1344

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

D-STACK: High Throughput DNN Inference by
Effective Multiplexing and Spatio-Temporal
Scheduling of GPUs

Aditya Dhakal

Abstract—Hardware accelerators such as GPUs are required for
real-time, low latency inference with Deep Neural Networks (DNN).
Providing inference services in the cloud can be resource intensive,
and effectively utilizing accelerators in the cloud is important.
Spatial multiplexing of the GPU, while limiting the GPU resources
(GPU%) to each DNN to the right amount, leads to higher GPU uti-
lization and higher inference throughput. Right-sizing the GPU for
each DNN the optimal batching of requests to balance throughput
and service level objectives (SLOs), and maximizing throughput by
appropriately scheduling DNNs are still significant challenges.This
article introduces a dynamic and fair spatio-temporal scheduler
(D-STACK) for multiple DNNs to run in the GPU concurrently.
We develop and validate a model that estimates the parallelism
each DNN can utilize and a lightweight optimization formulation
to find an efficient batch size for each DNN. Our holistic inference
framework provides high throughput while meeting application
SLOs. We compare D-STACK with other GPU multiplexing and
scheduling methods (e.g., NVIDIA Triton, Clipper, Nexus), using
popular DNN models. Our controlled experiments with multiplex-
ing several popular DNN models achieve up to 1.6 X improvement
in GPU utilization and up to 4 X improvement in inference through-
put.

Index Terms—Datasets, neural networks, gaze detection, text
tagging.

I. INTRODUCTION

EEP Neural Networks (DNNs) are widely used for many
D applications, including image recognition, natural lan-
guage processing, efc. Accelerators have become indispensable
for DNN learning and inference. Accelerators such as GPUs,
TensorCores [1], and TPU [2] reduce the DNN inference times,
often by 2-3 orders of magnitude compared to even using a
high-end CPU cluster. These accelerators are widely used by
cloud services as a part of their inference-as-a-service (1aaS)
offerings, where trained DNN models are hosted in a Cloud
or an Edge Cloud (especially for low-latency operation). User
requests are inferred using the GPUs deployed in the cloud.
Most DNN models running in inference frameworks (Py-
Torch [3], TensorFlow Serving [4], NVIDIA’s Triton [5] efc.)

Received 30 December 2023; revised 12 September 2024; accepted 22
September 2024. Date of publication 7 October 2024; date of current version
6 December 2024. This work was supported in part by the U.S. NSF under
Grant CRI-1823270. Recommended for acceptance by A. Jog. (Corresponding
author: K. K. Ramakrishnan.)

Aditya Dhakal and K. K. Ramakrishnan are with the University of California,
Riverside, Riverside, CA 92521 USA (e-mail: kk@cs.ucr.edu).

Sameer G. Kulkarni is with the IIT Gandhinagar, Gujarat 382355, India.

Digital Object Identifier 10.1109/TCC.2024.3476210

, Member, IEEE, Sameer G. Kulkarni

, and K. K. Ramakrishnan ¥, Life Fellow, IEEE

often execute far fewer floating-point operations per second
(FLOPS) than the capacity of these high-end GPUs [6], [7],
[8], TPUs [9] and other accelerators [10]. In our previous
work [6], we observed that performing inference using DNN
models, even using a single GPU, do not significantly reduce the
DNN’s processing latency when provided with additional GPU
resources (i.e., number of Streaming Multiprocessors (SMs) -
GPU compute units analogous to CPU cores) beyond a certain
point. We call this point as a “Knee” for the DNN (expressed as
a percentage of the total SMs available in the GPU, e.g., 50% of
a V100 GPU (which has 80 SMs in total) is 40 SMs.). Running
applications with resources matching the Knee is desirable for a
cloud operator providing Inference as a Service, since multiplex-
ing a GPU (or similar accelerator) across as many applications
as possible keeps costs low. Operating at the Knee also keeps the
latency low for the user. When more GPU resources are provided
for a DNN (e.g., by giving the full GPU to an application,
possibly using temporal sharing), it is wasteful as the GPU is
not fully utilized.

There are three fundamental reasons for the under-utilization
of multi-core accelerators, such as GPUs, by DNNs when given
more than the Knee’s resources: i) Amount of parallelism over
the entirety of DNN’s execution is not uniform, i.e., many DNN
functions (e.g., convolution, ReLLU efc.) are unable to fully
utilize the parallelism offered by the accelerator. Furthermore,
memory-bound kernels cannot utilize GPU compute resources
fully due to limited memory bandwidth. ii) DNN operations
also involve other overheads (e.g., kernel launches, memory
read-write, efc.). While users and cloud providers can utilize
larger batches of DNN operations to be executed concurrently
and increase utilization, this comes at the price of increased
latency. When the results are needed quickly, to meet a small
latency target, such as during inference, increasing the batch
size is not an ideal option, and batch sizes have to be limited.

Thus, this may result in insufficient utilization of a GPU’s
parallelism for many applications.We study the execution of
a variety of DNN models to understand the root causes of
under-utilization of such accelerators, particularly GPUs, and
develop methods to improve the overall system utilization, thus
improving throughput and reducing inference latency.

Multiplexing GPUs in the Edge Cloud:

DNN inference requests for applications such as autonomous
driving, augmented reality, efc., have stringent deadlines (e.g.,
< 100 ms). A cloud providing IaaS also has to account for the

2168-7161 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

BZZZ Mobilenet EEZAlexnet [JvGG-19 ResNet-50

100% 100%y 100%

() 0, (-}

75% 75% %ff 2% 75%. KRR N
3 s ooy 5o\ 0%
2 50% 50% S 50%
[0 5% /

25% 25% 0%/ > 25% 0%

75%,
0% 0% | 0%

«—> | «<—>
T1=100ms T2 T1 =100 ms

Spatial Sharing Spatio-Temporal Sharing

«—>
T1 =100 ms
Temporal Sharing

Fig. 1. GPU multiplexing scenarios.

network latency. Edge Clouds offer a sweet spot reducing both
latency and offering the necessary processing resources, al-
though more constrained than centralized cloud services. Mul-
tiplexing the expensive hardware accelerator is therefore very
desirable. Current GPU virtualization and inference service
frameworks such as Nexus [11], NVIDIA’s Triton Inference
Server (Triton) [5], gPipe [12], and PipeDream [13] either use a
‘single GPU per DNN’ model or time-share the GPU across mul-
tiple DNN models. These current state-of-the-art frameworks for
DNNs allocate the full GPU (i.e., 100% of GPU) for the time
quantum as shown in Fig. 1(left).

However, dedicating an entire GPU to run a single DNN
model at a time can be wasteful. Furthermore, interleaving
execution of tenant applications by temporally sharing increases
inference latency for all of them, because of the significant
cost of frequent switching between applications. Multiplexing
several applications on the GPU to run concurrently, through
spatial as well as temporal multiplexing, helps to better utilize the
GPU and achieve much higher aggregate inference throughput.

Our approach utilizes the CUDA Multi-process Service
(MPS) [14] to spatially share the GPU across several applica-
tions. We build on top of our earlier GSLICE [6] work. Existing
approaches of spatial multiplexing with the GPU either only
statically partition the GPU for each application or does not
guarantee computing resource isolation while multiplexing. This
has the potential to allocate fewer resources than necessary for an
application. It also causes interference among the multiplexed
applications when too many models share the GPU, thus, in-
creasing the inference latency.

We illustrate with an example when four different models
have to be run on a V100 GPU (three are already executing and
a fourth is added). Temporal sharing allocates the GPU to each
model for a time slice. Static spatial sharing with CUDA-MPS
will allow all 4 models to run in an uncontrolled manner, causing
interference as noted in [6]. GSLICE will initially spatially
share the 3 models, and allocate GPU resources according to
their Knee GPU% capacities. When the fourth model is added
(in Fig. 1(middle)), the VGG-19 model’s GPU% is reduced from
50% to 25%, causing increased inference latency for that more
complex VGG-19 model, which also is undesirable.

On the other hand, our GPU virtualization framework,
with our spatio-temporal scheduler, Dynamic Spatio-Temporal
PACK (D-STACK), can run on multiple NVIDIA GPU-based
systems (single GPU or GPU clusters). D-STACK schedules
DNNs based on spatial resources (Knee GPU%, number of

1345

SMs), and the appropriate time slice. Combining spatial and
temporal scheduling, D-STACK is designed to meet the infer-
ence deadline for each DNN model. D-STACK goes well beyond
the basic idea of simple temporal or static spatial multiplexing
of a GPU presented in earlier works [5], [6], [8]. The example
of Spatio-Temporal scheduling in Fig. 1(right), has all 4 models
getting their Knee GPU%. When a model completes its infer-
ence, another model utilizes the GPU resources, thus, sharing
the GPU resources both temporally and spatially. D-STACK’s
scheduler further utilizes the idle processing resource of the GPU
by dynamically running any ’ready’ models, thus maximizing
GPU utilization.

D-STACK’s Innovations:

i.) Understanding a DNN'’s demand: For efficient utilization
of the GPU, D-STACK requires information about the resource
requirements of each DNN model. Providing the right resources
for the DNN is not just a challenge for the GPU, but is fun-
damental for all such accelerators that utilize a multitude of
compute engines for parallel processing. In this paper, along
with our analytical models of DNN execution and scheduling,
we estimate what would be theoretically possible for a DNN
to exploit available parallelism by knowing exactly how much
computational capacity is required, assuming that instantaneous
switching between multiplexed tasks is possible. We then show
how close we come to that theoretical optimal by implementing
our GPU virtualization framework using our D-STACK sched-
uler on a GPU cluster.

ii.) Dynamic Resource Allocation in GPU: Currently, dy-
namic resource allocation of the GPU requires reloading of
applications with their new desired GPU%. For typical DNN
models, this reloading time can be 10s of seconds, during which
the GPU is idle, lowering the overall system utilization and
throughput. In D-STACK, we address the dynamic allocation
of GPU resources by overlapping the loading of a DNN model
with the new resource allocation, by continuing to execute
the existing DNN model, thus effectively masking the loading
latency. We thus reduce the time the GPU is idle to less than 100
micro-seconds with D-STACK.

iii.) Multi-GPU Cluster: Understanding the use of a single
GPU and increasing its utilization translates to improving overall
throughput of a GPU cluster. D-STACK’s optimization can be
easily extended to a multi-GPU cluster. In this paper we present
the implementation of D-STACK’s Spatio-temporal scheduler
across multi-GPU cluster to increase the system throughput by
200%.

Comparing with State-of-the-art: We present a comparison of
D-STACK with NVIDIA’s Triton Inference Server. We evaluate
the total time taken to infer with 4 different DNN models,
Alexnet, Mobilenet, ResNet-50, and VGG-19 being multiplexed
on one V100 GPU, each concurrently inferring 10000 images
each. The results in Table I show that the Triton server takes
about 58 seconds to finish inference. The D-STACK scheduler
completes inference on all requests more than 37% faster (only
36 seconds). D-STACK’s spatial multiplexing, providing just
the right amount of GPU% and its dynamic spatio-temporal
scheduling results in more effective use of the GPU and achiev-
ing higher DNN inference throughput than NVIDIA’s Triton

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1346

TABLE I
TRITON AND D-STACK WI1TH 4 DNN MODELS

Triton Latency
Server D-STACK Reduction(%)
Task completion (sec.) 58.61 35.59 37%

server, while also lowering task completion time. Based on these
experiments, we see that implementation of Spatio-temporal
scheduling can further enhance throughput when inferring with
multiple different models concurrently.

Contributions: D-STACK improves GPU utilization by 60%
and increases in DNN inference throughput by 4 x compared
to a pure temporal scheduler, while still avoiding any deadline
(SLO) violations. Our key contributions are:

® We investigate the extent to which a DNN can exploit
parallelism (Section III), and devise an analytical model
to demonstrate this limitation of typical DNNs when per-
forming inference with GPUs (Section IV).

® We develop an optimization framework to determine the
optimal DNN Batch size and GPU%. We evaluate the
efficacy of GPU usage when choosing the optimal batch
size and Knee GPU%. (Section V).

e We develop a Spatio-Temporal scheduler for DNNs, using
the GPU% and batch size derived from our analytical
models, to maximize inference throughput while allocating
GPU resources fairly (Section VI).

® We compare D-STACK'’s approach with the Triton server
and other state-of-the-art scheduling algorithms.

e We present results of D-STACK in multi-GPU clus-
ter.(Section VII-A).

II. RELATED WORK

GPU Multiplexing: Multiplexing GPU to increase the GPU
utilization and system throughput has been discussed in many
studies. Proprietary products such as Nutanix [15], vGPU [16]
utilize GPU virtualization to multiplex GPU across VMs. Many
consider temporal multiplexing and seek increased GPU utiliza-
tion through batching and better scheduling [11], [17], [18], [19],
[20],[21], [22]. Gandiva [23] and Mystic [24] address multiplex-
ing the GPU while observing but not solving the interference
caused while multiplexing DNNs in the GPU. Unlike these,
our workcan concurrently run multiple applications in GPU,
improve GPU utilization and reduce or eliminate the interference
through controlled spatial multiplexing.

Spatial Multiplexing of GPU: GSLICE [6] utilizes CUDA
MPS to spatially share the GPU among multiple DNN appli-
cations. However, it partitions the GPU statically and does not
schedule the execution of DNNs. With GSLICE, executing a
large number of models potentially cause each model get a
small GPU slice (less than the Knee), leading to higher infer-
ence latency and lower throughput. However, D-STACK uses
a dynamic spatio-temporal scheduler compared to GSLICE’s
static spatial-sharing. GSLICE only looks at the initial resource
requirements for each application while determining which ap-
plications should run together. Moreover, the lack of a scheduler
means it is insufficient for deadline-driven inference scenarios.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

While, D-STACK can schedule work once the previous appli-
cation ends and resources free up, thus, increasing the GPU
hardware utilization. We compare D-STACK’s performance
with GSLICE in Section VIIL.

Laius [7], G-Net [25], Gost [26] and Baymax [27] spatially
multiplex GPU kernels. Unlike these works, our platform fo-
cuses on the spatially multiplex entire DNNs consisting of mul-
tiple kernels. Moreover, we run DNN applications in their native
DNN framework (e.g., PyTorch, TensorFlow) without any algo-
rithmic modifications, unlike the whitebox approach of Laius
and Baymax. S3DNN [28] (uses Streams) and Prophet [29]
(uses MPS) and CuMAS [30] profile each kernel and use a
shim to capture kernel launches and reorder kernel executions
for proper spatial sharing. In contrast, our approach does not
require a shim or reordering of kernels and works in a black
box manner, without requiring an application’s individual kernel
profile (which may not be available).

SMGuard [31] calculates the number of GPU threads each
kernel requires, captures the kernel when launched, and multi-
plexes the GPU by running kernels concurrently without exceed-
ing the number of GPU threads each SM can run concurrently.
Similarly, Qos Aware dynamic resource allocation [32] utilizes a
kernel transformer that changes the GPU code to implement QoS
policies. D-STACK allows applications to run as is without mod-
ification, while SMGuard and others need a kernel capture mech-
anism, which also brings additional privacy concerns. Zhao et
al. [33] utilize a classification-driven technique (CD-Search) to
classify applications as memory-intensive or compute-intensive
and place compute-intensive and memory-intensive workloads
together for higher overall performance/throughput. Applica-
tions are classified based on the use of SM’s memory when
running the applications. CD-Search enforces partitioning by
occupying the SMs with dormant/sleep kernels and releasing
them when required by an application. The spatial-sharing of a
number of SMs for memory-intensive applications is determined
by gradually stalling/decreasing SMs to find the right number to
run for appropriate sharing of the GPU. We have the same goal
in D-STACK to share the GPU through multiplexing. We profile
applications to find the appropriate number of SMs needed by
evaluating application performance for a range of GPU%. One
main difference between the other approaches and D-STACK is
that D-STACK uses CUDA MPS, which makes it much easier
to implement spatial multiplexing as it only requires changing
the environmental variables of the application.

DNN’s limits on Utilizing GPUs: Several works [34], [35],
[36] have discussed the under-utilization of GPU by DNNs, and
have proposed algorithmic optimizations that make DNN kernel
computation more efficient [37], [38], [39], [40]. These solutions
require whitebox models that can be changed. There have been
works analyzing how DNN’s exploit parallelism. [41], [42] show
that DNNGs attain a much smaller number of FLOPS than what a
GPU can provide. Poise [43] and [44] shows that the high data
load latency from the GPU memory to the processing unit is
also a reason for the limit in parallelism. [45] creates an ana-
Iytical model to predict the inference latency and mainly utilize
temporal queuing solution to meet deadlines. [45]’s model uses
default MPS, and due to interference causing increased latency,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

they limit the number of models spatially sharing the GPU at a
time. On the other hand, D-STACK provides fine-grained spatial
and temporal control of resources of the GPU and thus is able to
run far more models with larger batch sizes without interference.
With a spatio-temporal scheduler D-STACK utilizes resources
both spatially and temporally to meet the inference deadline. [8]
shows lack of resources in CPU and GPU spatial resources will
greatly slowdown GPU execution. Our work complements [§]
by demonstrating a method to find the Knee beyond which
applications fail to utilize GPU efficiently. We utilize under-
standing from these related work to create an analytical DNN
model that helps deriving the Knee% necessary for inference
without slowdowns. Furthermore, we evaluate our methods in a
real system.

Multi-Instance GPUs (MIGs) such as the NVIDIA A100 are
hardware-based approaches for coarser-grained, spatial multi-
plexing. MIGs allow static partitioning of a GPU into multiple
smaller GPU instances (up to 7 instances with the A100). How-
ever, MIGs require the GPU to be reset or VMs to be restarted
to change the resource allocation. This causes significant down-
times as all the processing using the GPU has to be restarted.
D-STACK’s spatio-temporal scheduling avoids the GPU reset
and quickly allocates the desired GPU resources. Moreover, note
that A100 and H100 are also able to run MPS (similar to V100).
Thus, they can benefit from D-STACK without any modification.

III. UNDERSTANDING DNN PARALLELISM THROUGH
MEASUREMENT

Experimental Setup and Testbed:

We used a Dell Server with Intel(R) Xeon(R) Gold 6148 CPU
with 20 cores, 256 GB of system memory, and one NVIDIA
V100 GPU, and an Intel X 710 10 GbE NIC as our testbed.
The V100 has 80 SMs and 16 GB of memory. Our workload
for the vision based DNNs (Alexnet [46], Mobilenet [47],
ResNets [48], VGG [49], Inception [50], ResNext [51]) consists
of color images of resolution 224 x 224. This resolution choice
is inspired by initial work [49], [52], [53]. For BERT [54], a
natural language processing DNN, we utilize sentences of 10
words.

We use OpenNetVM [55] to host our framework that runs
multiple DNN models for inference. We use Moongen [56] to
transmit “1920 images/sec. on a 10 Gbps Ethernet link. Our plat-
form can batch input data to the desired batch size. We primarily
report the execution time for inference in the GPU for all our ex-
periments and do not consider the additional latency contributed
by network protocols. Therefore, our results are independent of
the network transport protocol used. We utilize CUDA Multi-
Process Service (MPS) to spatially multiplex the GPU. We
use CUDA_MPS_ACTIVE_ THREAD_PERCENTAGE envi-
ronmental variable to provide GPU%. Once set, the GPU%
cannot be changed for a process.

A. Finding the Knee

We profile the models to find the knee. If there are no time
constraints, then we usually collect latency for 10 different GPU
configurations (in 10% increment), each with 3 batch sizes.

1347

200 Alexnet ——

Mobilenet ——
ResNet-50 —*—
VGG-19 —8—
Inception
ResNext-50 —e—
ResNet-18 —o—

150 |-

Inference latency (ms)
=)
o o
T T

10 20 30 40 50 60 70 80 90100
GPU Percentage

Fig. 2. V100 latency versus GPU% (Batch of 16 images/sentences).

50

40

>
(]
© 20 -

o |
1 1 |

0
20% 25% 33%
GPU%

ncy (ms)
]

Lat

50% 100%

Fig. 3. P100 and T4 GPUs profile.

Thus, 30 different runs for each application to form a profile. For
applications that we cannot afford to run many times, we cut the
time to find the knee by looking at the latency of the application’s
execution when GPU resources are cut by half (50%, 25%, and
12.5%) in subsequent execution.

Furthermore, we profile the workload as a whole to find
the knee. We chose to find one knee for a workload as the
reconfigurations of MPS/MIGs are not fast enough to partition
GPU for each kernel. Thus, providing knee value for each kernel
would add a large amount of latency.

B. Measurement With ML Models

We now present measurements performed on our testbed with
multiple DNNSs, to demonstrate the limits in the parallelism of
those DNN models. We measured the latency for inferring a
batch of 16 images/sentences using different GPU% for several
popular DNN models using PyTorch framework. We utilize
models with different compute requirements.

From Fig. 2, we see that the inference latency remains un-
changed above 30-50% of GPU for most models (Knee point).
With a smaller batch size, the Knee% is lower (20%-35%). How-
ever, we also observe that using fewer than necessary SMs (low
GPU%) leads to an exponential increase in model latency (also
observed in [8]). We observed a similar knee with other GPUs
as well. We evaluated computationally light models, Alexnet
(A-P100 and A-T4) and Squeezenet (Sq-P100 and Sq-T4) on
both the P100 and T4 GPUs. The T4 GPU supports CUDA
MPS with a GPU%, but the P100 only supports the default
MPS without being able to define a GPU%. We present their
results in Fig. 3. Even with different GPUs, we see the knee
behavior in Alexnet and Squeezenet. Only the computationally
dense ResNet-50 (R-P100 and R-T4) does not show an obvious

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1348

knee. Both the P100 and T4 GPUs have lower computational
capacity than the V100, therefore, ResNet-50 can fully utilize
those GPUs. As the knee for these models exists in other GPUs
as well, our platform can be used more generally in other GPUs
as well.

C. Dynamic GPU Resource Reconfiguration

Due to the limitation of CUDA MPS [14], any GPU resource
readjustment requires us to spin up a new CPU process with
an updated GPU%. This results in several seconds of downtime
(depending on the ML framework initialization). We utilize the
overlapped execution approach of GSLICE [6], which maintain
an active-standby pair of process, where an active process keeps
processing incoming requests while a standby process loads the
DNN model into the GPU with updated GPU%. The standby
takes over inference when ready, thus, avoiding downtime.

While changing the GPU%, two instances of the same model,
the original and the new model, occupy the GPU during the
brief overlap time. This increases the GPU memory demand.
We overcome this drawback through DNN parameter sharing
utilized in GSLICE [6]. We use cudalPC to share the weights
and parameters loaded by the original model with the new
loading model, thus removing the need to load the weights again.
Parameter sharing reduces the memory required by the newly
loaded DNN model by up to 40%.

D. Loading Models Without a Known Knee%

When a model that is not profiled and whose knee is not
known is started, our platform initially provides it a nominal,
30%, GPU. The GPU% is then readjusted using Dynamic GPU
resource reconfiguration to find the knee based on the inference
latency using a simple binary search.

IV. MODELING DNN PARALLELISM

A. Compute Bound versus Memory Bound Workloads

The latency of accessing parameters and weights of the DNN
layer from the GPU DRAM can be significant. Many studies [57]
have suggested that memory-bound DNN kernels may have
a small amount of compute and are likely to be limited by
GPU memory bandwidth. NVIDIA has proposed an arithmetic
intensity (A.int) metric [58] to estimate if a kernel is memory
or compute bound. The A. int of a kernel is computed as a ratio
of floating point operations to memory (bytes) it fetched. i.e.,
Aint = W NVIDIA reports the arithmetic index of
V100 GPU (in our testbed) is 139.8 FLOPS/Byte [58]. Any
kernel lower than the GPU’s arithmetic index is memory-bound,
while a kernel with higher index is compute-bound.

We analyzed the most frequently occurring kernels of CNN's
Alexnet [52], ResNet-50 [48], VGG-19 [49], and an RNN,
GNMT [59], to illustrate the behavior of compute and memory-
bound DNNs. We present the results in Table. IT. Most convolu-
tion layers exceed the GPU’s A.int, thus, are compute-bound.
These layers can reduce their runtimes if more compute is
available. However, kernels like LSTM in GNMT, which operate
with large input and output features (1,024 features in GNMT),

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

TABLE II
COMPUTE & MEMORY BOUND KERNELS

Bytes | Arit. ..
Model Layer GFLOPs (10°) | Tnt. Limit
Alexnet Conv.2 0.30 0.22 182 | Compute
ResNet50 | Conv.2 0.103 0.121 | 393 | Compute
VGG-19 | Conv.11 3.7 9.44 | 391 | Compute
GNMT LSTM 0.016 8.38 2 Memory
TABLE III
LATENCY (MS) IN ISOLATION AND MULTIPLEXED
Model Knee% | Isolation | Multiplexed
Mobilenet 20% 9.8 (ms) 9.9
ResNet-18 30% 12.4 12.4
BERT 30% 93 9.3
ResNet-50 40% 28.9 28.5
VGG-19 50% 51.2 52.4

require a lot of data but perform relatively fewer computations
compared to convolution. Therefore, they score very low A.int.
We should note that DNNs are not entirely constructed of
convolution or LSTM layers. However, CNNs, in general, have
more convolution kernels.

B. Understanding Memory Contention While Multiplexing

Studies [60], [61] of scientific computation workloads have
shown that the GPU cache size and occupancy are important
factors influencing the latency of kernel execution. We also
examine the effect of cache contention while running multi-
ple DNN models. However, we observe with DNNSs, that the
inference latency does not vary significantly if SM isolation is
maintained. Since we indeed maintain SM isolation with spatial
multiplexing using CUDA MPS, the impacts of contention in
the GPU cache or other memory resources is minimal.

In Table III we have evaluated different DNN workloads in
isolation as well as when they are multiplexed on the GPU. The
intent of the experiment is to observe if there is any slowdown
due to memory or other constraints, when multiplexing them on
the GPU. As we see in Table III, multiplexing DNNss till we ‘fill
up’ the GPU compute capability to 100% does not affect the
final inference latency at all.

Our experiment compares the runtime with five different
DNN applications running concurrently, with each application
running with 20% GPU versus a single application running with
20% GPU, while the other 80% of the GPU is unused. We
use the experiment to show that CUDA MPS, and D-STACK
which is built on top of CUDA MPS, isolate the GPU resources
appropriately. MPS enforces SM-level isolation so that SMs are
not shared between applications, as long as all partitions add up
to 100% or less. Thus, a task running in one partition does not
affect other tasks in other partitions. Therefore, running 1 task
alone with a 20% GPU partition and 5 tasks concurrently, each
with 20% GPU partitions, have similar latency. We should note
that Mobilenet, ResNet, and VGG have more compute-bound
kernels whose performance can be easily isolated with CUDA
MPS. Thus, their performance scales with multiple instances

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

TABLE IV
TABLE OF NOTATIONS FOR DNN MODEL

Variable Description
b Batch Size
P 1st kernel’s number of concurrent ops. (tasks)
Kmax Maximum number of kernels
K; ith kernel
N; Number of parallelizable operations for K
R; Number of repetition of K; in DNN
M Memory Bandwidth per SM
d; Data for i" kernel (parameters & input)
S Number of allocated SMs

running together. BERT and applications such as large language
models (LLMs) have several kernels that are memory bound as
well as features that require compute-bound kernels. D-STACK
helps multiplex these applications by isolating compute-bound
kernels so that they do not affect each other, while still providing
enough resources for memory-bound kernels. Thus, D-STACK
is beneficial when using workloads with a mix of compute and
memory bound kernels.

C. Modeling DNNs

We now model an analytical DNN model that exhibits the
characteristics of most actual DNN models, in terms of the
variation in the compute workload across their different kernels.
We model the DNN composed of multiple sequential kernels
executing in GPU (and other accelerators) instead of layers
as often used in other ML studies. We have observed using
NVPROF profiling that each layer (e.g., convolution layer) is
often implemented as combination of multiple kernels in GPU,
thus, we use kernel as basic component of DNN execution in this
model. The model guides the determination of the best operating
point (Knee) GPU% for a DNN. In our model, we breakdown the
DNN workload into parallelizable operations (compute tasks),
memory read/write as well as serialized (non-parallelizable)
operations, and observe the effect of changing GPU resources.
While our model is simple, it captures all the system level
overheads that contributes to DNN latency, and provides us with
good approximation of the Knee of each model. The simplicity
of the model further aids in evaluating DNNs in different GPUs,
with different numbers of SMs, as well as other accelerator
hardware.

Selected notation used in the analysis is shown in Table IV.
As in typical GPUs, each of the S SMs allocated to a DNN will
process one parallel operation per t, time. From a modeling
perspective, we order the kernels by their amount of computation
without losing generality. DNNs have an arbitrary order in kernel
execution. However, the knee of the model is dependent on peak
computation requirements of the kernels rather than the order of
execution of each kernel.

We set the first kernel K as that with the greatest amount
of parallelizable operations Ny, which is selected as N1 = p
for modeling purposes. For subsequent kernels, the workload
decreases by a fixed amount, so that N; > Nj1. Equation (1)
specifies the amount of parallelizable operations for each kernel

1349

in the DNN. We decrease the amount of parallelizable tasks by

a fixed amount, Kprflsx,

p % b,
N; =
{LN“ -

1=1

i>2 (M

b
Kp'r:an’

for each subsequent kernel. The number of concurrent op-
erations decrease and reaches ~ 0 for the last (K,.) kernel.
Correspondingly, we define the total execution time for each
kernel’s parallelizable tasks as W; = N; X t,,.

Note: Ideally, IW; can potentially be completed in ¢,, units of
time when we allocate greater than or equal to the N; SMs to
execute W;. If we consider that the GPU hardware is able to
provide S SMs to execute K;, then, without loss of generality,
we can show that the time taken to finish processing the kernel
would depend on the minimum of the inherent parallelism, as
defined by V;, and the number of SMs allocated for executing the
operation. Thus, the execution time for parallelizable operations
at each kernel of the DNN can be computed using (2). Individual
kernels

E - st , @

max(1, min(S, N;))

in the DNN often run repeatedly during a DNN inference.
We define the number of repetitions of kernel K; as R;. We
then factor the time taken to run all the serialized operations,
including for kernel starting and kernel waiting for data. The
kernel starting time is considered a constant, typ, per layer.
The kernel’s time waiting for data, however, depends on the
kernel’s input and parameters. Each kernel of a DNN has a
certain amount of data (model parameters, input data) that has
to be fetched from GPU DRAM (main/global memory of GPU)
to the CUDA cores in the SMs. We have observed that the
total global memory read/write bandwidth increases with the
proportion to the number of SMs allocated. Other studies [62],
[63] also point to a proportional increase.We define the latency
per kernel, caused by kernel waiting for parameters, input,
and other data to be loaded, as (3). Thus, we can define the
total time of non-parallelizable (sequential) operations W, as
(4). We use (2) and (4) to compute DNN execution time, Ey
as in (5).

Ep == 3
i (3)
Kmax
Wee =bx Y Ri % (tnp + Ep) 4
i=1
Kmax
B =We+ > RE;.)
i=1

We now simulate the total time to execute a DNN under
varying conditions i.e., by varying the amount of parallelizable
and non-parallelizable operations at each kernel and the number
of SMs in the GPU. As in typical GPUs, we assume the number
of SMs allocated for an DNN remains static. Fig. 4(a) shows
the impact on the DNN execution time when assigning different
numbers of SMs. First, we created a DNN with 50 kernels i.e.,
Kiax = 50. We set the time taken for the parallel operation ¢,,

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1350

3
1&0 N;=60 — N;=40 — N;=20 —

2

= 2000

5 o~

330 1500 [

§20 1000 ! !

% 30 40 50 60

10

©

% 0 L\ ; T T T

.g 10 20 30 40 50 60 10 20 30 40 50 60

Number of SMs
(a) Inference Latency.

Number of SMs

Fig. 4.
model’s understanding on real DNN Mobilenet.

to be 40 units and for serialized operations ¢,,,, to be 10 units. We
repeat the simulation for 3 cases, varying the maximum amount
of parallelization (concurrent operations at the first kernel) /V;
as 60, 40, and 20.

For all three cases, the execution time is very high when the
number of SMs is small (1 to 5 SMs), reflecting the penalty
of insufficient resources for the inherent degree of parallelism
while executing the DNN kernel. However, as the number of SMs
increases, the execution latency decreases. Interestingly (see
zoomed part of Fig. 4(a)), there occurs a point when giving more
SMs beyond a point does not improve latency further, in each of
the scenarios. When the number of SMs provisioned exceeds the
amount of parallelism inherent in the DNN kernel, there is no
further reduction in the latency. Even before reaching this point,
the latency improvements from having an increased number of
SMs reaches a point of diminishing returns.! We seek to find
the most efficient number of SMs (5) needed for executing
a given DNN, so that the utilization of the allocated SMs is
maximized. To compute this, we have to find the maximum of
ﬁ, which represents the DNN work processed per unit time
per SM. For this, we differentiate ﬁ with respect to the time
taken to execute the DNN.

< (-) S ©)
t t* S (Ey)" S

Fig. 4(b) shows this first order derivative of the inverse of
latency (6), showing that SMs for N; = 20,40 and 60 reaches
a maximum at 9, 24 and 31 SMs respectively. Hence, operating
at this derived ‘maximum’ point for a DNN guarantees that
there are sufficient number of SMs to provide low latency while
achieving the most efficient use of the SMs. Moreover, we can
see from this that the ‘maximum’ peaks at a much lower SMs
than the corresponding value of /V;. This is due to the impact of
performing serialized tasks adjacent to the parallelizable tasks.
This results in lower (or no) utilization of many of the allocated
SMs for the serialized tasks. Thus, further reduction in latency
by increasing SMs is minimal.

li.e., showing marginal improvements. The DNN execution latency is im-

pacted by both the number of parallelizable and non-parallelizable operations
and it varies inversely with the number of allocated SMs, by Amdhal’s law [64].
Batching increases parallelizable work [65].

(b) First order derivative(Eq.6)(c) Mobilenet latency vary

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

0
20 40 60 80

o
T

760 PR 1.4x108
§50 be? — b8 — 1.2x10’2
240 F 10 (\’,\1x10
Ll 2 8x10”®
=380 5 ¥ T ex10?
820 = 40109
= P— 4x10
1

E

2x10°°

Il I T T T T T T T O
0 10 20 30 40 50 60 70 80 90100 0
GPU Percentage

o

20 40 60 80
GPU percentage

(d) First derivative (Eq. 6)

100

batch size

(a), (b) Inference characteristics of analytical DNN models with varying amounts of parallelism and hardware resources.(c), (d) Demonstration of analytical

D. Analyzing Execution of Typical DNNs

We profiled and analyzed Mobilenet, ResNet and GNMT
DNNs using the NVPROF profiler [66] to capture the GPU
resource usage and the execution time of the DNN kernels.

1) CNN Model: Mobilenet: We profiled the inference of
Mobilenet using 100% of a V100 GPU. For each kernel, we
show the GPU thread count on the y-axis (in log scale) and the
corresponding runtime as the area of the bubble in Fig. 5. The
approximate GPU% required for all the threads to run concur-
rently is on Y 2-axis (log scale, on the right). We approximate this
GPU% by considering that only 2048 threads can run in an SM
concurrently, due to limits on the number of concurrent blocks
and warps [67]. The kernel’s design and thread distribution
across different threadblocks can lead to a higher SM demand
than absolutely required.

We plot 11 distinct kernels of a Mobilenet model (each iden-
tified by a different color in Fig. 5). These kernels are executed
a total of 156 times per inference. We observe that few of the
kernels (kernel 3, 4 and 6, in particular) require more than 100%
of the GPU to run. These kernels demand more threads than
a GPU can run concurrently. However, these kernels run for a
very short time and do not contribute significantly to the total
inference latency. The kernels that contribute more to the total
latency, such as kernels 10 and 7 utilize less than 10% of the
GPU. This is due to the fact that the DNN’s inference feature
matrix gets smaller, thus, resulting in limiting the inherent
parallelism. Thus, these kernels use fewer parallel GPU threads
and run for long time with low GPU% demand. They contribute
to lowering the Knee GPU% of the entire DNN model. From
this understanding, when the amount of parallelism of a kernel
is low, increasing the number of GPU SMs will not reduce the
execution time of the kernel, since the additional SMs will not
be utilized.

We also analyzed the inference time with different batch
sizes of Mobilenet (Fig. 4(c)). In all the cases, for a given
batch size, the latency reduces with an increase in GPU%. But,
across all evaluated GPU percentages, the latency increases
with increasing batch sizes. Fig. 4(d) shows the first derivative
of the inverse of Mobilenet’s latency obtained using (6). The
maximum of the derivative, i.e., the most efficient point for DNN
operation, for batch sizes of 1, 2, 4 and 8 occurs at GPU%
of ~ 10, 20, 40, and 50 respectively. This shows that with

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

1351

1 e 3 5 o 7 ® 9 o 11
Kernel 2 e 4 o 6 8 10
1x107 ¢]
S 1x10° F 100ps 41000
° i]
< L 1 o
100000 ¢ 00 00 o0 o0 o e 00 on P OO0 05 O 50ps 4100 5
o :M ° ° o0 00 o0 oo ° ° Y E o
& 10000 I DLs0 & S ¢ P S ° & 5 i ©
2 : A A ® & v 6 10 us
£ F 410
2 1000 £ O] 5 s
100 :I 1 1 1 1 1 1 1 1 1 “S
0 20 40 60 80 100 120 140 160 180
Kernel Execution Sequence
Fig. 5. Thread count & runtime (shown as area of circle) of 156 kernel of Mobilenet. Each colored circle labeled 1-11 represents a kernel (e.g., convolution

kernel, ReLLU, fully connected). The area of the circle represents the time it takes to run in GPU and left Y -axis represents the number of GPU threads each kernel
uses. Right Y-axis represents how much GPU% a kernel will utilize with all its threads. The kernels in the left run earlier than kernels in right.

10 Words ——
20 Words —*—

.......... 320

1/(ms)?

oo =

X

e,

&

5

o

[}

1=

=

S

<

@

LR

©

1

1

1/(ms)? latency (ms)
Wb

O=NWHArO o o
% r

x10°8

F ResNet-18 —

S S S SO SR S

1/(ms)?

ovAO® OB I
T

10 20 30 40 50 60 70 80 90 100
GPU percentage

(b) BERT

0 10 20 30 40 50 60 70 80 90 100
GPU Percentage

(a) First derivative (others)

Fig. 6. DNN Latency, first derivative as in (6).

increasing batch size, i.e., increased parallelism, the GPU% at
which the maximum utilization point occurs, based on (6), also
increases. Fig. 6(a) shows the different maximum utilization
points for the different models. Lightweight models such as
Inception and ResNet-18 have a maximum at a lower GPU%,
while compute-heavy VGG-19 does not see an inflection point
up to 100% GPU. These characteristics of the individual DNN’s
execution strongly correlate and match with the theoretical DNN
model we presented.

2) Transformer Model BERT: We also present the evalua-
tion of the inference latency for the transformer-based natural
language processing DNN, BERT, as well as the first order
derivative, per GPU% in Fig. 6(b). We evaluated sentences with
10 and 20 words. We can observe that longer sentences results
in higher inference latency. But again, we see that the inference
latency does not improve after a point. The first order derivative
of the latency for 10 and 20 word sentences shows a peak at
around 30% and 40% GPU respectively. Thus, both our model
prediction and our evaluation of representative compute-heavy
CNN and memory-bound Transformer models show that there
is indeed a limit to parallelism utilized by DNNs. This motivates
our approach to further examine improving GPU utilization with
spatio-temporal scheduling.

V. OPTIMAL BATCHING FOR DNNS

Batching is a trade-off between improving throughput at the
cost of higher latency. Inferring a batch of requests requires

800

Batch Size

Fig. 7. Efficacy of ResNet-50.

more computation, thus increasing inference time. We consider
the batch size as a function of network bandwidth. Therefore,
preparing a bigger batch, i.e., receiving and transferring data
from the network to GPU also contributes additional latency.
Providing a higher GPU% for a bigger batch can mitigate the
inference latency increase. However, giving more than a certain
GPU% may be wasteful. We use the metric
) Throughput

Ef ficacy(n) = Latency x GPU%’ ™
of Efficacy (n) of using GPU resources as the basis to find a good
operating point with respect to batch size and GPU%. We define
n of a DNN at a certain batch size and GPU% as (7). Efficacy, n,
lets us know how much throughput the GPU produces per unit
time, per unit of GPU resource (GPU%).

A. Optimum Batch Size for Inference

We profiled the ResNet-50 model for inference at different
batch sizes & GPU% configuration. Fig. 7 shows that both
very high and very low batch size leads to low Efficacy due
to high latency and reduced throughput respectively, thus, an
optimal batch size is desired. We now develop an optimization
formulation that can provide us with the right batch size and

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1352
TABLE V
NOTATION FOR OPTIMIZATION FORMULATION
Notation Description
Di GPU% for Session 7
b; batch size for Session
fr(pi,b;) inference latency of batch b; for model M; at GPU% p;
C; Request assembly time for Session 7

GPU% for a model, given a deadline. First, we present the key
notations used for the optimization in Table V.

The batch size is a product of the average incoming request
rate and request assembly time. Thus, b; = Request-Rate X
C;. Throughput 7; is number of images inferred per unit time (8).
Knowing throughput (8) we can write 1) (7), as (9). Equation (9)
is of the same form as the first derivative of inverse of latency,
(6), Section IV-B.

b;
T= 8
Jr(pi, bi) ®
bi

(fr(pi, b:))> x GPU%

n= €))

We seek to maximize Efficacy (1) to get the best balance in
parameters based on the constraints (10), (11), and (12). The
constraints express following requirements: (10): Batch size
must be less than or equal to maximum batch size a

1 <b;, < Max Batch Size (10)

fr(pi,bi) + C; < SLO; (11)
SLO;

Jr(pi, bi) < — (12)

model can accept. Equation (11): The sum of times taken for
aggregation of batch via network (C;), and its inference ex-
ecution, which has to satisfy the SLO. Equation (12): When
working with a high request rate, we can regularly gather large
batch sizes for inference. However, a request that cannot be
accommodated into the current batch due to constraint (11),
has to be inferred in the next batch. Then the deadline for next
batch is the deadline of the oldest pending request. Therefore,
we make sure that SLO is twice the time required to run a
batch.

We computed the latency function fy,(p;, b;), by fitting the
latency observed while inferring DNN models with a batch size
of 1,2,4,8,10,12,16 and GPU% from 10-100 at 10% intervals
on our testbed. The optimization is solved using the non-linear
programming solver fmincon’ in MATLAB. Requests (images
of resolution 224 x 224) arrive over a 10 Gbps link. 1 image is
assembled every ~ 481 pus. We use an SLO of 50 ms, allowing
for an interactive system that can be used in safety critical
environments such as autonomous driving [68].We present the
feasibility region (where the SLO constraints are fulfilled) and
optimal point provided by the optimization formulation in Fig. 8.
The infeasible area is in a lighter shade. It is particularly reveal-
ing that Mobilenet has an optimal point close to 30%.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

Efficacy21 04
2
4 [
;
1.
0 10 °
812
) 14
16 1
S 18
< 20
&%
0.5
26
28
30
32 0
LOWVLOWOWOWONONOOOLO
FrAANOOTIOOOONNDODDO
GPU Percentage
Fig. 8. Mobilenet feasibility region (darker shade).

B. Estimation of the Knee for Real Systems

We view these optimal values in relative terms, representative
of the limit to parallelism that the model exhibits, because the
optimization does not necessarily factor all the aspects that influ-
ence the execution of the model in the real system. We, however,
pick a batch size and GPU% values from the high efficacy region
in the optimization outputin Fig. 8 and over-provision the GPU%
by 5-10% while deploying the model in a real system.

VI. GPU SCHEDULING OF DNN MODELS

We now discuss the Spatio-temporal scheduling with D-
STACK. We run the DNN models concurrently and meet their
SLO while keeping the GPU from over-subscription. Over-
subscription occurs when the aggregate GPU% of concurrent
models exceed 100%.

A. Scheduling With Varying SLO

We schedule multiple models with different SLOs (deadlines),
optimal batch sizes, and GPU% with D-STACK. Our scheduler
considers two primary constraints. First, the DNN model must be
scheduled at least once before an interval equal to its SLO, using
an optimal batch size as predicted by the model in Section V.
Second, the aggregate GPU demand at any point in the schedule
should not exceed 100%. We choose a time period defined by
the largest SLO to be a Session. Models with an SLO smaller
than a session will run multiple times in a session. e.g., for a
100 ms session, a model with 25 ms SLO will run at least
4 times. Our spatio-temporal scheduling also accommodates
dynamic arrivals of requests by utilizing a Fair, Opportunistic
and Dynamic scheduling module which dynamically recom-
putes the schedule, thus increasing the effective utilization of the
GPU.

We use 8 different DNN models and present their optimal
batch size, GPU% and the latency of inference at that batch-
size/GPU% in Table VI. We obtain the knee GPU% and Batch
Size from the model in Section V. We chose our SLO based
on safety-critical work such as autonomous driving [68], where
it is determined that less than 130 ms processing is required to

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

GPU%
-
o
S

GPU%
-
1S}
S

AN R-50 V-19
AN R-50 V-19,

0 1020 3040 50 60 70 80 90100
Time (ms)

0 1020 3040 50 60 70 80 90100
Time (ms)

(a) Temporal Schedule (b) ST-only Schedule

Fig. 9.
TABLE VI
CHARACTERISTICS OF DIFFERENT DNN MODELS
Model Knee% SLO Batch (B;) Runtime (L;)
(ms) Sentence len. (ms)

Mobilenet 20 25 16 10
Alexnet 30 25 16 8
BERT 30 25 16 (10-words) 9
ResNet-50 40 50 16 28
VGG-19 50 100 16 55
ResNet-18 30 25 16 12
Inception 40 50 16 25
ResNeXt-50 50 100 16 40

safely stop a car running at 80 miles/hr (~130 kmph). We choose
a much more conservative 100 ms (effectively about 50 ms as
rest is spent for preparing batch) for higher accuracy (VGG-19
and ResNext-50) and smaller SLOs (50 ms and 25 ms) for
latency-optimized models (ResNet-50, Inception, Mobilenet,
Alexnet and ResNet-18) aimed for application such as 30fps
video stream. Unlike [7], we realistically consider that a model’s
execution cannot be preempted from GPU.

We first examine a temporal schedule with Alexnet, ResNet-
50, and VGG-19. We provide time slices proportional to the
model’s SLOs. We utilize an adaptive batching algorithm men-
tioned in clipper [17] and Nexus [11] to obtain the batch size for
each model’s time slice. Fig. 9(a) is the visualization of such a
schedule. The SLOs are visualized as the vertical dotted lines.
We compute GPU utilization by using Knee% for each model
as shown in Table VI. With temporal sharing, we achieve mean
GPU utilization of 44%.

1) D-STACK: Spatio-Temporal Scheduling: Our D-
STACK’s scheduler aims to fit as many models as possible
(potentially being different from each other) and run them
concurrently in the GPU. We seek to be able to meet each
model’s (potentially different) SLO. We employ a simple
version of the Earliest Deadline First Scheduling (EDF)
algorithm to schedule all the models. EDF schedules the
model with the tightest deadline to run first. However, we
should note that as a model’s inference is not preempted,
this simple schedule cannot guarantee that the GPU will not
be oversubscribed at any moment in the schedule. To aid in
fitting in as many models as possible, we schedule consecutive
executions of any model with the shortest SLOs to be as far apart
as possible. This allows us to fit longer running models in the
GPU in the interim without oversubscribing it. We demonstrate
a schedule generated by spatio-temporal only algorithm in

1353

100

o
S

2500 rConvNet-1

]
=)
Ay
)

-3
S o

Utilization ==

-]
S

n
o
GPU% Utilization

A-N R-50 V-19,

0 1020 3040 50 60 70 80 90100
Time (ms)

=)

0
Temporal GSLICE D-STACK Ideal

(c) D-STACK schedule (d) Throughput/GPU util.

(a, b, ¢) Scheduling Algorithms; (A-N=Alexnet, R-50=ResNet-50, V-19=VGG-19) (d) Comparison with ideal scheduler.

Fig. 9(b). We observe that the model with the smallest SLO,
Alexnet (bottom), is scheduled to meet its SLO, but the time
between the execution of the first instance and the second
can be large because its execution time is short. This allows
us to run ResNet-50 (second from the bottom) and VGG-19
(third) in between consecutive executions of Alexnet. Note that
D-STACK’s scheduler can also schedule a model with GPU%
lower than its Knee, albeit with high inference latency when
necessary. D-STACK also considers the additional latency of
launching a new DNN model at lower GPU% into the schedule.
This latency-GPU% trade-off has to be considered carefully
before starting inference. Once a DNN process starts with
its allocated GPU%, it cannot be changed for that instance’s
execution lifetime.

2) Fair, Opportunistic, Dynamic Scheduling: To efficiently
utilize the GPU resource while ensuring that the system meets
SLO guarantees, we further propose an opportunistic dynamic
scheduling enhancement. The dynamic scheduling is triggered
when a new request dynamically arrives for a model and when
a model ends inference. The dynamic scheduler picks a model
that is not active. This opportunistic addition is allowed as long
as the GPU is not oversubscribed (so as to not interfere with the
already scheduled models). To ensure fairness among available
models, we use a scoreboard that tracks how many times each
model has run in the last few (e.g., ten) sessions and prioritizes
the models that have run the fewest. The algorithm then finds a
time slice for the model to finish inferring and also determines a
batch size that can complete within the time slice. If the highest
priority model cannot be run, the algorithm picks the model with
the next higher priority. We show the output of the D-STACK
scheduling in Fig. 9(c). With this dynamic scheduling packing
more models to be scheduled opportunistically, the average GPU
utilization increases from 60% in the plain spatio-temporal
schedule (Fig. 9(b)) to 74% with the D-STACK schedule
(Fig. 9(c)).

Aggregate throughput is the addition of throughput of all the
models. DSTACK does not prioritize any particular-sized neural
network. As described in Section V(A, 2), we track the model
execution in a scoreboard. So, any smaller model does not get
the GPU all the time, but rather the available GPU. The GPU
execution in time and space is fairly divided across all the neural
networks running in the GPU. The smaller models can get a large
throughput boost even with a small amount of time that the GPU
SMs are allocated for them. Thus, the aggregate throughput is
influenced considerably by smaller models. This is true for both
DSTACK and for Timesharing (as in Triton).

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1354

B. An Ideal Spatio-Temporal Schedule versus D-STACK

We compare D-STACK against an ideal scheduler, which is
a theoretical spatial and temporal schedule at the granularity of
individual DNN kernels. For the ideal case, we assume GPU
kernel preemption is allowed, a DNN’s instantaneous GPU
demand is known and the GPU’s allocated resources are adjusted
instantaneously. Any realistic system that does not preempt a
currently running DNN model until its inference is completed,
together with scheduling overheads to switch from one model to
another inevitably under-utilizes the GPU. Thus, the ideal sched-
uler provides a theoretical *optimal’ performance achievable by
D-STACK or other schedulers.

We consider a time-slotted system (e.g., 100 us for experi-
ments with a small scale DNN), where .S; represents it" time
slot in the schedule. We schedule the kernel &,,, from DNN model
m. We include as many model’s kernels as will fit in the GPU at
their Knee%, ordered by their earliest deadline. We compute the
aggregate GPU% as Gu; =) .5, GPU %y, for each time slot
S;. We use an exhaustive search-based schedule to maximize
the GPU utilization for every time slot (13). The overall GPU
utilization (G, is maximized as

max G, where G, = ZGui = Z Z GPU%y,

i keS;
(13)
such that G,; <100% and k; € E =k, € E.
(14)

The first constraint for scheduling kernels of different models
(14) is that the sum of the GPU% of all concurrent kernels
in a time slot should not exceed 100%. Second, only eligible
kernels (set (E))) can run concurrently in the time slot S; being
scheduled. DNN kernels are executed sequentially.

We experimented by scheduling 3 convolution neural net-
works (ConvNet) based on LeNet [69]. Each ConvNet has 3 con-
volution, 2 average-pool and 2 linear kernels. The dimensions of
filters of the convolution layers are varied, varying the compute
requirement for each ConvNet model. The inference image
has a resolution of 224 x 224. The knee-runtime combination
for ConvNet-1, ConvNet-2 and ConvNet-3 are 30%-10.3 ms;
40%-14.6 ms, and 60%-15.4 ms, respectively. We computed
the knee of each kernel of each model, for use by the ideal
scheduling during inference. We present the GPU utilization and
throughput in Fig. 9(d). Temporal scheduling has a much lower
GPU utilization, as it runs a single kernel on the GPU at a time.
GSLICE improves the GPU utilization, but its static schedule
leads to lower utilization when not enough models are running on
the GPU. Ideal scheduling attains almost 95% GPU utilization,
because it schedules kernels leveraging preemption. D-STACK
schedules without preemption of a kernel, runs a DNN kernel
to completion even if a kernel that could utilize the GPU better
is waiting. Nonetheless, D-STACK still achieves ~86% GPU
utilization. The throughput attained by the three CNN mod-
els follows the same trend. D-STACK’s overall throughput is
slightly higher than 90% of the throughput of ideal scheduling
- a measure of how close it comes to the ideal scheduler.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

o

Temporal &=
D-STACK =
A Max-Min ==
Max-Thp. =3

ﬂ Bl FHH(el Wl

Alexnet MobilenetResNet-50 VGG-19

(a) Throughput

Temporal == Max-Min ==
D-STACK =3 Max-Thp. ==

110

Alexnet Mobilenet ResNet-50 VGG-19

(b) Runtime for each model
(sec)

Model runtime(s)
o N S~ o =]

Fig. 10. (a) Throughput of models running with different scheduling algo. and
(b) Total runtime (s) per model.

C. Evaluation of D-STACK Scheduler

We evaluate D-STACK using four popular DNN models
(Alexnet, Mobilenet, ResNet-50, and VGG-19) that are run with
fixed SLOs, GPU%, and runtime as presented in Table VI.
We ran the models concurrently for 10 seconds. We took the
workload mix from the Imagenet [70] (vision DNNs), and IMDB
dataset [71] (sentence classification with BERT). We introduce
a random, uniformly distributed inter-arrival delay between re-
quests destined for the same DNN model.

We compare the throughput, and GPU runtime of D-STACK
with the baseline temporal sharing, and a schedule that maxi-
mizes the sum of the throughput across all the models (max-
throughput). We also evaluate the fairness of the schedulers,
measured by the GPU runtime each model gets. For this, we
compare D-STACK against a Max-Min fair scheduler [72],
which maximizes the placement of the minimum (smallest)
demand (GPU%). The throughput result is shown in Fig. 10(a),
and the GPU runtime each model gets is in Fig. 10(b).

D-STACK gets 2x the throughput of temporal sharing
for the two compute-heavy models, ResNet-50 and VGG-19
(Fig. 10(a)). At the same time, the lighter-weight Alexnet and
Mobilenet get 4x higher throughput. In temporal scheduling,
running compute-heavy

DNNs with longer runtimes results in fewer opportunities
for the other models, as there is no spatial sharing. Tempo-
ral scheduling runs models for only 1.6sec. out of 10 secs.
time, negatively impacting their throughput. Fig. 10(b) shows
that the D-STACK runs all the models longer than temporal
sharing. This is because D-STACK can run multiple DNNs
concurrently, providing higher throughput compared to temporal
sharing (Fig. 10(a)). We compare D-STACK’s throughput with
the “max-throughput’ schedule. D-STACK gets more than 80%
throughput of the max-throughput for the model with the lowest
runtime (Alexnet) while providing better fairness as we see next.

The Max-Min fair schedule provides higher runtime for Mo-
bilenet (Fig. 10(b)) than D-STACK since Mobilenet has the
minimum demand (25% knee%). However, D-STACK achieves
higher throughput than Max-Min for the medium runtime
ResNet-50 (Fig. 10(a)). D-STACK'’s fairness measure picks the
model that has run for the least time in the GPU over past
sessions to schedule. Thus, D-STACK seeks to act like a pro-
portional fair scheduler, as with the Completely Fair Scheduler
(CFS) in Linux [73]. The fairness of D-STACK is shown in
Fig. 10(b). Max-Min gives more time to a low-demand model
like Mobilenet. With D-STACK, all the models get similar

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

R-18 == Rx-50 ==
Inc. m=m

FBTTriGDS FBTTriGDS FBTTriGDS FBT TriGDS

FBTTriGDS FBTTriGDS FBTTriGDS FBTTriGDS
c-2 c-3 C-4 c-7
(a) Throughput & SLO violations

Fig. 11.
adjustment in D-STACK with varying request rate.

GPU time, thus boosting the total throughput of higher demand
models like ResNet-50. Overall, the D-STACK scheduling beats
temporal sharing’s throughput by 4 x, gets more than 80% of the
max-throughput scheduler and fairly shares GPU execution time
while meeting SLOs.

VII. VALIDATING OUR OVERALL APPROACH

We compare D-STACK with other multiplexing methods.

Multiplexing DNN models on the GPU: We evaluate three
different cases of multiplexing by running 2, 3, 4 and 7 DNNS,
respectively. By multiplexing 7 different DNNs, we demonstrate
how D-STACK is still successful in scheduling a number of mod-
els with tight latency constraints, even if the sum-total of their
demand (i.e., knee-capacity) is substantially higher than 100%
GPU. We show D-STACK can improve throughput and utilize
the GPU better while reducing the SLO violations compared
to the other approaches, with all, including D-STACK having to
compromise by missing the deadline on some inference requests.
We compare our approach, including D-STACK, with four other
methods of GPU multiplexing, namely, Fixed batching with
Default CUDA MPS (FB), and temporal sharing (T), Triton
Inference Server (Tri) (Also temporal sharing) and GSLICE (G).
In Fixed batching with CUDA MPS (FB), the largest batch size
of 16 is picked for inference every time and the multiplexing
models share the GPU with MPS without an explicit GPU%.
In temporal sharing (T), time slices are set in the proportion of
the models” SLO length. With Triton server (Tri), we request
the inference with multiple clients concurrently, allowing Tri-
ton server to dynamically batch and infer our requests. With
GSLICE (G), we use all GSLICE’s features, including adaptive
batching and spatial sharing of the GPU at each DNN’s knee.
Finally, in D-STACK, we use the batch size and GPU% from
our optimization formulation and utilize D-STACK scheduling
to schedule the models.

We evaluate the throughput and the SLO violations per second
for each model in Fig. 11(a). We measure SLO violations per
second as the sum of all the inference requests that violate
the SLO and all the unserved requests. Inference requests are
generated at the rate of ~ 1920 images/sec (max. request rate
limited by the 10 Gbps link in testbed). Requests are divided

1355

1500 100
%1200 480
= _—] =4
3 900 E I 60 2
< ©
(=2 N
5 =
o =
£ 600 - 440 O
= o

: — o
2 ‘ 5}
Z 300 |] 1 20

—
0 0
To T4 To T3 T4
Sessions
Alexnet — Mobilenet — ResNet50 — VGG19 — GPU-Util. —

(b) Baseline throughputs are shown in session Tj.

(a) C-2 = ResNet-50 + VGG-19, C-3 = C-2 + BERT, C-4 = C-3 + Mobilenet, C-7 = C-4 + ResNet-18 + Inception + ResNeXt-50. (b) Throughput

into the multiplexed models in proportion to their SLOs. Thus,
for the experiments C-2, C-3 and C4, Alexnet and Mobilenet get
700 inference requests/sec, ResNet-50 gets 320 requests/sec and
VGG-19 gets 160 requests/sec.For the experiment with 7 DNN
models running concurrently (i.e., C-7), Alexnet, Mobilenet
and ResNet-18 receive 440 inference requests/sec, ResNet-50
and Inception receive 220 requests/sec while ResNeXt-50 and
VGG-19 get 80 requests/sec.

We present aggregate throughput measure in Fig. 11(a). Ag-
gregate throughput provides the sum of the throughputs achieved
by all the models. D-STACK provides more than a 3x increase
in aggregate throughput when multiplexing 7 different models.
D-STACK achieves the highest throughput even when fewer
models run concurrently.

We note that the smaller models can get a large throughput
even with a small time durations they are scheduled on GPU.
Thus, the aggregate throughput is influenced considerably by
smaller models. This is true for both D-STACK and for other
time and spatial sharing methods as well (as in Triton). With
D-STACK’s fairness mechanism (Section VI-A-2), we inten-
tionally try to de-prioritize running small neural network just for
increasing throughput. Other GPU sharing mechanisms have no
such constraints. Therefore, we think aggregate throughput is a
fair metric to measure the performance of GPU sharing across
various schedulers.

For MPS, the lack of batching causes it to miss most of
the SLOs for requests. Fixed batch, temporal sharing, GSLICE
and Triton server provide good throughput while running just
2 models. However, as the number of models multiplexed in-
creases, each new added model contends for GPU resources in
Fixed Batch, decreasing the throughput. Meanwhile, in temporal
sharing, each model gets less and less GPU time, impacting
throughput.

Models hosted in Triton server too have to multiplex GPU
temporally, thus, get lower throughput when more models are
added. With GSLICE, multiplexing more models means some
models get resources lower than knee GPU%, exponentially
increasing the inference latency. D-STACK provides both the
right amount of GPU resources and the appropriate batch size.
Furthermore, there are no SLO violations in D-STACK when
multiplexing 2-4 models. However, when overloading the GPU

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1356

by multiplexing 7 DNNs, we see a few SLO violations for the
models with longer runtime (Inception, Resnet-50, ResNeXt-50
and VGG-19). D-STACK misses SLOs for 10% of all requests,
compared to more than 68% for the alternatives. SLO misses
for D-STACK are from the smaller fraction of requests sent
to compute heavy models such as ResNet-50, ResNext-50 and
VGG-19. Even with some of the medium-to-large sized models
with longer runtimes, such as ResNet-50 and Inception, only
13% of requests see a SLO violation. This is due to the fact that
running 7 models concurrently exceeds the capacity of GPU even
with D-STACK. With D-STACK the average GPU utilization is
92% while multiplexing with 7 models. With all the models
having a knee greater than 10%, this is close to fully utilizing
the GPU.

Benefit of D-STACK Scheduler: Wherever possible, D-
STACK tries to opportunistically schedule additional model
instances during the session, possibly with a smaller batch size
to utilize the available GPU. To show the effectiveness of the
D-STACK, we present a scenario where the request rate of the
multiplexed DNN models varies dynamically. To start with, in
session 1y, we have 4 models, Alexnet, Mobilenet, ResNet-50
and, VGG-19, same as in *’C-4’ in Fig. 11(a) running with their
request rates high enough to support the optimal batch size, as de-
termined in Table VI. The GPU utilization we achieve is ~ 85%.
We then change the request rate of one model (Alexnet in session
T) by a random amount. We still allow for the optimal batch to
form for each model. The throughput of the models dynamically
adjust with the throughput of other models increasing due to use
of the un-utilized resources left by Alexnet (see 7). Since these
three models have a high GPU% requirement, there is not enough
GPU to accommodate an instance of another model. Thus, the
GPU utilization drops very slightly. AtT,, Alexnet’s request rate
goes back up, while Mobilenet request rate lowers, once again
by a random amount. Alexnet opportunistically uses the GPU to
achieve a throughput higher than what it achieved in the baseline
session Tp. Similarly, when ResNet-50 and, VGG-19’s arrival
rates drop at 75 and T} , respectively, the other models increase
their throughput. We also see that across these sessions, the GPU
utilization is nearly unchanged, remaining high, indicating that
the D-STACK effectively uses the GPU.

A. D-STACK in Multi-GPU Clusters

D-STACK can utilize multiple GPUs in the cluster. When
the request rate of a model exceeds the throughput it is getting,
D-STACK starts another instance of the model in another GPU
in the cluster. These new GPUs will also be spatially shared with
any new DNN models that are introduced.

We evaluated D-STACK in a multiple GPU cluster of 4
NVIDIA T4 GPUs, each having 40 SMs (fewer than a V100)
and 16 GB of memory. We utilized 4 different vision models,
Mobilenet, Alexnet, ResNet-50 and VGG-19 (knee GPU% is
different for T4 GPU versus V100). We compare throughput
of 3 different multiplexing and scheduling scenarios. First, we
provide one T4 GPU for each DNN model exclusively. In the
second scenario, we place all 4 models in each GPU, temporally
sharing the GPU. Finally, we evaluate D-STACK with the 4
DNN models.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

4000 - Mobilent =
73500 |- Alexnet mmm
3000 - ResNet-50 ==
3_2500 -

5,2000 -
31500 -
1000 -

500

0
Model per GPU Temporal

D-STACK

Fig. 12. GPU cluster throughput.

Fig. 12 shows temporal scheduling has almost the same
throughput as each model having an exclusive GPU.

This is because of the under-utilization of the GPU by the
DNN models. D-STACK has much higher throughput for every
model, with 160% overall higher throughput than temporal
sharing. The overall inference throughput increases substantially
as the multi-GPU cluster is better utilized by D-STACK.

B. D-STACK ’s Applicability With Different Devices

An application’s performance on a V100 can be used to
estimate how it would perform on another GPU in the same
family. We do recognize that estimating the performance when
we go across GPU generations may be a challenge. Streaming
multiprocessors in a V100, A100, and H100 are drastically
different with different cache sizes, and different hardware ca-
pabilities; thus, an application requiring 50% of a V100 GPU
might require much less of a A100 GPU. This will be true for all
applications whether they are using D-STACK or not. However,
we can still take the initial guidance from the offline analysis
done with another (say less powerful) GPU and divide the current
more powerful GPU into several, when multiplexing different
applications on the current more powerful GPU. The GPU
resources for each application can be eventually adjusted, as
new metrics as well as updated values of all metrics are collected
when running the applications on the new more powerful GPU
itself.

VIII. CONCLUSION

DNN:ss critically depend on GPUs and other accelerators, but
often under-utilize the parallel computing capability of current
high-performance accelerators. Due to uneven workloads of
different DNN kernels, a DNN as a whole is unable to fully
utilize all the parallelism of the GPU (i.e., all SMs). Furthermore,
there are non-parallelizable tasks while executing a DNN on
a GPU-based system limiting the effective use of a GPU’s
parallelism. We validated these conclusions from our model
of a DNN through measurements of different types of DNNs
(CNNs, and Transformers) on an V100 GPU. Since batching
DNN requests improves inference throughput and GPU uti-
lization, we develop an optimization framework to establish
an optimal operating point (GPU%, Batch Size) for a DNN
utilizing the GPU at the highest efficacy. We bring the optimal

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

DHAKAL et al.: D-STACK: HIGH THROUGHPUT DNN INFERENCE BY EFFECTIVE MULTIPLEXING AND SPATIO-TEMPORAL SCHEDULING OF GPUs

batch size and GPU% together in D-STACK to develop a spatio-
temporal, fair, opportunistic, and dynamic scheduler to create
an inference framework that effectively virtualizes the GPU.
D-STACK accounts for a DNN model’s SLO, GPU resource
allocation, and batch size, to provide a schedule that maximizes
meeting SLOs, across multiple DNN models while seeking to
utilize the GPU fully. D-STACK benefits both single GPUs and
multi-GPU clusters. Our enhancements in D-STACK do not
require modifications to the GPU architecture, the runtime, or the
DNN models themselves. D-STACK’s features can easily help
improve existing DNN inference platforms (e.g., Triton server)
as well. We show that D-STACK can attain higher than 90%
throughput of an ideal scheduler, which we speculate can switch
tasks instantaneously at a very fine time granularity, ignoring
practical limitations.

Our controlled testbed experiments with 4 T4 GPU clusters
show the throughput improvement of 160%-180% with D-
STACK compared to providing an entire GPU to each individual
DNN model. With an NVIDIA V100 GPU, D-STACK shows
benefit in the range of “1.6x improvement in GPU utilization
and 3 x to 4x increase in throughput with no impact in latency
compared to the baseline temporal sharing.

REFERENCES

[1]1 S. Markidis, S. W. Der Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVIDIA tensor core programmability, performance & precision,” in
Proc. 2018 IEEE Int. Parallel Distrib. Process. Symp. Workshops, 2018,
pp- 522-531.

[2] N.P.Jouppi etal., “In-datacenter performance analysis of a tensor process-
ing unit,” in Proc. ACM/IEEE 44th Annu. Int. Symp. Comput. Architecture,
2017, pp. 1-12.

[3] A. Paszke et al., “PyTorch: An imperative style, high-performance
deep learning library,” in Proc. Adv. Neural Inf. Process. Syst., H.
Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox,
and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024-8035.
[Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[4] Tensorflow serving, 2020. [Online]. Available: https://www.tensorflow.
org/tfx/guide/serving

[5] NVIDIA triton inference server, 2021. [Online]. Available: https:
//docs.nvidia.com/deeplearning/triton-inference-server/master-user-
guide/docs/

[6] A.Dhakal, S. G. Kulkarni, and K. K. Ramakrishnan, “GSLICE: Controlled
spatial sharing of GPUs for a scalable inference platform,” in Proc. 11th
ACM Symp. Cloud Comput., New York, NY, USA, 2020, pp. 492-506.

[71 W.Zhang et al., “Laius: Towards latency awareness and improved utiliza-
tion of spatial multitasking accelerators in datacenters,” in Proc. ACM Int.
Conf. Supercomputing, 2019, pp. 58-68.

[8] A.F. Inci et al., “The architectural implications of distributed reinforce-
ment learning on CPU-GPU systems,” 2020, arXiv: 2012.04210. [Online].
Available: https://arxiv.org/abs/2012.04210

[9]1 Y. Wang, G.-Y. Wei, and D. Brooks, “A systematic methodology for
analysis of deep learning hardware and software platforms,” in Proc. Mach.
Learn. Syst., 2020, pp. 30—43.

[10] H. Kong et al., “EDLAB: A benchmark for edge deep learning accelera-
tors,” IEEE Des. Test, vol. 39, no. 3, pp. 8-17, Jun. 2022.

[11] H. Shen et al., “Nexus: A gpu cluster engine for accelerating dnn-based
video analysis,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 322-337.

[12] Y. Huang et al., “GPipe: Efficient training of giant neural networks using
pipeline parallelism,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 103-112.

[13] D. Narayanan et al., “PipeDream: Generalized pipeline parallelism for
DNN training,” in Proc. 27th ACM Symp. Operating Syst. Princ., 2019,
pp. 1-15.

[14] NVIDIA Multi-Process Service, 2024. Accessed: Aug. 11, 2022. [On-
line]. Available: https://docs.nvidia.com/deploy/mps/index.html

1357

[15] NVIDIA, “Driving digital transformation with GPU virtualization and
enterprise cloud,” 2017. [Online]. Available: https://www.nvidia.com/
content/dam/en-zz/Solutions/Data-Center/nutanix/pdf/nutanix-solution-
overview.pdf

[16] NVIDIA, “Unlock next level performance with virtual GPUs,” 2021.
[Online]. Available: https://www.nvidia.com/en-us/data-center/virtual-
solutions/

[17] D. Crankshaw, X. Wang, G. Zhou, M. J. Franklin, J. E. Gonzalez, and I.
Stoica, “Clipper: A low-latency online prediction serving system,” in Proc.
14th USENIX Symp. Netw. Syst. Des. Implementation, 2017, pp. 613-627.

[18] J. Gu et al., “Tiresias: A GPU cluster manager for distributed deep
learning,” in Proc. 16th USENIX Symp. Netw. Syst. Des. Implementation,
Boston, MA: USENIX Association, 2019, pp. 485-500. [Online]. Avail-
able: https://www.usenix.org/conference/nsdil9/presentation/gu

[19] A. Gujarati et al., “Serving DNNs like clockwork: Performance pre-
dictability from the bottom up,” in Proc. 14th USENIX Symp. Operating
Syst. Des. Implementation, 2020, pp. 443-462.

[20] P.Gao, L. Yu, Y. Wu, and J. Li, “Low latency RNN inference with cellular
batching,” in Proc. 13th EuroSys Conf., 2018, pp. 1-15.

[21] AWS, “Host multiple models with multi-model endpoints,” 2021.
[Online]. Available: https://docs.aws.amazon.com/sagemaker/latest/dg/
multi-model-endpoints.html

[22] T.-A.Yeh, H.-H. Chen, and J. Chou, “KubeShare: A framework to manage
GPUs as first-class and shared resources in container cloud,” in Proc. 29th
Int. Symp. High- Perform. Parallel Distrib. Comput., New York, NY, USA,
2020, pp. 173-184.

[23] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep learn-
ing,” in Proc. 13th USENIX Symp. Operating Syst. Des. Implementation,
2018, pp. 595-610.

[24] Y. Ukidave, X. Li, and D. Kaeli, “Mystic: Predictive scheduling for GPU
based cloud servers using machine learning,” in Proc. 2016 IEEE Int.
Parallel Distrib. Process. Symp., 2016, pp. 353-362.

[25] K. Zhang et al., “G-net: Effective GPU sharing in NFV systems,” in Proc.
15th USENIX Symp. Netw. Syst. Des. Implementation, 2018, pp. 187-200.

[26] A. Zhu, D. Zeng, L. Gu, P. Li, and Q. Chen, “Gost: Enabling efficient
spatio-temporal GPU sharing for network function virtualization,” in Proc.
IEEE/ACM 29th Int. Symp. Qual. Service, 2021, pp. 1-10.

[27] Q. Chen, H. Yang, J. Mars, and L. Tang, “Baymax: QoS awareness and
increased utilization for non-preemptive accelerators in warehouse scale
computers,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 681-696, 2016.

[28] H. Zhou, S. Bateni, and C. Liu, “S3DNN: Supervised streaming and
scheduling for GPU-accelerated real-time DNN workloads,” in Proc. 2018
IEEE Real-Time Embedded Technol. Appl. Symp., 2018, pp. 190-201.

[29] Q. Chen, H. Yang, M. Guo, R. S. Kannan, J. Mars, and L. Tang, “Prophet:
Precise QoS prediction on non-preemptive accelerators to improve utiliza-
tion in warehouse-scale computers,” in Proc. 22nd Int. Conf. Architectural
Support Program. Lang. Operating Syst., 2017, pp. 17-32.

[30] M. E. Belviranli, F. Khorasani, L. N. Bhuyan, and R. Gupta, “CuMAS:
Data transfer aware multi-application scheduling for shared GPUs,” in
Proc. 2016 Int. Conf. Supercomputing, New York, NY, USA, 2016,
Art. no. 31, doi: 10.1145/2925426.2926271.

[31] C.Yuetal., “SMGuard: A flexible and fine-grained resource management
framework for GPUSs,” IEEE Trans. Parallel Distrib. Syst., vol. 29, no. 12,
pp. 2849-2862, Dec. 2018.

[32] Q. Sun,L.Yi, H. Yang, M. Li, Z. Luan, and D. Qian, “QoS-aware dynamic
resource allocation with improved utilization and energy efficiency on
GPU,” Parallel Comput., vol. 113, 2022, Art. no. 102958.

[33] X. Zhao, Z. Wang, and L. Eeckhout, “Classification-driven search for
effective SM partitioning in multitasking GPUs,” in Proc. 2018 Int. Conf.
Supercomputing, 2018, pp. 65-75.

[34] M. Jeon et al., “Analysis of large-scale multi-tenant GPU clusters for
DNN training workloads,” in Proc. 2019 USENIX Annu. Tech. Conf.,2019,
pp- 947-960.

[35] G.-F. Yeung, D. Borowiec, A. Friday, R. Harper, and P. Garraghan,
“Towards GPU utilization prediction for cloud deep learning,” in Proc.
12th USENIX Workshop Hot Topics Cloud Comput., 2020, Art. no. 6.

[36] G. Yeung, D. Borowiec, R. Yang, A. Friday, R. Harper, and P. Garraghan,
“Horus: An interference-aware resource manager for deep learning sys-
tems,” in Proc. 20th Int. Conf. Algorithms Architectures Parallel Process.,
New York City, NY, USA, Springer, 2020, pp. 492-508.

[37] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing DNN computation with relaxed graph substitutions,” in Proc.
Mach. Learn. Syst., 2019, pp. 27-39.

[38] X. Du, M. El-Khamy, J. Lee, and L. Davis, “Fused DNN: A deep neural
network fusion approach to fast and robust pedestrian detection,” in Proc.
2017 IEEE Winter Conf. Appl. Comput. Vis., 2017, pp. 953-961.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

1358

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 12, NO. 4, OCTOBER-DECEMBER 2024

M. Song, Y. Hu, H. Chen, and T. Li, “Towards pervasive and user satisfac-
tory CNN across GPU microarchitectures,” in Proc. 2017 IEEE Int. Symp.
High Perform. Comput. Archit., 2017, pp. 1-12.

T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Symp. Operating Syst. Des.
Implementation, 2018, pp. 578-594.

P. Jain, X. Mo, A. Jain, A. Tumanov, J. E. Gonzalez, and I. Stoica, “The
OOO VLIW JIT compiler for GPU inference,” 2019, arXiv: 1901.10008.
[Online]. Available: http://arxiv.org/abs/1901.10008

P. Jain et al., “Dynamic space-time scheduling for gpu inference,”
2018, arXiv: 1901.00041.

S. Dublish, V. Nagarajan, and N. Topham, “Poise: Balancing thread-level
parallelism and memory system performance in GPUs using machine
learning,” in Proc. 2019 IEEE Int. Symp. High Perform. Comput. Archit.,
2019, pp. 492-505.

O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das, “Neither more nor
less: Optimizing thread-level parallelism for GPGPUS,” in Proc. 22nd Int.
Conf. Parallel Architectures Compilation Techn., 2013, pp. 157-166.

Q. Liang, W. A. Hanafy, A. Ali-Eldin, and P. Shenoy, “Model-
driven cluster resource management for ai workloads in edge clouds,”
2022, arXiv:2201.07312.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. 25th Int. Conf. Neural
Inf. Process. Syst., Red Hook, NY, USA: Curran Associates Inc., 2012,
pp. 1097-1105.

A. G. Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” 2017, arXiv: 1704.04861.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2015, pp. 1-9.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 1492-1500.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097-1105.

Torchvision model zoo, 2021, Accessed: Jun. 13, 2021. [Online]. Avail-
able: https://pytorch.org/docs/master/torchvision/models.html

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in Proc.
Annu. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang.
Technol., 2019, pp. 4171-4186.

W. Zhang et al., “OpenNetVM: A platform for high performance network
service chains,” in Proc. 2016 ACM SIGCOMM Workshop Hot Topics
Middleboxes Netw. Function Virtualization, 2016, pp. 26-31.

P. Emmerich, S. Gallenmiiller, D. Raumer, F. Wohlfart, and G. Carle,
“MoonGen: A scriptable high-speed packet generator,” in Proc. Internet
Meas. Conf., Tokyo, Japan, 2015, pp. 275-287.

M. Zhang, S. Rajbhandari, W. Wang, and Y. He, “DeepCPU: Serving RNN-
based deep learning models 10x faster,” in Proc. 2018 USENIX Annu. Tech.
Conf., Boston, MA: USENIX Association, 2018, pp. 951-965. [Online].
Available: https://www.usenix.org/conference/atc18/presentation/zhang-
minjia

NVIDIA, “Deep learning performance documentation,” 2021, Accessed:
Apr. 07,2021. [Online]. Available: https://docs.nvidia.com/deeplearning/
performance/dl-performance- gpu-background/index.html

Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.
X. Mei and X. Chu, “Dissecting GPU memory hierarchy through mi-
crobenchmarking,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 1,
pp. 72-86, Jan. 2017.

Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta GPU architecture via microbenchmarking,” 2018, arXiv:
1804.06826.

W. Zhang et al., “Towards QoS-aware and resource-efficient GPU
microservices based on spatial multitasking GPUs in datacenters,”
2020, arXiv: 2005.02088.

P. Micikevicius, “GPU performance analysis and optimization,” in Proc.
GPU Technol. Conf., 2012, pp. 71-75.

G. M. Amdahl, “Validity of the single processor approach to achieving
large scale computing capabilities,” in Proc. Spring Joint Comput. Conf.,
1967, pp. 483-485.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

J. L. Gustafson, “Reevaluating Amdahl’s law,” Commun. ACM, vol. 31,
no. 5, pp. 532-533, May 1988, doi: 10.1145/42411.42415.

NVIDIA visual profiler user guide, 2021, Accessed: Jan. 12, 2021.
[Online]. Available: https://docs.nvidia.com/pdf/CUDA_Profiler_Users_
Guide.pdf

NVIDIA tesla v100 GPU architecture, 2018, Accessed: Jan. 12, 2018.
[Online]. Available: http://images.nvidia.com/content/volta-architecture/
pdf/volta-architecture- whitepaper.pdf

H. Qiu, F. Ahmad, F. Bai, M. Gruteser, and R. Govindan, “AVR: Aug-
mented vehicular reality,” in Proc. 16th Annu. Int. Conf. Mobile Syst. Appl.
Serv., 2018, pp. 81-95.

Y. LeCun et al., “Backpropagation applied to handwritten zip code recog-
nition,” Neural Comput., vol. 1, no. 4, pp. 541-551, 1989.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A large-scale hierarchical image database,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 248-255.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts,
“Learning word vectors for sentiment analysis,” in Proc. 49th Annu. Meet-
ing Assoc. Comput. Linguistics: Hum. Lang. Technol., Portland, Oregon,
USA: Association for Computational Linguistics, 2011, pp. 142-150.
[Online]. Available: http://www.aclweb.org/anthology/P11--1015

D. P. Bertsekas, R. G. Gallager, and P. Humblet, Data Networks, vol. 2.
Hoboken, NJ, USA: Prentice-Hall International, 1992.

C. S. Pabla, “Completely fair scheduler,” Linux J., vol. 2009, no. 184,
pp. 184—187, Aug. 2009.

Aditya Dhakal (Member, IEEE) received the BE
degree from the Kyushu Institute of Technology,
Japan with the Japanese Ministry of Education schol-
arship, the MS degree from the University of Con-
necticut, and the PhD degree from the University
of California, Riverside. He is a research scientist
with Hewlett Packard Labs, Milpitas, California. His
area of research included hardware multiplexing and
neural network inference. His current research in-
terests include GPUs, FPGAs, SmartNICs, commu-
nication fabrics and scalability in high-performance
computing and Machine Learning.

Sameer G. Kulkarni received the PhD degree from
the University of Gottingen, Germany. He worked
as a postdoctoral researcher with the University of
California at Riverside, Riverside. He is currently an
assistant professor with the Department of Computer
Science and Engineering, and Electrical Engineering,
Indian Institute of Technology Gandhinagar. His cur-
rent research interests include parallel and distributed
computing, software defined networks, network func-
tion virtualization, network security and cloud com-
puting. His PhD thesis received the IEEE Technical

Committee on Scalable Computing Outstanding Dissertation Award, in 2019.

K. K. Ramakrishnan (Life Fellow, IEEE) received
the MTech degree from the Indian Institute of Sci-
ence, in 1978, and the MS and PhD degree in com-
puter science from the University of Maryland, Col-
lege Park, in 1981 and 1983, respectively. He is a
distinguished professor of computer science and engi-
neering with the University of California, Riverside.
He joined AT&T Bell Labs, in 1994 and was with
AT&T Labs-Research from its inception, in 1996,
until 2013, as a distinguished member of Techni-
cal Staff. Before 1994, he was a technical director

and consulting engineer in networking with Digital Equipment Corporation.
Between 2000 and 2002, he was with TeraOptic Networks, Inc., as founder
and vice president. He is an ACM fellow, and an AT&T fellow, recognized
for his fundamental contributions to communication networks, including his
work on congestion control, traffic management, and VPN services. His work
on the “DECbit” congestion avoidance protocol received the ACM Sigcomm
Test of Time Paper Award, in 2006, and he received the AT&T Technology
Medal, in 2012 for his work on Mobile Video Delivery. He received the 2024
ACM SIGCOMM Award recognizing his lifetime contribution to the field of
communication networks. He has published more than 300 papers and has 186
patents issued in his name.

Authorized licensed use limited to: Univ of Calif Riverside. Downloaded on March 31,2025 at 21:16:21 UTC from IEEE Xplore. Restrictions apply.

