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A periodic surface is one that is invariant by a two-
dimensional lattice of translations. Deformation modes
that stretch the lattice without stretching the surface
are effective membrane modes. Deformation modes
that bend the lattice without stretching the surface
are effective bending modes. For periodic piecewise
smooth simply connected surfaces, it is shown that the
effective membrane modes are, in a sense, orthogonal
to effective bending modes. This means that if a surface
gains a membrane mode, it loses a bending mode, and
conversely, in such a way that the total number of
modes, membrane and bending combined, can never
exceed 3. Various examples, inspired from curved-
crease origami tessellations, illustrate the results.

This article is part of the theme issue ‘Origami/
Kirigami-inspired structures: from fundamentals to
applications’.

1. Introduction

Slender structures in general and thin shells in
particular prefer bending over stretching. Ideally, thin
shells deform isometrically, i.e., inextensionally [1].
This geometric insight has important consequences. For
instance, in Saint-Venant’s theory of torsion, the twisting
of an open thin-walled prismatic bar produces an axial
deflection, a warping, given by

w(s) = a/s(x'y -xy"), (1.1)

where o is the twisting rate, (x(s), y(s)) parametrizes
the open section with a curvilinear coordinate s and
- =d/ds; see figure 1. To find w, one typically solves
stress balance for deflections of the form

X(s, z) = (— azy(s), azx(s), w(s)), 1.2)

© 2024 The Author(s). Published by the Royal Society. All rights reserved.
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Figure 1. Warping of an open thin-walled prismatic bar before (a) and after (b) twisting.

where z is the axial coordinate. Alternatively, it is possible to determine w from purely
geometric considerations by requiring that the thin-walled bar deform isometrically:

Proposition 1.1. Let x: (s, z) — (x(5), ¥(s), z) describe an open thin-walled prismatic bar, i.e. a
cylinder whose section (x, y) is a simple curve. Then, w is the unique warping such that x is an
infinitesimal isometric deformation of x.

Proof. It suffices to write the infinitesimal membrane strains of x produced by X and to set
them to 0. ]

Remark 1.1. For a closed section, warping w is ill-defined since it introduces a “dislocation’
af (x'y—xy") # 0; see also [2].

The above remark highlights the fact that isometric deformations, even if preferred, may not
be available. In the classical mathematical literature, one finds negative results that establish
the impossibility of isometric deformations for certain surfaces, often compact convex ones, e.g.
Cauchy’s, Dehn’s, Cohn Vossen’s and Pogorelov’s theorems on the rigidity of convex polyhedra
and surfaces [3,4]. One also finds positive results that construct specific isometric deformations
for specific surfaces, e.g. developable surfaces, surfaces of revolution, surfaces of translation,
Cohn Vossen’s surface and Connelly’s flexible polyhedron [4-8]. In the mechanics literature,
isometric deformations became of interest with the birth of shell theory and, notably, the
Rayleigh-Love controversy regarding the nature of dominant deformations in thin shells [9-11].
In theory, it is now understood that the shape of the strain energy functional of a thin shell
depends on whether or not its midsurface admits isometric deformations in conjunction with
applied loads and boundary conditions [12,13]. In practice, however, modern computational
tools have minimized the importance of specialized geometrically informed models (e.g. flexure
shells versus membrane shells) and have favoured more general models that, even if less
efficient, can indifferently handle membrane and flexure contributions (e.g. Reissner-Mindlin
theory).

Recent trends in the design, modelling and applications of compliant shell mechanisms in
general and origami in particular have renewed the interest in the theory of isometric deforma-
tions [14-16]. In that context, much of the current literature deals with polyhedral surfaces
composed of triangles or quads for which isometric deformations, sometimes referred to as
‘foldings’ or ‘rigid foldings’, can be constructed by solving the discrete kinematics of some
planar or spherical linkages [17,18]. A few more advance results, both positive and negative,
have also been obtained for certain intrinsically flat surfaces that are creased along line and
curve segments [19-21]. In comparison, the aim of the present paper is to report on, and
extend, a set of results regarding the availability, or impossibility, of isometric deformations for
periodic surfaces, i.e. surfaces that are invariant by a two-dimensional lattice of translations.
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Best known examples of such surfaces are origami and origami-like tessellations such as the
Miura ori and the ‘eggbox’ pattern. But other surfaces including curved-crease variants or
smooth, uncreased, variants are well within the scope of the paper. Indeed, the relatively weak
hypothesis of piecewise smoothness will allow us to invariably handle smoothly ‘corrugated’,
curved-crease and polyhedral surfaces be they intrinsically flat or not. This unprecedented level
of universality in the treatment is made possible by proof techniques that are free of specific
constructs (e.g. spherical linkages, torsal rulings, conjugate nets) and instead use high-level
arguments (e.g. symmetry, integral theorems, continuity). The other main hypothesis is that of
simple connectivity: the theory excludes slits and cut-outs (e.g. kirigami).

Much of the interest surrounding compliant shell mechanisms and origami tessellations
resides in the fact that they can effectively stretch and effectively bend without actually stretch-
ing [22,23]. The main result of the proposed theory then characterizes how modes of effective
stretching of effective membrane strain E interact with modes of effective bending of effective
bending strain y.

Theorem 3.1. Let a simply connected piecewise smooth periodic surface x admit an effective
membrane strain E and an effective bending strain y, then

E11)x20 = 2En)12 + Enx11 = 0. (1.3)

The theorem, quite reminiscent of a perturbative Gauss theorem [24], establishes an orthogonal-
ity relationship between the linear spaces of membrane modes and bending modes: the larger
one space is, the smaller the other one. For instance, if the surface is free to stretch in direction 1
then it cannot bend about direction 1; if it can twist then it cannot shear, and so on. In particular,
a surface can have no more than 3 modes, bending and membrane combined (corollary 3.1).

The theorem admits another interpretation best seen when it is written in a principal basis of
E since having Ej; = 0 implies

n En (1.4)

That is, effective normal curvatures in the principal directions of effective membrane strain
occur in equal and opposite proportions to the effective principal membrane strains. This is
an identity between effective in-plane and out-of-plane Poisson’s coefficients and, as such, has
appeared and been proven for a number of periodic polyhedral surfaces with four parallelo-
gram panels per unit cell [25-31]. Theorem 3.1 shows that in fact this identity is much more
general than previously foreseen.

Two versions of theorem 3.1 have recently appeared in [32], one for smooth graphs and
one for a class of ‘unimodal” asymptotically isometric deformations. Here, a different version is
presented for piecewise smooth surfaces in an asymptotics-free context. Beyond the proof, the
main novelty resides in how theorem 3.1 is applied to obtain various results on the flexibility
and rigidity of periodic surfaces, namely, corollary 3.1 and examples 3.1-3.7. But first, a crucial
lemma of symmetry must be stated and proven.

2. The symmetry lemma

The purpose of this first section is to prove a property of symmetry for the differential operator
of infinitesimal isometries. Basically, it is a property of symmetry of the equation ¢,, = 0 albeit
expressed for infinitesimal rotations rather than infinitesimal displacements. This property
is not absolute and holds for a class of admissible deflections acting on periodic surfaces.
Hereafter, the notions of admissibility and periodicity are respectively introduced. The lemma
follows.
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(a) Admissibility
Definition 2.1. A surface is a (continuous) piecewise smooth map

x:R?>Q - R
(51/ §2) = X(gl/ 52)/ (21)

whose partial derivatives x, = 0x/0,, are linearly independent wherever they are defined.

The adopted definition is admittedly reductive. In practical terms, questions regarding
self-contact and self-intersection are ignored and multi-charted surfaces are disregarded as a
technical, non-essential, complication. On the plus side, a surface can be smooth or creased,
where crease lines are lines across which the tangent plane experiences a jump. Also, the
partials of a tensor-valued field such as x are denoted with a subscript as in x; and Xj.
Otherwise, the subscript denotes a coordinate or a component as in £; and ¢;,. Greek indices run
over {1,2}.

Definition 2.2. An admissible deflection of a surface x is a (continuous) piecewise smooth
field x that is smooth wherever x is smooth. The infinitesimal strain ¢ is then the 2 x 2 matrix of
coefficients

6 = (0 %,) + (5, ,). 22)

An admissible deflection x is an infinitesimal isometry if g, = 0 in which case it is of the form

X, =WAX,, (2.3)

for some unique field of infinitesimal rotations w.

Thus, admissible deflections can have discontinuous derivatives at crease lines that produce
further folding or unfolding. In particular, infinitesimal rotations are not expected to be
continuous at crease lines. That being said, the continuity of the deflection and of the surface
constrain jumps in rotations to be admissible in the following sense.

Definition 2.3. A piecewise differentiable field w is an admissible field of infinitesimal

rotations of a surface x if s — w A dx/ds is single-valued for any s — &(s) € R? that parametrizes
a line of discontinuity in the tangent plane of x.

It is now possible to fully characterize infinitesimal isometries using rotations instead of
deflections. This will prove very convenient in the following.

Lemma 2.1. On a simply connected domain, a piecewise differential field w is the field of
infinitesimal rotations of an infinitesimal isometry x of a surface x if and only if it is admissible
and solves

DaW=WrAX|— Wi AX>=0. (2.4)

Proof. Suppose w is the field of infinitesimal rotations of an infinitesimal isometry X of a surface
x, then x,, = w A X, implies Dyw = 0 since X,,, = X,,, and similarly for x. The tangent dx/ds along
a crease line s+ £(s) is single-valued by continuity of x. Similarly, dx/ds is single-valued but
dx/ds = w A dx/ds meaning that w is admissible.

The reciprocal is a consequence of the Poincaré lemma for simply connected domains and is

admitted here. 1
The D' in operator Dy is for Darboux who studied some of the properties of symmetry that

infinitesimal isometries afford, e.g. Dyw =0 = Dyx =0, and if X is an infinitesimal isometry

of x then so is x to X [6,7,33]. The main purpose of this section is to prove yet another property
of symmetry of D, namely that it is a symmetric bilinear form acting on periodic admissible

fields of rotations.
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(b) Periodicity

Definition 2.4. Let Ty, T, > 0 and let R = ]0, Ty[ x 10, T5[. A field X : R* — R® is R-periodic if
X(§1+mTy, &+ nTo) =x(§y, &), (2.5)

for all (£, £,) € R? and all integers (m, n). A surface x is R-periodic if it is of the form

x(§1,55) = &1p1 + £ + X(61, 5, (2.6)

where p; and p, are linearly independent and X is periodic.

Periodicity is always understood in reference to a period R which is why ‘R-periodic’ is
hereafter shortened to “periodic’. One could also refer to R as a “unit cell’. But perhaps the unit
cell better designates the image of R or the image of R projected over the plane (py, p,). In any
case, here, period and unit cell are used interchangeably and what is meant, should it matter,
should be clear from context. Note also that the definition differentiates between a periodic
surface and a periodic field.

Definition 2.5. Let x be a periodic surface. An infinitesimal isometry X is an effective
membrane mode if its field of infinitesimal rotations w is periodic and its effective membrane strain
E of components

E,, =

(X, [%,) ; (S Xy, [X,) 2.7)

is not zero, where [ denotes the mean value over the period R, namely

_ 1
/ = Area® L - dde,. (2.8)

Note that field x is not periodic for if it was, E would vanish. It is however “morally” periodic,
i.e. periodic modulo a linear map as in

x(&1, &) = Epr + Epo + ?;((51/ &), (2.9)

where X is periodic. In that case, the action of (p;, p,) on the unit cell (p;, p,) defines the effective

membrane strain, namely

(P Py + Py B

By, = Du Bl BB, (2.10)
Note also that adding a constant to w amounts to rotating (p;, p,) without changing E. Thus,
one could require (py, p,) be in the plane (py, p;). Then E describes a homogeneous deformation
of that plane whereas Xisa periodic correction that is necessary to preserve lengths, infinitesi-
mally speaking.

Definition 2.6. Let x be a periodic surface. An infinitesimal isometry X is an effective bending
mode if its field of infinitesimal rotations w is periodic modulo a linear map and its effective
bending strainy of components

X#VE%</wvAfxﬂ+/wﬂA/xv,n> (2.11)

is not zero, where n is the unit normal to (/x1, /Xo).

It is worthwhile to justify, or rather motivate, the definition of the effective bending strain x
adopted above. To do so convincingly, one must appeal to an asymptotic argument regarding
the linear nature of w and x for £ large enough relative to the unit cell dimensions T,, or
conversely, for T, small enough relative to €.
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Proposition 2.1. Let x be an effective bending mode of a periodic surface x and let w be its
field of infinitesimal rotations. Then,

ex(&/e) — %5,& f w, A f X, (2.12)

Proof. By definition, w =W + {,W,, for some periodic, piecewise differentiable and necessarily
bounded field w and two constant vectors W,. Clearly, W, = f'w,. Then, for € — 0,

1
e2k(£/€) - €2%(0) =¢ f & X (s&/e)ds
0

1
=e§aj; wi(sé/e) Ax,(s&/€)ds

1

1
=E,EsWs A / SX,(s&/€)ds + €§af w(sé/e) A X (sé/e)ds
0 0

1
—>§a§3Wﬁ/\/ S/Xa+0
0

1
=258 Wi ! f Xeo (2.13)

where the first limit is given by the Riemann-Lebesgue lemma and the second is due to
boundedness.li

In other words, the effective bending strain y is the second fundamental form of a limit
quadratic deflection W, A p,£,&,/2 obtained for infinitely fine corrugations. One could obtain a
similar characterization of the effective membrane strain E but this is not pursued here.

(c) Statement and proof

It is time to state and prove the lemma of symmetry. Both lemma and proof are taken from [32]
with very minor modifications and are reported here for completeness.
Lemma 2.2. Let x be a periodic surface. Then,

(w, Dxw) = | (W, Dyw), (2.14)
Jema- |

for any w and w that are periodic and admissible.

Proof. Let {R}1<i<n be a finite set of disjoint non-empty open connected sets such that
x is smooth over R; and such that U;R;= R, where R =10, Ty[ x |0, To[ is the period of x. Let
OR;;=Rin(R;+R), where R = TyZ x T,Z is the periodicity lattice. Let s— &(s) parametrize one
of these intersections and let the brackets [ -] denote the jump in any quantity across the
intersection. Then,

[{w, w A dx/ds)] = ([w], w A dx/ds) since w is admissible
=(w,dx/dsA[w]) by permutation symmetry
=(w, [dx/ds A w]) by continuity of x
=0 since w is admissible . (2.15)

Now write
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ﬁ (@, Dyw)

= / (w, Wy A X1 — W1 A Xp) by definition of D
R

= f (w, (W AX1), — (W AXp),) by Schwarz theorem
R

=Zg§ (w, w A dx/ds) - / (o, W A X7) — (w1, W A X2)) by the divergence theorem
T JOR; R

=Zﬁ (@, w A dx/ds) + / (w, Dyw) by permutation symmetry
7 JOR; R
i;j aR,-ij’W A dx/ds)] + ﬁ(wf Dyw) since OR; = U; OR;;
= , Dx b ti 2.15).
ﬁ (W, Dyw) y equation (2.15) 216
|

Note that, by definition, periodic surfaces have a simply connected period R. This is a critical
hypothesis without which the lemma fails in general. Indeed, the application of the divergence
theorem would produce other boundary terms that do not necessarily vanish, not unless w
and w were required to satisfy some specific boundary conditions. Mechanically speaking,
the presence of holes introduces some boundary conditions whose material-dependent nature
cannot be handled within the present purely geometric framework.

3. The main theorem and its implications

Stating and proving the main result, i.e. theorem 3.1, is now a straightforward algebraic matter.
Various implications regarding the flexibility and rigidity of particular periodic surfaces follow.

(a) The main result

It is very tempting to apply the symmetry lemma to one effective membrane mode and one
effective bending mode. The result follows.
Theorem 3.1. Let x be a periodic surface. Then,

Enixar = 2Ev)1n+ Exxi1 =0, 3.1

for any effective membrane strain E and any effective bending strain y.

Proof. Let w be the infinitesimal rotation of an effective bending mode of strain y. Then,
w=w +§,W, for some periodic, piecewise differentiable and admissible W and two constant
vectors W,. Let w, be a constant vector. Then,

0= / (o, Dxw) since Dyw =0
= f {w,, DyW) + / (w, W) A X1 — W1 AXp) by linearity
= / (W, Dyw,) + f (o, Wa AXq — W1 AXp) by symmetry of D
= (o, W2 A / x1 - WA / Xo) since Dyw, = 0.

(3.2)

Therefore,

!
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W; A le =W A sz. (33)

Projecting over [X; and /X, it comes that W; and W, are both in the plane of (/X;, /'X;). Now,
let w be the infinitesimal rotation of an effective membrane mode of strain E. Then, by the same
logic,
0= / (w, Dyw) since Dyw =0
= / (w, DyW) + / (w, W A X1 — W7 AXp) by linearity

= / (W, Dyew) + / {(w, W A X1 — Wi AXp) by symmetry of D

= /(C(), WrAx1— WA X2> since DXC() =0
=(Wj, f W AXp) —(Wp, f W AXq) by permutation symmetry. (3.4)
Finally, let p, = /X, and p, = f@ AX,, and write
E22W1 A P E]z(wl A ) + Wz A pl) + E11W2 A )
=W A (P2 P2)P1 — {P1, P2)P2) + W2 A ((P1, P1)P2 — (P2, PUP1)
=WiA(P2A (P1AP2) —~ W2 A (P A (P1 AP2))
= = (W, p)pi AP2+(Wo, P)P1 A D,
=0, (3.5)

where the definition of E, the symmetry (3.3), the formula of the triple cross product to factor
then to expand, the orthogonality W, L p; A p, and equation (3.4) have been used, respectively.
The component parallel to p; A p, is the desired identity. ]

Corollary 3.1. Let x be a periodic surface. Let {E} and {y} be the linear spaces of effective
membrane and bending strains. Then,

dim {E} + dim {y} < 3. (3.6)
Proof. By theorem 3.1 and the rank-nullity theorem. |

(b) Examples

Example 3.1. The plane x: (&, &) — (€1, §,,0) is a periodic surface. For any symmetric matrix
X, the deflection x: (&}, &) — (0,0, x,v€,£,/2) is an effective bending mode of effective bending
strain y by definitions 2.2 and 2.6. Now let E be an effective membrane strain, then for any y,

Er1)x2=2En)12+ Enxnn = 0. (3.7)

Hence, E = 0. In other words, the plane admits no effective membrane strains. Theorem 3.1
appears to say that: since the plane is so flexible out of the plane, it must be completely stiff in
the plane. See figure 2a—d.

Example 3.2. Let f be a (continuous) piecewise smooth non-constant periodic function and
letx: (&1, &) — (&1, &y f(§1)) be a ‘simply corrugated’ periodic surface. Then, the deflection

&
x:(6,8) P ( £20, - f(&) (3.8)

is an effective membrane mode of effective membrane strain E with components
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(h)

Figure 2. Orthogonality illustrated: (a) a plane and (b-d) its effective bending modes; (e) a simple corrugation, () its
effective membrane mode and (g,h) its effective bending modes. By corrugating the plane, mode (b) is lost but mode (f) is
gained.

Ej = /frz #0, E;p=E»p=0 (3.9)

by definitions 2.2 and 2.5. Then, by theorem 3.1, any effective bending strain yx has yx =0.
The theorem thus maintains a trade-off between flexibility and rigidity in- and out-of-plane.
Compared to the plane (example 3.1), the corrugation f grants the periodic surface an effective
membrane mode but takes away an effective bending mode; see figure 2e—h. This is but a
re-interpretation of Gauss theorem albeit using global constructs rather than a local one, i.e.
effective modes versus Gaussian curvature.

The surfaces exemplified next are surfaces of translation: they are obtained by translating one
curve of profile f along another curve of profile g. The construction is illustrated in figure 3.

Example 3.3. Let f and g be two (continuous) piecewise smooth non-constant periodic
functions and let x: (&}, &) — (&1, &, f(&1) +8(&,)) be a ‘doubly corrugated’ periodic surface.
Then, by direct verification of definitions 2.2 and 2.5, the deflection

& ) 19 )
x:(sl,szw( f £ - f gz,g(§z)—f(§1)) (3.10)

is an effective membrane mode of effective membrane strain

‘/‘frz 0
[E] = .
2
0 - / & (3.11)

Then, by theorem 3.1, any effective bending y satisfies

2
Xo_Je (3.12)
xu  ff
should the ratio be defined. Thus, the double corrugation couples extension and contraction
in directions (1,0) and (0,1) in the effective membrane mode and, necessarily then, couples the
bending in the same directions and in the same proportions but in the opposite way.
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(@) ()
. f .' g
/ 8
Figure 3. Two surfaces of translation: in both cases f is piecewise quadratic and g is piecewise linear but in case (a), the

profiles are both perpendicular to the plane of periodicity (example 3.3 and figure 4a—d). By contrast, in case (b), one profile
belongs to the plane of periodicity (example 3.4 and figure 4e—h).

——
EEE»

Figure 4. Orthogonality illustrated: (a) a surface from example 3.3 where f is piecewise quadratic and g is piecewise
linear; (b) its effective membrane mode, (¢.d) its effective bending modes, (e) a surface from example 3.4 with the same f
and g; (f) its effective membrane mode; (g,h) its effective bending modes. However modes (5,f) couple extensions, modes
(¢,g) couple curvatures in the opposite way. Modes (dh) preclude effective shear membrane modes. Surfaces constructed by
triangulation; code available online [34].

(@)

The ‘eggbox’ pattern is a particular case where f and g are both piecewise linear (e.g.
f'=g"=sgn(cos)). A hybrid curved-crease straight-crease variant is obtained by letting f be
piecewise quadratic and g be piecewise linear as shown earlier on figure 34. The corresponding
modes of deformation are shown on figure 4a—d. As expected, the longitudinal and lateral
effective membrane strains are of opposite signs, i.e. the surface stretches laterally when
contracted longitudinally (panel b). Accordingly, the effective normal curvatures are of the same
sign, i.e. the surface bends into a dome (panel c).

Example 3.4. Let f and g be two (continuous) piecewise smooth non-constant periodic
functions and let x: (&, &) — (&1, &+ f(&1), g(&,)). Suppose {g' =0} is (essentially) empty. Then,
by direct verification of definitions 2.2 and 2.5, the deflection
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] & " & 1
x:(§, &) = f,—ﬂm+§—/1E (3.13)
is an effective membrane mode of effective membrane strain
2
0
[E] = f 0
0 1 (3.14)

Thus, by theorem 3.1, any effective bending y satisfies

Xe 1

x LY

should the ratio be defined. Therefore, if y is an effective bending strain then det y < 0. In other
words, for any f and g as stated, x bends ‘anti-clastically” into a saddle. See figure 4e—/.

The Miura ori is a particular case where f and g are both piecewise linear (e.g.

f'=g =sgn(cos)). Here too, a hybrid curved-crease straight-crease variant is obtained by

letting f be piecewise quadratic and g be piecewise linear as shown earlier in figure 3b. The

(3.15)

corresponding modes of deformation are shown in figure 4e—/. Indeed, the longitudinal and
lateral effective membrane strains are of the same sign, i.e. the surface stretches laterally when
stretched longitudinally (panel f). Accordingly, the effective normal curvatures are of opposite
signs, i.e. the surface bends into a saddle (panel g).

Example 3.5. The surfaces exemplified so far all admit an effective bending mode that is a
pure twisting, i.e. with y;; = ¥ =0 and y;; # 0; see figures 2d-h and 4d-h. This is because all of
them are surfaces of translation. Here is the general case.

Proposition 3.1. Let x:(§,&)—a(5)+p(&) be a periodic surface. Then,

w : (&1, &) — a(&;) — B(§,) is the infinitesimal rotation of an effective bending mode of strain

0 ufwA/ﬁn
nfwA/ﬁn 0 ' 616

Proof. By direct verification of definition 2.6. |
Then, by theorem 3.1, for any periodic surface of translation, if E is an effective membrane
strain, then Ej, = 0. In other words, since these surfaces can twist, they cannot shear (relative to

[x] =

the same axes).
At this stage, it is worthwhile to recall that definition 2.1 identifies surfaces and their
parametrizations for convenience. That being said, the results of the theory, and theorem 3.1

in particular, remain meaningful if stated for a surface x(R?) rather than for a parametrization x.
Indeed, it is possible to define the effective membrane and bending strains in a parametrization-
independent fashion as one would in continuum mechanics for instance. It is equally possible to
state theorem 3.1 using index-free notation, e.g. for any effective membrane and bending strains
E and y, one has

. d _
}gr}) €T det (E+ty) =0, (3.17)
or
trace(adj(E)x) =0, (3.18)

where adj(E) is the adjugate of E.
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Example 3.6. Going back to example 3.3, reparametrize the considered surfaces using
x: (&, &) (&1, &+ 7€y f(&) +g(€,+¥E)) where y = To/T; is the ratio of the period of g to that
of f. Then, the deflection

& n L+rér
x: (&, &)~ (f f5 _/ gzr g(§2+7§1)_f(§1)) (3.19)

is an effective membrane mode of effective membrane strain
2 a2 2 ) o)
[E]_/f yfg Yfg _[1 ylff 0 [1 0]
- : S 01 1/
-y f gz _ f gz Y

2
0 - f J (3.20)

as one would expect by transforming the components from example 3.3. Similarly, by theorem
3.1, any effective bending yx satisfies

(‘/‘frz_72/8’2))(22—27/(%’2)(12— ‘/g,z)(n =0, (3.21)

which can be rearranged into

f Pxm- f g2 X+ 2712+ x11) = 0, (3.22)

again, as one would expect from example 3.3 by transforming the components of y like a
bilinear form.

Example 3.7. Let x be a periodic surface that admits an effective membrane strain E. The
membrane strain being symmetric, there exists an orthonormal basis in which its matrix is
diagonal. Then, in that basis, by theorem 3.1,

Enxn+Exnxn =0, (3.23)

for any effective bending strain y. Re-arrange, if possible, into

En __X» (3.24)

Eu
to deduce that, for any (piecewise smooth, simply connected) periodic surface, the ratio of
effective principal membrane strains is equal and opposite to the ratio of effective normal
curvatures in the principal directions of effective membrane strain.

(c) Further discussion

Identity (3.24) has been proven and verified numerically in a number of particular cases [25-
31,35]. There is some confusion however regarding interpretation and that warrants further
clarification. Suppose that the effective membrane strain has Ej, = 0. In that case, identity (3.24)
holds albeit in a basis that is not necessarily orthonormal. But then again, identity (3.24) also
holds in an orthonormal basis aligned with the principal directions of E. Both things can be true
but perhaps the term ‘Poisson’s coefficient’ is better reserved for the value that —E»,/E1; takes in
an orthonormal basis.

It is seen that theorem 3.1 is mainly used in two ways. Either it leverages the existence of
some effective membrane modes to eliminate certain effective bending modes or it leverages the
existence of some effective bending modes to eliminate certain effective membrane modes. It
does so as if to preserve a measure of flexibility. Now, corollary 3.1 ensures that

dim {E} + dim {x} < 3, (3.25)
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but in all of the above examples, the equality holds. One could probably conjure examples
where the strict inequality holds (e.g. a Miura ori interspersed with thin flat strips) but such
‘intentional counter-examples” are not pursued here. Harder to produce are examples where the
number of effective membrane modes, i.e. dim {E}, exceeds that of effective bending modes, i.e.
dim {¥}. More importantly, it is worthwhile to recall that the topology of the surface, its simple
connectedness in particular, is a main ingredient of the theory. Should the surface have holes
or handles, integrability becomes more demanding and the extra integrability requirements
provide extra rigidity and bring down the number of effective modes as was the case in the
introductory example of proposition 1.1. Conversely, if the surface is not path-connected (e.g. a
lattice of spheres), then the theory fails and dim {E} + dim {x} can be trivially as high as 6.

There is in fact one other way in which theorem 3.1 can be useful and that is in the
spirit of proposition 2.1. Consider for instance the case of a periodic surface that admits a
unique effective membrane strain E. Then, one can claim that the infinitesimal isometries of

x°: & ex(€/e), in the limit € — 0, produce perturbations X to the metric of the plane X = lim x°
€e—0

such that

akE,,,

<X;,u Xv> + <X‘W Xpt) 3
B v 70 .26
: (326)
where a: € — a(£) is a scalar field that controls the amplitude of the effective membrane mode.
Then, by theorem 3.1, the correction x to the second fundamental form of X is to be found

within the linear space defined by

Ev1xo2 = 2En 12+ Exa 11 = 0. (3.27)

Such an asymptotic description of the isometries of a periodic surface has been successful in
predicting the folded shapes of several origami tessellations, see, e.g. [36,37].

4. Conclusion

How do periodic surfaces bend then? The proposed theory does not provide a direct answer.
Instead, it characterizes how effective membrane modes and effective bending modes interact
and shape each other through an orthogonality relationship:

VE, x, trace(adj(E)y)=0. (4.1)

Thus, by gaining an effective membrane mode, a periodic surface loses an effective bending
mode so that the number of independent modes, membrane and bending combined, can never
exceed 3.

The theory makes a certain number of assumptions with the main one being that of simple
connectedness. The relationship between topology and rigidity is thematic of many structural
problems as illustrated in the introductory example or in Saint-Venant’s theory of torsion more
generally and has been leveraged in the context of origami structures in particular; see, e.g. [38].
The present theory hopefully provides a new appreciation of how topology can contribute to
geometric rigidity, as well as to elastic stiffness.

The proposed theory is purely geometric and its relevance to the behaviour of elastic shells
is limited to thin shells. On that front, preliminary finite element simulations suggest that as the
thickness of a periodic shell is reduced, the predictions of the theory become more accurate, see,
e.g. [32].

The techniques used in the proofs are believed to be new to the field of origami and
compliant shell mechanisms and rely on some integral identities that are indifferent to
smoothness or developability assumptions. They do rely on something however and the crucial
symmetry lemma relies on periodicity, or at least ‘closure’ in the sense that the application of
the divergence theorem does not produce ‘loose” boundaries. This is quite reminiscent, albeit
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under stronger smoothness hypothesis, of the proof of rigidity of smooth convex compact
surfaces that uses a certain integral formula of Blaschke, see [4]. In reality, the symmetry lemma
is slightly stronger than stated in lemma 2.2 for it also applies under boundary conditions of
periodicity modulo a rotation. These are, for instance, the conditions relevant to the study of
generic origami patterns (finitely) folded out of a periodic crease pattern’, e.g. Huffman grids,
Ron-Resch pattern and Yoshimura pattern [39]. Here is that stronger version.

Lemma 4.1. Let Ty and T be positive real numbers and let A; and A, be two unitary linear

maps of R®, Let x be a quasi-periodic surface, i.e. such that

Xo(€1 +mTy, & +nT) = ATAX(§), &) 4.2)

Then,

f (@, Dyw) = f (W, D), (43)

for any w and w that are admissible and quasi-periodic.

Remark 4.1. The average remains well-defined since (Ma, (Mb) A (Mc)) =(a,bAc) for any
unitary linear map M.

Proof. Same as lemma 2.2 along with the above remark. |
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