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Abstract—Hardware accelerators such as GPUs are required for
real-time, low latency inference with Deep Neural Networks (DNN).
Providing inference services in the cloud can be resource intensive,
and effectively utilizing accelerators in the cloud is important.
Spatial multiplexing of the GPU, while limiting the GPU resources
(GPU%) to each DNN to the right amount, leads to higher GPU uti-
lization and higher inference throughput. Right-sizing the GPU for
each DNN the optimal batching of requests to balance throughput
and service level objectives (SLOs), and maximizing throughput by
appropriately scheduling DNNs are still significant challenges.This
article introduces a dynamic and fair spatio-temporal scheduler
(D-STACK) for multiple DNNs to run in the GPU concurrently.
We develop and validate a model that estimates the parallelism
each DNN can utilize and a lightweight optimization formulation
to find an efficient batch size for each DNN. Our holistic inference
framework provides high throughput while meeting application
SLOs. We compare D-STACK with other GPU multiplexing and
scheduling methods (e.g., NVIDIA Triton, Clipper, Nexus), using
popular DNN models. Our controlled experiments with multiplex-
ing several popular DNN models achieve up to 1.6× improvement
in GPU utilization and up to4× improvement in inference through-
put.

Index Terms—Datasets, neural networks, gaze detection, text
tagging.

I. INTRODUCTION

D
EEP Neural Networks (DNNs) are widely used for many

applications, including image recognition, natural lan-

guage processing, etc. Accelerators have become indispensable

for DNN learning and inference. Accelerators such as GPUs,

TensorCores [1], and TPU [2] reduce the DNN inference times,

often by 2-3 orders of magnitude compared to even using a

high-end CPU cluster. These accelerators are widely used by

cloud services as a part of their inference-as-a-service (IaaS)

offerings, where trained DNN models are hosted in a Cloud

or an Edge Cloud (especially for low-latency operation). User

requests are inferred using the GPUs deployed in the cloud.

Most DNN models running in inference frameworks (Py-

Torch [3], TensorFlow Serving [4], NVIDIA’s Triton [5] etc.)
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often execute far fewer floating-point operations per second

(FLOPS) than the capacity of these high-end GPUs [6], [7],

[8], TPUs [9] and other accelerators [10]. In our previous

work [6], we observed that performing inference using DNN

models, even using a single GPU, do not significantly reduce the

DNN’s processing latency when provided with additional GPU

resources (i.e., number of Streaming Multiprocessors (SMs) -

GPU compute units analogous to CPU cores) beyond a certain

point. We call this point as a “Knee” for the DNN (expressed as

a percentage of the total SMs available in the GPU, e.g., 50% of

a V100 GPU (which has 80 SMs in total) is 40 SMs.). Running

applications with resources matching the Knee is desirable for a

cloud operator providing Inference as a Service, since multiplex-

ing a GPU (or similar accelerator) across as many applications

as possible keeps costs low. Operating at the Knee also keeps the

latency low for the user. When more GPU resources are provided

for a DNN (e.g., by giving the full GPU to an application,

possibly using temporal sharing), it is wasteful as the GPU is

not fully utilized.

There are three fundamental reasons for the under-utilization

of multi-core accelerators, such as GPUs, by DNNs when given

more than the Knee’s resources: i) Amount of parallelism over

the entirety of DNN’s execution is not uniform, i.e., many DNN

functions (e.g., convolution, ReLU etc.) are unable to fully

utilize the parallelism offered by the accelerator. Furthermore,

memory-bound kernels cannot utilize GPU compute resources

fully due to limited memory bandwidth. ii) DNN operations

also involve other overheads (e.g., kernel launches, memory

read-write, etc.). While users and cloud providers can utilize

larger batches of DNN operations to be executed concurrently

and increase utilization, this comes at the price of increased

latency. When the results are needed quickly, to meet a small

latency target, such as during inference, increasing the batch

size is not an ideal option, and batch sizes have to be limited.

Thus, this may result in insufficient utilization of a GPU’s

parallelism for many applications.We study the execution of

a variety of DNN models to understand the root causes of

under-utilization of such accelerators, particularly GPUs, and

develop methods to improve the overall system utilization, thus

improving throughput and reducing inference latency.

Multiplexing GPUs in the Edge Cloud:

DNN inference requests for applications such as autonomous

driving, augmented reality, etc., have stringent deadlines (e.g.,

< 100 ms). A cloud providing IaaS also has to account for the
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Fig. 1. GPU multiplexing scenarios.

network latency. Edge Clouds offer a sweet spot reducing both

latency and offering the necessary processing resources, al-

though more constrained than centralized cloud services. Mul-

tiplexing the expensive hardware accelerator is therefore very

desirable. Current GPU virtualization and inference service

frameworks such as Nexus [11], NVIDIA’s Triton Inference

Server (Triton) [5], gPipe [12], and PipeDream [13] either use a

‘single GPU per DNN’ model or time-share the GPU across mul-

tiple DNN models. These current state-of-the-art frameworks for

DNNs allocate the full GPU (i.e., 100% of GPU) for the time

quantum as shown in Fig. 1(left).

However, dedicating an entire GPU to run a single DNN

model at a time can be wasteful. Furthermore, interleaving

execution of tenant applications by temporally sharing increases

inference latency for all of them, because of the significant

cost of frequent switching between applications. Multiplexing

several applications on the GPU to run concurrently, through

spatial as well as temporal multiplexing, helps to better utilize the

GPU and achieve much higher aggregate inference throughput.

Our approach utilizes the CUDA Multi-process Service

(MPS) [14] to spatially share the GPU across several applica-

tions. We build on top of our earlier GSLICE [6] work. Existing

approaches of spatial multiplexing with the GPU either only

statically partition the GPU for each application or does not

guarantee computing resource isolation while multiplexing. This

has the potential to allocate fewer resources than necessary for an

application. It also causes interference among the multiplexed

applications when too many models share the GPU, thus, in-

creasing the inference latency.

We illustrate with an example when four different models

have to be run on a V100 GPU (three are already executing and

a fourth is added). Temporal sharing allocates the GPU to each

model for a time slice. Static spatial sharing with CUDA-MPS

will allow all 4 models to run in an uncontrolled manner, causing

interference as noted in [6]. GSLICE will initially spatially

share the 3 models, and allocate GPU resources according to

their Knee GPU% capacities. When the fourth model is added

(in Fig. 1(middle)), the VGG-19 model’s GPU% is reduced from

50% to 25%, causing increased inference latency for that more

complex VGG-19 model, which also is undesirable.

On the other hand, our GPU virtualization framework,

with our spatio-temporal scheduler, Dynamic Spatio-Temporal

pACK (D-STACK), can run on multiple NVIDIA GPU-based

systems (single GPU or GPU clusters). D-STACK schedules

DNNs based on spatial resources (Knee GPU%, number of

SMs), and the appropriate time slice. Combining spatial and

temporal scheduling, D-STACK is designed to meet the infer-

ence deadline for each DNN model. D-STACK goes well beyond

the basic idea of simple temporal or static spatial multiplexing

of a GPU presented in earlier works [5], [6], [8]. The example

of Spatio-Temporal scheduling in Fig. 1(right), has all 4 models

getting their Knee GPU%. When a model completes its infer-

ence, another model utilizes the GPU resources, thus, sharing

the GPU resources both temporally and spatially. D-STACK’s

scheduler further utilizes the idle processing resource of the GPU

by dynamically running any ’ready’ models, thus maximizing

GPU utilization.

D-STACK’s Innovations:

i.) Understanding a DNN’s demand: For efficient utilization

of the GPU, D-STACK requires information about the resource

requirements of each DNN model. Providing the right resources

for the DNN is not just a challenge for the GPU, but is fun-

damental for all such accelerators that utilize a multitude of

compute engines for parallel processing. In this paper, along

with our analytical models of DNN execution and scheduling,

we estimate what would be theoretically possible for a DNN

to exploit available parallelism by knowing exactly how much

computational capacity is required, assuming that instantaneous

switching between multiplexed tasks is possible. We then show

how close we come to that theoretical optimal by implementing

our GPU virtualization framework using our D-STACK sched-

uler on a GPU cluster.

ii.) Dynamic Resource Allocation in GPU: Currently, dy-

namic resource allocation of the GPU requires reloading of

applications with their new desired GPU%. For typical DNN

models, this reloading time can be 10s of seconds, during which

the GPU is idle, lowering the overall system utilization and

throughput. In D-STACK, we address the dynamic allocation

of GPU resources by overlapping the loading of a DNN model

with the new resource allocation, by continuing to execute

the existing DNN model, thus effectively masking the loading

latency. We thus reduce the time the GPU is idle to less than 100

micro-seconds with D-STACK.

iii.) Multi-GPU Cluster: Understanding the use of a single

GPU and increasing its utilization translates to improving overall

throughput of a GPU cluster. D-STACK’s optimization can be

easily extended to a multi-GPU cluster. In this paper we present

the implementation of D-STACK’s Spatio-temporal scheduler

across multi-GPU cluster to increase the system throughput by

200%.

Comparing with State-of-the-art: We present a comparison of

D-STACK with NVIDIA’s Triton Inference Server. We evaluate

the total time taken to infer with 4 different DNN models,

Alexnet, Mobilenet, ResNet-50, and VGG-19 being multiplexed

on one V100 GPU, each concurrently inferring 10000 images

each. The results in Table I show that the Triton server takes

about 58 seconds to finish inference. The D-STACK scheduler

completes inference on all requests more than 37% faster (only

36 seconds). D-STACK’s spatial multiplexing, providing just

the right amount of GPU% and its dynamic spatio-temporal

scheduling results in more effective use of the GPU and achiev-

ing higher DNN inference throughput than NVIDIA’s Triton
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TABLE I
TRITON AND D-STACK WITH 4 DNN MODELS

server, while also lowering task completion time. Based on these

experiments, we see that implementation of Spatio-temporal

scheduling can further enhance throughput when inferring with

multiple different models concurrently.

Contributions: D-STACK improves GPU utilization by 60%

and increases in DNN inference throughput by 4× compared

to a pure temporal scheduler, while still avoiding any deadline

(SLO) violations. Our key contributions are:
� We investigate the extent to which a DNN can exploit

parallelism (Section III), and devise an analytical model

to demonstrate this limitation of typical DNNs when per-

forming inference with GPUs (Section IV).
� We develop an optimization framework to determine the

optimal DNN Batch size and GPU%. We evaluate the

efficacy of GPU usage when choosing the optimal batch

size and Knee GPU%. (Section V).
� We develop a Spatio-Temporal scheduler for DNNs, using

the GPU% and batch size derived from our analytical

models, to maximize inference throughput while allocating

GPU resources fairly (Section VI).
� We compare D-STACK’s approach with the Triton server

and other state-of-the-art scheduling algorithms.
� We present results of D-STACK in multi-GPU clus-

ter.(Section VII-A).

II. RELATED WORK

GPU Multiplexing: Multiplexing GPU to increase the GPU

utilization and system throughput has been discussed in many

studies. Proprietary products such as Nutanix [15], vGPU [16]

utilize GPU virtualization to multiplex GPU across VMs. Many

consider temporal multiplexing and seek increased GPU utiliza-

tion through batching and better scheduling [11], [17], [18], [19],

[20], [21], [22]. Gandiva [23] and Mystic [24] address multiplex-

ing the GPU while observing but not solving the interference

caused while multiplexing DNNs in the GPU. Unlike these,

our workcan concurrently run multiple applications in GPU,

improve GPU utilization and reduce or eliminate the interference

through controlled spatial multiplexing.

Spatial Multiplexing of GPU: GSLICE [6] utilizes CUDA

MPS to spatially share the GPU among multiple DNN appli-

cations. However, it partitions the GPU statically and does not

schedule the execution of DNNs. With GSLICE, executing a

large number of models potentially cause each model get a

small GPU slice (less than the Knee), leading to higher infer-

ence latency and lower throughput. However, D-STACK uses

a dynamic spatio-temporal scheduler compared to GSLICE’s

static spatial-sharing. GSLICE only looks at the initial resource

requirements for each application while determining which ap-

plications should run together. Moreover, the lack of a scheduler

means it is insufficient for deadline-driven inference scenarios.

While, D-STACK can schedule work once the previous appli-

cation ends and resources free up, thus, increasing the GPU

hardware utilization. We compare D-STACK’s performance

with GSLICE in Section VII.

Laius [7], G-Net [25], Gost [26] and Baymax [27] spatially

multiplex GPU kernels. Unlike these works, our platform fo-

cuses on the spatially multiplex entire DNNs consisting of mul-

tiple kernels. Moreover, we run DNN applications in their native

DNN framework (e.g., PyTorch, TensorFlow) without any algo-

rithmic modifications, unlike the whitebox approach of Laius

and Baymax. S3DNN [28] (uses Streams) and Prophet [29]

(uses MPS) and CuMAS [30] profile each kernel and use a

shim to capture kernel launches and reorder kernel executions

for proper spatial sharing. In contrast, our approach does not

require a shim or reordering of kernels and works in a black

box manner, without requiring an application’s individual kernel

profile (which may not be available).

SMGuard [31] calculates the number of GPU threads each

kernel requires, captures the kernel when launched, and multi-

plexes the GPU by running kernels concurrently without exceed-

ing the number of GPU threads each SM can run concurrently.

Similarly, Qos Aware dynamic resource allocation [32] utilizes a

kernel transformer that changes the GPU code to implement QoS

policies. D-STACK allows applications to run as is without mod-

ification, while SMGuard and others need a kernel capture mech-

anism, which also brings additional privacy concerns. Zhao et

al. [33] utilize a classification-driven technique (CD-Search) to

classify applications as memory-intensive or compute-intensive

and place compute-intensive and memory-intensive workloads

together for higher overall performance/throughput. Applica-

tions are classified based on the use of SM’s memory when

running the applications. CD-Search enforces partitioning by

occupying the SMs with dormant/sleep kernels and releasing

them when required by an application. The spatial-sharing of a

number of SMs for memory-intensive applications is determined

by gradually stalling/decreasing SMs to find the right number to

run for appropriate sharing of the GPU. We have the same goal

in D-STACK to share the GPU through multiplexing. We profile

applications to find the appropriate number of SMs needed by

evaluating application performance for a range of GPU%. One

main difference between the other approaches and D-STACK is

that D-STACK uses CUDA MPS, which makes it much easier

to implement spatial multiplexing as it only requires changing

the environmental variables of the application.

DNN’s limits on Utilizing GPUs: Several works [34], [35],

[36] have discussed the under-utilization of GPU by DNNs, and

have proposed algorithmic optimizations that make DNN kernel

computation more efficient [37], [38], [39], [40]. These solutions

require whitebox models that can be changed. There have been

works analyzing how DNN’s exploit parallelism. [41], [42] show

that DNNs attain a much smaller number of FLOPS than what a

GPU can provide. Poise [43] and [44] shows that the high data

load latency from the GPU memory to the processing unit is

also a reason for the limit in parallelism. [45] creates an ana-

lytical model to predict the inference latency and mainly utilize

temporal queuing solution to meet deadlines. [45]’s model uses

default MPS, and due to interference causing increased latency,
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they limit the number of models spatially sharing the GPU at a

time. On the other hand, D-STACK provides fine-grained spatial

and temporal control of resources of the GPU and thus is able to

run far more models with larger batch sizes without interference.

With a spatio-temporal scheduler D-STACK utilizes resources

both spatially and temporally to meet the inference deadline. [8]

shows lack of resources in CPU and GPU spatial resources will

greatly slowdown GPU execution. Our work complements [8]

by demonstrating a method to find the Knee beyond which

applications fail to utilize GPU efficiently. We utilize under-

standing from these related work to create an analytical DNN

model that helps deriving the Knee% necessary for inference

without slowdowns. Furthermore, we evaluate our methods in a

real system.

Multi-Instance GPUs (MIGs) such as the NVIDIA A100 are

hardware-based approaches for coarser-grained, spatial multi-

plexing. MIGs allow static partitioning of a GPU into multiple

smaller GPU instances (up to 7 instances with the A100). How-

ever, MIGs require the GPU to be reset or VMs to be restarted

to change the resource allocation. This causes significant down-

times as all the processing using the GPU has to be restarted.

D-STACK’s spatio-temporal scheduling avoids the GPU reset

and quickly allocates the desired GPU resources. Moreover, note

that A100 and H100 are also able to run MPS (similar to V100).

Thus, they can benefit from D-STACK without any modification.

III. UNDERSTANDING DNN PARALLELISM THROUGH

MEASUREMENT

Experimental Setup and Testbed:

We used a Dell Server with Intel(R) Xeon(R) Gold 6148 CPU

with 20 cores, 256 GB of system memory, and one NVIDIA

V100 GPU, and an Intel X 710 10 GbE NIC as our testbed.

The V100 has 80 SMs and 16 GB of memory. Our workload

for the vision based DNNs (Alexnet [46], Mobilenet [47],

ResNets [48], VGG [49], Inception [50], ResNext [51]) consists

of color images of resolution 224 × 224. This resolution choice

is inspired by initial work [49], [52], [53]. For BERT [54], a

natural language processing DNN, we utilize sentences of 10

words.

We use OpenNetVM [55] to host our framework that runs

multiple DNN models for inference. We use Moongen [56] to

transmit ˜1920 images/sec. on a 10 Gbps Ethernet link. Our plat-

form can batch input data to the desired batch size. We primarily

report the execution time for inference in the GPU for all our ex-

periments and do not consider the additional latency contributed

by network protocols. Therefore, our results are independent of

the network transport protocol used. We utilize CUDA Multi-

Process Service (MPS) to spatially multiplex the GPU. We

use CUDA_MPS_ACTIVE_ THREAD_PERCENTAGE envi-

ronmental variable to provide GPU%. Once set, the GPU%

cannot be changed for a process.

A. Finding the Knee

We profile the models to find the knee. If there are no time

constraints, then we usually collect latency for 10 different GPU

configurations (in 10% increment), each with 3 batch sizes.

Fig. 2. V100 latency versus GPU% (Batch of 16 images/sentences).

Fig. 3. P100 and T4 GPUs profile.

Thus, 30 different runs for each application to form a profile. For

applications that we cannot afford to run many times, we cut the

time to find the knee by looking at the latency of the application’s

execution when GPU resources are cut by half (50%, 25%, and

12.5%) in subsequent execution.

Furthermore, we profile the workload as a whole to find

the knee. We chose to find one knee for a workload as the

reconfigurations of MPS/MIGs are not fast enough to partition

GPU for each kernel. Thus, providing knee value for each kernel

would add a large amount of latency.

B. Measurement With ML Models

We now present measurements performed on our testbed with

multiple DNNs, to demonstrate the limits in the parallelism of

those DNN models. We measured the latency for inferring a

batch of 16 images/sentences using different GPU% for several

popular DNN models using PyTorch framework. We utilize

models with different compute requirements.

From Fig. 2, we see that the inference latency remains un-

changed above 30-50% of GPU for most models (Knee point).

With a smaller batch size, the Knee% is lower (20%-35%). How-

ever, we also observe that using fewer than necessary SMs (low

GPU%) leads to an exponential increase in model latency (also

observed in [8]). We observed a similar knee with other GPUs

as well. We evaluated computationally light models, Alexnet

(A-P100 and A-T4) and Squeezenet (Sq-P100 and Sq-T4) on

both the P100 and T4 GPUs. The T4 GPU supports CUDA

MPS with a GPU%, but the P100 only supports the default

MPS without being able to define a GPU%. We present their

results in Fig. 3. Even with different GPUs, we see the knee

behavior in Alexnet and Squeezenet. Only the computationally

dense ResNet-50 (R-P100 and R-T4) does not show an obvious
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knee. Both the P100 and T4 GPUs have lower computational

capacity than the V100, therefore, ResNet-50 can fully utilize

those GPUs. As the knee for these models exists in other GPUs

as well, our platform can be used more generally in other GPUs

as well.

C. Dynamic GPU Resource Reconfiguration

Due to the limitation of CUDA MPS [14], any GPU resource

readjustment requires us to spin up a new CPU process with

an updated GPU%. This results in several seconds of downtime

(depending on the ML framework initialization). We utilize the

overlapped execution approach of GSLICE [6], which maintain

an active-standby pair of process, where an active process keeps

processing incoming requests while a standby process loads the

DNN model into the GPU with updated GPU%. The standby

takes over inference when ready, thus, avoiding downtime.

While changing the GPU%, two instances of the same model,

the original and the new model, occupy the GPU during the

brief overlap time. This increases the GPU memory demand.

We overcome this drawback through DNN parameter sharing

utilized in GSLICE [6]. We use cudaIPC to share the weights

and parameters loaded by the original model with the new

loading model, thus removing the need to load the weights again.

Parameter sharing reduces the memory required by the newly

loaded DNN model by up to 40%.

D. Loading Models Without a Known Knee%

When a model that is not profiled and whose knee is not

known is started, our platform initially provides it a nominal,

30%, GPU. The GPU% is then readjusted using Dynamic GPU

resource reconfiguration to find the knee based on the inference

latency using a simple binary search.

IV. MODELING DNN PARALLELISM

A. Compute Bound versus Memory Bound Workloads

The latency of accessing parameters and weights of the DNN

layer from the GPU DRAM can be significant. Many studies [57]

have suggested that memory-bound DNN kernels may have

a small amount of compute and are likely to be limited by

GPU memory bandwidth. NVIDIA has proposed an arithmetic

intensity (A.int) metric [58] to estimate if a kernel is memory

or compute bound. The A. int of a kernel is computed as a ratio

of floating point operations to memory (bytes) it fetched. i.e.,

A.int = #operations
#bytes

. NVIDIA reports the arithmetic index of

V100 GPU (in our testbed) is 139.8 FLOPS/Byte [58]. Any

kernel lower than the GPU’s arithmetic index is memory-bound,

while a kernel with higher index is compute-bound.

We analyzed the most frequently occurring kernels of CNNs

Alexnet [52], ResNet-50 [48], VGG-19 [49], and an RNN,

GNMT [59], to illustrate the behavior of compute and memory-

bound DNNs. We present the results in Table. II. Most convolu-

tion layers exceed the GPU’s A.int, thus, are compute-bound.

These layers can reduce their runtimes if more compute is

available. However, kernels like LSTM in GNMT, which operate

with large input and output features (1,024 features in GNMT),

TABLE II
COMPUTE & MEMORY BOUND KERNELS

TABLE III
LATENCY (MS) IN ISOLATION AND MULTIPLEXED

require a lot of data but perform relatively fewer computations

compared to convolution. Therefore, they score very low A.int.

We should note that DNNs are not entirely constructed of

convolution or LSTM layers. However, CNNs, in general, have

more convolution kernels.

B. Understanding Memory Contention While Multiplexing

Studies [60], [61] of scientific computation workloads have

shown that the GPU cache size and occupancy are important

factors influencing the latency of kernel execution. We also

examine the effect of cache contention while running multi-

ple DNN models. However, we observe with DNNs, that the

inference latency does not vary significantly if SM isolation is

maintained. Since we indeed maintain SM isolation with spatial

multiplexing using CUDA MPS, the impacts of contention in

the GPU cache or other memory resources is minimal.

In Table III we have evaluated different DNN workloads in

isolation as well as when they are multiplexed on the GPU. The

intent of the experiment is to observe if there is any slowdown

due to memory or other constraints, when multiplexing them on

the GPU. As we see in Table III, multiplexing DNNs till we ‘fill

up’ the GPU compute capability to 100% does not affect the

final inference latency at all.

Our experiment compares the runtime with five different

DNN applications running concurrently, with each application

running with 20% GPU versus a single application running with

20% GPU, while the other 80% of the GPU is unused. We

use the experiment to show that CUDA MPS, and D-STACK

which is built on top of CUDA MPS, isolate the GPU resources

appropriately. MPS enforces SM-level isolation so that SMs are

not shared between applications, as long as all partitions add up

to 100% or less. Thus, a task running in one partition does not

affect other tasks in other partitions. Therefore, running 1 task

alone with a 20% GPU partition and 5 tasks concurrently, each

with 20% GPU partitions, have similar latency. We should note

that Mobilenet, ResNet, and VGG have more compute-bound

kernels whose performance can be easily isolated with CUDA

MPS. Thus, their performance scales with multiple instances
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TABLE IV
TABLE OF NOTATIONS FOR DNN MODEL

running together. BERT and applications such as large language

models (LLMs) have several kernels that are memory bound as

well as features that require compute-bound kernels. D-STACK

helps multiplex these applications by isolating compute-bound

kernels so that they do not affect each other, while still providing

enough resources for memory-bound kernels. Thus, D-STACK

is beneficial when using workloads with a mix of compute and

memory bound kernels.

C. Modeling DNNs

We now model an analytical DNN model that exhibits the

characteristics of most actual DNN models, in terms of the

variation in the compute workload across their different kernels.

We model the DNN composed of multiple sequential kernels

executing in GPU (and other accelerators) instead of layers

as often used in other ML studies. We have observed using

NVPROF profiling that each layer (e.g., convolution layer) is

often implemented as combination of multiple kernels in GPU,

thus, we use kernel as basic component of DNN execution in this

model. The model guides the determination of the best operating

point (Knee) GPU% for a DNN. In our model, we breakdown the

DNN workload into parallelizable operations (compute tasks),

memory read/write as well as serialized (non-parallelizable)

operations, and observe the effect of changing GPU resources.

While our model is simple, it captures all the system level

overheads that contributes to DNN latency, and provides us with

good approximation of the Knee of each model. The simplicity

of the model further aids in evaluating DNNs in different GPUs,

with different numbers of SMs, as well as other accelerator

hardware.

Selected notation used in the analysis is shown in Table IV.

As in typical GPUs, each of the S SMs allocated to a DNN will

process one parallel operation per tp time. From a modeling

perspective, we order the kernels by their amount of computation

without losing generality. DNNs have an arbitrary order in kernel

execution. However, the knee of the model is dependent on peak

computation requirements of the kernels rather than the order of

execution of each kernel.

We set the first kernel K1 as that with the greatest amount

of parallelizable operations N1, which is selected as N1 = p

for modeling purposes. For subsequent kernels, the workload

decreases by a fixed amount, so that Ni > Ni+1. Equation (1)

specifies the amount of parallelizable operations for each kernel

in the DNN. We decrease the amount of parallelizable tasks by

a fixed amount, p×b
Kmax

,

Ni =

{

p× b, i = 1

�Ni−1 −
p×b

Kmax
�, i ≥ 2

, (1)

for each subsequent kernel. The number of concurrent op-

erations decrease and reaches ∼ 0 for the last (Kmax) kernel.

Correspondingly, we define the total execution time for each

kernel’s parallelizable tasks as Wi = Ni × tp.

Note: Ideally, Wi can potentially be completed in tp units of

time when we allocate greater than or equal to the Ni SMs to

execute Wi. If we consider that the GPU hardware is able to

provide S SMs to execute Ki, then, without loss of generality,

we can show that the time taken to finish processing the kernel

would depend on the minimum of the inherent parallelism, as

defined byNi, and the number of SMs allocated for executing the

operation. Thus, the execution time for parallelizable operations

at each kernel of the DNN can be computed using (2). Individual

kernels

Ei =
Wi

max(1,min(S,Ni))
, (2)

in the DNN often run repeatedly during a DNN inference.

We define the number of repetitions of kernel Ki as Ri. We

then factor the time taken to run all the serialized operations,

including for kernel starting and kernel waiting for data. The

kernel starting time is considered a constant, tnp, per layer.

The kernel’s time waiting for data, however, depends on the

kernel’s input and parameters. Each kernel of a DNN has a

certain amount of data (model parameters, input data) that has

to be fetched from GPU DRAM (main/global memory of GPU)

to the CUDA cores in the SMs. We have observed that the

total global memory read/write bandwidth increases with the

proportion to the number of SMs allocated. Other studies [62],

[63] also point to a proportional increase.We define the latency

per kernel, caused by kernel waiting for parameters, input,

and other data to be loaded, as (3). Thus, we can define the

total time of non-parallelizable (sequential) operations Wse as

(4). We use (2) and (4) to compute DNN execution time, Et

as in (5).

Em =
di × S

M
(3)

Wse = b×

Kmax
∑

i=1

Ri × (tnp + Em) (4)

Et = Wse +

Kmax
∑

i=1

RiEi. (5)

We now simulate the total time to execute a DNN under

varying conditions i.e., by varying the amount of parallelizable

and non-parallelizable operations at each kernel and the number

of SMs in the GPU. As in typical GPUs, we assume the number

of SMs allocated for an DNN remains static. Fig. 4(a) shows

the impact on the DNN execution time when assigning different

numbers of SMs. First, we created a DNN with 50 kernels i.e.,

Kmax = 50. We set the time taken for the parallel operation tp
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Fig. 4. (a), (b) Inference characteristics of analytical DNN models with varying amounts of parallelism and hardware resources.(c), (d) Demonstration of analytical
model’s understanding on real DNN Mobilenet.

to be 40 units and for serialized operations tnp to be 10 units. We

repeat the simulation for 3 cases, varying the maximum amount

of parallelization (concurrent operations at the first kernel) N1

as 60, 40, and 20.

For all three cases, the execution time is very high when the

number of SMs is small (1 to 5 SMs), reflecting the penalty

of insufficient resources for the inherent degree of parallelism

while executing the DNN kernel. However, as the number of SMs

increases, the execution latency decreases. Interestingly (see

zoomed part of Fig. 4(a)), there occurs a point when giving more

SMs beyond a point does not improve latency further, in each of

the scenarios. When the number of SMs provisioned exceeds the

amount of parallelism inherent in the DNN kernel, there is no

further reduction in the latency. Even before reaching this point,

the latency improvements from having an increased number of

SMs reaches a point of diminishing returns.1 We seek to find

the most efficient number of SMs (S) needed for executing

a given DNN, so that the utilization of the allocated SMs is

maximized. To compute this, we have to find the maximum of
1

Et∗S
, which represents the DNN work processed per unit time

per SM. For this, we differentiate 1
Et∗S

with respect to the time

taken to execute the DNN.

d

dEt

(

1

Et ∗ S

)

= −
1

(Et)
2 ∗ S

. (6)

Fig. 4(b) shows this first order derivative of the inverse of

latency (6), showing that SMs for N1 = 20, 40 and 60 reaches

a maximum at 9, 24 and 31 SMs respectively. Hence, operating

at this derived ‘maximum’ point for a DNN guarantees that

there are sufficient number of SMs to provide low latency while

achieving the most efficient use of the SMs. Moreover, we can

see from this that the ‘maximum’ peaks at a much lower SMs

than the corresponding value of N1. This is due to the impact of

performing serialized tasks adjacent to the parallelizable tasks.

This results in lower (or no) utilization of many of the allocated

SMs for the serialized tasks. Thus, further reduction in latency

by increasing SMs is minimal.

1i.e., showing marginal improvements. The DNN execution latency is im-
pacted by both the number of parallelizable and non-parallelizable operations
and it varies inversely with the number of allocated SMs, by Amdhal’s law [64].
Batching increases parallelizable work [65].

D. Analyzing Execution of Typical DNNs

We profiled and analyzed Mobilenet, ResNet and GNMT

DNNs using the NVPROF profiler [66] to capture the GPU

resource usage and the execution time of the DNN kernels.

1) CNN Model: Mobilenet: We profiled the inference of

Mobilenet using 100% of a V100 GPU. For each kernel, we

show the GPU thread count on the y-axis (in log scale) and the

corresponding runtime as the area of the bubble in Fig. 5. The

approximate GPU% required for all the threads to run concur-

rently is onY 2-axis (log scale, on the right). We approximate this

GPU% by considering that only 2048 threads can run in an SM

concurrently, due to limits on the number of concurrent blocks

and warps [67]. The kernel’s design and thread distribution

across different threadblocks can lead to a higher SM demand

than absolutely required.

We plot 11 distinct kernels of a Mobilenet model (each iden-

tified by a different color in Fig. 5). These kernels are executed

a total of 156 times per inference. We observe that few of the

kernels (kernel 3, 4 and 6, in particular) require more than 100%

of the GPU to run. These kernels demand more threads than

a GPU can run concurrently. However, these kernels run for a

very short time and do not contribute significantly to the total

inference latency. The kernels that contribute more to the total

latency, such as kernels 10 and 7 utilize less than 10% of the

GPU. This is due to the fact that the DNN’s inference feature

matrix gets smaller, thus, resulting in limiting the inherent

parallelism. Thus, these kernels use fewer parallel GPU threads

and run for long time with low GPU% demand. They contribute

to lowering the Knee GPU% of the entire DNN model. From

this understanding, when the amount of parallelism of a kernel

is low, increasing the number of GPU SMs will not reduce the

execution time of the kernel, since the additional SMs will not

be utilized.

We also analyzed the inference time with different batch

sizes of Mobilenet (Fig. 4(c)). In all the cases, for a given

batch size, the latency reduces with an increase in GPU%. But,

across all evaluated GPU percentages, the latency increases

with increasing batch sizes. Fig. 4(d) shows the first derivative

of the inverse of Mobilenet’s latency obtained using (6). The

maximum of the derivative, i.e., the most efficient point for DNN

operation, for batch sizes of 1, 2, 4 and 8 occurs at GPU%

of ∼ 10, 20, 40, and 50 respectively. This shows that with
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Fig. 5. Thread count & runtime (shown as area of circle) of 156 kernel of Mobilenet. Each colored circle labeled 1-11 represents a kernel (e.g., convolution
kernel, ReLU, fully connected). The area of the circle represents the time it takes to run in GPU and left Y -axis represents the number of GPU threads each kernel
uses. Right Y -axis represents how much GPU% a kernel will utilize with all its threads. The kernels in the left run earlier than kernels in right.

Fig. 6. DNN Latency, first derivative as in (6).

increasing batch size, i.e., increased parallelism, the GPU% at

which the maximum utilization point occurs, based on (6), also

increases. Fig. 6(a) shows the different maximum utilization

points for the different models. Lightweight models such as

Inception and ResNet-18 have a maximum at a lower GPU%,

while compute-heavy VGG-19 does not see an inflection point

up to 100% GPU. These characteristics of the individual DNN’s

execution strongly correlate and match with the theoretical DNN

model we presented.

2) Transformer Model BERT: We also present the evalua-

tion of the inference latency for the transformer-based natural

language processing DNN, BERT, as well as the first order

derivative, per GPU% in Fig. 6(b). We evaluated sentences with

10 and 20 words. We can observe that longer sentences results

in higher inference latency. But again, we see that the inference

latency does not improve after a point. The first order derivative

of the latency for 10 and 20 word sentences shows a peak at

around 30% and 40% GPU respectively. Thus, both our model

prediction and our evaluation of representative compute-heavy

CNN and memory-bound Transformer models show that there

is indeed a limit to parallelism utilized by DNNs. This motivates

our approach to further examine improving GPU utilization with

spatio-temporal scheduling.

V. OPTIMAL BATCHING FOR DNNS

Batching is a trade-off between improving throughput at the

cost of higher latency. Inferring a batch of requests requires

Fig. 7. Efficacy of ResNet-50.

more computation, thus increasing inference time. We consider

the batch size as a function of network bandwidth. Therefore,

preparing a bigger batch, i.e., receiving and transferring data

from the network to GPU also contributes additional latency.

Providing a higher GPU% for a bigger batch can mitigate the

inference latency increase. However, giving more than a certain

GPU% may be wasteful. We use the metric

Efficacy(η) =
Throughput

Latency ×GPU%
, (7)

of Efficacy (η) of using GPU resources as the basis to find a good

operating point with respect to batch size and GPU%. We define

η of a DNN at a certain batch size and GPU% as (7). Efficacy, η,

lets us know how much throughput the GPU produces per unit

time, per unit of GPU resource (GPU%).

A. Optimum Batch Size for Inference

We profiled the ResNet-50 model for inference at different

batch sizes & GPU% configuration. Fig. 7 shows that both

very high and very low batch size leads to low Efficacy due

to high latency and reduced throughput respectively, thus, an

optimal batch size is desired. We now develop an optimization

formulation that can provide us with the right batch size and
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TABLE V
NOTATION FOR OPTIMIZATION FORMULATION

GPU% for a model, given a deadline. First, we present the key

notations used for the optimization in Table V.

The batch size is a product of the average incoming request

rate and request assembly time. Thus, bi = Request-Rate×
Ci. ThroughputTi is number of images inferred per unit time (8).

Knowing throughput (8) we can write η (7), as (9). Equation (9)

is of the same form as the first derivative of inverse of latency,

(6), Section IV-B.

Ti =
bi

fL(pi, bi)
(8)

η =
bi

(fL(pi, bi))
2 ×GPU%

. (9)

We seek to maximize Efficacy (η) to get the best balance in

parameters based on the constraints (10), (11), and (12). The

constraints express following requirements: (10): Batch size

must be less than or equal to maximum batch size a

1 ≤ bi ≤ Max Batch Size (10)

fL(pi, bi) + Ci ≤ SLOi (11)

fL(pi, bi) ≤
SLOi

2
, (12)

model can accept. Equation (11): The sum of times taken for

aggregation of batch via network (Ci), and its inference ex-

ecution, which has to satisfy the SLO. Equation (12): When

working with a high request rate, we can regularly gather large

batch sizes for inference. However, a request that cannot be

accommodated into the current batch due to constraint (11),

has to be inferred in the next batch. Then the deadline for next

batch is the deadline of the oldest pending request. Therefore,

we make sure that SLO is twice the time required to run a

batch.

We computed the latency function fL(pi, bi), by fitting the

latency observed while inferring DNN models with a batch size

of 1,2,4,8,10,12,16 and GPU% from 10-100 at 10% intervals

on our testbed. The optimization is solved using the non-linear

programming solver ’fmincon’ in MATLAB. Requests (images

of resolution 224× 224) arrive over a 10 Gbps link. 1 image is

assembled every ∼ 481µs. We use an SLO of 50 ms, allowing

for an interactive system that can be used in safety critical

environments such as autonomous driving [68].We present the

feasibility region (where the SLO constraints are fulfilled) and

optimal point provided by the optimization formulation in Fig. 8.

The infeasible area is in a lighter shade. It is particularly reveal-

ing that Mobilenet has an optimal point close to 30%.

Fig. 8. Mobilenet feasibility region (darker shade).

B. Estimation of the Knee for Real Systems

We view these optimal values in relative terms, representative

of the limit to parallelism that the model exhibits, because the

optimization does not necessarily factor all the aspects that influ-

ence the execution of the model in the real system. We, however,

pick a batch size and GPU% values from the high efficacy region

in the optimization output in Fig. 8 and over-provision the GPU%

by 5-10% while deploying the model in a real system.

VI. GPU SCHEDULING OF DNN MODELS

We now discuss the Spatio-temporal scheduling with D-

STACK. We run the DNN models concurrently and meet their

SLO while keeping the GPU from over-subscription. Over-

subscription occurs when the aggregate GPU% of concurrent

models exceed 100%.

A. Scheduling With Varying SLO

We schedule multiple models with different SLOs (deadlines),

optimal batch sizes, and GPU% with D-STACK. Our scheduler

considers two primary constraints. First, the DNN model must be

scheduled at least once before an interval equal to its SLO, using

an optimal batch size as predicted by the model in Section V.

Second, the aggregate GPU demand at any point in the schedule

should not exceed 100%. We choose a time period defined by

the largest SLO to be a Session. Models with an SLO smaller

than a session will run multiple times in a session. e.g., for a

100 ms session, a model with 25 ms SLO will run at least

4 times. Our spatio-temporal scheduling also accommodates

dynamic arrivals of requests by utilizing a Fair, Opportunistic

and Dynamic scheduling module which dynamically recom-

putes the schedule, thus increasing the effective utilization of the

GPU.

We use 8 different DNN models and present their optimal

batch size, GPU% and the latency of inference at that batch-

size/GPU% in Table VI. We obtain the knee GPU% and Batch

Size from the model in Section V. We chose our SLO based

on safety-critical work such as autonomous driving [68], where

it is determined that less than 130 ms processing is required to
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Fig. 9. (a, b, c) Scheduling Algorithms; (A-N=Alexnet, R-50=ResNet-50, V-19=VGG-19) (d) Comparison with ideal scheduler.

TABLE VI
CHARACTERISTICS OF DIFFERENT DNN MODELS

safely stop a car running at 80 miles/hr (∼130 kmph). We choose

a much more conservative 100 ms (effectively about 50 ms as

rest is spent for preparing batch) for higher accuracy (VGG-19

and ResNext-50) and smaller SLOs (50 ms and 25 ms) for

latency-optimized models (ResNet-50, Inception, Mobilenet,

Alexnet and ResNet-18) aimed for application such as 30fps

video stream. Unlike [7], we realistically consider that a model’s

execution cannot be preempted from GPU.

We first examine a temporal schedule with Alexnet, ResNet-

50, and VGG-19. We provide time slices proportional to the

model’s SLOs. We utilize an adaptive batching algorithm men-

tioned in clipper [17] and Nexus [11] to obtain the batch size for

each model’s time slice. Fig. 9(a) is the visualization of such a

schedule. The SLOs are visualized as the vertical dotted lines.

We compute GPU utilization by using Knee% for each model

as shown in Table VI. With temporal sharing, we achieve mean

GPU utilization of 44%.

1) D-STACK: Spatio-Temporal Scheduling: Our D-

STACK’s scheduler aims to fit as many models as possible

(potentially being different from each other) and run them

concurrently in the GPU. We seek to be able to meet each

model’s (potentially different) SLO. We employ a simple

version of the Earliest Deadline First Scheduling (EDF)

algorithm to schedule all the models. EDF schedules the

model with the tightest deadline to run first. However, we

should note that as a model’s inference is not preempted,

this simple schedule cannot guarantee that the GPU will not

be oversubscribed at any moment in the schedule. To aid in

fitting in as many models as possible, we schedule consecutive

executions of any model with the shortest SLOs to be as far apart

as possible. This allows us to fit longer running models in the

GPU in the interim without oversubscribing it. We demonstrate

a schedule generated by spatio-temporal only algorithm in

Fig. 9(b). We observe that the model with the smallest SLO,

Alexnet (bottom), is scheduled to meet its SLO, but the time

between the execution of the first instance and the second

can be large because its execution time is short. This allows

us to run ResNet-50 (second from the bottom) and VGG-19

(third) in between consecutive executions of Alexnet. Note that

D-STACK’s scheduler can also schedule a model with GPU%

lower than its Knee, albeit with high inference latency when

necessary. D-STACK also considers the additional latency of

launching a new DNN model at lower GPU% into the schedule.

This latency-GPU% trade-off has to be considered carefully

before starting inference. Once a DNN process starts with

its allocated GPU%, it cannot be changed for that instance’s

execution lifetime.

2) Fair, Opportunistic, Dynamic Scheduling: To efficiently

utilize the GPU resource while ensuring that the system meets

SLO guarantees, we further propose an opportunistic dynamic

scheduling enhancement. The dynamic scheduling is triggered

when a new request dynamically arrives for a model and when

a model ends inference. The dynamic scheduler picks a model

that is not active. This opportunistic addition is allowed as long

as the GPU is not oversubscribed (so as to not interfere with the

already scheduled models). To ensure fairness among available

models, we use a scoreboard that tracks how many times each

model has run in the last few (e.g., ten) sessions and prioritizes

the models that have run the fewest. The algorithm then finds a

time slice for the model to finish inferring and also determines a

batch size that can complete within the time slice. If the highest

priority model cannot be run, the algorithm picks the model with

the next higher priority. We show the output of the D-STACK

scheduling in Fig. 9(c). With this dynamic scheduling packing

more models to be scheduled opportunistically, the average GPU

utilization increases from 60% in the plain spatio-temporal

schedule (Fig. 9(b)) to 74% with the D-STACK schedule

(Fig. 9(c)).

Aggregate throughput is the addition of throughput of all the

models. DSTACK does not prioritize any particular-sized neural

network. As described in Section V(A, 2), we track the model

execution in a scoreboard. So, any smaller model does not get

the GPU all the time, but rather the available GPU. The GPU

execution in time and space is fairly divided across all the neural

networks running in the GPU. The smaller models can get a large

throughput boost even with a small amount of time that the GPU

SMs are allocated for them. Thus, the aggregate throughput is

influenced considerably by smaller models. This is true for both

DSTACK and for Timesharing (as in Triton).
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B. An Ideal Spatio-Temporal Schedule versus D-STACK

We compare D-STACK against an ideal scheduler, which is

a theoretical spatial and temporal schedule at the granularity of

individual DNN kernels. For the ideal case, we assume GPU

kernel preemption is allowed, a DNN’s instantaneous GPU

demand is known and the GPU’s allocated resources are adjusted

instantaneously. Any realistic system that does not preempt a

currently running DNN model until its inference is completed,

together with scheduling overheads to switch from one model to

another inevitably under-utilizes the GPU. Thus, the ideal sched-

uler provides a theoretical ’optimal’ performance achievable by

D-STACK or other schedulers.

We consider a time-slotted system (e.g., 100µs for experi-

ments with a small scale DNN), where Si represents ith time

slot in the schedule. We schedule the kernelkm from DNN model

m. We include as many model’s kernels as will fit in the GPU at

their Knee%, ordered by their earliest deadline. We compute the

aggregate GPU% as Gui =
∑

k∈Si
GPU%k for each time slot

Si. We use an exhaustive search-based schedule to maximize

the GPU utilization for every time slot (13). The overall GPU

utilization Gu is maximized as

maxGu, where Gu =
∑

i

Gui =
∑

i

∑

k∈Si

GPU%k

(13)

such that Gui ≤ 100% and ki ∈ E ⇒ ki−1 ∈ E.

(14)

The first constraint for scheduling kernels of different models

(14) is that the sum of the GPU% of all concurrent kernels

in a time slot should not exceed 100%. Second, only eligible

kernels (set (E)) can run concurrently in the time slot Si being

scheduled. DNN kernels are executed sequentially.

We experimented by scheduling 3 convolution neural net-

works (ConvNet) based on LeNet [69]. Each ConvNet has 3 con-

volution, 2 average-pool and 2 linear kernels. The dimensions of

filters of the convolution layers are varied, varying the compute

requirement for each ConvNet model. The inference image

has a resolution of 224 × 224. The knee-runtime combination

for ConvNet-1, ConvNet-2 and ConvNet-3 are 30%-10.3 ms;

40%-14.6 ms, and 60%-15.4 ms, respectively. We computed

the knee of each kernel of each model, for use by the ideal

scheduling during inference. We present the GPU utilization and

throughput in Fig. 9(d). Temporal scheduling has a much lower

GPU utilization, as it runs a single kernel on the GPU at a time.

GSLICE improves the GPU utilization, but its static schedule

leads to lower utilization when not enough models are running on

the GPU. Ideal scheduling attains almost 95% GPU utilization,

because it schedules kernels leveraging preemption. D-STACK

schedules without preemption of a kernel, runs a DNN kernel

to completion even if a kernel that could utilize the GPU better

is waiting. Nonetheless, D-STACK still achieves ∼86% GPU

utilization. The throughput attained by the three CNN mod-

els follows the same trend. D-STACK’s overall throughput is

slightly higher than 90% of the throughput of ideal scheduling

- a measure of how close it comes to the ideal scheduler.

Fig. 10. (a) Throughput of models running with different scheduling algo. and
(b) Total runtime (s) per model.

C. Evaluation of D-STACK Scheduler

We evaluate D-STACK using four popular DNN models

(Alexnet, Mobilenet, ResNet-50, and VGG-19) that are run with

fixed SLOs, GPU%, and runtime as presented in Table VI.

We ran the models concurrently for 10 seconds. We took the

workload mix from the Imagenet [70] (vision DNNs), and IMDB

dataset [71] (sentence classification with BERT). We introduce

a random, uniformly distributed inter-arrival delay between re-

quests destined for the same DNN model.

We compare the throughput, and GPU runtime of D-STACK

with the baseline temporal sharing, and a schedule that maxi-

mizes the sum of the throughput across all the models (max-

throughput). We also evaluate the fairness of the schedulers,

measured by the GPU runtime each model gets. For this, we

compare D-STACK against a Max-Min fair scheduler [72],

which maximizes the placement of the minimum (smallest)

demand (GPU%). The throughput result is shown in Fig. 10(a),

and the GPU runtime each model gets is in Fig. 10(b).

D-STACK gets 2× the throughput of temporal sharing

for the two compute-heavy models, ResNet-50 and VGG-19

(Fig. 10(a)). At the same time, the lighter-weight Alexnet and

Mobilenet get 4× higher throughput. In temporal scheduling,

running compute-heavy

DNNs with longer runtimes results in fewer opportunities

for the other models, as there is no spatial sharing. Tempo-

ral scheduling runs models for only 1.6sec. out of 10 secs.

time, negatively impacting their throughput. Fig. 10(b) shows

that the D-STACK runs all the models longer than temporal

sharing. This is because D-STACK can run multiple DNNs

concurrently, providing higher throughput compared to temporal

sharing (Fig. 10(a)). We compare D-STACK’s throughput with

the ’max-throughput’ schedule. D-STACK gets more than 80%

throughput of the max-throughput for the model with the lowest

runtime (Alexnet) while providing better fairness as we see next.

The Max-Min fair schedule provides higher runtime for Mo-

bilenet (Fig. 10(b)) than D-STACK since Mobilenet has the

minimum demand (25% knee%). However, D-STACK achieves

higher throughput than Max-Min for the medium runtime

ResNet-50 (Fig. 10(a)). D-STACK’s fairness measure picks the

model that has run for the least time in the GPU over past

sessions to schedule. Thus, D-STACK seeks to act like a pro-

portional fair scheduler, as with the Completely Fair Scheduler

(CFS) in Linux [73]. The fairness of D-STACK is shown in

Fig. 10(b). Max-Min gives more time to a low-demand model

like Mobilenet. With D-STACK, all the models get similar
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Fig. 11. (a) C-2 = ResNet-50 + VGG-19, C-3 = C-2 + BERT, C-4 = C-3 + Mobilenet, C-7 = C-4 + ResNet-18 + Inception + ResNeXt-50. (b) Throughput
adjustment in D-STACK with varying request rate.

GPU time, thus boosting the total throughput of higher demand

models like ResNet-50. Overall, the D-STACK scheduling beats

temporal sharing’s throughput by 4×, gets more than 80% of the

max-throughput scheduler and fairly shares GPU execution time

while meeting SLOs.

VII. VALIDATING OUR OVERALL APPROACH

We compare D-STACK with other multiplexing methods.

Multiplexing DNN models on the GPU: We evaluate three

different cases of multiplexing by running 2, 3, 4 and 7 DNNs,

respectively. By multiplexing 7 different DNNs, we demonstrate

how D-STACK is still successful in scheduling a number of mod-

els with tight latency constraints, even if the sum-total of their

demand (i.e., knee-capacity) is substantially higher than 100%

GPU. We show D-STACK can improve throughput and utilize

the GPU better while reducing the SLO violations compared

to the other approaches, with all, including D-STACK having to

compromise by missing the deadline on some inference requests.

We compare our approach, including D-STACK, with four other

methods of GPU multiplexing, namely, Fixed batching with

Default CUDA MPS (FB), and temporal sharing (T), Triton

Inference Server (Tri) (Also temporal sharing) and GSLICE (G).

In Fixed batching with CUDA MPS (FB), the largest batch size

of 16 is picked for inference every time and the multiplexing

models share the GPU with MPS without an explicit GPU%.

In temporal sharing (T), time slices are set in the proportion of

the models’ SLO length. With Triton server (Tri), we request

the inference with multiple clients concurrently, allowing Tri-

ton server to dynamically batch and infer our requests. With

GSLICE (G), we use all GSLICE’s features, including adaptive

batching and spatial sharing of the GPU at each DNN’s knee.

Finally, in D-STACK, we use the batch size and GPU% from

our optimization formulation and utilize D-STACK scheduling

to schedule the models.

We evaluate the throughput and the SLO violations per second

for each model in Fig. 11(a). We measure SLO violations per

second as the sum of all the inference requests that violate

the SLO and all the unserved requests. Inference requests are

generated at the rate of ∼ 1920 images/sec (max. request rate

limited by the 10 Gbps link in testbed). Requests are divided

into the multiplexed models in proportion to their SLOs. Thus,

for the experiments C-2, C-3 and C4, Alexnet and Mobilenet get

700 inference requests/sec, ResNet-50 gets 320 requests/sec and

VGG-19 gets 160 requests/sec.For the experiment with 7 DNN

models running concurrently (i.e., C-7), Alexnet, Mobilenet

and ResNet-18 receive 440 inference requests/sec, ResNet-50

and Inception receive 220 requests/sec while ResNeXt-50 and

VGG-19 get 80 requests/sec.

We present aggregate throughput measure in Fig. 11(a). Ag-

gregate throughput provides the sum of the throughputs achieved

by all the models. D-STACK provides more than a 3× increase

in aggregate throughput when multiplexing 7 different models.

D-STACK achieves the highest throughput even when fewer

models run concurrently.

We note that the smaller models can get a large throughput

even with a small time durations they are scheduled on GPU.

Thus, the aggregate throughput is influenced considerably by

smaller models. This is true for both D-STACK and for other

time and spatial sharing methods as well (as in Triton). With

D-STACK’s fairness mechanism (Section VI-A-2), we inten-

tionally try to de-prioritize running small neural network just for

increasing throughput. Other GPU sharing mechanisms have no

such constraints. Therefore, we think aggregate throughput is a

fair metric to measure the performance of GPU sharing across

various schedulers.

For MPS, the lack of batching causes it to miss most of

the SLOs for requests. Fixed batch, temporal sharing, GSLICE

and Triton server provide good throughput while running just

2 models. However, as the number of models multiplexed in-

creases, each new added model contends for GPU resources in

Fixed Batch, decreasing the throughput. Meanwhile, in temporal

sharing, each model gets less and less GPU time, impacting

throughput.

Models hosted in Triton server too have to multiplex GPU

temporally, thus, get lower throughput when more models are

added. With GSLICE, multiplexing more models means some

models get resources lower than knee GPU%, exponentially

increasing the inference latency. D-STACK provides both the

right amount of GPU resources and the appropriate batch size.

Furthermore, there are no SLO violations in D-STACK when

multiplexing 2-4 models. However, when overloading the GPU
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by multiplexing 7 DNNs, we see a few SLO violations for the

models with longer runtime (Inception, Resnet-50, ResNeXt-50

and VGG-19). D-STACK misses SLOs for 10% of all requests,

compared to more than 68% for the alternatives. SLO misses

for D-STACK are from the smaller fraction of requests sent

to compute heavy models such as ResNet-50, ResNext-50 and

VGG-19. Even with some of the medium-to-large sized models

with longer runtimes, such as ResNet-50 and Inception, only

13% of requests see a SLO violation. This is due to the fact that

running 7 models concurrently exceeds the capacity of GPU even

with D-STACK. With D-STACK the average GPU utilization is

92% while multiplexing with 7 models. With all the models

having a knee greater than 10%, this is close to fully utilizing

the GPU.

Benefit of D-STACK Scheduler: Wherever possible, D-

STACK tries to opportunistically schedule additional model

instances during the session, possibly with a smaller batch size

to utilize the available GPU. To show the effectiveness of the

D-STACK, we present a scenario where the request rate of the

multiplexed DNN models varies dynamically. To start with, in

session T0, we have 4 models, Alexnet, Mobilenet, ResNet-50

and, VGG-19, same as in ’C-4’ in Fig. 11(a) running with their

request rates high enough to support the optimal batch size, as de-

termined in Table VI. The GPU utilization we achieve is∼ 85%.

We then change the request rate of one model (Alexnet in session

T1) by a random amount. We still allow for the optimal batch to

form for each model. The throughput of the models dynamically

adjust with the throughput of other models increasing due to use

of the un-utilized resources left by Alexnet (see T1). Since these

three models have a high GPU% requirement, there is not enough

GPU to accommodate an instance of another model. Thus, the

GPU utilization drops very slightly. AtT2, Alexnet’s request rate

goes back up, while Mobilenet request rate lowers, once again

by a random amount. Alexnet opportunistically uses the GPU to

achieve a throughput higher than what it achieved in the baseline

session T0. Similarly, when ResNet-50 and, VGG-19’s arrival

rates drop at T3 and T4 , respectively, the other models increase

their throughput. We also see that across these sessions, the GPU

utilization is nearly unchanged, remaining high, indicating that

the D-STACK effectively uses the GPU.

A. D-STACK in Multi-GPU Clusters

D-STACK can utilize multiple GPUs in the cluster. When

the request rate of a model exceeds the throughput it is getting,

D-STACK starts another instance of the model in another GPU

in the cluster. These new GPUs will also be spatially shared with

any new DNN models that are introduced.

We evaluated D-STACK in a multiple GPU cluster of 4

NVIDIA T4 GPUs, each having 40 SMs (fewer than a V100)

and 16 GB of memory. We utilized 4 different vision models,

Mobilenet, Alexnet, ResNet-50 and VGG-19 (knee GPU% is

different for T4 GPU versus V100). We compare throughput

of 3 different multiplexing and scheduling scenarios. First, we

provide one T4 GPU for each DNN model exclusively. In the

second scenario, we place all 4 models in each GPU, temporally

sharing the GPU. Finally, we evaluate D-STACK with the 4

DNN models.

Fig. 12. GPU cluster throughput.

Fig. 12 shows temporal scheduling has almost the same

throughput as each model having an exclusive GPU.

This is because of the under-utilization of the GPU by the

DNN models. D-STACK has much higher throughput for every

model, with 160% overall higher throughput than temporal

sharing. The overall inference throughput increases substantially

as the multi-GPU cluster is better utilized by D-STACK.

B. D-STACK ’s Applicability With Different Devices

An application’s performance on a V100 can be used to

estimate how it would perform on another GPU in the same

family. We do recognize that estimating the performance when

we go across GPU generations may be a challenge. Streaming

multiprocessors in a V100, A100, and H100 are drastically

different with different cache sizes, and different hardware ca-

pabilities; thus, an application requiring 50% of a V100 GPU

might require much less of a A100 GPU. This will be true for all

applications whether they are using D-STACK or not. However,

we can still take the initial guidance from the offline analysis

done with another (say less powerful) GPU and divide the current

more powerful GPU into several, when multiplexing different

applications on the current more powerful GPU. The GPU

resources for each application can be eventually adjusted, as

new metrics as well as updated values of all metrics are collected

when running the applications on the new more powerful GPU

itself.

VIII. CONCLUSION

DNNs critically depend on GPUs and other accelerators, but

often under-utilize the parallel computing capability of current

high-performance accelerators. Due to uneven workloads of

different DNN kernels, a DNN as a whole is unable to fully

utilize all the parallelism of the GPU (i.e., all SMs). Furthermore,

there are non-parallelizable tasks while executing a DNN on

a GPU-based system limiting the effective use of a GPU’s

parallelism. We validated these conclusions from our model

of a DNN through measurements of different types of DNNs

(CNNs, and Transformers) on an V100 GPU. Since batching

DNN requests improves inference throughput and GPU uti-

lization, we develop an optimization framework to establish

an optimal operating point (GPU%, Batch Size) for a DNN

utilizing the GPU at the highest efficacy. We bring the optimal
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batch size and GPU% together in D-STACK to develop a spatio-

temporal, fair, opportunistic, and dynamic scheduler to create

an inference framework that effectively virtualizes the GPU.

D-STACK accounts for a DNN model’s SLO, GPU resource

allocation, and batch size, to provide a schedule that maximizes

meeting SLOs, across multiple DNN models while seeking to

utilize the GPU fully. D-STACK benefits both single GPUs and

multi-GPU clusters. Our enhancements in D-STACK do not

require modifications to the GPU architecture, the runtime, or the

DNN models themselves. D-STACK’s features can easily help

improve existing DNN inference platforms (e.g., Triton server)

as well. We show that D-STACK can attain higher than 90%

throughput of an ideal scheduler, which we speculate can switch

tasks instantaneously at a very fine time granularity, ignoring

practical limitations.

Our controlled testbed experiments with 4 T4 GPU clusters

show the throughput improvement of 160%-180% with D-

STACK compared to providing an entire GPU to each individual

DNN model. With an NVIDIA V100 GPU, D-STACK shows

benefit in the range of ˜1.6× improvement in GPU utilization

and 3× to 4× increase in throughput with no impact in latency

compared to the baseline temporal sharing.
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