the summed total remodelling activity for the entire 

scan (S) was calculated through numerical integration as 

follows: 

where zmax and zmin are the axial positions of the most proximal 

and distal paired slices for the operated and contralateral scans 

in each animal.

Callus morphometric measurements

To enable a global analysis of the association between remo-

delling activity and callus production, the following morpho-

metric measures were also obtained for each animal: total 

callus volume (Vc) [cm3], callus median density (ρcÞ [mgHA/ 

cm3], and callus mineral composition (Vc � ρc) [mgHA]. These 

morphometric measurements were calculated from callus seg-

mentation described previously (Schwarzenberg et al. 2019,  

2021).

Statistical analysis

All statistical analyses were performed in IBM SPSS Statistics 

(v.29; IBM Corp., Armonk, NY). To assess whether cortical remo-

delling (loss of BMD) was related to the quantity of new miner-

alised tissue in the callus, we performed Pearson’s correlations 

between all calculated remodelling parameters and all callus 

morphometric measurements, a total of 21 correlations.

Results

The algorithm successfully detected boundaries in a total of 

16,496 operated and 31,168 contralateral slice images from 12 

sheep. Table 2 reports the number of included and excluded 

slice images for each scan. All available slice images from 

Figure 3. Examples of paths over which circumferential line average (�ρr ), maximum circumferential line average (P), and radial line average (�ρθ) BMD were calculated.
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contralateral limbs were included. A few slice images in oper-

ated limbs showed completely incorrect detection of bound-

aries (negative cortical thickness) and were excluded 

automatically. One sheep (L) had a region of slice images with 

distinctly high and spatially irregular remodelling, which were 

left out manually (this animal is discussed ahead).

Representative boundary detection and data sampling 

results are presented in Figure 4 (example with substantial 

callus present) and Figure 5 (example with little callus present). 

Circumferential variations of radial line average BMD (�ρθ) were 

generally minimal. Notably, in the operated limb of Figure 5, 

slices close to screw holes showed loss of BMD close to the 

screws. The presence of the NAC hole also lowered the radial 

line average BMD (�ρθ) over a small angular span in a limited 

number of slices. These effects aside, circumferential variations 

in BMD were largely negligible and consistent between oper-

ated and contralateral limbs, so the subsequent analysis was 

focused on radial and axial variations.

Radial-direction cortical remodelling depended on the axial 

position (z) relative to the osteotomy, with the most substantial 

cortical changes occurring close to the osteotomy. To compare 

remodeling patterns between individual slices at different axial 

positions, point clouds containing BMD values for all 360 radial 

paths were plotted using a normalized radial coordinate (�r) that 

takes a value of 0 at the pericortical boundary and −1 and the 

endocortical boundary. Collapsing the radial data in this way 

revealed the higher remodeling activity close to the osteotomy 

(Figure 4) compared to far from the osteotomy (Figure 5). The 

large red dots in Figures 4e and 5e illustrate representative 

density in each operated image (Pop), while the large black 

dots illustrate representative density in the matched contralat-

eral slice (Pcon). These quantities represent BMD (ρ) in the paired 

images concisely and combine to produce the remodeling 

index (R) at this axial location (z). Closer to the osteotomy, the 

representative density marker (large red dot) is farther from 

the pericortical surface and lower in magnitude relative to the 

intact representative density (large black dot) (Figure 4e versus 

Figure 5e), indicating greater radial erosion of cortical BMD 

relative to the contralateral bone.

To enable a global analysis of the differences between limbs 

and the relationship between axial position and remodelling 

activity, the slice-by-slice normalised representative densities 

(�P) and remodeling indices (R) were plotted with respect to the 

axial position of the slice images. A representative example for 

sheep (A) is provided in Figure 6. The intact limb cortical 

density was highest and relatively constant across the midsec-

tion of the diaphysis, a distance of approximately 70 mm, and 

dropped slightly to a normalized value of ~ 0.94 in both prox-

imal and distal ends. In contrast, the density variations in the 

operated limb were complex. Furthest from the osteotomy, 

density was nearly equivalent between the operated and con-

tralateral limbs, resulting in a remodeling index (R) that 

approached zero. Closer to the osteotomy, remodeling activity 

increased substantially, peaking close to the osteotomy. For 

this example animal (A), the remodeling zone height was 

H = 19.0 mm, peaking at M = 9.39% at zm = −8.3 mm, on the 

distal side. The summed total remodeling activity for this ani-

mal was S = 3.24%. BMD also exhibited variability between 

screw holes, generally following a global trend of increasing 

remodeling activity closest to the osteotomy, but reflecting 

a localised loss of mineral near screws. Global comparison of 

limbs in the other 11 animals in this study are shown in the 

Supplemental Digital Content: Appendix.

Calculated global remodelling parameters for all animals as 

well as their averages are summarised in Table 3. The average 

remodelling zone height (H) was 31.5 mm (SD = 8.9) and 

accounted for ~ 21% of the diaphyseal segment (150 mm). 

The average maximum remodeling index (M) was 11.2% 

(SD = 1.6) occurring at a 4.4 mm distal to the center of osteot-

omy (SD = 4.9). Summed total remodeling activity (S) was 4.6% 

on average (SD = 1.1). Morphometric parameters for each callus 

are summarized in Table 4. The average total callus volume, 

callus median density, and callus mineral composition were 

11.2 cm3 (SD = 6.2), 697 mgHA/cm3 (SD = 84.0), and 7,725 

mgHA (SD = 4,024), respectively.

Pearson’s correlation coefficient (r) and the corresponding 

p-value is provided in Table 5 for each combination of remo-

delling (Table 3) and callus morphometry (Table 4) parameters. 

All the remodelling parameters except axial position of max-

imum remodelling (zM) were highly and significantly correlated 

with each other (r >0.61, p <0.05). Among the morphometric 

parameters, total callus volume (Vc) and callus mineral compo-

sition (Vc � ρc) were highly and significantly correlated (r =  

0.961, p >0.001), which is expected because total mineral com-

position is the product of callus volume and mineral density. 

The strongest correlation between the two groups of indepen-

dent parameters (remodeling and morphometric measures) 

was between summed total remodeling activity (S) and total 

callus volume (Vc) (r = 0.687, p = 0.020), followed by the correla-

tion between summed total remodeling activity (S) and callus 

mineral composition (Vc � ρc) (r = 0.644, p = 0.033).

Discussion

The newly developed adaptive boundary detection algorithm 

successfully detected the endocortical and pericortical bound-

aries of intact and operated ovine tibiae and enabled calcula-

tion of summary metrics to characterise the spatial variation of 

cortical remodelling during fracture repair. A key observation 

from the development of this procedure was the need for 

adaptive thresholding to detect regions corresponding to old 

Table 2. The number of slice images classified according to sheep and limb.

Sheep

Contralateral Operated

Included Paired Excluded Included

A 2476 1309 0 1309
B 2477 1221 0 1221
C 2477 1289 0 1289
D 2477 1064 3 1061
E 2671 1490 0 1490
F 2671 1447 8 1439
G 2671 1518 0 1518
H 2639 1606 0 1606
I 2631 1546 16 1530
J 2670 1324 0 1324
K 2670 1453 0 1453
L 2638 1256 0 1256
Total 31168 16523 27 16496
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Figure 4. Comparison of paired slices from operated and contralateral limbs located just proximal to the osteotomy where substantial callus is present. a/b) images 
after boundary detection and resampling in 1-degree circumferential increments. c/d) radial line average BMD (�ρθ) superimposed over the cortical cross-section shape 
in each image for reference. e) point cloud of BMD (ρ) distribution in each cross section. Representative densities for operated (Pop) and contralateral (Pco) slice images 
are indicated by the large dots. Considerable cortical remodeling was measured for this slice (R = 10%).
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Figure 5. Comparison of paired slices from operated and contralateral limbs located ~68 mm proximal to the centre of osteotomy where little callus is present. a/b) 
images after boundary detection and resampling in 1-degree circumferential increments. c/d) radial line average BMD (�ρθ) superimposed over the cortical cross-section 
shape in each image for reference. e) point cloud of BMD (ρ) distribution in each cross section. Representative densities for operated (Pop) and contralateral (Pco) slice 
images are indicated by the large dots. Moderate cortical remodeling was measured for this slice (R = 5%).
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cortical bone. While fixed thresholding successfully detected 

boundaries in contralateral images, operated images had wide 

variations of bone and callus objects within and between 

sheep, necessitating a flexible method of boundary detection.

Figure 7 illustrates the importance of choosing the endocortical 

threshold (τendo) adaptively by showing two example images with 

different cross sections in an operated limb. In both cases, the 

adaptively-determined endocortical threshold (τendo) for each 

Figure 6. Global differences between the operated and contralateral limb of one animal were evaluated based on the changes of a) normalised representative densities 
(�P) in each limb and b) remodelling index (R) with characteristic measures obtained from its scatter.

Table 3. Summary of the characteristic measures obtained from the global 
assessment of remodelling for the sheep in this study.

Animal ID

Remodeling 
Zone Height 

H [mm]

Maximum 
Remodeling 

Index 
M [%]

Axial Position of 
Maximum 

Remodeling 
zM [mm]

Summed Total 
Remodeling 

Activity 
S [%]

A 19.0 9.4 −8.3 3.2
B 36.0 13.5 −4.5 5.9
C 25.0 12.3 −9.3 4.6
D 36.0 13.0 2.8 6.2
E 48.0 11.3 −2.4 4.6
F 41.0 13.4 −14.6 5.5
G 23.0 9.1 −0.9 3.3
H 31.0 11.1 −2.8 3.2
I 36.0 10.8 −4.9 5.0
J 29.0 10.2 0.9 5.2
K 22.0 9.3 −4.9 3.6
Average 31.5 11.2 −4.4 4.6
Std. Dev. 8.9 1.6 4.9 1.1

Table 5. Pearson’s correlation coefficients and the corresponding p-values (italicised) for all possible pairs of remodelling and callus morphometry parameters.

M zM H V c ρc V c � ρc

Summed Total Remodeling Activity 
(S [%])

0.793** 0.080 0.618* 0.687* −0.268 0.644*
0.004 0.815 0.043 0.020 0.425 0.033

Maximum Remodeling Index 
M [%]

−0.241 0.636* 0.372 −0.230 0.306
0.475 0.035 0.259 0.496 0.361

Axial Position of Maximum Remodeling 
zM [mm]

0.017 0.254 0.089 0.240
0.961 0.452 0.794 0.477

Remodeling Zone Height 
H [mm]

0.102 −0.177 0.060
0.764 0.602 0.862

Total Callus Volume 
V c [cm3]

−0.130 0.961**
0.702 <0.001

Callus Median Density 
ρc [mgHA/cm3]

0.124
0.717

Callus Mineral Composition 
V c � ρc [mgHA]

*Correlation is significant at the 0.05 level (2-tailed). 
**Correlation is significant at the 0.01 level (2-tailed).

Table 4. Summary of the callus morphometric measures for the sheep in this 
study.

Animal ID

Total Callus 
Volume 
V c [cm3]

Callus Median 
Density 

ρc [mgHA/cm3]

Callus Mineral 
Composition 

V c � ρc [mgHA]

A 7.7 643 4,930
B 16.0 724 11,576
C 5.6 646 3,631
D 23.1 570 13,170
E 1.5 636 939
F 13.0 695 9,047
G 6.6 682 4,475
H 6.3 842 5,341
I 16.3 656 10,698
J 14.3 838 11,936
K 12.5 736 9,235
Average 11.2 697 7,725
Std. Dev. 6.2 84.0 4,024
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Figure 7. Successful detection of endocortical boundaries in different slice images within one operated limb required adaptive endocortical thresholding (τendo). a/b) for 

a slice located ~11 mm distal to the osteotomy centre with no endosteal callus, the endocortical boundary was properly detected with τendo = 4,250, but improperly 

detected with τendo = 6,650 (correct threshold in d). c/d) for a slice located 4 mm proximal to the osteotomy centre with endosteal callus, the endocortical boundary was 

incorrectly detected with τendo = 4,250 (correct threshold in a), but properly detected with τendo = 6,650.

Figure 8. Detection of pericortical boundaries in the same slice images of figure 7. a/b) pericortical boundary was properly detected with τperi = 7,600, but was 

improperly dilated with τperi = 7,000 (correct threshold in d). c/d) pericortical boundary was severely eroded with τperi = 7,600 (correct threshold in a), but correctly 

follows pericortical wall with τperi = 7,000.
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image detected the endocortical boundary accurately, while the 

swapped endocortical threshold (τendo) from the other image 

failed. Similarly, Figure 8 highlights the importance of adaptive 

determination of pericortical threshold (τperi) using the same 

images as in Figure 7 and their correct endocortical boundaries. 

Again, adaptive thresholding successfully detected the pericortical 

boundary, but swapping the pericortical thresholds (τperi) between 

images within this animal failed.

In all intact tibiae, our results did not show any substantial 

circumferential variations of radial line average BMD (ρθ) (exam-

ples: Figures 4 and 5). This finding is in contrast with recent reports 

of spatial variations in femoral cortical bone of 4-month-old sheep 

(Manandhar et al. 2023) and of foals younger than 1 year old 

(Moshage et al. 2020). The difference might be rooted in the use 

of skeletally mature rather than juvenile animals in this study.

In the fractured tibiae, we found widespread cortical remo-

delling consistent with findings from prior image analysis (Ren 

et al. 2022) and nanoindentation measurements (Preininger 

et al. 2011). Cortical remodelling was substantial close to the 

osteotomy and almost negligible near the ends of the operated 

bone (Figure 6). Since all the animals had mid-diaphyseal osteo-

tomies, our results cannot reveal how the location of the 

osteotomy may affect the remodelling pattern. Notably, the 

measure of remodelling here is different from that in (Ren 

Figure 9. Noteworthy pattern of extreme remodelling in the sheep L. Remodelling at the outer wall of cortical bone (slice #1500) formed a ring of low BMD at the outer 
wall (#1638) extending inward to the core (#1783) and reaching the inner wall partially (#1883) before occupying an irregular region of cortex (#2032 and #2132).
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et al. 2022) due our inclusion of the full-length bone image set, 

so the numbers reported cannot be directly compared. 

However, our large region of interest was useful because it 

revealed both global effects of remodelling related to the injury 

repair, and confirmed the presence of localised effects near 

screws that may be attributable to microdamage (G. Wang 

et al. 2014a; L. Wang et al. 2014b; Yu et al. 2014). BMD changes 

we observed near screws could be related to the pre-strain 

existing around bone screws due to the mechanical interaction 

of screw threads and bone, which is intensified upon loading 

the bone (MacLeod et al. 2012). This mechanical environment 

might have caused microdamage in the vicinity of the screw, 

triggering the remodelling patterns observed in our data 

between screw holes.

Formation of callus requires a source of minerals. We identified 

a significant correlation between the global remodelling score and 

the total mineral composition of the callus. This finding supports 

the hypothesis that rapid anabolic activity to form the callus is 

enabled in part by catabolic depletion over a large region of the 

cortical bone. In reviewing the analyzed images to look for this 

effect, we discovered an interesting pattern of remodelling in 

some animals. While cortical bone was expected to lose its mineral 

content near its walls to supply callus formation, some animals 

exhibited a noteworthy drop in BMD within the cortical core, rather 

than near the walls. This pattern of remodelling was evident in 

multiple animals but was extremely pronounced in one animal 

(Sheep L) and is shown in Figure 9. The presence of this ring-like 

cortical remodelling effect produced spurious pericortical segmen-

tations in this animal close to the osteotomy because the outer 

cortex was too extensively remodelled to be detectable. 

Consequently, Table 3 lacks the remodelling measures of this 

animal and it was left out of the statistical analysis.

This study has limitations that suggest promising future direc-

tions for continuing research. First, slices with screw hole defects 

were excluded, which may forfeit some useful insights about 

remodelling near screws. The number of excluded slices also 

varied slightly due to minor variations in the alignment of the 

plates and screws for each animal at the time of surgery. While the 

slicewise remodelling index (R) was not affected by exclusion of 

slices, the summed total remodelling activity (S) is a global mea-

sure and it could be more sensitive to slice exclusion if comparing 

results between animals with different implant types and numbers 

of screws. Second, we registered the operated and contralateral 

image sets using the NAC and used the intact cortical area ratio to 

adapt the segmentation thresholds in the operated limbs. This 

assumption was reasonable, but the natural asymmetry existing 

between the limbs potentially introduces errors in the detection of 

periosteum. This method is also limited in that periocortical 

boundary detection in the operated limb is tied to that in the 

contralateral limb, so both must be excised and scanned.

Future alternatives to address these limitations include active 

contour models that start with an initial guess of the boundary and 

deform until fitting an edge (Kass et al. 1988). Such a model can 

outline the entire cortex bifurcated by a screw (Williams and Shah  

1992), unlike what happens in thresholding. Further, it can be 

constrained to produce physiological shapes similar to 

a database of boundaries (Cootes and Taylor 1992). A larger data-

base of intact bone scans could also enable development of 

statistical shape models (Patil et al. 2023) for cortical boundary 

mapping in the presence of callus, even in cases of extreme 

irregular remodelling where threshold-based methods are unsui-

table (e.g. Sheep L of this study).

Finally, it is important to note that the BMD-derived measures 

of cortical bone change reported here are surrogate measures of 

the net effects of remodelling activity (coupled bone resorption 

and formation) at 9 weeks after surgery. The voxelized BMD mea-

surement itself is also a surrogate measure of cortical microstruc-

ture (e.g. porosity) and mineral composition. In the future, higher 

resolution and time-series imaging may be helpful for direct 

assessment of coupled remodelling at the microstructural level.

Conclusion

In this study, cortical bone density changes during ovine fracture 

healing were quantified using an adaptive boundary detection 

procedure over the entire diaphyseal segment, a much larger 

region of interest than in other prior studies. Global effects of 

cortical resorption related to the injury repair occurred concur-

rently with the localised effects near screws related to microdam-

age. The findings suggested that cortical adaptation occurs over 

an extensive region of bone and that cortical bone may be serving 

as a local source of the mineral needed to build callus. Future 

applications of this work include evaluation of end-stage fracture 

repair to assess the temporal pattern of fracture line consolidation 

and cortical BMD recovery, processes that are important for long- 

term recovery of bone strength after early stiffness has been 

achieved through callus bridging.
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