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Abstract—Understanding hydrologic connectivity within land-
scapes is crucial for managing environmental challenges. De-
spite advancements in high-resolution Digital Elevation Models
(DEMs) derived from Light Detection and Ranging (LiDAR) tech-
nology, accurately delineating hydrologic connectivity remains
challenging due to disruptions caused by virtual flow barriers,
such as roads and bridges. This study addresses this issue by
enhancing the detection performance and reducing the latency
of Transformer models for image detection of drainage crossings.
We retrained a Detection Transformer (DETR) with a specialized
recipe to improve culvert detection performance. Owing to
the high susceptibility of LiDAR-based DEMs to measurement
noise and varying data modalities, we conducted extensive data
preprocessing to ensure DETR compatibility with the culvert
dataset. Ablation studies on input size indicate that the model
performs optimally with 800×800 pixel inputs, demonstrating its
adaptability to new data modalities. Additionally, we employed
Tensor Processing Units (TPUs) to decrease the model’s latency.
We developed a novel strategy to optimize TPU architecture, uti-
lizing genetic algorithms to expedite the discovery of optimal TPU
configurations for detection deployment. Our model surpasses
the performance of previous models on the same task. This work
not only addresses the computational complexities of deploying
advanced object detection in environmental contexts but also
significantly contributes to the precise and efficient monitoring
of hydrologic connectivity.

Index Terms—Object detection, Detection Transformer, DETR,
TPU, Digital Elevation Model, LiDAR, hydrologic connectivit,
culvert

I. INTRODUCTION

Understanding hydrologic connectivity within landscapes

is crucial for addressing various environmental management

challenges, such as tracking nutrient transport in diffuse pollu-

tion runoff. This spatial characterization often relies on hydro-

topographic delineation facilitated by Geographic Information
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Systems (GIS) and digital terrain models (DEMs). In recent

years, high-resolution DEMs, primarily derived from Light

Detection and Ranging (LiDAR) technology, have shown

exceptional capabilities in depicting topographic details with

high spatial precision, surpassing conventional DEMs [1].

Despite the advancements in LiDAR DEMs, accurately delin-

eating hydrologic connectivity remains a significant challenge.

Studies have indicated that drainage flowlines derived from

LiDAR DEMs are often disrupted by virtual flow barriers, such

as roads and bridges, which act as ‘digital dam’ [2], [3]. This

issue is particularly pronounced in agricultural regions where

rural road networks fragment the gentle terrain. Research

has demonstrated that incorporating drainage structures like

drainage crossings and bridges can enhance the accuracy of

delineating drainage flows across landscapes [4], [5]. However,

datasets of these drainage structures are frequently unavailable

or inconsistent in format and quality.

Thus, there is a pressing need to develop an efficient

approach to accurately and comprehensively map drainage

structures, thereby improving the delineation of hydrologic

connectivity using high-resolution LiDAR DEMs. Therefore,

Due to the low quality and complexity of existing drainage

structure datasets, there is a significant need to explore state-

of-the-art object detection technologies to accurately identify

and locate drainage structures. This approach will help to

compensate for the inadequacies and poor quality of current

datasets.

Object detection is an essential function in computer vision,

with uses in various fields from autonomous driving and

robotics, to medical and agriculture. It involves identifying

and pinpointing objects within an image. Over time, various

technologies and methods have been created to improve the

accuracy and efficiency of object detection systems. Tradition-

ally, these systems have heavily depended on Convolutional

Neural Networks (CNNs). However, recent advancements have

introduced transformer-based approaches, which provide sev-



eral benefits over the traditional methods. CNNs have been

fundamental to object detection for many years due to their

ability to capture spatial hierarchies in images through convo-

lutional layers [6]–[8]. Notable CNN-based object detectors

include Faster R-CNN and Single Shot MultiBox Detector

(SSD). SSD, proposed by Liu et al. in 2016 [9], aims to

improve the speed of object detection without significantly

compromising accuracy. SSD uses a single-stage network that

directly predicts object classes and bounding box offsets for a

fixed set of default boxes of different scales and aspect ratios.

This approach significantly reduces computational complexity,

making it suitable for real-time applications. However, SSD

can struggle with detecting smaller objects compared to two-

stage detectors like Faster R-CNN. Introduced by Ren et al.

in 2015, Faster R-CNN [10] transformed object detection

by combining a Region Proposal Network (RPN) with the

Fast R-CNN detector [11]. The RPN generates high-quality

region proposals, which the Fast R-CNN then classifies and

refines. This two-stage process enables accurate localization

and classification, albeit with a higher computational cost.

Faster R-CNN had shown to be the de-facto technology

among CNN-based object detectors. Despite its pioneering

advancements in object detection, Faster R-CNN has notable

drawbacks, particularly when used in various detection sce-

narios. One major issue is its computational inefficiency. The

two-stage process, which involves generating region proposals

followed by region classification and refinement, significantly

increases processing time, making it less suitable for real-

time applications. This complexity also requires substantial

hardware resources, limiting its use on devices with limited

computational power. Moreover, while Faster R-CNN is highly

accurate in detecting larger objects, it can struggle with smaller

objects and densely packed scenes, where the region proposal

network might miss fine-grained details. This is problematic

in applications like autonomous driving or surveillance, where

detecting small or closely spaced objects is crucial [12], [13].

Additionally, the model’s performance may degrade in scenar-

ios that require rapid adaptation to dynamic environments due

to the static nature of its training process.

Transformers, initially crafted for tasks in natural language

processing, have made significant strides in computer vision

recently. The advent of Vision Transformers (ViT) [14] and

their subsequent application to object detection have marked

considerable advancements in both efficacy and performance.

In 2020, Carion et al. [15] introduced a transformative model

for object detection known as DETR, which incorporates

the use of transformers. This innovative system forecasts

the locations and categories of objects by directly decoding

image features, conceptualizing the task as one of predicting

a collection of items. The DETR model streamlines the object

detection process by forgoing conventional mechanisms such

as Region Proposal Networks (RPNs) and Non-Maximum

Suppression (NMS), thereby diminishing the likelihood of

mistakes and streamlining operations. However, most recent

research revealed that DETR faces some limitations when it

comes to detecting small objects [16]. This is because the

transformer in DETR primarily relies on semantic information

from the highest level of abstraction in the deep network,

which may not include the detailed information such as

edges, texture, or color gradients that are crucial for locating

small objects. This issue is even more critical when utilizing

transformers for aerial applications where most instances are

small objects within the images. On the other hand, DETR may

require more training epochs to converge and can be slower

at detecting small objects [17].

The advent of transformer-based models in Deep Neural

Network (DNN) applications [18]–[20] has revolutionized

domains such as computer vision. These models, however,

require accelerators specifically designed to meet their compu-

tational demands. Tensor Processing Units (TPUs) [21] have

emerged as a promising choice for such hardware accelerators,

provided that their attributes are carefully selected for specific

tasks. To enhance the performance of Transformer models

for image detection of drainage crossings, we developed a

novel strategy to optimize TPU architecture. Recognizing the

computational challenges in deploying cutting-edge object

detection technologies and auto-tuning the TPU architecture

in a huge configuration space [22], [23], we leveraged ge-

netic algorithms to streamline the discovery of optimal TPU

configurations for the detection deployment. Building upon

the state-of-the-art cost model, Scale-Sim [24], this method

aimed to drastically reduce the total training cycles, thereby

diminishing latency and boosting efficiency. Our work not

only contributes to the precise and efficient monitoring of

hydrologic connectivity, but also addresses the computational

complexities of deploying advanced object detection in envi-

ronmental contexts.

Contribution:
• Demonstrate ability of Pretrained DETR to adapt to

LiDAR data for drainage crossing data: Training from

the pre-trained model weights shows that the model is

capable of predicitng bounding boxes which are not

defined by object boundaries and instead depend on an

intersection point of geographic features.

• Enhance dataset preprocessing for compatibility with

DETR object detection model: Customized the COCO

dataloader to process high-precision geographic data.

• Development of Optimized TPU Architecture: Created a

framework for efficiently configuring TPUs specifically

tailored for Transformer-based object detection models,

such as DETR.

II. RELATED WORK

A. Object Detection

Advanced object detection networks are widely used for

remote sensing applications essential for predicting, mapping,

and mitigating natural disasters (e.g. flooding, fires, etc.),

socioeconomic service delivery, or general urban and rural

planning and management, as presented in [25]. An extensive

study of methods for object detection using deep learning

is presented in [26], where Amjoud et al. discuss a wide



range of vision networks, for object detection task on pop-

ular datasets. Recent research [27] highlights the benefits of

transformer-aided detectors for aerial image object detection.

Wang et al. investigated the object detection performance of

RCNN variants with different CNN-based and transformer-

based backbones on popular aerial datasets such as Airbus

Aircraft Detection [28], and DOTA [29]. However, this work

just partially benefited from transformers, as transformers

were applied only in the backbone of the model rather than

being used in training an end-to-end transformer-based object

detector.

The academic interest towards image detection of drainage

crossings specifically is also active. Custom CNN-based clas-

sifiers have been employed in [30] to classify drainage cross-

ings in topographic data. A CNN-based model with custom

architecture is developed in [31] to detect drainage crossing

locations in 4-band digital orthophotos from USGS National

Agriculture Imagery Program (NAIP). Although the proposed

model performs well in determining whether a drainage cross-

ing exists, it fails to accurately locate the drainage crossing.

Thus it is not easily scalable to more complex tasks. A recent

study has applied DETR and DINO transformer-based object

detectors to detect drainage crossings from Light Detection

and Ranging (LiDAR) digital terrain models (DEMs) datasets.

The study compared the object detection performance of

various CNN-based and transformer-based detectors, and re-

ported that transformer-based detectors outperform traditional

CNN-based detectors [32]. However, transformer detectors did

not perform well in locating drainage crossings, as many

drainage crossings were inaccurately positioned. We assume

that this issue can be extensively improved by adequate model

retraining and sufficient data preprocessing as the drainage

crossing DEM-LiDAR dataset is fundamentally different than

the MS-COCO dataset that the transformer detector is trained

on.

Despite these extensive studies, object detection with trans-

formers in overhead imagery remains challenging, due to sub-

stantial image volumes, inconsistent image resolution, small-

sized objects, and highly complex backgrounds. These factors

can significantly degrade the performance of object detection,

necessitating a more specialized approach, which our research

aims to address.

B. TPU architecture optimization

There has been a strong academic focus on exploring meth-

ods for optimizing TPU accelerators, emphasizing on enhanc-

ing the performance of Machine Learning (ML) tasks, such as

inference and training [33], [34], [35]. In [36], Elbtity et al.

proposed a TPU architecture with a runtime-reconfigurable

dataflow strategy, significantly improving the performance of

Convolutional Neural Network (CNN) workloads. Another

paper [37] introduces a system that optimizes execution time

of DNN models by deploying TPUs at the edge. Additionally,

a recent survey [38] examines a more general hardware

accelerator model, along with various strategies for full-stack

optimization to speed up the execution of transformer models.

While these studies provide valuable insights about TPU

optimization for general ML tasks, our work specifically

focuses on extracting an optimal TPU configuration designed

for transformer-based object detection models, such as DETR,

as they have shown to be slower than their competitors. This

approach aims to address the challenges posed by overhead

imagery object detection, targeting drainage crossings recog-

nition, while leveraging the efficiency of TPU accelerators.

III. METHODOLOGY

A. Detection Transformer

DETR integrates three principal components together: a

CNN-based backbone, a transformer encoder-decoder archi-

tecture, and a detection head. Figure 1 demonstrates the archi-

tecture of DETR model. The CNN backbone is responsible for

extracting feature maps from input images, which are then fed

into the transformer encoder. The encoder processes these fea-

ture maps through self-attention mechanisms, capturing con-

textual relationships and spatial dependencies. Subsequently,

the transformer decoder takes the encoded representations and

generates object queries, predicting the bounding boxes and

class labels for each detected object. The detection head,

positioned at the final stage, refines these predictions into final

object detections.

We modified the pre-trained DETR model by loading pre-

trained weights for all layers except the last fully connected

layer in the MLP classifier. Instead of using the 91-class

classifier, we replaced the final layers with a binary classifier

initialized with random weights. During training, all layers

were updated through backpropagation. Initial experiments

showed that freezing the backbone and using pre-trained

weights failed to reduce loss, likely due to differences between

the model’s original training data and our single-channel

geographic elevation data. As a result, we opted to retrain

the entire model using the pre-trained weights as a starting

point. Initial experiments in randomized weights also showed

no reduction in loss during training.

B. Tensor Processing Unit Optimization

1) Performance estimation: The TPU is a specialized ASIC

designed to accelerate machine learning workloads with its

architecture centered around a systolic array of multiply-

accumulate (MAC) units, optimized for matrix operations. It

features various memory hierarchies for storing input/output

data and neural network weights. Key optimization factors

include the dimensions of the MAC array, which influence la-

tency and throughput, and the SRAM memory sizes, affecting

off-chip memory access and data reuse. Additionally, memory

banks and bandwidth impact parallelism and data transfer

efficiency. By tuning these parameters, the goal is to minimize

latency in the DETR model inference process. To evaluate the

performance of different TPU designs for the entire DETR

model, we used the Scale-Sim cost model, a detailed cycle-

accurate tool that simulates the execution of workloads on

systolic array-based accelerators. The tool’s modeling ap-

proach is compatible with industry-standard systolic array



Fig. 1: The schematic of DETR architecture adopted for drainage crossing detection [15]

architectures, like commercial TPU implementations, ensuring

realistic performance estimates for our target accelerator archi-

tecture. Scale-Sim’s accuracy is a result of its comprehensive

modeling of key architectural components, including memory

hierarchies and data movement patterns, making it particu-

larly suitable for evaluating complex neural architectures like

DETR. For each TPU configuration, we simulate the convo-

lutional backbone, the fully connected layers and the matrix

multiplication operations within the DETR model. To achieve

this, we convert the Transormers architecture layers to custom

convolutional representations, so that they can be evaluated

through Scale-Sim. Our optimization metric is the total cycle

count across all involved layers, mainly because this quantity

corresponds to the inference delay of identifying the drainage

crossings, which is also the most important characteristic in

object detection models. Moreover, the Scale-Sim cost model

estimates the clock cycles considering both computations and

memory accesses [39], so this metric balances effectively the

trade-off between computations and memory for the entire

model.

2) Genetic Algorithm: The design space of our optimiza-

tion problem for the DETR model is very expansive, as these

eight parameters can construct a space of 1020 design points.

Moreover, the TPU configuration parameters have complex

relationships, so a greedy algorithm or a simple heuristic

method cannot be applied. To solve our problem efficiently,

we leverage the genetic algorithms, which are optimization

techniques ideal for vast and complex design spaces, inspired

by principles of biological evolution. Their main function

is to create a population of chromosomes and iteratively

evolve it towards better solutions over the generations, by

applying selection, crossover, and mutation operations. Our

genetic algorithm was implemented using the PyGAD library

[40], where we create each chromosome by encoding the

aforementioned TPU parameters to eight genes. A population

size of 100 was selected, to maintain diversity across the 8-

dimensional search space, while 20 parent chromosomes mate

with each other in every generation. Concerning the mutation

type, we employed adaptive mutation to maintain diversity

in the population, prevent any premature convergence, and

encourage the exploration of new solutions [41], as opposed

to constant mutation methods. Our fitness function integrates

with Scale-Sim, to evaluate each candidate solution and extract

the estimated inference total cycle count. Then, the genetic

algorithm creates the next generation’s population by applying

genetic algorithm operations, focusing on minimizing the cycle

count. This problem formulation ensures that the genetic algo-

rithm evolves towards TPU configurations that offer minimal

execution time of the entire DETR model.

IV. EXPERIMENTS AND RESULTS

A. Dataset

The dataset consists of 6,012 LiDAR-derived DEM geo-

referenced rasters in TIF format, each with a 800m×800m

footprint and a cell size of 1m×1m. Elevation data is stored

as 32-bit floating point values, indicating meters above sea

level, and comes from the USGS 3DEP program.

The rasters cover four watersheds in the Continental United

States: Sacramento-Stone Corral in California, Vermilion River

in Illinois, Maple River in North Dakota, and West Fork

Big Blue in Nebraska. Drainage crossings within these wa-

tersheds were labeled as centroids, and corresponding rasters

containing these centroids were extracted. Bounding boxes of

100m×100m were defined around these centroids, and the data

was converted to the COCO format for use with the DETR

model.

After filtering out anomalous rasters, 6,007 rasters with

13,141 drainage crossing bounding boxes were used. The

Maple River Watershed data was reserved for transfer learning.

A custom dataloader was implemented to handle the 32-bit

DEM data, preserving precision using rasterio and applying

z-normalization. Random flips and cropping were used for

training augmentations, while center cropping was used for

validation.

B. Experimental Setup

Experiments on model performance tested the impact of

input size on the model’s ability to identify desired bounding



boxes around drainage crossings using DEM data.
Loss is calculated on both boxes and classifications to

update model parameters during training. For bounding boxes,

Generalized Intersection over Union (GIoU) and L1 are used

as the loss metrics. Cross-entropy is used as the classification

loss metric. In all experiments, AdamW was used as an

optimizer with a learning rate decay of 0.0001 and a stepped

learning rate scheduler. This reduces learning rate limiter λ
every 200 epochs by multiplying it and the default gamma

value of γ = 0.1.
Experiment 1 uses inputs of size 800×800 with no cropping

to re-train the pre-trained DETR model. Experiment 2 uses in-

puts cropped randomly to 600×600, Experiment 3 uses inputs

cropped randomly to 400×400, and Experiment 4 uses inputs

cropped randomly to 256×256. All other hyperparameters and

the model size were held constant across all experiments.
All models were trained using the same image and label

pairs. During validation and testing, images and labels are

cropped to the correct sizes using center cropping to ensure

comparability across epochs. However, given that image and

labels are cropped, the validation and testing sets across

experiments are not identical.
All experiments were run for 500 epochs. Training times

and VRAM usage are shown in Table. I.

TABLE I: Precision and Recall on Initial and Transfer Datasets

Input Total Time Time/Epoch Max VRAM (Gb)
800×800 67:04:47 08:03 5.863

600×600 49:59:40 06:00 3.479

400×400 40:48:23 04:34 2.051

256×256 34:06:57 04:06 1.409

The model checkpoint from the epoch with the lowest

validation loss is chosen for inference on the test set and the

transfer learning set. The results of these tests are explored in

the Results and Discussion section of this paper.
Concerning the TPU architecture optimization part, we eval-

uated our algorithm by considering input images of dimensions

400×400. To ensure that the genetic algorithm produces only

valid and realistic configurations, we specify the value range

of each gene, as can be seen in Table II, which is close

to properties of existing TPU accelerators [42]. The systolic

array dimensions can be from 128 to 4×128 and the SRAM

memory sizes can range from 1 KB to 10 KB each. The

dataflow type can be either input, weight or output stationary,

indicating which data group remains fixed when mapped on

the MACs, throughout the computation. Memory bandwidth

is also constrained from 500 to 1200 bytes per cycle, to

reflect the typical real-case memory bandwidth of around

900 GB/sec with 700 MHz clock. Finally, the number of

memory banks is limited to a range of 1 to 4, to balance

parallelism levels with computational complexity.
C. Results and Discussion

Experiments show that maximal overall performance is

achieved with 800×800 inputs, and that input size has an

TABLE II: Genetic Algorithm Gene space

Gene Value Range
Systolic Array Width [128, 4× 128]

Systolic Array Height [128, 4× 128]

Input Feature Memory [1, 10] KB

Weight Memory [1, 10] KB

Output Feature Memory [1, 10] KB

Bandwidth [500, 1200] bytes/cycle

# Memory Banks [1, 4]

Mapping Input/Output/Weight Stationary

impact on performance metrics. Table III compares perfor-

mance of object detection in terms of different input sizes

on initial and transfer dataset. While table III shows that

the model is capable of predicting correctly with 256×256

inputs, these inputs are too small for usable predictions overall.

Subsequent experiments show decreasing precision and mixed

effects on recall with smaller inputs. Mixed effects on recall

may be due to the necessary cropping resulting in fewer

target annotations per chip for the smaller input datasets.

Best precision on predictions with an IoU of greater than

0.50 is with 600×600 inputs, showing that while localization

may suffer with smaller inputs, the model is still capable of

predicting drainage crossing locations accurately. Finally, the

model performs exceptionally well, achieving high precision

and recall across various IoU thresholds and maximum de-

tection counts when input size is 800×800. However, on the

transfer dataset, precision drops significantly, as well as recall

when considering 10 and 100 maximum detections, while

recall with one detection increases. The increase in single-

detection recall may be due to the lower number of drainage

crossings per image chip in the transfer dataset, making it

easier to detect one drainage crossing given one detection.

However, there may be unfamiliar styles of drainage crossings

in the transfer dataset, leading to lower performance in finding

all within a single image chip. Figure 4 shows that this model

fails to predict in many cases.

Figure 2 compares model performance across input sizes

for both initial and transfer datasets. Larger input sizes lead

to better precision with stricter IoU thresholds, but have a

more muted effect on IoU = 0.50. The decision on what input

size is preferable would therefore depend on how important

local precision is for model outputs in a given downstream

application. The effect of input size on model recall is more

muted, and in the case of recall given one detection, reversed

past 400×400 inputs.

Cropping in Experiments 2 and 3 may contribute to bet-

ter model performance than otherwise expected due to the

ability to use random cropping during training, reducing

over-training. Figure 3 demonstrates that validation loss for

800×800 inputs converges before Epoch 100 of training,

and begins increasing after the learning rate reduction at

Epoch 200. However, the validation loss of the model trained



TABLE III: Precision and Recall on Initial and Transfer Datasets. Average Precision = AP, Average Recall = AR.

256×256 400×400 600×600 800×800

Statistic Initial Transfer Initial Transfer Initial Transfer Initial Transfer
AP, IoU=0.50:0.95 0.031 0.030 0.541 0.339 0.689 0.396 0.789 0.503

AP, IoU=0.50 0.062 0.066 0.789 0.573 0.896 0.612 0.874 0.614

AP, IoU=0.75 0.026 0.019 0.528 0.310 0.688 0.402 0.859 0.557

AR, maxDets=1 0.204 0.195 0.442 0.497 0.305 0.449 0.357 0.484

AR, maxDets=10 0.447 0.307 0.750 0.559 0.805 0.590 0.904 0.697

AR, maxDets=100 0.626 0.605 0.770 0.663 0.821 0.636 0.942 0.793

(a) Precision (b) Recall

Fig. 2: Precision and Recall of each model on both the initial

and transfer learning test sets.

on 400×400 inputs converges after Epoch 400. These graphs

also show that the model trained on 256×256 inputs loses

stability and eventually reaches a bad local minimum at

around Epoch 100. The implementation of random cropping

for 800×800 inputs by drawing from a dataset with e.g.

2000×2000 chips may increase the performance of the model

further.

Visualizations of the model outputs in Figure 4 show that

on the initial dataset, models from Experiments 1, 2, and 3 are

capable of identifying drainage crossings in complex systems

with a high degree of accuracy. The outputs of the model

trained on 800×800 inputs shows near-perfect performance on

this particular example, despite the drainage system involving

many sequential crossings underneath roadways in multiple

locations across the DEM. Likewise, the visualizations from

the transfer dataset show that the models are capable of high

performance on data from an unseen watershed.

Overall, these results show the promise of adapting a

pretrained hybrid transformer object detection model (DETR)

to novel data modalities. The model is performant on single-

channel, high-precision data with objects that have no edges

or defined size. Input size has a strong effect on performance,

showing that spatial context is important for this application.

The trade-off between model efficiency and desired perfor-

mance must be considered in downstream implementation.

Additionally, fine-tuning a given model on a sample of a new

watershed is recommended, given the drop in performance on

Fig. 3: Training loss and validation loss of each model over

500 epochs.

the transfer dataset in this case.

D. Optimal TPU and Evaluation

Through the genetic algorithm optimization process, we

derived a set of optimal TPU configurations, tailored specifi-

cally for the DETR model of 400 × 400 input image. While

our algorithm converges in an optimal configuration, it is



Fig. 4: Model outputs from initial test set (top) and transfer learning test set (bottom). From left to right: original image size

of 800×800 is cropped to 600×600, 400×400, and 256×256. Ground truth bounding boxes are shown in green and model

predictions with confidence over 0.7 are shown in red.

TABLE IV: TPU Configurations and Inference Cycles for 400×400 input image

Attribute Lowest Latency Average Latency Google’s
Solution Solution TPU v3

# Systolic Arrays 1 1 2

Systolic Array Width 512 128 128

Systolic Array Height 256 256 128

Input Feature Memory 4 MB 2 MB 8 MB

Weight Memory 3 MB 3 MB 16 MB

Output Feature Memory 6 MB 1 MB 8 MB

Bandwidth 700 B/cycle 1100 B/cycle 900 B/cycle

# Memory Banks 2 2 2

Mapping Weight Weight Weight

Stationary Stationary Stationary

Cycles (Normalized) 0.6× 0.9× 1×
MAC Units (Normalized) 4× 1× 1×

crucial to note that there is no single straightforward recipe for

our problem. The relationship between various architectural

parameters and the estimated performance is quite complex

and often non-intuitive.

Among the solutions of our genetic algorithm, the attributes

of the lowest latency design are presented in Table IV. Our

TPU configuration features a 512×256 systolic array of MAC

units with 13 MB total size of SRAM memory. Moreover, the

best option for memory banks is 2, while the most efficient

mapping strategy is weight stationary dataflow. Finally, the

memory bandwidth was optimal at 700 bytes/cycle. Another

design point derived from the pool of solutions and with

average latency, includes a smaller MAC Array of 128×256,

SRAM memory of 6 MB, a high bandwidth capacity of

1100 bytes/cycle and again weight stationary mapping. The

latency of that average case compared to the fastest aforemen-

tioned solution is around 1.2× slower but with considerably

less resources.

To evaluate the performance of our solutions, we established

a baseline for comparison by configuring our cycle-accurate

Scale-Sim tool to represent a real-world case of TPUs, similar

to Google TPU v3 [42]. The baseline case incorporates two

128 × 128 systolic MAC arrays, 32 MB of on-chip SRAM

cache memory and a memory bandwidth of 900 GB/s, that

corresponds to 900 bytes/cycle in a chip with clock speed of

1 GHz. As the mapping type, we choose weight stationary,

which is very usual in existing designs, while the memory

will comprise of 2 banks. All TPU configuration attributes are

concentrated in Table IV, along with the total cycle count of

DETR inference, as estimated by Scale-Sim. Our results show



that the latency oriented solution is much faster than the other

two, as it employees the inference procedure 1.67× faster than

the Google TPU v3 model and 1.5× faster than our average

solution. However, this improvement in performance comes

with a great increase in logic resource demand, as the fastest

solution requires 4× more MAC units from both the other two

configurations. This leads us in choosing the average solution,

which achieves a satisfactory balance between the trade-off

latency and resource demand.

V. CONCLUSION

In this paper, we adapt a pre-trained object detection model

(DETR) to a drainage crossing detection task using high-

resolution LiDAR-derived DEM data. We test the responsive-

ness of the model to different input sizes and its performance

on a transfer learning dataset from a watershed that was

not represented in the training set. We then utilize a genetic

algorithm to locate an optimal TPU architecture for this model.

We show that the pre-trained DETR model can be effec-

tively adapted to a new data modality, surpassing the perfor-

mance of previous models on the drainage crossing detection

task as demonstrated in Jalalipour et al [32]. We show that

there is a trade-off between input size and performance for

this application. Additionally, model performance is lower on

the transfer learning dataset, showing that fine-tuning should

be performed when applying the model to watersheds with

distinct physical geography.
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ARTIFACT DESCRIPTION/EVALUATION APPENDIX

A. Summary of the Experiments Reported

1) Abstract: We provide this artifact appendix to enhance

the reproducability of our results.

2) Artifacts: The GitHub link of source code:

https://github.com/SHUs-Lab/BTSD24AN

B. Experimental Setup

1) Relevant Hardware Details:
Machine:

Type: Kvm
System: Supermicro
product: SYS-4029GP-TRT2
v: 123456789
Mobo: Supermicro
model: X11DPG-OT-CPU
v: 1.01
UEFI: American Megatrends v: 3.3
date: 02/21/2020

CPU:
Topology: 2x 24-Core
model: Intel Xeon Gold 5220R
bits: 64
type: MT MCP SMP L2
cache: 71.5 MiB
Speed: 1000 MHz
min/max: 1000/4000 MHz

Graphics:
Device-1: ASPEED Graphics Family

driver: ast
v: kernel

Device-2: NVIDIA TU104GL [Quadro RTX 5000]
driver: nvidia
v: 535.104.05

2) Operating Systems and Versions:

System:
Kernel: 5.4.0-182-generic x86 64
Distro: Ubuntu 20.04.6 LTS (Focal Fossa)

3) Applications and Versions:

Client: Docker Engine - Community
Version: 24.0.7
API version: 1.43
Go version: go1.20.10
Git commit: afdd53b
Built: Thu Oct 26 09:08:01 2023
OS/Arch: linux/amd64
Context: default
Server: Docker Engine - Community
Engine:
Version: 24.0.7
API version: 1.43 (minimum version 1.12)
Go version: go1.20.10

Git commit: 311b9ff
Built: Thu Oct 26 09:08:01 2023
OS/Arch: linux/amd64
Experimental: false

containerd:
Version: 1.6.25
GitCommit:

d8f198a4ed8892c764191ef7b3b06d8a2eeb5c7f
runc:
Version: 1.1.10
GitCommit: v1.1.10-0-g18a0cb0

docker-init:
Version: 0.19.0
GitCommit: de40ad0
4) Libraries and Versions:

Docker image:
pytorch/pytorch:2.3.0-cuda12.1-cudnn8-runtime

Installed libraries:
cython==3.0.10
numpy==1.23.3
scipy==1.13.1
onnx==1.16.1
onnxruntime==1.18.0
pandas==2.2.2
rasterio==1.3.10
More complete information on the Docker image source, li-

braries, and versions are in the Dockerfile and requirements.txt

within the GitHub repository.
5) Input Datasets: The preprocessed, training-ready

dataset is available at: https://figshare.com/articles/dataset/

Processed Data for Exploration of TPU Architectures

for the OptimizedTransformer in Drainage Crossing

Detection /27711249?file=50460957

C. Evaluation Experiments
1) Experiments on Transformer Design: The pre-trained

DETR-ResNet50 model is cloned from Facebook Git reposi-

tory: facebookresearch/detr.git

COCO-Evaluation Metrics are borrowed for the model’s object

detection performance.
2) Experiments on TPU Architecture Auto-tuning: DETR

model with ResNet50 backbone model was loaded as pre-

trained from HuggingFace library: facebook/detr-resnet-50

Installed libraries:
pygad==3.0.0
numpy
scalesim
pandas
torch
torchvision
transformers


