Exploration of TPU Architectures for the Optimized
Transformer 1n Drainage Crossing Detection

Amirhossein Nazeri*
Dept. of Automotive Engineering
Clemson University
Clemson, SC, USA
anazeri@g.clemson.edu

Iraklis Anagnostopoulos
Sch. of Electr., Comp., and Biomed. Engr.
Southern Illinois University
Carbondale, 1L, USA
iraklis.anagno @siu.edu

Abstract—Understanding hydrologic connectivity within land-
scapes is crucial for managing environmental challenges. De-
spite advancements in high-resolution Digital Elevation Models
(DEMs) derived from Light Detection and Ranging (LiDAR) tech-
nology, accurately delineating hydrologic connectivity remains
challenging due to disruptions caused by virtual flow barriers,
such as roads and bridges. This study addresses this issue by
enhancing the detection performance and reducing the latency
of Transformer models for image detection of drainage crossings.
We retrained a Detection Transformer (DETR) with a specialized
recipe to improve culvert detection performance. Owing to
the high susceptibility of LiDAR-based DEMs to measurement
noise and varying data modalities, we conducted extensive data
preprocessing to ensure DETR compatibility with the culvert
dataset. Ablation studies on input size indicate that the model
performs optimally with 800800 pixel inputs, demonstrating its
adaptability to new data modalities. Additionally, we employed
Tensor Processing Units (TPUs) to decrease the model’s latency.
We developed a novel strategy to optimize TPU architecture, uti-
lizing genetic algorithms to expedite the discovery of optimal TPU
configurations for detection deployment. Our model surpasses
the performance of previous models on the same task. This work
not only addresses the computational complexities of deploying
advanced object detection in environmental contexts but also
significantly contributes to the precise and efficient monitoring
of hydrologic connectivity.

Index Terms—Object detection, Detection Transformer, DETR,
TPU, Digital Elevation Model, LiDAR, hydrologic connectivit,
culvert

I. INTRODUCTION
Understanding hydrologic connectivity within landscapes
is crucial for addressing various environmental management
challenges, such as tracking nutrient transport in diffuse pollu-
tion runoff. This spatial characterization often relies on hydro-
topographic delineation facilitated by Geographic Information

This research work is done in the Smart High-performance and Ubiquitous
Systems (SHU’S) lab at the University of North Texas.
* These authors contributed equally to this work.
Corresponding author: Tong Shu, Department of Computer Science and
Engineering, University of North Texas, Denton, TX 76207, USA (ORCID:
0000-0001-8617-1772)

Denys W. Godwin*
Graduate School of Geography
Clark University
Worcester, MA, USA
dgodwin@clarku.edu

Michael I. Edidem, Ruopu Li
Sch. of Earth Systems and Sustain.
Southern Illinois University
Carbondale, 1L, USA
michael.edidem @siu.edu, ruopu.li@siu.edu

Aikaterini Maria Panteleaki*
Sch. of Electr, Comp., and Biomed. Engr.
Southern Illinois University
Carbondale, IL, USA
aikaterinimaria.panteleaki @siu.edu

Tong Shuf
Dept. of Computer Science and Engr.
University of North Texas
Denton, TX, USA
tong.shu@unt.edu

Systems (GIS) and digital terrain models (DEMs). In recent
years, high-resolution DEMs, primarily derived from Light
Detection and Ranging (LiDAR) technology, have shown
exceptional capabilities in depicting topographic details with
high spatial precision, surpassing conventional DEMs [1].
Despite the advancements in LIDAR DEMs, accurately delin-
eating hydrologic connectivity remains a significant challenge.
Studies have indicated that drainage flowlines derived from
LiDAR DEMs are often disrupted by virtual flow barriers, such
as roads and bridges, which act as ‘digital dam’ [2], [3]. This
issue is particularly pronounced in agricultural regions where
rural road networks fragment the gentle terrain. Research
has demonstrated that incorporating drainage structures like
drainage crossings and bridges can enhance the accuracy of
delineating drainage flows across landscapes [4], [5]. However,
datasets of these drainage structures are frequently unavailable
or inconsistent in format and quality.

Thus, there is a pressing need to develop an efficient
approach to accurately and comprehensively map drainage
structures, thereby improving the delineation of hydrologic
connectivity using high-resolution LiDAR DEMs. Therefore,
Due to the low quality and complexity of existing drainage
structure datasets, there is a significant need to explore state-
of-the-art object detection technologies to accurately identify
and locate drainage structures. This approach will help to
compensate for the inadequacies and poor quality of current
datasets.

Object detection is an essential function in computer vision,
with uses in various fields from autonomous driving and
robotics, to medical and agriculture. It involves identifying
and pinpointing objects within an image. Over time, various
technologies and methods have been created to improve the
accuracy and efficiency of object detection systems. Tradition-
ally, these systems have heavily depended on Convolutional
Neural Networks (CNNs). However, recent advancements have
introduced transformer-based approaches, which provide sev-

eral benefits over the traditional methods. CNNs have been
fundamental to object detection for many years due to their
ability to capture spatial hierarchies in images through convo-
lutional layers [6]-[8]. Notable CNN-based object detectors
include Faster R-CNN and Single Shot MultiBox Detector
(SSD). SSD, proposed by Liu et al. in 2016 [9], aims to
improve the speed of object detection without significantly
compromising accuracy. SSD uses a single-stage network that
directly predicts object classes and bounding box offsets for a
fixed set of default boxes of different scales and aspect ratios.
This approach significantly reduces computational complexity,
making it suitable for real-time applications. However, SSD
can struggle with detecting smaller objects compared to two-
stage detectors like Faster R-CNN. Introduced by Ren et al.
in 2015, Faster R-CNN [10] transformed object detection
by combining a Region Proposal Network (RPN) with the
Fast R-CNN detector [11]. The RPN generates high-quality
region proposals, which the Fast R-CNN then classifies and
refines. This two-stage process enables accurate localization
and classification, albeit with a higher computational cost.

Faster R-CNN had shown to be the de-facto technology
among CNN-based object detectors. Despite its pioneering
advancements in object detection, Faster R-CNN has notable
drawbacks, particularly when used in various detection sce-
narios. One major issue is its computational inefficiency. The
two-stage process, which involves generating region proposals
followed by region classification and refinement, significantly
increases processing time, making it less suitable for real-
time applications. This complexity also requires substantial
hardware resources, limiting its use on devices with limited
computational power. Moreover, while Faster R-CNN is highly
accurate in detecting larger objects, it can struggle with smaller
objects and densely packed scenes, where the region proposal
network might miss fine-grained details. This is problematic
in applications like autonomous driving or surveillance, where
detecting small or closely spaced objects is crucial [12], [13].
Additionally, the model’s performance may degrade in scenar-
ios that require rapid adaptation to dynamic environments due
to the static nature of its training process.

Transformers, initially crafted for tasks in natural language
processing, have made significant strides in computer vision
recently. The advent of Vision Transformers (ViT) [14] and
their subsequent application to object detection have marked
considerable advancements in both efficacy and performance.
In 2020, Carion et al. [15] introduced a transformative model
for object detection known as DETR, which incorporates
the use of transformers. This innovative system forecasts
the locations and categories of objects by directly decoding
image features, conceptualizing the task as one of predicting
a collection of items. The DETR model streamlines the object
detection process by forgoing conventional mechanisms such
as Region Proposal Networks (RPNs) and Non-Maximum
Suppression (NMS), thereby diminishing the likelihood of
mistakes and streamlining operations. However, most recent
research revealed that DETR faces some limitations when it
comes to detecting small objects [16]. This is because the

transformer in DETR primarily relies on semantic information
from the highest level of abstraction in the deep network,
which may not include the detailed information such as
edges, texture, or color gradients that are crucial for locating
small objects. This issue is even more critical when utilizing
transformers for aerial applications where most instances are
small objects within the images. On the other hand, DETR may
require more training epochs to converge and can be slower
at detecting small objects [17].

The advent of transformer-based models in Deep Neural
Network (DNN) applications [18]-[20] has revolutionized
domains such as computer vision. These models, however,
require accelerators specifically designed to meet their compu-
tational demands. Tensor Processing Units (TPUs) [21] have
emerged as a promising choice for such hardware accelerators,
provided that their attributes are carefully selected for specific
tasks. To enhance the performance of Transformer models
for image detection of drainage crossings, we developed a
novel strategy to optimize TPU architecture. Recognizing the
computational challenges in deploying cutting-edge object
detection technologies and auto-tuning the TPU architecture
in a huge configuration space [22], [23], we leveraged ge-
netic algorithms to streamline the discovery of optimal TPU
configurations for the detection deployment. Building upon
the state-of-the-art cost model, Scale-Sim [24], this method
aimed to drastically reduce the total training cycles, thereby
diminishing latency and boosting efficiency. Our work not
only contributes to the precise and efficient monitoring of
hydrologic connectivity, but also addresses the computational
complexities of deploying advanced object detection in envi-
ronmental contexts.

Contribution:

o Demonstrate ability of Pretrained DETR to adapt to
LiDAR data for drainage crossing data: Training from
the pre-trained model weights shows that the model is
capable of predicitng bounding boxes which are not
defined by object boundaries and instead depend on an
intersection point of geographic features.

o Enhance dataset preprocessing for compatibility with
DETR object detection model: Customized the COCO
dataloader to process high-precision geographic data.

o Development of Optimized TPU Architecture: Created a
framework for efficiently configuring TPUs specifically
tailored for Transformer-based object detection models,
such as DETR.

II. RELATED WORK

A. Object Detection

Advanced object detection networks are widely used for
remote sensing applications essential for predicting, mapping,
and mitigating natural disasters (e.g. flooding, fires, etc.),
socioeconomic service delivery, or general urban and rural
planning and management, as presented in [25]. An extensive
study of methods for object detection using deep learning
is presented in [26], where Amjoud et al. discuss a wide

range of vision networks, for object detection task on pop-
ular datasets. Recent research [27] highlights the benefits of
transformer-aided detectors for aerial image object detection.
Wang et al. investigated the object detection performance of
RCNN variants with different CNN-based and transformer-
based backbones on popular aerial datasets such as Airbus
Aircraft Detection [28], and DOTA [29]. However, this work
just partially benefited from transformers, as transformers
were applied only in the backbone of the model rather than
being used in training an end-to-end transformer-based object
detector.

The academic interest towards image detection of drainage
crossings specifically is also active. Custom CNN-based clas-
sifiers have been employed in [30] to classify drainage cross-
ings in topographic data. A CNN-based model with custom
architecture is developed in [31] to detect drainage crossing
locations in 4-band digital orthophotos from USGS National
Agriculture Imagery Program (NAIP). Although the proposed
model performs well in determining whether a drainage cross-
ing exists, it fails to accurately locate the drainage crossing.
Thus it is not easily scalable to more complex tasks. A recent
study has applied DETR and DINO transformer-based object
detectors to detect drainage crossings from Light Detection
and Ranging (LiDAR) digital terrain models (DEMs) datasets.
The study compared the object detection performance of
various CNN-based and transformer-based detectors, and re-
ported that transformer-based detectors outperform traditional
CNN-based detectors [32]. However, transformer detectors did
not perform well in locating drainage crossings, as many
drainage crossings were inaccurately positioned. We assume
that this issue can be extensively improved by adequate model
retraining and sufficient data preprocessing as the drainage
crossing DEM-LiDAR dataset is fundamentally different than
the MS-COCO dataset that the transformer detector is trained
on.

Despite these extensive studies, object detection with trans-
formers in overhead imagery remains challenging, due to sub-
stantial image volumes, inconsistent image resolution, small-
sized objects, and highly complex backgrounds. These factors
can significantly degrade the performance of object detection,
necessitating a more specialized approach, which our research
aims to address.

B. TPU architecture optimization

There has been a strong academic focus on exploring meth-
ods for optimizing TPU accelerators, emphasizing on enhanc-
ing the performance of Machine Learning (ML) tasks, such as
inference and training [33], [34], [35]. In [36], Elbtity et al.
proposed a TPU architecture with a runtime-reconfigurable
dataflow strategy, significantly improving the performance of
Convolutional Neural Network (CNN) workloads. Another
paper [37] introduces a system that optimizes execution time
of DNN models by deploying TPUs at the edge. Additionally,
a recent survey [38] examines a more general hardware
accelerator model, along with various strategies for full-stack
optimization to speed up the execution of transformer models.

While these studies provide valuable insights about TPU
optimization for general ML tasks, our work specifically
focuses on extracting an optimal TPU configuration designed
for transformer-based object detection models, such as DETR,
as they have shown to be slower than their competitors. This
approach aims to address the challenges posed by overhead
imagery object detection, targeting drainage crossings recog-
nition, while leveraging the efficiency of TPU accelerators.

III. METHODOLOGY
A. Detection Transformer

DETR integrates three principal components together: a
CNN-based backbone, a transformer encoder-decoder archi-
tecture, and a detection head. Figure 1 demonstrates the archi-
tecture of DETR model. The CNN backbone is responsible for
extracting feature maps from input images, which are then fed
into the transformer encoder. The encoder processes these fea-
ture maps through self-attention mechanisms, capturing con-
textual relationships and spatial dependencies. Subsequently,
the transformer decoder takes the encoded representations and
generates object queries, predicting the bounding boxes and
class labels for each detected object. The detection head,
positioned at the final stage, refines these predictions into final
object detections.

We modified the pre-trained DETR model by loading pre-
trained weights for all layers except the last fully connected
layer in the MLP classifier. Instead of using the 9l-class
classifier, we replaced the final layers with a binary classifier
initialized with random weights. During training, all layers
were updated through backpropagation. Initial experiments
showed that freezing the backbone and using pre-trained
weights failed to reduce loss, likely due to differences between
the model’s original training data and our single-channel
geographic elevation data. As a result, we opted to retrain
the entire model using the pre-trained weights as a starting
point. Initial experiments in randomized weights also showed
no reduction in loss during training.

B. Tensor Processing Unit Optimization

1) Performance estimation: The TPU is a specialized ASIC
designed to accelerate machine learning workloads with its
architecture centered around a systolic array of multiply-
accumulate (MAC) units, optimized for matrix operations. It
features various memory hierarchies for storing input/output
data and neural network weights. Key optimization factors
include the dimensions of the MAC array, which influence la-
tency and throughput, and the SRAM memory sizes, affecting
off-chip memory access and data reuse. Additionally, memory
banks and bandwidth impact parallelism and data transfer
efficiency. By tuning these parameters, the goal is to minimize
latency in the DETR model inference process. To evaluate the
performance of different TPU designs for the entire DETR
model, we used the Scale-Sim cost model, a detailed cycle-
accurate tool that simulates the execution of workloads on
systolic array-based accelerators. The tool’s modeling ap-
proach is compatible with industry-standard systolic array

Decoder
(object queries)

Fig. 1: The schematic of DETR architecture adopted for drainage crossing detection [15]

architectures, like commercial TPU implementations, ensuring
realistic performance estimates for our target accelerator archi-
tecture. Scale-Sim’s accuracy is a result of its comprehensive
modeling of key architectural components, including memory
hierarchies and data movement patterns, making it particu-
larly suitable for evaluating complex neural architectures like
DETR. For each TPU configuration, we simulate the convo-
lutional backbone, the fully connected layers and the matrix
multiplication operations within the DETR model. To achieve
this, we convert the Transormers architecture layers to custom
convolutional representations, so that they can be evaluated
through Scale-Sim. Our optimization metric is the total cycle
count across all involved layers, mainly because this quantity
corresponds to the inference delay of identifying the drainage
crossings, which is also the most important characteristic in
object detection models. Moreover, the Scale-Sim cost model
estimates the clock cycles considering both computations and
memory accesses [39], so this metric balances effectively the
trade-off between computations and memory for the entire
model.

2) Genetic Algorithm: The design space of our optimiza-
tion problem for the DETR model is very expansive, as these
eight parameters can construct a space of 102° design points.
Moreover, the TPU configuration parameters have complex
relationships, so a greedy algorithm or a simple heuristic
method cannot be applied. To solve our problem efficiently,
we leverage the genetic algorithms, which are optimization
techniques ideal for vast and complex design spaces, inspired
by principles of biological evolution. Their main function
is to create a population of chromosomes and iteratively
evolve it towards better solutions over the generations, by
applying selection, crossover, and mutation operations. Our
genetic algorithm was implemented using the PyGAD library
[40], where we create each chromosome by encoding the
aforementioned TPU parameters to eight genes. A population
size of 100 was selected, to maintain diversity across the 8-
dimensional search space, while 20 parent chromosomes mate
with each other in every generation. Concerning the mutation
type, we employed adaptive mutation to maintain diversity

in the population, prevent any premature convergence, and
encourage the exploration of new solutions [41], as opposed
to constant mutation methods. Our fitness function integrates
with Scale-Sim, to evaluate each candidate solution and extract
the estimated inference total cycle count. Then, the genetic
algorithm creates the next generation’s population by applying
genetic algorithm operations, focusing on minimizing the cycle
count. This problem formulation ensures that the genetic algo-
rithm evolves towards TPU configurations that offer minimal
execution time of the entire DETR model.

IV. EXPERIMENTS AND RESULTS
A. Dataset

The dataset consists of 6,012 LiDAR-derived DEM geo-
referenced rasters in TIF format, each with a 800mx800m
footprint and a cell size of Imx1m. Elevation data is stored
as 32-bit floating point values, indicating meters above sea
level, and comes from the USGS 3DEP program.

The rasters cover four watersheds in the Continental United
States: Sacramento-Stone Corral in California, Vermilion River
in Illinois, Maple River in North Dakota, and West Fork
Big Blue in Nebraska. Drainage crossings within these wa-
tersheds were labeled as centroids, and corresponding rasters
containing these centroids were extracted. Bounding boxes of
100m x 100m were defined around these centroids, and the data
was converted to the COCO format for use with the DETR
model.

After filtering out anomalous rasters, 6,007 rasters with
13,141 drainage crossing bounding boxes were used. The
Maple River Watershed data was reserved for transfer learning.
A custom dataloader was implemented to handle the 32-bit
DEM data, preserving precision using rasterio and applying
z-normalization. Random flips and cropping were used for
training augmentations, while center cropping was used for
validation.

B. Experimental Setup

Experiments on model performance tested the impact of
input size on the model’s ability to identify desired bounding

boxes around drainage crossings using DEM data.

Loss is calculated on both boxes and classifications to
update model parameters during training. For bounding boxes,
Generalized Intersection over Union (GloU) and L1 are used
as the loss metrics. Cross-entropy is used as the classification
loss metric. In all experiments, AdamW was used as an
optimizer with a learning rate decay of 0.0001 and a stepped
learning rate scheduler. This reduces learning rate limiter A
every 200 epochs by multiplying it and the default gamma
value of v = 0.1.

Experiment 1 uses inputs of size 800x 800 with no cropping
to re-train the pre-trained DETR model. Experiment 2 uses in-
puts cropped randomly to 600x600, Experiment 3 uses inputs
cropped randomly to 400x400, and Experiment 4 uses inputs
cropped randomly to 256 x256. All other hyperparameters and
the model size were held constant across all experiments.

All models were trained using the same image and label
pairs. During validation and testing, images and labels are
cropped to the correct sizes using center cropping to ensure
comparability across epochs. However, given that image and
labels are cropped, the validation and testing sets across
experiments are not identical.

All experiments were run for 500 epochs. Training times
and VRAM usage are shown in Table. L.

TABLE I: Precision and Recall on Initial and Transfer Datasets

Input Total Time | Time/Epoch | Max VRAM (Gb)
800800 67:04:47 08:03 5.863
600x600 49:59:40 06:00 3.479
400x400 40:48:23 04:34 2.051
256x256 34:06:57 04:06 1.409

The model checkpoint from the epoch with the lowest
validation loss is chosen for inference on the test set and the
transfer learning set. The results of these tests are explored in
the Results and Discussion section of this paper.

Concerning the TPU architecture optimization part, we eval-
uated our algorithm by considering input images of dimensions
400x400. To ensure that the genetic algorithm produces only
valid and realistic configurations, we specify the value range
of each gene, as can be seen in Table II, which is close
to properties of existing TPU accelerators [42]. The systolic
array dimensions can be from 128 to 4x 128 and the SRAM
memory sizes can range from 1 KB to 10 KB each. The
dataflow type can be either input, weight or output stationary,
indicating which data group remains fixed when mapped on
the MACs, throughout the computation. Memory bandwidth
is also constrained from 500 to 1200 bytes per cycle, to
reflect the typical real-case memory bandwidth of around
900 GB/sec with 700 M Hz clock. Finally, the number of
memory banks is limited to a range of 1 to 4, to balance
parallelism levels with computational complexity.

C. Results and Discussion

Experiments show that maximal overall performance is
achieved with 800x800 inputs, and that input size has an

TABLE II: Genetic Algorithm Gene space

Gene Value Range
Systolic Array Width [128,4 x 128]
Systolic Array Height [128,4 x 128]
Input Feature Memory [1,10] KB
Weight Memory [1,10] KB
Output Feature Memory [1,10] KB
Bandwidth [500, 1200] bytes/cycle
Memory Banks [1,4]
Mapping Input/Output/Weight Stationary

impact on performance metrics. Table III compares perfor-
mance of object detection in terms of different input sizes
on initial and transfer dataset. While table III shows that
the model is capable of predicting correctly with 256x256
inputs, these inputs are too small for usable predictions overall.
Subsequent experiments show decreasing precision and mixed
effects on recall with smaller inputs. Mixed effects on recall
may be due to the necessary cropping resulting in fewer
target annotations per chip for the smaller input datasets.
Best precision on predictions with an IoU of greater than
0.50 is with 600x 600 inputs, showing that while localization
may suffer with smaller inputs, the model is still capable of
predicting drainage crossing locations accurately. Finally, the
model performs exceptionally well, achieving high precision
and recall across various IoU thresholds and maximum de-
tection counts when input size is 800x800. However, on the
transfer dataset, precision drops significantly, as well as recall
when considering 10 and 100 maximum detections, while
recall with one detection increases. The increase in single-
detection recall may be due to the lower number of drainage
crossings per image chip in the transfer dataset, making it
easier to detect one drainage crossing given one detection.
However, there may be unfamiliar styles of drainage crossings
in the transfer dataset, leading to lower performance in finding
all within a single image chip. Figure 4 shows that this model
fails to predict in many cases.

Figure 2 compares model performance across input sizes
for both initial and transfer datasets. Larger input sizes lead
to better precision with stricter IoU thresholds, but have a
more muted effect on IoU = 0.50. The decision on what input
size is preferable would therefore depend on how important
local precision is for model outputs in a given downstream
application. The effect of input size on model recall is more
muted, and in the case of recall given one detection, reversed
past 400x400 inputs.

Cropping in Experiments 2 and 3 may contribute to bet-
ter model performance than otherwise expected due to the
ability to use random cropping during training, reducing
over-training. Figure 3 demonstrates that validation loss for
800x800 inputs converges before Epoch 100 of training,
and begins increasing after the learning rate reduction at
Epoch 200. However, the validation loss of the model trained

TABLE III:

Precision and Recall on Initial and Transfer Datasets. Average Precision = AP, Average Recall = AR.

256256 400%400 600x 600 800x 800
Statistic Initial | Transfer | Initial | Transfer | Initial | Transfer | Initial | Transfer

AP, 10U=0.50:0.95 | 0.031 0.030 0.541 0.339 0.689 0.396 0.789 0.503
AP, ToU=0.50 0.062 0.066 0.789 0.573 0.896 0.612 0.874 0.614
AP, IoU=0.75 0.026 0.019 0.528 0.310 0.688 0.402 0.859 0.557
AR, maxDets=1 0.204 0.195 0.442 0.497 0.305 0.449 0.357 0.484
AR, maxDets=10 0.447 0.307 0.750 0.559 0.805 0.590 0.904 0.697
AR, maxDets=100 | 0.626 0.605 0.770 0.663 0.821 0.636 0.942 0.793

0.8 0.8

0.6 0.6

04 04

- Initial
- Transfer
- Initial
- Transfer

—e— AP @ 10U=0.50:0.95 - Initial
v ~%- AP @ I0U=0.50:0.95 - Transfer 02
AP @ 10U=0.50 - Initial
AP @ 10U=0.50 - Transfer
—e~ AP@I0U=0.75 - Initial
~%- AP@I0U=0.75 - Transfer

0.0 0.0
400 500 600 700 800

Input size

—e— AR, maxDets=1
—x- AR, maxDets=1
—e— AR, maxDets=10
—%- AR, maxDets=10
—e— AR, maxDets=100 -
—%- AR, maxDets=100 -

0.2

Initial
Transfer

500
Input Size

600 700 800

(a) Precision (b) Recall

Fig. 2: Precision and Recall of each model on both the initial
and transfer learning test sets.

on 400x400 inputs converges after Epoch 400. These graphs
also show that the model trained on 256x256 inputs loses
stability and eventually reaches a bad local minimum at
around Epoch 100. The implementation of random cropping
for 800x800 inputs by drawing from a dataset with e.g.
20002000 chips may increase the performance of the model
further.

Visualizations of the model outputs in Figure 4 show that
on the initial dataset, models from Experiments 1, 2, and 3 are
capable of identifying drainage crossings in complex systems
with a high degree of accuracy. The outputs of the model
trained on 800x 800 inputs shows near-perfect performance on
this particular example, despite the drainage system involving
many sequential crossings underneath roadways in multiple
locations across the DEM. Likewise, the visualizations from
the transfer dataset show that the models are capable of high
performance on data from an unseen watershed.

Overall, these results show the promise of adapting a
pretrained hybrid transformer object detection model (DETR)
to novel data modalities. The model is performant on single-
channel, high-precision data with objects that have no edges
or defined size. Input size has a strong effect on performance,
showing that spatial context is important for this application.
The trade-off between model efficiency and desired perfor-
mance must be considered in downstream implementation.
Additionally, fine-tuning a given model on a sample of a new
watershed is recommended, given the drop in performance on

800x800 Inputs

—— Training Loss
Validation Loss

Loss

0 T T T T T T

600x600 Inputs

Loss

0 T T T T T T

400x400 Inputs

Loss

256X256 Inputs

8 I'Il
6 -

Loss

[=]

T T T T
200 300 400 500

Epoch

T
0 100

Fig. 3: Training loss and validation loss of each model over
500 epochs.

the transfer dataset in this case.

D. Optimal TPU and Evaluation

Through the genetic algorithm optimization process, we
derived a set of optimal TPU configurations, tailored specifi-
cally for the DETR model of 400 x 400 input image. While
our algorithm converges in an optimal configuration, it is

0 100 200 300 400 500 600 700

0 50 100 150 200 250 300 350

Fig. 4: Model outputs from initial test set (top) and transfer learning test set (bottom). From left to right: original image size
of 800x800 is cropped to 600x600, 400x400, and 256x256. Ground truth bounding boxes are shown in green and model

predictions with confidence over 0.7 are shown in red.

TABLE IV: TPU Configurations and Inference Cycles for 400x400 input image

Attribute Lowest Latency | Average Latency Google’s
Solution Solution TPU v3
Systolic Arrays 1 1 2
Systolic Array Width 512 128 128
Systolic Array Height 256 256 128
Input Feature Memory 4 MB 2 MB 8 MB
Weight Memory 3 MB 3 MB 16 MB
Output Feature Memory 6 MB 1 MB 8 MB
Bandwidth 700 B/cycle 1100 B/cycle 900 B/cycle
Memory Banks 2 2 2
Mapping Weight Weight Weight
Stationary Stationary Stationary
Cycles (Normalized) 0.6x 0.9% 1x
MAC Units (Normalized) 4x 1x 1x

crucial to note that there is no single straightforward recipe for
our problem. The relationship between various architectural
parameters and the estimated performance is quite complex
and often non-intuitive.

Among the solutions of our genetic algorithm, the attributes
of the lowest latency design are presented in Table IV. Our
TPU configuration features a 512x256 systolic array of MAC
units with 13 M B total size of SRAM memory. Moreover, the
best option for memory banks is 2, while the most efficient
mapping strategy is weight stationary dataflow. Finally, the
memory bandwidth was optimal at 700 bytes/cycle. Another
design point derived from the pool of solutions and with
average latency, includes a smaller MAC Array of 128x256,
SRAM memory of 6 MDB, a high bandwidth capacity of
1100 bytes/cycle and again weight stationary mapping. The

latency of that average case compared to the fastest aforemen-
tioned solution is around 1.2x slower but with considerably
less resources.

To evaluate the performance of our solutions, we established
a baseline for comparison by configuring our cycle-accurate
Scale-Sim tool to represent a real-world case of TPUs, similar
to Google TPU v3 [42]. The baseline case incorporates two
128 x 128 systolic MAC arrays, 32 M B of on-chip SRAM
cache memory and a memory bandwidth of 900 GB/s, that
corresponds to 900 bytes/cycle in a chip with clock speed of
1 GHz. As the mapping type, we choose weight stationary,
which is very usual in existing designs, while the memory
will comprise of 2 banks. All TPU configuration attributes are
concentrated in Table IV, along with the total cycle count of
DETR inference, as estimated by Scale-Sim. Our results show

that the latency oriented solution is much faster than the other
two, as it employees the inference procedure 1.67x faster than
the Google TPU v3 model and 1.5x faster than our average
solution. However, this improvement in performance comes
with a great increase in logic resource demand, as the fastest
solution requires 4 x more MAC units from both the other two
configurations. This leads us in choosing the average solution,
which achieves a satisfactory balance between the trade-off
latency and resource demand.

V. CONCLUSION

In this paper, we adapt a pre-trained object detection model
(DETR) to a drainage crossing detection task using high-
resolution LiDAR-derived DEM data. We test the responsive-
ness of the model to different input sizes and its performance
on a transfer learning dataset from a watershed that was
not represented in the training set. We then utilize a genetic
algorithm to locate an optimal TPU architecture for this model.

We show that the pre-trained DETR model can be effec-
tively adapted to a new data modality, surpassing the perfor-
mance of previous models on the drainage crossing detection
task as demonstrated in Jalalipour et al [32]. We show that
there is a trade-off between input size and performance for
this application. Additionally, model performance is lower on
the transfer learning dataset, showing that fine-tuning should
be performed when applying the model to watersheds with
distinct physical geography.

ACKNOWLEDGMENT

This research is sponsored by the National Science Foun-
dation under Grant No. OAC-2306184 with the University
of North Texas and Grant No. BCS-1951741 with Southern
Illinois University.

REFERENCES

[1] J. N. Callow, K. P. Van Niel, and G. S. Boggs, “How does modifying
a dem to reflect known hydrology affect subsequent terrain analysis?”
Journal of hydrology, vol. 332, no. 1-2, pp. 30-39, 2007.

R. Li, Z. Tang, X. Li, and J. Winter, “Drainage structure datasets and
effects on lidar-derived surface flow modeling,” ISPRS International
Journal of Geo-Information, vol. 2, no. 4, pp. 1136-1152, 2013.

G. Sofia, G. D. Fontana, and P. Tarolli, “High-resolution topography and
anthropogenic feature extraction: Testing geomorphometric parameters
in floodplains,” Hydrological Processes, vol. 28, no. 4, pp. 2046-2061,
2014.

J. B. Lindsay and K. Dhun, “Modelling surface drainage patterns in
altered landscapes using lidar,” International Journal of Geographical
Information Science, vol. 29, no. 3, pp. 397411, 2015.

S. Bhadra, R. Li, D. Wu, G. Wang, and B. Rekabdar, “Assessing the
impacts of anthropogenic drainage structures on hydrologic connectivity
using high-resolution digital elevation models,” Transactions in GIS,
vol. 25, no. 5, pp. 25962611, 2021.

Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu, “Accuracy-
constrained efficiency optimization and GPU profiling of CNN inference
for detecting drainage crossing locations,” in Proc. of Workshops of
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC-W), Denver, CO, USA, Nov 2023,
pp. 1780-1788.

Y. Li, J. Baik, M. M. Rahman, I. Anagnostopoulos, R. Li, and T. Shu,
“Pareto optimization of CNN models via hardware-aware neural archi-
tecture search for drainage crossing classification on resource-limited
devices,” in Proc. of Workshops of ACM/IEEE International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC-W), Denver, CO, USA, Nov 2023, pp. 1767-1775.

[3]

[4]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

T. Kundu and T. Shu, “HIOS: Hierarchical inter-operator scheduler for
real-time inference of DAG-structured deep learning models on multiple
GPUs,” in Proc. of the 25th IEEE International Conference on Cluster
Computing (Cluster), Santa Fe, NM, USA, Nov 2023, pp. 95-106.

W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg, “Ssd: Single shot multibox detector,” in Computer Vision—
ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,
October 11-14, 2016, Proceedings, Part I 14. Springer, 2016, pp.
21-37.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” Advances in neural
information processing systems, vol. 28, 2015.

R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE international
conference on computer vision, 2015, pp. 1440-1448.

L. Liu, W. Ouyang, X. Wang, P. Fieguth, J. Chen, X. Liu, and
M. Pietikdinen, “Deep learning for generic object detection: A survey,”
International journal of computer vision, vol. 128, pp. 261-318, 2020.
C. Papageorgiou and T. Poggio, “A trainable system for object detec-
tion,” International journal of computer vision, vol. 38, pp. 15-33, 2000.
A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213—
229.

J. Huang and H. Wang, “Small object detection by detr via in-
formation augmentation and adaptive feature fusion,” arXiv preprint
arXiv:2401.08017, 2024.

X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr:
Deformable transformers for end-to-end object detection,” arXiv preprint
arXiv:2010.04159, 2020.

D. Pandey, J. Ghebremichael, Z. Qi, and T. Shu, “A comparative survey:
Reusing small pre-trained models for efficient large model training,”
in Proc. of Workshops of IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC-W),
Atlanta, GA, USA, Nov 2024.

D. Pandey and T. Shu, “AM-DGCNN: Leveraging graph attention
networks and edge attributes for link classification in knowledge graphs,”
in Proc. of Workshops of IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis (SC-W),
Atlanta, GA, USA, Nov 2024.

J. M. Wozniak, P. Davis, T. Shu, J. Ozik, N. Collier, I. Foster,
T. Brettin, and R. Stevens, “Scaling deep learning for cancer with
advanced workflow storage integration,” in Proc. of the 4th Workshop on
Machine Learning in HPC Environments (MLHPC) in conjunction with
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Dallas, TX, USA, Nov 2018,
pp. 114-123.

N. Jouppi, G. Kurian, S. Li, P. Ma, R. Nagarajan, L. Nai, N. Patil,
S. Subramanian, A. Swing, B. Towles et al., “TPU v4: An optically
reconfigurable supercomputer for machine learning with hardware sup-
port for embeddings,” in Proceedings of the 50th Annual International
Symposium on Computer Architecture, 2023, pp. 1-14.

T. Shu, Y. Guo, J. Wozniak, X. Ding, I. Foster, and T. Kurc, “Bootstrap-
ping in-situ workflow auto-tuning via combining performance models
of component applications,” in Proc. of ACM/IEEE International Con-
ference for High Performance Computing, Networking, Storage, and
Analysis (SC), St. Louis, MO, USA, Nov 2021, pp. 1-15.

——, “POSTER: In-situ workflow auto-tuning through combining com-
ponent models,” in Proc. of the 26th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (PPoPP), Seoul, South
Korea, Feb-Mar 2021, pp. 467-468.

A. Samajdar, J. M. Joseph, Y. Zhu, P. Whatmough, M. Mattina, and
T. Krishna, “A systematic methodology for characterizing scalability
of DNN accelerators using scale-sim,” in 2020 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS),
2020, pp. 58-68.

A. A. Adegun, J. V. Fonou Dombeu, S. Viriri, and J. Odindi, “State-of-
the-art deep learning methods for objects detection in remote sensing
satellite images,” Sensors, vol. 23, no. 13, p. 5849, 2023.

A. B. Amjoud and M. Amrouch, “Object detection using deep learning,
CNNs and vision transformers: A review,” IEEE Access, vol. 11, pp.
35479-35516, 2023.

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

L. Wang and A. Tien, “Aerial image object detection with vision trans-
former detector (vitdet),” in IGARSS 2023 - 2023 IEEE International
Geoscience and Remote Sensing Symposium, 2023, pp. 6450-6453.
Airbus Geo, “Airbus aircraft detection,” 2023, accessed: 2024-
07-30. [Online]. Available: https://www.kaggle.com/datasets/airbusgeo/
airbus-aircraftssample-dataset

G.-S. Xia, X. Bai, J. Ding, Z. Zhu, Z. Wang, Y. Gong, and S. Belongie,
“Dota: A large-scale dataset for object detection in aerial images,” arXiv
preprint, 2017.

D. Wu, R. Li, B. Rekabdar, C. Talbert, M. Edidem, and G. Wang,
“Classification of drainage crossings on high-resolution digital elevation
models: A deep learning approach,” GIScience & Remote Sensing,
vol. 60, no. 1, p. 2230706, 2023.

Y. Zhang, D. Pandey, D. Wu, T. Kundu, R. Li, and T. Shu, “Accuracy-
constrained efficiency optimization and GPU profiling of CNN inference
for detecting drainage crossing locations,” in Proceedings of the SC’23
Workshops of The International Conference on High Performance Com-
puting, Network, Storage, and Analysis, 2023, pp. 1780-1788.

S. Jalalipour, S. Ayyalasomayjula, H. Damrah, J. Lin, B. Rekabdar,
and R. Li, “Deep learning-based spatial detection of drainage structures
using advanced object detection methods,” in 2023 Fifth International
Conference on Transdisciplinary Al (TransAl). 1EEE, 2023, pp. 1-10.
D. Sanmartin Carrién, V. Prohaska, and O. Diez, “Exploration of
TPUs for Al applications,” in International Conference on Advances
in Computing Research. Springer, 2024, pp. 559-559.

A. Shahid and M. Mushtaq, “A survey comparing specialized hardware
and evolution in TPUs for neural networks,” in 2020 IEEE 23rd
International Multitopic Conference (INMIC), 2020, pp. 1-6.

K. Seshadri, B. Akin, J. Laudon, R. Narayanaswami, and A. Yazdan-
bakhsh, “An evaluation of edge TPU accelerators for convolutional
neural networks,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC), 2022, pp. 79-91.

M. Elbtity, P. Chandarana, and R. Zand, “Flex-tpu: A flexible TPU
with runtime reconfigurable dataflow architecture,” arXiv preprint
arXiv:2407.08700, 2024.

K.-C. Hsu and H.-W. Tseng, “Accelerating applications using edge
tensor processing units,” in Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2021, pp. 1-14.

S. Kim, C. Hooper, T. Wattanawong, M. Kang, R. Yan, H. Genc,
G. Dinh, Q. Huang, K. Keutzer, M. W. Mahoney et al, “Full
stack optimization of transformer inference: a survey,” arXiv preprint
arXiv:2302.14017, 2023.

A. Samajdar, Y. Zhu, P. Whatmough, M. Mattina, and T. Kr-
ishna, “Scale-sim: Systolic CNN accelerator simulator,” arXiv preprint
arXiv:1811.02883, 2018.

PyGAD, “Pygad documentation,” https://pygad.readthedocs.io/en/latest/,
accessed: 2024-07-29.

S. Blum, R. Puisa, J. Riedel, and M. Wintermantel, “Adaptive mutation
strategies for evolutionary algorithms,” in The Annual Conference:
EVEN at Weimarer Optimierungsund Stochastiktage, vol. 2, 2001.

T. N. Platform, “Deep dive on google’s exas-
cale TPUv4 Al systems,” 2022, accessed: 2024-08-
01. [Online]. Available: https://www.nextplatform.com/2022/10/11/
deep-dive-on-googles-exascale-tpuv4-ai-systems/

ARTIFACT DESCRIPTION/EVALUATION APPENDIX Git commit: 311b9ff
A. Summary of the Experiments Reported Built: Thu Oct 26 09:08:01 2023
O0S/Arch: linux/amd64

1) Abstract: We provide this artifact appendix to enhance)
) strac provi 15 art ppendix Experimental: false

the reproducability of our results.

2) Artifacts: The GitHub link of source code: CSZE:;ZE?C{; ¢ o5
https://github.com/SHUs-Lab/BTSD24AN . ST
GitCommit:
B. Experimental Setup d8£198a4edB8892c764191ef7b3b06d8a2eebbc7E
1) Relevant Hardware Details: runc:
Machine: Version: 1.1.10
Type: Kvm GitCommit: v1.1.10-0-g18a0cbO

docker—-init:
Version: 0.19.0
GitCommit: de40adl
4) Libraries and Versions:

System: Supermicro
product: SYS-4029GP-TRT2
v: 123456789

Mobo: Supermicro

model: X11DPG-OT-CPU

v: 1.01 Docker image:
UEFI: American Megatrends v: 3.3 pytorch/pytorch:2.3.0-cudal2.l-cudnn8-runtime
date: 02/21/2020
CPU: Installed libraries:
Topology: 2x 24-Core cython==3.0.10
model: Intel Xeon Gold 5220R numpy==1.23.3
bits: 64 scipy==1.13.1
type: MT MCP SMP L2 onnx==1.16.1
cache: 71.5 MiB onnxruntime==1.18.0
Speed: 1000 MHz pandas==2.2.2
min/max: 1000/4000 MHz rasterio==1.3.10
Graphics: More complete information on the Docker image source, li-
Device—1: ASPEED Graphics Family braries, and versions are in the Dockerfile and requirements.txt
driver: ast within the GitHub repository.
v: kernel 5) Input Datasets: The preprocessed, training-ready
Device—2: NVIDIA TU104GL [Quadro RTX 50001dMa&ﬂ is available at: https://figshare.com/articles/dataset/
driver: nvidia Processed_Data_for_Exploration_of_TPU_Architectures_
v: 535.104.05 for_the_OptimizedTransformer_in_Drainage_Crossing_

2) Operating Systems and Versions: Detection_/277112497ile=50460957

C. Evaluation Experiments

System: 1) Experiments on Transformer Design: The pre-trained
Kernel: 5.4.0-182-generic x86 64 DETR-ResNet50 model is cloned from Facebook Git reposi-
Distro: Ubuntu 20.04.6 LTS (Focal Fossa) tory: facebookresearch/detr_git

3) Applications and Versions: COCO-Evaluation Metrics are borrowed for the model’s object

detection performance.
2) Experiments on TPU Architecture Auto-tuning: DETR
Client: Docker Engine — Community model with ResNet50 backbone model was loaded as pre-
Version: 24.0.7 trained from HuggingFace library: facebook/detr-resnet-50
API version: 1.43
Go version: gol.20.10

Git commit: afdd53b Installed libraries:
Built: Thu Oct 26 09:08:01 2023 pygad==3.0.0
OS/Arch: linux/amd64 numpy

Context: default scalesim
Server: Docker Engine - Community pandas

Engine: torch

Version: 24.0.7 torchvision

API version: 1.43 (minimum version 1.12) transformers

Go version: gol.20.10

