
L
2
5GC+: An Improved, 3GPP-compliant 5G Core

for Low-latency Control Plane Operations

Yu-Sheng Liu†, Shixiong Qi∗, Po-Yi Lin†, Han-Sing Tsai†, K. K. Ramakrishnan∗, Jyh-Cheng Chen†

†National Yang Ming Chiao Tung University, ∗University of California, Riverside

Abstract—While 5G offers fast access networks and a high-
performance data plane, the control plane in 5G core (5GC)
still presents challenges due to inefficiencies in handling control
plane operations (including session establishment, handovers and
idle-to-active state-transitions) of 5G User Equipment (UE). The
Service-based Interface (SBI) used for communication between
5G control plane functions introduces substantial overheads that
impact latency. Typical 5GCs are supported in the cloud on
containers, to support the disaggregated Control and User Plane
Separation (CUPS) framework of 3GPP. L25GC is a state-of-the-
art 5G control plane design utilizing shared memory processing to
reduce the control plane latency. However, L25GC has limitations
in supporting multiple user sessions and has programming lan-
guage incompatibilities with 5GC implementations, e.g., free5GC,
using modern languages such as GoLang. To address these chal-
lenges, we develop L

2
5GC+, a significant enhancement to L25GC.

L
2
5GC+ re-designs the shared-memory-based networking stack

to support synchronous I/O between control plane functions.
L
2
5GC+ distinguishes different user sessions and maintains strict

3GPP compliance. L25GC+ also offers seamless integration with
existing 5GC microservice implementations through equivalent
SBI APIs, reducing code refactoring and porting efforts. By lever-
aging shared memory I/O and overcoming L25GC’s limitations,
L
2
5GC+ provides an improved solution to optimize the 5G control

plane, enhancing latency, scalability, and overall user experience.
We demonstrate the improved performance of L25GC+ on a 5G
testbed with commercial basestations and multiple UEs.

Index Terms—5G, control plane, low latency, shared memory

I. INTRODUCTION

The demand for 5G and beyond technologies is being driven

by the emergence of applications like the Internet of Things

(IoT) and connected vehicles, which rely heavily on cellular

networks for ubiquitous access and low latency. Further, the

deployment of 5G, especially the 5G Core (5GC) and (soon)

the Radio Access Network (RAN), in cloud infrastructure has

been instrumental in its widespread implementation as well

as its scalability. Cloud-based 5G core networks allow for

flexible and efficient resource provisioning, using seamless

scaling to accommodate the diverse demands of connected

User Equipment (UE) and applications.

For a seamless end-to-end low-latency user experience, both

the radio access and as well as the core components of 5G

cellular networks have to improve. Advancements in radio

access technology, such as millimeter wave, have reduced

access network latency to approximately the order of a few

milliseconds (possibly 1 ms [1]). The recent effort shows that

electronic mmWave beam alignment and link acquisition can

be completed within 1-10 ms, allowing a UE’s connection

establishment with the gNodeB to be completed quickly [2].

In addition, the advent of disaggregated 5GC has spurred

significant efforts to re-architect the data plane to meet the

stringent requirements of performance and scalability. A vari-

ety of optimizations have been explored to enhance the 5GC

data plane, including DPDK [3], eBPF [4], SmartNIC [5], and

offloading to hardware switches using P4 [6].

However, the control plane still contributes substantially

to the overall high latency observed in the 5GC. One major

contributor is the potential for increased mobility handovers,

driven by the wide adoption of millimeter-wave cells [7],

which have smaller cell sizes as well as limited coverage,

leading to more frequent handover events. These handovers

have to be handled by the 5G control plane. Additionally,

with the need to conserve energy in batteries on UEs like

mobile phones as well as IoT devices, there will likely be much

more idle-active transitions among the UEs. The proliferation

of 5G UEs (e.g., mobile phones, IoT devices, autonomous

vehicles) further increases the load on the 5G control plane.

The completion times of control plane events, for instance,

a handover process taking 1.9 seconds [8], directly influence

the delay and packet loss encountered by the data packets

transmitted to an end-user device.

The disaggregated 5GC architecture represents a transfor-

mative approach to implementing 5G core networks, moving

away from the monolithic, tightly integrated network elements

of previous approaches to build the cellular core to a flexible

and scalable approach based on microservices. The various

components of the 5GC are implemented as software-based

Network Functions (NFs), interconnected as a chain to ac-

complish the required functionality. Each NF is implemented

as an individual microservice, focusing on a specific task, such

as Access and Mobility Management, Session Management,

Authentication, etc. The use of microservices enables fine-

grained control and allows for rapid deployment and up-

grades of individual components without affecting the entire

5G system. Additionally, this disaggregated approach enables

resource optimization, since NFs can be dynamically scaled

based on traffic demand.

A crucial implementation feature of the 5G control plane

is the Service-based Interface (SBI) recommended by 3GPP,

which has been the de-facto communication standard used for

communication between disaggregated 5G control plane NFs.

However, the use of SBI introduces a number of overheads,

such as data copies, protocol processing, and user-kernel

space boundary crossings [3]. These overheads can result in

increased latency, apart from the penalty due to the traditional

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

979-8-3503-1306-2/23/$31.00 ©2023 IEEE 203
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

cellular control plane core procedures (details in §IV).

To address the challenge of achieving low-latency commu-

nication in the 5GC control plane, efforts have been made to

explore innovative approaches that harness high-performance

shared memory I/O (i.e., data exchange) for information ex-

change between NFs implementing microservices in the 5GC.

By leveraging shared memory processing, the 5G control plane

can significantly reduce the delays caused by data copies and

protocol processing, resulting in improved response times and

a more seamless user experience. In [3], we discussed L25GC,

a state-of-the-art 5G control plane design developed on top

of OpenNetVM [9], a high-performance shared-memory NFV

platform. L25GC utilizes shared memory processing among

the 5G control plane components, which reduces the com-

pletion time of control plane events (e.g., UE registration,

handover, paging) by almost 50% on average [3].

However, L25GC’s control plane only supports a limited

number of user sessions due to a rather limited implementation

of the shared memory I/O to replace the SBI.1 L25GC chose

to use raw shared memory I/O provided by DPDK, which

operates asynchronously between caller (source) and callee

(destination). For asynchronous data exchange, the caller

typically continues with other tasks without being blocked

and does not wait for a response from the callee. However,

this is incompatible with the HTTP/REST-based SBI, which

primarily operates synchronously between caller and callee,

i.e., the caller sends a request to the callee and waits until a

response is returned.

The mismatch between L25GC’s asynchronous shared mem-

ory I/O and synchronous SBI makes it hard to harmonize them,

unfortunately increasing the complexity of code development

and the difficulty of code maintenance and updates of L25GC.

Further, L25GC’s shared memory I/O only supports stateless

processing. This lack of capability to preserve connection con-

text makes L25GC’s shared memory I/O connection-agnostic

and not able to distinguish between different user sessions. The

implementation complexity and the statelessness of L25GC’s

shared memory I/O eventually impede L25GC’s ability to scale

up, supporting multiple user sessions.

In addition to the mismatch between synchronous and asyn-

chronous I/O, another challenge comes from programming lan-

guage incompatibility. L25GC is adapted from our earlier work

on a 3GPP-compliant 5GC implementation, free5GC [11].

For the purpose of functionality and development velocity,

free5GC chose to use Golang, a high-level programming

language, in its implementation. On the other hand, L25GC’s

asynchronous shared memory I/O is developed with the C-

based DPDK libraries for high-performance networking. This

leads to a need for substantial re-factoring of code when

porting the 3GPP-compliant free5GC to L25GC to reduce the

control plane latency.

We propose L25GC+, an enhancement to L25GC. L25GC+

takes advantage of our newly designed shared memory I/O

1Based on examining the source code [10] of L25GC at the latest commit
hash 74cb035.

interface, X-IO [12], and tackles the pain points of L25GC we

have outlined above, including limited user session support and

the need for complex code refactoring when porting free5GC’s

(or other traditional SBI-based) control plane implementation,

while retaining the performance benefits of L25GC’s shared

memory processing. To achieve this, we re-design the shared-

memory-based networking stack in L25GC to support syn-

chronous I/O between control plane NFs. This avoids heavy-

weight kernel-based networking used in HTTP/REST-based

SBI, while being strictly 3GPP-compliant. To support multiple

user sessions simultaneously in shared memory processing,

L
2
5GC+ introduces necessary connection establishment and

teardown procedures. Important connection states, such as

caller and callee ID2 are kept in a state map maintained

in L
2
5GC+’s shared memory networking stack. This enables

L
2
5GC+’s shared memory I/O to be aware of distinct connec-

tions, on top of which L
2
5GC+ can distinguish different user

sessions, unlike L25GC.

To speed up the development velocity when porting

free5GC to L
2
5GC+, we expose the equivalent SBI APIs

from L
2
5GC+’s networking stack. By leveraging the cross-

language support offered by the CGo interface [13], we mit-

igate the programming language incompatibility between the

lower-layer shared memory transport (developed with C-based

DPDK libraries) and upper-layer Golang-based SBI APIs. This

allows us to seamlessly replace the kernel-based SBI APIs

for existing free5GC control plane NFs, while keeping the

NF implementation unchanged, thus greatly reducing porting

efforts.

To gain a solid understanding of how L
2
5GC+ actually

performs, we evaluate L25GC+ on a commercial testbed with

an increasing number of UEs. We select several representative

control plane events, including UE registration, PDU session

establishment, to evaluate L
2
5GC+ against a popular 5GC

implementation, free5GC [11], which uses kernel-based SBI

in the control plane. Results demonstrate the performance

improvement of L
2
5GC+’s shared memory SBI, especially

when there are multiple user sessions operating concurrently

in the 5GC control plane.

II. BACKGROUND AND RELATED WORK

A. 5G core control plane

The 5G cellular network is typically divided into the RAN

and the 5G core network. The RAN incorporates the wireless

channel, cellular base stations, and the backhaul network, all

working together to establish connections between UEs (i.e.,

typically mobile client devices) and the 5GC. On the other

hand, the 5GC plays a crucial role in connecting UEs to the

Data Network (DN) to access internet services.

The 5GC is further split into the data plane and control

plane. User Plane Function (UPF) is the key NF in the 5GC

data plane, which interconnects the RAN and DN. Fig. 1

depicts the architecture of the 5GC control plane. Unlike pre-

vious generations of cellular core networks, the 5GC control

2Similar to kernel-based TCP/IP stack, L25GC+ uses IP and port numbers
to differentiate between NFs using shared memory communication.

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

204
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. The architecture of 5G core control plane

plane has undergone significant evolution, transitioning to dis-

aggregated NFs. Several crucial control plane NFs play distinct

roles. These include the Access and Mobility Function (AMF),

Network Repository Function (NRF), Service Management

Function (SMF), and Authentication Server Function (AUSF).

This transformation facilitates the implementation of control

plane NFs as cloud-native services. This shift towards a cloud-

native, service-based approach enhances flexibility and scala-

bility in the 5G Core, facilitating more efficient and agile net-

work management. On the other hand, such disaggregated de-

sign requires networking to provide interconnectivity between

NFs, forming a service-based architecture (SBA). These NFs

offer their functionality through the 3GPP-compliant service-

based interface (SBI), which essentially utilizes HTTP/REST

APIs for seamless inter-service communication.

B. Related work

Optimizing 3GPP SBI in 5GC control plane: There has

been a focus on how to reduce the latency of 3GPP SBI in

the 5GC control plane. L25GC [3] is the state-of-the-art 5GC

control plane optimization that seeks to use shared memory

processing to reduce the control plane messaging latency

incurred by kernel-based 3GPP SBI, which is commonly

adopted in existing 5GC implementation, such as our earlier

work free5GC [11]. Although L25GC achieves considerable

latency reduction of various control plane events, its imperfect

design of shared memory I/O, e.g., lack of synchronous data

exchange support, unawareness of connections, making it ill-

suited for a 3GPP-compliant 5GC control plane and fail to

scale up to multiple user sessions. Buyakar et al. [14] propose

to replace the HTTP/REST APIs with gRPC to construct

3GPP SBI, since gRPC shows better scalability, in terms of

CPU utilization and data transmission latency, compared to the

HTTP/REST APIs when dealing with an increasing number

of UEs. However, gRPC still suffers from kernel networking

overhead as HTTP/REST-based SBI, making it less competent

compared to L
2
5GC+.

Optimizing other aspects of the cellular core control

plane: Apart from optimization on 3GPP SBI, there are many

other efforts on optimizing the cellular core control plane.

Neutrino [15] is a 5GC control plane design that also seeks

to reduce control plane latency. However, unlike L
2
5GC+

that focuses on reducing the messaging latency within the

5GC control plane, Neutrino attempts to reduce the messaging

latency between the RAN and the 5GC control plane by

minimizing the data serialization overhead, while being 3GPP-

compliant. This could be a good complimentary to L
2
5GC+.

CleanG [16] and DPCM [8] reduce the latency of 5GC

control plane by redesigning control plane procedures. CleanG

primarily focuses on creating a new control plane protocol that

can simplify the control plane interactions in cellular networks,

thus reducing latency [16]. Another approach, DPCM [8],

reuses the UE-side state to skip unnecessary control plane

procedures (i.e., those used to generate the UE-side state which

is already there). However, both of these proposals are not

3GPP-compliant, which makes them less complimentary to

L
2
5GC+, as our faith of L25GC+ is to keep 3GPP compliance.

Besides latency optimization, [17] seeks to characterize and

model the control plane traffic in cellular cores, which may

facilitate the testing and evaluation of L25GC+’s control plane

design when real traffic is not available due to regulatory

compliance.

III. DESIGN OF L
2
5GC+

We begin with an overview of the L
2
5GC+ and describe

the key building blocks for developing a high-performance

communication paradigm using shared-memory processing,

while providing the necessary synchronous I/O primitives to

replace the kernel-based 3GPP SBI. We then discuss in detail

how to build an SBI on shared memory from the bottom-up.

This includes asynchronous shared-memory processing over

the DPDK, a POSIX-like synchronous I/O interface, and how

we can use the POSIX-like APIs to build a shared-memory-

based SBI. We then implement a seamless port of the 5GC

control plane NFs from the baseline free5GC code-base to

L
2
5GC+.

We describe concurrent user session support in the L25GC+,

including connection establishment, connection tear down, and

user session management during data transfer between control

plane NFs in L
2
5GC+.

A. Overview of L25GC+

Fig. 2 depicts the architecture of L
2
5GC+, which takes

advantage of shared memory processing in userspace for data

sharing between control plane NFs. This avoids expensive

CPU data copy overheads, protocol processing, context switch,

serialization, and deserialization, which are all incurred by the

currently recommended 3GPP SBI. In the userspace of each

worker node, L25GC+ dedicates a shared memory pool and

adopts an NF manager to support shared memory processing.

Information exchange is performed by message descriptor

delivery between NFs (§III-C). The per-node NF manager is

responsible for managing shared memory (e.g., initialization

and removal) and interacts with the protocol stack to provide a

“one-time”, consolidated protocol processing when inter-node

communication is needed. Our current implementation utilizes

the kernel protocol stack for inter-node communication as it

is robust and proven. However, high-performance inter-node

transport protocols, such as RDMA, may be desirable and is

the subject of our future work.

Each L
2
5GC+ NF uses our newly developed I/O stack [12]

for shared memory communication between other NFs that

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

205
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. An architectural overview of L25GC+. Each NF can support multiple
user sessions (each represented as a distinct thread) concurrently.

are located on the same node. The stack provides a shared

memory I/O interface with a set of asynchronous communi-

cation primitives, utilizing DPDK [18]. A packet handler in

the I/O stack deals with incoming/outgoing messages (essen-

tially descriptor exchanges). L25GC+ also exploits the lock-

free communication of X-IO [12] to avoid the need for any

potential locks for multiple-producer, multiple-consumer com-

munication (§III-C). Such a communication pattern commonly

exists in 5GC control plane data exchanges.

Connection handling (e.g., establishment/teardown) mes-

sages are processed by the packet handler for connection

management tasks. These are important extensions in L25GC+

that help us to support scalable user sessions going beyond

the capability of the previous L25GC implementation. A local

connection table in the I/O stack maintains the connection

state. The connection related to a data message is identified

by looking up the connection table based on the IP 4-tuple

(source IP and port number, destination IP and port number).

The packet handler directs the message to the right connection

endpoint (i.e., the corresponding user thread) in this I/O stack

(details in §III-E).

The primitives exposed for asynchronous shared memory

I/O by the I/O stack in L25GC [3] are not 3GPP-compliant.

Therefore, it requires extensive refactoring of the baseline

free5GC [11] implementation. Thus, we seek to overcome this

deficiency. L25GC+ introduces an API library (API lib for

short), to provide the necessary synchronous I/O primitives,

enabling the interface to be compliant with 3GPP.

As shown in Fig. 2, the top layer NF code performs several

control plane tasks across the SBI, using synchronous I/O.

This then interacts with the asynchronous I/O stack below

using the API lib, which includes a socket interface to directly

interact with the underlying I/O stack for shared memory

communication. A set of HTTP/REST APIs are provided on

top of the socket interface. L25GC+ utilizes these APIs to

create a 3GPP-compliant SBI. L25GC+’s SBI using shared

memory has the same semantics as the 3GPP’s SBI, just like

free5GC [11], for easy portability to L
2
5GC+.

B. Shared memory management in L
2
5GC+

L
2
5GC+ depends on the NF manager to manage the shared

memory pool. During the initialization of the L
2
5GC+ en-

vironment, an NF manager is created on a designated worker

node. The NF manager then creates a certain number of buffers

within the shared memory pool to be utilized as shareable

backends for exchanging control plane messages between

L
2
5GC+ NFs.

We extensively use DPDK’s libraries [18] to implement

shared memory management in L
2
5GC+. For lifecycle man-

agement (i.e., creation/recycle/destroy) of the shared memory

buffer, we utilize DPDK’s Mempool Library [19]. To enforce

access control of the shared memory pool and to prohibit

unauthorized access, we leverage the security domain design

that is widely adopted in DPDK-based shared memory frame-

works [3], [20], [21], depending on DPDK’s Environment

Abstraction Layer [22] and multi-process support [23] to

provide the necessary memory isolation.

C. Message descriptor delivery in L
2
5GC+

A lock-free descriptor delivery mechanism is the key ele-

ment to derive the value of shared memory communication in

L
2
5GC+. As shown in the overview figure (Fig. 2), each NF

is assigned a pair of producer/consumer rings in its I/O stack.

The producer/consumer rings of the NF are only shared with

the NF manager, thus ensuring a strict single-producer, single-

consumer communication pattern, avoiding the need for locks.

On the other side, the NF manager forwards the descriptor

(based on IP 4-tuples) between the I/O stacks of different NFs.

D. Building the SBI over shared memory: detailed design

We establish L
2
5GC+’s 3GPP-compliant SBI starting from

the asynchronous shared memory I/O adopted by L25GC,

which is neither 3GPP-compliant nor scalable. We build an

asynchronous shared memory I/O interface associated with a

lock-free descriptor delivery mechanism into the I/O stack,

thus offering these as raw I/O primitives to leverage shared

memory processing.

We first introduce L25GC+’s API libs that add synchronous

I/O support on top of the asynchronous I/O stack. The API

libs adopt a layered design: (1) the bottom-layer of the library

provides a set of POSIX-like socket APIs that directly interact

with L25GC+’s I/O stack to leverage shared memory process-

ing, while also providing basic synchronous I/O primitives;

(2) the middle-layer library abstracts HTTP/REST APIs from

the socket APIs, (3) these are then leveraged by the top-layer

library to construct a 3GPP-compliant SBI.

This design choice was made primarily to facilitate ease

of implementation and avoids re-implementing the entire

stack — the implementation of upper-layer HTTP/REST APIs

and 3GPP SBI can be ported from existing solutions (e.g.,

free5GC) by simply replacing the lower-layer socket APIs,

without being re-implemented from scratch.

Asynchronous shared memory I/O over DPDK: We con-

struct the asynchronous shared memory I/O in L
2
5GC+ (also

in L25GC) using DPDK’s RTE RING [24] and Mempool

APIs [19]. The basic I/O primitives that we use from DPDK to

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

206
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Synchronous I/O primitives from L
2
5GC+’s socket APIs: Read() and Write(). Note that the circled number (e.g., 1) represents the steps of Write()

procedure (left half). Otherwise, it represents the steps of Read() procedure (right half).

enable asynchronous shared memory processing include rte

mempool get(), rte mempool put(), rte ring enqueue(), and

rte ring dequeue().

rte mempool get() and rte mempool put() are obtained

from DPDK’s Mempool lib. We use rte mempool get() to

retrieve an empty memory buffer from the shared memory

pool and return a descriptor (pointing to the retrieved buffer)

to the caller NF. rte mempool put(), on the other hand, is used

for recycling the buffer back to the shared memory pool.

rte ring enqueue() and rte ring dequeue() are obtained

from DPDK’s RTE Ring lib. rte ring enqueue() is specifically

used for enqueuing the descriptor into the producer (TX) ring,

while rte ring dequeue() is used for retrieving the descriptor

from the consumer (RX) ring.

The asynchronous access mainly comes from the non-

blocking nature of rte ring enqueue() and rte ring dequeue()

APIs. The call to these APIs immediately returns, leading to a

mismatch in the synchronous communication required by the

upper-layer SBI.

Synchronous shared memory I/O: Following the design of

X-IO [12], we abstract the synchronous I/O primitives of

L
2
5GC+ into two socket APIs, Write() and Read(), main-

taining strict alignment with the POSIX-like socket APIs. We

further add synchronous access by enforcing a blocking call

to Write() and Read(), i.e., the caller of the Write() and Read()

API is blocked until the requested I/O task is accomplished.

The synchronous nature of the Write() API is achieved by

blocking the caller thread until the message is moved from

the send buffer (provided by caller thread) into the shared

memory buffer. Fig. 3 (left half) shows how the Write() API

interacts with the I/O stack to accomplish the transmission of a

message: 1 The caller thread initiates the Write() call with a

send buffer input; 2 The Write() call passes the send buffer to

the packet handler in the I/O stack; 3 the packet handler then

copies the message from the send buffer to the shared memory

buffer. Note that, beforehand, the packet handler obtains an

empty memory buffer and associated descriptor using rte

mempool get() API; 4 The packet handler enqueues the

descriptor to the producer (TX) ring; and then the packet

handler 5 unblocks the Write() call to return control to the

caller thread.

The synchronous Read() API is achieved by blocking the

caller thread until the message is moved from the shared

memory buffer to the receive buffer of the caller thread.

We take advantage of the approach designed by X-IO [12]

to enable the blocking Read() over the asynchronous shared

memory I/O. There are two essential elements to block the

caller of the Read(), including a condition variable [25] and

a receive queue. Note that each user thread owns a dedicated

condition variable as well as a receive queue for the sake of

concurrent user session operations (§III-E).

The condition variable is utilized to suspend the caller

thread of the Read() until its state is updated. Note that the

condition variable is in effect only when its state is TRUE.

We use the receive queue to buffer descriptors whose message

payload has not yet been transferred from the shared memory

buffer to the receive buffer of the caller thread.

These two elements in the Read() interact with the asyn-

chronous packet handler in the I/O stack to accomplish the

blocking receive, as depicted in Fig. 3 (right half): (1.) When

the caller thread initiates the Read() call, (2.) it is blocked on

the condition variable (now set as TRUE). Subsequently, (3.)

the I/O stack receives a descriptor from the NF on the other

side, and (4.) enqueues the descriptor into the receive queue

of the caller thread. (5.) The I/O stack updates the condition

variable to FALSE to unblock the Read() call. (6.) The Read()

call then dequeues the descriptor from the receive queue and it

(7.) copies the message from the shared memory buffer to the

receive buffer of caller thread. Finally, (8.) control returns to

the caller thread. Note that Fig. 3 (right half) shows only the

case when there is a single user session. Details of message

reception for concurrent user sessions are given in §III-E.

Connection management: Similar to a POSIX-like socket

interface (e.g., socket APIs, HTTP/REST APIs, 3GPP SBI),

the synchronous I/O interface in L
2
5GC+ also requires pre-

established connections to facilitate data transmission. We

adopt the approach from X-IO [12] to manage the lifecycle of

connections, including their establishment and teardown. Each

NF’s I/O stack maintains a local connection table, as shown

in Fig. 2, which records essential connection-specific infor-

mation, such as the IP 4-tuple of the source and destination

NFs. Introducing the notion of a connection is a key extension

of L
2
5GC+ beyond its predecessor, L25GC, which allows

L
2
5GC+ to distinguish different user sessions, as described

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

207
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

in §III-E.

Implementation of HTTP/REST APIs and 3GPP SBI in

L
2
5GC+: Our intention is to port the implementation of a

3GPP-compliant implementation like free5GC to L
2
5GC+,

to ensure that L25GC+ also conforms to the specifications,

leveraging free5GC’s development effort. As such, we choose

Golang [26] to develop the API libs in L
2
5GC+. Golang was

the primary programming language that free5GC’s control

plane NFs are written in.

Since we take a layered design approach for our API libs,

we only re-implement the POSIX-like socket interface in

order to interact with our asynchronous shared memory I/O

stack. We keep the upper layer HTTP/REST APIs and 3GPP

SBI unchanged. This is achieved by replacing the imported

Golang’s “net” [27] package3 with L
2
5GC+’s socket API

package. Since our socket APIs keep the same semantics as

Golang, the porting is seamless. The cross-language support

is described next.

Cross-language support: The I/O stack in each L
2
5GC+ NF

is developed in C language, ensuring optimal performance and

reliability. Seamless interaction between the C-based I/O stack

and the higher-layer API libs (in Golang) is achieved through

Golang’s built-in CGo interface [13]. The C-to-Go boundary

crossing incurs minimal additional latency (approximately

70ns in our testbed), showcasing negligible impact on data

exchange performance.

E. Concurrent user session support

Thread-based concurrency is commonly used in representa-

tive implementations of 5GC control plane NFs that support

multiple simultaneous user sessions. Each user session is

handled by a dedicated thread in the control plane NF instance

(typically deployed as a Linux process within a virtualized

sandbox, e.g., container) to accomplish certain control plane

procedures (e.g., UE registration, handover).

In order to differentiate user sessions during control plane

messaging between NFs, we bind a specific connection for

each user session. As shown in Fig. 4, (1) when the destination

NF receives a message descriptor, (2) it looks up its local

connection table in the I/O stack and finds the correct connec-

tion, i.e., user session, to refer to. Subsequently, (3) the I/O

stack can enqueue the descriptor to the connection’s receive

queue, thus ensuring that the message is correctly directed

to the appropriate user session thread. This multiplexing/de-

multiplexing allows seamless concurrent processing of mes-

sages in L
2
5GC+’s control plane.

Concurrency control: L
2
5GC+ adopts the implementation

of 5GC from free5GC [11], which relies heavily on Golang

as the primary programming language for the control plane

NFs. The concurrency support in Golang is implemented

by goroutines [28], which are essentially lightweight threads

managed by the Go runtime. With the connection abstraction

in L
2
5GC+, we can support multiple user sessions using

thread-based concurrency.

3Golang’s “net” [27] package is the official package that offers various
POSIX interface for network I/O.

Fig. 4. Concurrent user session support in L
2
5GC+. Control plane messages

to different user sessions are de-multiplexed at the I/O stack after user session
table lookup.

However, we observe that certain 5GC control plane events

(e.g., PDU session establishment) incur very frequent context

switches. This is caused by the CPU ‘thrashing’ between

multiple user sessions when they complete the same 5GC

control plane events concurrently using a limited number of

CPU cores on the node. Since each user session requires a

dedicated thread for each of the 5GC NFs to accomplish

the control plane event-related tasks, it results in frequent

thread context switches. This adds additional delay to the event

completion time. As L
2
5GC+ and free5GC share the same

control plane NF implementation, they both suffer from this

performance loss.

To overcome the effect of ‘thrashing’, we introduce a con-

currency control mechanism to limit the number of concurrent

execution of certain events (e.g., PDU session establishment)

that are processed simultaneously by the 5GC control plane

using the available CPU cores on the node. We implement

a rate limiter at the AMF, which is the ingress point of the

5GC control plane. After the concurrency threshold is reached,

additional PDU session establishment requests are queued at

the AMF. We note that the threshold will likely depend on

the number of available CPU cores and their capability, the

complexity of the operations, and likely the mix of operations.

We experimentally determined the suitable concurrency level

of 16 in our current testbed.

F. Deployment strategy of L25GC+

L
2
5GC+ adopts the same placement and scaling strategy as

its predecessor, L25GC [3]. To harness the benefits of intra-

node shared memory processing to minimize the latency of

the 5GC control plane, it is important for L25GC+ NFs to be

co-located on the same node.

In scenarios where inter-node communication becomes nec-

essary (e.g., when resource constraints prevent NF consolida-

tion on a single node), L25GC+ relies on NF managers to

facilitate communication, by offering consolidated protocol

processing. This can be achieved by using a kernel-based

protocol stack or by employing a high-performance inter-

node communication solution, such as RDMA with zero-copy

data transfer primitives. This is part of our ongoing effort.

This approach helps minimize the impact of kernel-based

networking when inter-node communication is required.

It is important to note that the hybrid communication mode

of L25GC+ (combining intra-node shared memory processing

and inter-node kernel-based networking) ensures that the lower

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

208
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 5. (Top) The logical topology, and (Bottom) a snapshot of commercial
testbed setup in L25GC+. RU: Radio Unit; DU: Distributed Unit; CU: Central
Unit; CN: Core Network; PoE: Power over Ethernet; 5 laptops as UEs with
5G dongles

bound of performance remains no worse than a complete

kernel-based networking solution. On the other hand, the

typical as well as the upper bound performance of the hybrid

communication mode of L
2
5GC+ far outperforms kernel-

based networking, especially when we consider node affinity

to strategically place NFs, thus fully exploiting the benefits of

shared memory processing. This hybrid approach offers a flex-

ible and efficient solution that optimizes performance based on

the specific deployment scenario and resource availability.

IV. EVALUATION

We evaluate the improved performance of L25GC+ using a

real 5G testbed built using 3GPP-compliant commercial base

stations, a variety of UEs (laptops with 5G dongles) and the

1 UE 5UEs
0

100

200

300

La
te

nc
y

(m
s)

88.8

143.4

58.6

110.5

free5GC
L25GC+

(a) UE registration

1 UE 5UEs
0

100

200

300

La
te

nc
y

(m
s)

55.7

175.8

27.9

108.9

free5GC
L25GC+

(b) PDU session estab.

Fig. 6. Latency from 5G CN, tested with commercial UEs and RAN.

L
2
5GC+ running on commercial off-the-shelf (COTS) servers.

We also consider a simulated 5G UE & RAN to evaluate

the performance of L
2
5GC+ as we scale up to more UEs.

We compare L
2
5GC+ with free5GC [11], an open-source,

3GPP-compliant 5GC implementation that has been used in

many consortium-based 5G frameworks, e.g., Magma [29],

SD-CORE [30], and Aether [31].

A. Analysis with commercial UEs and RAN

Commercial testbed setup: Fig. 5 shows the experimental

setup of our real testbed, including the UE, RAN, and 5G core

network (CN). Our 5G RAN contains an RU and a commercial

CU/DU system built on an off-the-shelf computer system. We

use a ‘bare-metal’ server to run the 5G core network, including

both the control plane and data plane. The CU/DU system

connects to the 5GC control plane via the 3GPP N2 interface.

The CU/DU system connects to the 5GC data plane (i.e., UPF)

via the 3GPP-specified N3 interface. The UPF of the 5GC

connects to the data network via the N6 interface.

We choose the 5G small cell from Alpha Networks Inc. [32]

as the RU. We use the commercially available CU/DU from

AEWIN Technologies [33]. The server running the 5GC con-

tains a 16-cores Intel Core i7 13700 CPU and 16G memory.

We install two NICs on the 5GC server: a 10Gbps Intel X520-

DA2 NIC used for N3 and N6 interface in the data plane, and

a 2.5Gbps Realtek RTL8125BG NIC for the N2 interface in

the control plane. We choose the 10Gbps NIC for the data

plane for its higher bandwidth. We use a total of 5 laptops to

emulate multiple UEs. Each laptop is equipped with an Apal

5G Dongle [34] to communicate with the RU in 5G RAN.

Tested control plane events: We select a pair of representative

control plane events to evaluate, including UE registration

and the PDU (Packet Data Unit) session establishment that

follows. During registration, the UE establishes its presence

and identity on the 5GC before accessing 5G services. A PDU

session represents a logical connection between the UE and the

5GC for data communication. The PDU session establishment

creates a dedicated data path between the UE and the 5GC data

plane (i.e., UPF) for handling data traffic. We evaluate L25GC+

with a single UE and also with 5 UEs running concurrently

on the testbed to understand the ability of L25GC+ to support

1 UE 5UEs
0

200

400

600

La
te

nc
y

(m
s)

310.6

433.0

278.8

421.6

free5GC UE/RAN
free5GC CN
L25GC+ UE/RAN
L25GC+ CN

(a) UE registration

1 UE 5UEs
0

200

400

600

La
te

nc
y

(m
s)

150.2

540.3

145.8

471.8

free5GC UE/RAN
free5GC CN
L25GC+ UE/RAN
L25GC+ CN

(b) PDU session estab.

Fig. 7. Total latency (including core network and UE/RAN) of control plane
events tested with commercial UEs and RAN.

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

209
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

4 8 16 32 64
0

100

200

300

400

500

La
te

nc
y

(m
s)

129.4 132.6

219.9
253.8

580.9

63.2 61.4

105.8

175.4

348.5

free5GC
L25GC+

(a) UE registration

4 8 16 32 64
0

200

400

600

La
te

nc
y

(m
s)

58.7 66.8 70.1

310.2

774.0

30.4 29.2 33.6

149.5

401.3

free5GC
L25GC+

(b) PDU session establishment

4 8 16 32 64
0

20

40

60

80

La
te

nc
y

(m
s)

14.0

25.8

46.0

66.6

91.4

8.9
15.4

28.1

45.5

62.1

free5GC
L25GC+

(c) Paging (idle-active transtion)

Fig. 8. Total latency of various control plane events with simulated UEs and RAN. x-axis: number of UEs.

multiple user sessions in the 5G control plane (unlike L25GC

which had limited support).

Fig. 6 shows the contribution to end-end latency by the

5G core network. The result demonstrates the performance

benefits of L
2
5GC+’s shared-memory-based SBI in a com-

mercial testbed: When handling a single UE, L25GC+ has

1.51× lower latency than free5GC to complete a UE reg-

istration. L
2
5GC+ also achieves 2× latency improvement

compared to free5GC for PDU session establishment. When

5 UEs register simultaneously, L25GC+ saves 1.29× latency

on average. L25GC+ lowers latency by 1.61× on average to

complete 5 PDU session establishment events concurrently.

These improvements come mainly from the use of shared

memory processing in L
2
5GC+, which incurs much lower

communication overheads for control plane NFs to exchange

messages, compared to the kernel-based SBI of free5GC.

In addition, we measure the “total” latency for different

control plane events (in Fig. 7). This includes the latency

contributed by the core network (named “CN”) and the

part contributed by the commercial UE/RAN. The somewhat

slower UE and the disaggregated RAN system in our testbed

reduces the relative impact of L25GC+’s improvements to this

“total” latency. However, with higher-speed UEs (e.g., smart-

phones) and improved RAN implementations, the significant

reduction of the 5GC latency (the “CN” latency) due to our

improvements will lower the overall cellular control plane

latency.

B. Analysis with simulated UEs and RAN

We use the UE & RAN simulator from L25GC [3] to

simulate user events, which allows us to scale up testing with

more UEs. Throughout, we seek to understand the improved

scalability of L25GC+ compared to the kernel-based SBI in

free5GC, in handling multiple user sessions. We additionally

evaluate the latency for paging events in the 5G control plane,

where a UE transitions from idle to active state. A UE typically

moves into an idle state to conserve (battery) energy, which

is important for mobile devices and UEs such as IoT devices.

When either a packet arrives at the 5GC or the UE has to

transmit a (first) packet, the UE is “paged” to wake up the

UE. The time it takes for the 5GC to complete this task and

have the UE transition from idle to active has a direct impact

on the latency experienced by that first packet. L25GC+ seeks

to improve this latency in its control plane implementation.

We vary the number of UEs from 4 to 64 and report the total

latency (as in Fig. 7) that includes the total latency contributed

by both the core network and the simulated UE/RAN.

Fig. 8 shows the total completion latency of different control

plane events when multiple user sessions operate concurrently

in the 5GC control plane. Compared to the kernel-based SBI

in free5GC, L25GC+’s shared memory SBI shows a consistent

reduction in latency as the number of UEs increases up to 64.

L
2
5GC+ reduces UE registration latency by 1.87× on average.

L
2
5GC+ also reduces the average PDU session establishment

latency by 2.1× and average paging latency by 1.6×.

V. CONCLUSION

We presented L
2
5GC+, a low-latency 5G control plane

implementation. L25GC+ is an enhancement to our previous

effort L25GC developed on top of OpenNetVM, a high-

performance shared-memory NFV platform. L25GC+ makes

several key extensions to L25GC, including support for con-

current user sessions using a 3GPP-compliant shared memory

SBI. These two capabilities significantly improve the appli-

cability of shared memory processing of the 5GC control

plane, allowing 3GPP-compliant 5GC implementations such as

free5GC to be seamlessly ported to L
2
5GC+, while retaining

the performance benefits of shared memory processing. Our

evaluation using a testbed with commercial 5G UE and RAN

components shows that L25GC+, with the help of its shared

memory SBI, outperforms a kernel-based SBI implementation.

L
2
5GC+ significantly reduces the control plane latency for

UE registration and PDU session establishment by 1.29×

and 1.61×, respectively, with 5 commercial UEs operating

concurrently.

ACKNOWLEDGMENT

We thank the US NSF for their generous support through

grant CRI-1823270. This work was also supported in part

by the National Science and Technology Council of Taiwan

under grant numbers 112-2218-E-A49-021, 112-2218-E-A49-

023, and 111-2221-E-A49-093-MY3.

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

210
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] I. Parvez, A. Rahmati, I. Guvenc, A. I. Sarwat, and H. Dai, “A Survey on
Low Latency Towards 5G: RAN, Core Network and Caching Solutions,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 3098–
3130, 2018.

[2] H. Hassanieh, O. Abari, M. Rodriguez, M. Abdelghany, D. Katabi, and
P. Indyk, “Fast Millimeter Wave Beam Alignment,” in Proceedings

of the 2018 Conference of the ACM Special Interest Group on

Data Communication, ser. SIGCOMM ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 432–445. [Online].
Available: https://doi.org/10.1145/3230543.3230581

[3] V. Jain, H.-T. Chu, S. Qi, C.-A. Lee, H.-C. Chang, C.-Y. Hsieh, K. K.
Ramakrishnan, and J.-C. Chen, “L25GC: A Low Latency 5G Core
Network based on High-performance NFV Platforms,” in Proceedings

of the ACM SIGCOMM 2022 Conference, 2022, pp. 143–157.

[4] F. Parola, F. Risso, and S. Miano, “Providing telco-oriented network
services with ebpf: the case for a 5g mobile gateway,” in 2021 IEEE

7th International Conference on Network Softwarization (NetSoft), 2021,
pp. 221–225.

[5] S. Panda, K. K. Ramakrishnan, and L. N. Bhuyan, “Synergy: A Smart-
NIC Accelerated 5G Dataplane and Monitor for Mobility Prediction,” in
2022 IEEE 30th International Conference on Network Protocols (ICNP),
2022, pp. 1–12.

[6] R. MacDavid, C. Cascone, P. Lin, B. Padmanabhan, A. ThakuR,
L. Peterson, J. Rexford, and O. Sunay, “A P4-Based 5G User Plane
Function,” in Proceedings of the ACM SIGCOMM Symposium on SDN

Research (SOSR), ser. SOSR ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 162–168. [Online]. Available:
https://doi.org/10.1145/3482898.3483358

[7] S. Wang, J. Huang, X. Zhang, H. Kim, and S. Dey, “X-array: Ap-
proximating omnidirectional millimeter-wave coverage using an array
of phased arrays,” in Proceedings of the 26th Annual International

Conference on Mobile Computing and Networking, 2020, pp. 1–14.

[8] Y. Li, Z. Yuan, and C. Peng, “A Control-plane Perspective on Reducing
Data Access Latency in LTE Networks,” in Proceedings of the 23rd

Annual International Conference on Mobile Computing and Networking,
2017, pp. 56–69.

[9] W. Zhang, G. Liu, W. Zhang, N. Shah, P. Lopreiato, G. Todeschi,
K. K. Ramakrishnan, and T. Wood, “OpenNetVM: A Platform for
High Performance Network Service Chains,” in Proceedings of the

2016 workshop on Hot topics in Middleboxes and Network Function

Virtualization, 2016, pp. 26–31.

[10] https://github.com/nycu-ucr/l25gc, 2023, [ONLINE].

[11] “free5GC,” https://github.com/free5gc/free5gc, 2023, [ONLINE].

[12] S. Qi, H.-S. Tsai, Y.-S. Liu, K. Ramakrishnan, and J.-C. Chen, “X-
IO: A High-performance Unified I/O Interface using Lock-free Shared
Memory Processing,” in 2023 IEEE 9th International Conference on

Network Softwarization (NetSoft). IEEE, 2023, pp. 107–115.

[13] “Cgo,” https://pkg.go.dev/cmd/cgo, 2023, [ONLINE].

[14] T. V. Kiran Buyakar, H. Agarwal, B. R. Tamma, and A. A. Franklin,
“Prototyping and Load Balancing the Service Based Architecture of 5G
Core Using NFV,” in 2019 IEEE Conference on Network Softwarization

(NetSoft), 2019, pp. 228–232.

[15] M. Ahmad, S. U. Jafri, A. Ikram, W. N. A. Qasmi, M. A.
Nawazish, Z. A. Uzmi, and Z. A. Qazi, “A low latency and
consistent cellular control plane,” in Proceedings of the Annual

Conference of the ACM Special Interest Group on Data Communication

on the Applications, Technologies, Architectures, and Protocols for

Computer Communication, ser. SIGCOMM ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 648–661. [Online].
Available: https://doi.org/10.1145/3387514.3406218

[16] A. Mohammadkhan, K. K. Ramakrishnan, and V. A. Jain,
“CleanG—Improving the Architecture and Protocols for Future Cellular
Networks With NFV,” IEEE/ACM Transactions on Networking, vol. 28,
no. 6, pp. 2559–2572, 2020.

[17] J. Meng, J. Huang, Y. C. Hu, Y. Koral, X. Lin, M. Shahbaz, and
A. Sharma, “Characterizing and Modeling Control-Plane Traffic for
Mobile Core Network,” arXiv preprint arXiv:2212.13248, 2022.

[18] “Data Plane Development Kit,” https://www.dpdk.org/, 2023, [ONLINE].

[19] “DPDK Mempool Library,” https://doc.dpdk.org/guides/prog guide/
mempool lib.html, 2023, [ONLINE].

[20] S. Qi, L. Monis, Z. Zeng, I.-c. Wang, and K. K. Ramakrishnan,
“SPRIGHT: Extracting the Server from Serverless Computing! High-
performance eBPF-based Event-driven, Shared-memory Processing,” in
Proceedings of the ACM SIGCOMM 2022 Conference, 2022, pp. 780–
794.

[21] S. Qi, Z. Zeng, L. Monis, and K. K. Ramakrishnan, “MiddleNet: A
Unified, High-Performance NFV and Middlebox Framework with eBPF
and DPDK,” IEEE Transactions on Network and Service Management,
2023.

[22] “Environment Abstraction Layer,” https://doc.dpdk.org/guides/prog
guide/env abstraction layer.html, 2023, [ONLINE].

[23] “DPDK Multi-process Support,” https://doc.dpdk.org/guides/prog
guide/multi proc support.html, 2023, [ONLINE].

[24] “DPDK Ring Library,” https://doc.dpdk.org/guides/prog guide/ring lib.
html, 2023, [ONLINE].

[25] “Using condition variables,” https://www.ibm.com/docs/en/aix/7.2?
topic=programming-using-condition-variables, 2023, [ONLINE].

[26] “The Go Programming Language,” https://go.dev/, 2023, [ONLINE].
[27] “net,” https://pkg.go.dev/net, 2023, [ONLINE].
[28] “How To Run Multiple Functions Concurrently in Go,”

https://www.digitalocean.com/community/tutorials/how-to-run-
multiple-functions-concurrently-in-go, 2023, [ONLINE].

[29] S. Hasan, A. Padmanabhan, B. Davie, J. Rexford, U. Kozat,
H. Gatewood, S. Sanadhya, N. Yurchenko, T. Al-Khasib, O. Batalla,
M. Bremner, A. Lee, E. Makeev, S. Moeller, A. Rodriguez,
P. Shelar, K. Subraveti, S. Kandi, A. Xoconostle, P. K. Ramakrishnan,
X. Tian, and A. Tomar, “Building Flexible, Low-Cost Wireless
Access Networks With Magma,” in 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23). Boston,
MA: USENIX Association, Apr. 2023, pp. 1667–1681. [Online].
Available: https://www.usenix.org/conference/nsdi23/presentation/hasan

[30] “SD-Core,” https://opennetworking.org/sd-core/, 2023, [ONLINE].
[31] “Aether,” https://opennetworking.org/aether/, 2023, [ONLINE].
[32] “Products: 5G Small Cell - Alpha Networks Inc.” https://www.

alphanetworks.com/index.php/en/product detail/a3caef706423d652,
2023, [ONLINE].

[33] “Performance Network System - SCB-1921B,” https://www.
alphanetworks.com/index.php/en/product detail/a3caef706423d652,
2023, [ONLINE].

[34] “Dongle - APAL,” https://www.apaltec.com/dongle/, 2023, [ONLINE].

2023 IEEE 12th International Conference on Cloud Networking (CloudNet)

211
Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:09:06 UTC from IEEE Xplore. Restrictions apply.

