2024 European Control Conference (ECC)
June 25-28, 2024. Stockholm, Sweden

Convergence Rates of Gradient Descent-Ascent
Dynamics under Delays in Solving Nonconvex
Min-Max Optimization

Duy Anh Do
Electrical and Computer Engineering Department
Virginia Tech
Blacksburg, VA, US
duyanhdo@vt.edu

Abstract—In this paper, we study the so-called two-time-scale
gradient descent-ascent method for solving min-max optimiza-
tion problem. Our focus is to characterize the performance of
this method, in particular, its continuous-time variant, under
delays in gradient computation. Delays are common issues
in large-scale optimization problems, which if not properly
addressed, can lead to the instability of gradient methods. Unlike
the classic gradient methods where theoretical guarantees for
their performance under delays are well-studied, similar results
for the gradient descent-ascent algorithms are very sparse. To
address this gap, we provide a new analysis to characterize
the convergence rates of the two-time-scale gradient descent-
ascent dynamics under delays in solving nonconvex min-max
optimization under the two-sided Polyak-k.ojasiewicz conditions.
Our results show that these dynamics converge exponentially to
the optimal solution of the problem even under the impact of
delays. The key idea in our analysis is to utilize the classic
singular perturbation approach to design a coupling Lyapunov
function to address the interaction between the gradient descent
and ascent dynamics and the effect of delays. Finally, we provide
a number of numerical simulations to illustrate our theoretical
results.

Index Terms—Gradient descent-ascent methods, min-max
optimization.

I. INTRODUCTION

We consider the following optimization problem:

i 1
Join max f (2, v), (D

where f : R™ x R™ — R is nonconvex with respect to x
and nonconcave with respect to y. This min-max problem is
of paramount importance because of its broad applications in
different areas, for instance, game theory [1], [2], stochastic
control and reinforcement learning [3], [4], machine learning
[5], [6], optimization [7], [8], and training generative adver-
sarial networks [9], [10]. For solving this problem, we are
interested in studying gradient-based approach, in particular,
gradient descent-ascent methods [11]-[14]. These methods
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iteratirely update the estimates (z,y) of the optimal (z*, y*)
of f by moving along the partial gradient directions V, f
and V, f, respectively.

Our focus in this paper is to understand the convergence of
these methods under delays, i.e., we only have access to the
delayed values of these gradients. Such a result has not yet
been fully studied in the literature of min-max optimization,
unlike the non-delay counterpart.

Our motivation to study the gradient descent-ascent dy-
namics under delay partly comes from large-scale machine
learning applications such as training deep neural networks,
where the dataset size is enormous. In these scenarios,
calculating the gradients can be extremely time-consuming
due to the computational complexity as well as the volume of
data. Additionally, in distributed optimization, communica-
tion delays are common because it takes time for the gradient
information to be transmitted between different nodes or
machines. Therefore, we do not always have access to the
immediate gradient information, and has to rely only the
values of the gradients at some earlier time step to perform
an update of the model estimate.

Main contributions. The objective of this paper is to charac-
terize the convergence of continuous-time gradient descent-
ascent dynamics for solving problem (1) under the impact of
delays. Our main result is to show that this method converges
exponentially to the optimal solution of the problem when
the objective function f satisfies the two-sided Polyak-
Lojasiewicz condition. The key idea in our analysis is to use
the classic singular perturbation theory to design Lyapunov
functions to study the time-scale difference and interactions
between the gradient descent and ascent dynamics. Finally,
we provide numerical simulations to support our theoretical
results.

A. Related works
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Min-max optimization. Because of its significance, the
problem of Min-Max optimization setting has been exten-
sively studied in general [15], [16], and in the nonconvex-
concave scenario in particular [17], [18]. However, theoretical
guarantees in literature are very limited. Noteworthy studies
in the domain of nonconvex-nonconcave [19]-[21] often
show convergence to a stationary point, while our work
establishes convergence to the saddle point of the function.
The paper by [14] also utilizes the PL condition to find
the saddle point at a sublinear rate. However, our work
focuses on the continuous-time dynamics, and also provides
an exponential convergence.

Among the two types of first-order methods for solving
such problems, the single-loop algorithm is better applicable
because of its simplicity in implementation. However, it
is known that single-loop algorithms may fail to converge
even in simple settings [22]. Our paper delves into such
intricate issues by focusing on a special case of nonconvex-
nonconcave, namely the 2-sided Polyak-Lojasiewicz
condition. We employ a two-time-scale approach, which
incorporates both fast and slow continuous-time gradient
dynamics, as well as utilizing coupling Lyapunov functions
to establish convergence, even when access to gradients is
not immediately available.

Optimization under delays. Literature that concerns op-
timization problems under delays is quite extensive [23],
[24], however, most have been focusing on delay models in
the single optimization setting. In the study by [25], when
the corresponding function is smooth and convex-concave,
a delayed version of the extra gradient algorithm is shown
to provably converge to the saddle point at a sublinear rate.
In addition, the authors show that this convergence rate is
exponential when the underlying function is strongly convex
and strongly concave. In this work, our focus is to study the
performance of gradient descent-ascent methods when the
function is nonconvex-nonconcave but satisfies the two-sided
Polyak-t.ojasciewicz condition.

II. TWO-TIME-SCALE GRADIENT DESCENT-ASCENT
DyNAMICS

To solve problem (1), we consider the two-time-scale
gradient descent ascent dynamics. In this paper, our focus
is to study this method in the delay regime. In particular, at
any given time ¢, we only have access to the delayed value
of the gradient, i.e., Vf(x(t — 7),y(t — 7)), where 7 > 0 is
the constant representing the delay. In this setting, the two-
time-scale gradient descent-ascent dynamics is given as:

= 71.(141-) = —avxf(fv(t - T)) (t - T))7
it ! @)

)

Y= %y(t) = 5vyf(x(t - T)a y(t - T))7
where o and [ are two different step sizes, which will
be chosen properly to guarantee the convergence of these
dynamics.

T

Main ideas of technical analysis. The convergence anal-
ysis of (2) studied in this paper is mainly motivated by the
classic singular perturbation theory [26]. Since y is updated
at a faster time scale than x, one can consider z(¢) = x being
fixed in y and separately study the stability of the system y
using Lyapunov theory. Let V5 be the Lyapunov function
corresponding to . When y converges to an equilibrium
y (e.g., Vyf(z,y) = 0), one can fix y(t) = y and study
the stability of . Let V) be the corresponding Lyapunov
function of . We note that V; and V5 both depend on z
and y, as a result, their time derivatives are coupled through
the dynamics in (2). Addressing this coupling and the time-
scale difference between the two dynamics is the key idea
in our approach. To do that, we will consider the following
Lyapunov function

Viwy) = Vil y) + 5 Vale) 3)
where «/( represents the time-scale difference, while
the constant « will be properly chosen to eliminate the
impact of = on the convergence of y and vice versa. Proper
choices of these constants will also help us to derive the
convergence rates of (2). Similar approach has been used in
different settings of two-time-scale methods, see for example
[27], [28]. For the min-max optimization problem, we will
consider the following two Lyapunov functions:

Vi(z) = max f(@,y) — min max f(z,y),

4
Va(e,y) = max £(z,0) ~ £(20) @

Clearly, if we can show that Vj(xy) converges to 0, then x
converges to x*, and similarly, Va(xg,yx) converges to 0,
then y; converges to the optimal y value given a particular
x.

We conclude this section with the following assumptions:

Assumption IL1. The function f(.,.) has Lipschitz contin-
uous gradients for each variables, i.e., there exists positive
constant L such that for all x1,x2 € R™ and y1,y2 € R"
we have:

IVef(z1,91) — Vo f(x2,y2)|| < Li|z1 — z2|| + Ll|y1 — y2ll,
IVy f(z1,y1) — Vyf(@2,y2)|| < Ll|lz1 — 22| + Ll|y1 — yoll.

Assumption IL.2. For any = € R™, the problem
maxy f(z,y) has a nonempty solution set Y*(x), i.e., there
exists y*(x) € Y*(x) such that:

y"(x) = arg max f(z,y),

where f(x,y*(x)) is finite.
Assumption IL3. There exists a global min-max solution
(z*,y*) for the problem in (1):

x* = arg min f(z,y")

and y* = arg max f(z*
in y gyemf( :Y)

(&)

Next, we present the definition of 2-sided Polyak-
Lojasiewicz (PL) condition as follows.
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Definition 1. A continuous differentiable function f : R™ X
R™ — R is called to satisfy two-sided PL. conditions if there
exists positive constant . such that p < L, and the following
conditions hold for all (x,y) € R™ x R™:

2ulf(,y) ~ min f(z,9)] < [V /(a.

)%,

o ©

In this paper, we assume that f satisfies the two-sided
Polyak-t.ojasiewicz (PL) condition, a broader form of the
well-known PL condition introduced by [29]. This condition
serves as a sufficient guarantee for the exponential conver-
gence of the classic gradient descent method towards the
optimal solution of an unconstrained optimization problem.
As shown in [30], the PL condition also implies the quadratic
growth condition, i.e., given any x we have for all y € R™:

f@y) = EIPy-wll —ul®, ()

where we assume that }*(x) is a nonempty solution set of
max, f(z,y) and Py (,)[y] is the projection of y to this set.
Finally, we consider the following lemma about the Lipschitz
continuity of the gradient of f(z,y*(x)), which is a variant
of the Danskin lemma [31][Proposition B.25] and studied in
[19][Lemma A.5].

mex f(,2) -

Lemma II.1. Suppose that Assumptions II.1— 1.3 hold. Then,
the function max, f(x,y) is differentiable and its gradient
V. f(x,y*(x)) is Lipschitz continuous with a constant L+/%.

III. MAIN RESULTS

We begin our technical analysis of (2) by providing a
bound on the time derivatives of V; and V5:

Lemma IIL.1. Suppose that Assumptions 1I.1- 11.3 hold and
a < B. Then we have

Vi (a()
< 5 IVas (). v @) +

= SIVef @lt = 7). y(t = )P

2%

Va(x(t), y(t))

| LPraf? / IV (@l — ),y - 7)2du. ®)
Va(a(t), y(1))

4172
<21V, 1), .

v +
2V falt — 7).t~ )
27_ 3 t
[ 19 et =), ptu = )P

A ZHCORRCONS ©)

Va(x(t), y(t))

Proof. For convenience, we denote by y*(z) = Py« (q) [y
where recall that Y*(x) is the solution set of max, f(z,y)
for a given x. We first show (8). The time derivative of V;
over the trajectory & in (2) is given as

(e (0)

= SVA((0) = Yl (al0), " (w()i(0)
= oV f @l0), 4" @(0)), Y f (alt = 7). (0 = 7))
= IV Falt)y (wle) P

— SIVet(at =)yt = )|
(

(x(
+ IV f @),y* @) = Vafalt = 7),y(t = )
(a

S A CORCON &
= IVttt = 7).yt = )P
L2

+ 7(\\%(75) —a(t =)+ ly*(@(®) -yt = 7))

< —§||me(x(t),y*(x(t)))||2

— SIVef(at =)yt = )|
222 (ele) — e — )| + 20y(e) — ol — 7))
+L2aHy (z(t) — y(®)|>., (10)

where the first inequality is due the Lipschitz continuity of
V. f and the last inequality is due to the Cauchy-Schwartz
inequality. Taking integration on both sides of (2) over ¢ gives

t
ot) ~alt =) = ~a [ Vaflalu= 1)y~ 1)du
t—T1
which by using the Cauchy—Schwartz yields

lo(t) — w(t — )| SaQT IIV Fla(u—7),y(u—7))|Pdu.

Similarly, we obtain

ly(2)

Combining the two terms above and using the fact that
IVF (@ )lI? = IVaf (@ m)|* + [|Vy f(,9)]* give

Lo 2 2

= () =@ =7)II* +2]ly(t) —y(t = 7))

¢
< LQTaBQ/ IV f(x(u—7),y(uw—7))|2du, (1)
t—1

|V, f(z(u—7),y(u—7))|*du.

t—T1

—y(t—7)|* < B

where we use o < /3. Next, using the PL condition of f we

obtain
ly*(2(1) — y(®)]? < %(my‘omf(w(t)ay(t)) — fz(t),y(1))).

Substituting the preceding relations into (10) we obtain the
desired inequality (8).
Next, we show (9). Using (8) we have:
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)
=V, F((t), y()ih),

= TA(a(t)) + a(Va f(@(t). y(1)), Ve falt = 7).yt = 7))
— BV, £ (2(8), (1), V, f wlt = 7),y(t = 7))

= Va(w(t) + IV f (@ (0), y(0))|
+ SV f(at =)yt = D)
— SIVaf @), y(8) = Vaf @t =), y(t = 7))
D190 yOIP ~ DIV ot =)t~ )
+ D119, 0, 90) ~ Yy (ale — 7).yt~ )P

(12)

Using the Lipschitz continuous gradient of V, f we have

SV Fa(®), y(e)IP

< al|Va f(2(t), y" ()]
+al[Vaf(a(t),y" (x(t) — Vaf ((t), y(t)]?
< al|Vaf(@(t), y" (@D + L2ally(t) — y"=(@®)[]*.

Using the same argument as in (11), we obtain

IS @0), 0) — Ty falt — 7).t 7))

< 22 (tt) — 2l = 7)1 + I®) — (e~ )I?)
2,33 t

<[ 19t = o).

Substituting the preceding relations into (12) gives (9), i.e.,
Va(a(t), y (1)

. e
<Vi(a(t) + Ve f(a(t = 7).yt = )"

= D9 lt) yO)IP ~ DIV, ot =)0t~ )

2,7_ 3 t
It = )P

+al [V f(@(t),y" (@) + Lally(t) -y ()]
= SIVaf @), 5(8) = Vaf(a(t = 1), y(t = 7))

< = DIV @@y O = SI19 ot = 7).yt = )P

3L22T63 [/t; IV f(x(u—7),y(u— T))HQdu}

4L%«

_|_

+ %IIV;EJ‘(QJ‘(t)yy*(x(t)))l\2 + Va(x(t), y(t))
= SIVef @(),y(t) = Vo (lt = 7). y(t = 7))
where the last inequality is due to the PL condition. O

We next present an important result that will allow us to
establish the convergence of the dynamics in (2). Our result
is a continuous-time variant of Lemma 5 in [32].

Lemma IIL2. Ler {V(t),W(t)}i>0 be two nonnegative
continuous-time sequences satisfying
t

W (u — 7)du,
u=t—r
(13)

V(t) < —oV(t)—aW(t—7)+ X

where o, T,0, and )\ are positive constants that satisfies

A
a——e?m > 0. (14)
o
Then we have
V(t) < V(0)e " (15)
Proof. First, using the integral by part we have
t oy ¢ t
/ VW, - Y® 7/ VW, a6
0
Second, using the fact that W (t) = 0 for all ¢ < 0 we
consider
¢
W (u
—o — d —l—)\/ / )d du
u= O e U= 0 s=u—T
s+T _
<of W= W =7) gugs
s=0 Ju=
t
Wil —
< —a Mdu + - / W(s— T)eU(HT)ds
u=0 e~ 0 Js=0
A bW —
< (a—2emy [ W=Dy o, 17)
o w=0 e—ou

where the last inequality is due to (14). Thus, by diving both
sides of (13) by e~°¢, taking integral both sides from 0, . . . , ¢,
and using Eqgs. (16) and (17) we obtain (15), i.e.,

V(t)e™ — V(0) <0 = V() < V(0)e ™.

Finally, we present the main result of this paper in the
following theorem, where we will show that the sequence
{z(t),y(t)} returned by the gradient descent-ascent dynam-
ics in (2) converges exponentially to the optimal solution of

).

Theorem III3 Suppose that Assumptions II.1— I1.3 hold.

Let v = =% and the step sizes o, 3 be chosen as
7 s
I
@ = Suars, p= 210L6 (18)
Then, we have
V(x(t),y(t) < eV (2(0), y(0)). (19)

Remark IIL.1. As « is inversely proportional to the delay
constant T, our result shows that the convergence rate scales
linearly with the factor 1/7, which is similar to the results
of gradient methods under delays in solving optimization
problems min,, f(x) [32].
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Proof. By using (8) and (9) we have
V(x(t),y(1))

= Vila(t)) + 5 Vale(t), (0)
< S IVed @),y @) +

= SIVef@lt = 7). y(t = )P

2L%«

Va(x(t), y(t))

+Bm§/HWMWﬂMwﬂwm

t—

219, £ o). w(e)I
219, £ (ot~ 7).t~ )
+3L%”ﬁz[/‘ww = 7w - )P
- 30 - IV o)y O
O Va0
As a direct result of the PL condition in (6), we have
LIV, @) y@)1? < ~L55Va(a(0), y(#))

= IVt @(t),y @ O)IP < =5 Via(t),
and therefore, rearranging the terms and using v > 1 gives
V(a(t),y(t))
<~ Va(a(t). y(0) — G Vi(()

”@W f R ACORTD)

L S\ EORREON

s [
_ %HVf(z(t — 1)yt — 1)

where the inequality is due to the PL condition. Recall that

—af

+[1+

I s
1T e T qupsy P T otorey
which gives
417 2L? 1
W _pad1- 2=~ —0
2 wB I g2

Thus we obtain from the equation above
V(a(t),y(t)
—po @
< 22V (@(t),y(0) - SVt =),y - 7)1

+ [H ?}L%aﬁ[/j ||Vf(a:(u77),y(u77))||2du}

We next apply the results in Lemma (II1.2) to the preceding

IV f(z(u—7),y(u—7))||*du

(o3

equation. Note that with o = “20‘, 2and \ = (1+3)L2rap?

we have the condition in (14) is satisfied. Thus using (15)
we obtain (19), i.e.,

Vix(t),y(t)) <

__ud
= ¢ 215.8+

™2V (2(0), y(0))

WV (x(0),y(0)).  (20)

O

IV. SIMULATIONS

In this section, we illustrate our theoretical results in
Theorem II1.3 by simulations. In particular, we will apply
the dynamics in (2) to optimize the following function

f(z,y) = 2® + 3sin?(z) sin®(y) — 4y — 10sin’(y),

which satisfies the PL conditions in (6). Regarding our
implementation, we consider the discrete-time variant of (2)
given as:

Tip1 =2 — oV fa(t —7),y(t — 7)),

Yer1 = Y + BV f(z(t —7),y(t — 7).
We will illustrate the convergence of the Lyapunov function
in (4) under different values of delay constant 7. In our
simulation, we will choose the step sizes a = 0.002, and
B =0.02.

First, we simulate the updates in (21) when 7 = 1 to
illustrate its convergence rate. Our simulation is presented in
Figure 1. In this figure, we observe that V' decreases to zero
exponentially fast, which agrees with our theoretical result
in Theorem III.3.

Second, we simulate (21) for different values of delays
to understand their impacts. In particular, we vary 7 =
1,2,4,6,8 and fix the number of iterations to 100 for each
simulation. The outputs of our simulations are shown in
Figure 2. We again observe that the rates of V' decay to
zero are exponential in all cases. In addition, as the values
of 7 increase the rates of convergence of V' decrease, which
agree with out theoretical results.

2n

«10% Evolution of function V over 50 time steps

st —]/

2571

V((L),y (1))

0 5 10 15 20 25 30 35 40 45 50
lterations

Fig. 1. Evolutions of V' through 100 iterations as 7 = 1.
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