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1 | INTRODUCTION AND BACKGROUND

The pivotal role of hydrologic connectivity in understanding hydro-geomorphological processes and managing environmental resources ne-
cessitates the development of flowline networks at appropriate scales. Stream flowline datasets with high spatial accuracy at a regional
scale can facilitate a range of environmental applications, including watershed management (Heathcote, 2009), wetland dynamics (Jenkins &
Frazier, 2010), sediment transportation (Carrivick et al., 2010), and gully erosion measurement (Hout et al., 2020). While flowlines at coarser
spatial scales are more effective in representing hydrologic connectivity at national and global scales (Fekete et al., 2001), finer-scale networks
are required for accurately representing individual or small, localized basins and tributaries.

The National Hydrography Dataset (NHD) is a widely used GIS data source for representing comprehensive surface water features (e.g.,
lakes, streams, rivers, and canals) in the United States (U.S.) (Buttenfield et al., 2011). This dataset is available at two scales, 1:24,000 (high-
resolution version) and 1:100,000 (medium-resolution version), catering to diverse mapping needs. Enhancements to the NHD, such as NHDPIus
and NHDPIlus HR, incorporate features from the 10-meter National Elevation Dataset (currently part of the U.S. Geological Survey's 3DEP

program) and the National Watershed Boundary Dataset (WBD). These features include improved networking, elevation-based catchment
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A new study develops a method and metrics for evaluating the effects of drainage barriers on the accuracy of the modeled flowlines
using LiDAR DEMs.

areas, flow surfaces, and value-added attributes that enhance stream-network navigation, analysis, and visualization (Mckay et al., 2014).
The NHD and its enhancement have been widely utilized across various environmental and ecological applications, such as pollution control,
the management of aquatic biota, and hydrologic analysis (Anderson-Tarver et al., 2012; Evenson et al., 2018; Fesenmyer et al., 2021; Figary
et al., 2021; Huang & Frimpong, 2016; Mukhopadhyay et al., 2020; Simley, 2008).

While the NHD effectively portrays surface water features at the national scale, it is subject to limitations such as map-to-map inconsis-
tencies, errors in the transformation of the data from maps to digital datasets, and limited feature density (Simley, 2008). The irregular and
inconsistent update cycle of 1:24,000-scale NHD dataset has resulted in varying data quality across different watersheds (Anderson-Tarver
et al., 2011). Thus, efforts to integrate user-generated updates into the NHD have been proposed to address its data quality issues. The U.S.
Geological Survey (USGS) has developed “Elevation-Derived Hydrography Specifications” to refine the NHD, enhancing water-related data
discovery and sharing. Despite NHD's broad applications, there is an increasing need for data compiled at even finer scales, such as 1:4800,
a substantial enhancement compared to the current 1:24,000 and 1:100,000 scales (Simley, 2008; Strager, 2019; Thompson et al., 2018;
Wilmer, 2010). However, drainage patterns at such high scales are inconsistently available, exhibiting varied formats and quality across indi-
vidual mapping projects.

Light detection and ranging (LiDAR), with its high spatial resolution and accuracy, has been proven to help improve the representation of
surface water features at local scales. The high-resolution digital elevation models (HRDEMSs) that are produced from LiDAR source data have
been widely used in hydrologic modeling. Li and Wong (2010) proved that HRDEM with 2-m resolution outperforms 10-m and 30-m National
Elevation Dataset (NED) and Shuttle Radar Topography Mission (SRTM) data in extracting river networks when the cell sizes in comparing
extracted rivers are relatively small. Lang et al. (2012) found that the NHD products tend to underestimate the percent area and total number
of wetlands, and stream datasets derived from semi-automated and automated interpretation of 1-m HRDEMs exhibit higher accuracy than
NHDPIus and NHDPIlus HR. Steinke and Ogden (2013) claimed that the utilization of HRDEMs and other high-accuracy measurements enhances
the performance of hydrologic modeling in channels, especially in areas characterized by low slopes. Poppenga et al. (2013) utilized surface
channels derived from 3-m HRDEMs to improve hydrography change detection, suggesting a viable approach for updating the NHD flowlines.

Despite high resolution and extraordinary accuracy, HRDEMs presents unique challenges in hydrologic applications. Yang and Chu (2013)
demonstrated that HRDEMs can cause the underestimation and segmentation of hydrologic connectivity. Barber and Shortridge (2005) found
that HRDEMs can misrepresent flow barriers like bridges and graded roadbeds over culverts, resulting in large sinks, false watershed bound-
aries, and even non-existent sub-watersheds. These barriers, represented as an elevated road surface or a bridge above a waterway channel in
HRDEMs, often cause inaccuracies in modeled drainage flowlines, such as incorrect crossing points or sudden termination (Bhadra et al., 2021;
Li et al., 2013; Sofia et al., 2014). To address these limitations, HRDEM excavation has been widely employed to generate a hydrologic ver-
sion of the HRDEM, mitigating the segmentation of hydrologic connectivity and improving the spatial accuracy of HRDEM-derived flowlines
(Aristizabal et al., 2018; Li et al., 2013; Lindsay & Dhun, 2015). However, there remains a gap in quantitatively assessing the extent to which
HRDEM excavation can enhance the quality of DEM-derived flowlines, particularly at a finer scale.

This study aims to quantitatively assess how the processing of flow barriers in HRDEMs enhances the quality of flowlines at finer scales.
The method involves utilizing HRDEM excavation for breaching flow barriers in HRDEM prior to simulating elevation-derived flowlines. As a
departure from the commonly used metric “offset distance” that was only applicable to point locations (Bhadra et al., 2021; James et al., 2012),
we assess the accuracy of flowlines arising from the removal of flow barriers in HRDEM using the Coefficient of Line Correspondence (CLC). This
research contributes to the state of the art by (1) developing an assessment framework for quantifying the effects of flow barriers' removal on the
LiDAR-derived flowline features, and (2) evaluating the quality of LiDAR-derived flowline in a comparison with the NHD and ground truth data.

2 | STUDY AREAS AND DATASETS
21 | Studyarea
The study area in this chapter is Flat Creek Watershed, a sub-watershed in West Fork Big Blue Watershed, Nebraska (Figure 1). It is a predomi-

nately agricultural watershed devoted to row crops, mainly corn, grain sorghum, and soybeans. Dense road networks segment the landscape
over the study area, resulting in widespread flow barriers for the representation of drainage features.
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FIGURE 1 Topography and locations of Flat Creek Watershed.
2.2 | Dataset

The sources of HRDEM and aerial orthophotos for the Flat Creek Watershed, Nebraska are listed in Table 1. Color infrared aerial images from
National Agriculture Imagery Program (NAIP) contain red, green, blue, and near-infrared bands, with 1-meter horizontal resolution, which are
used as a base map to evaluate the results.

Ground truth was developed at a finer scale by correcting the 1:24,000-scale NHD flowlines from the USGS Hydrography Dataset Plus
High Resolution (NHDPIus HR). Since the NHD falls short in satisfying the growing user demand for high-resolution and high-accuracy hy-
drography information (Poppenga et al., 2013; Simley, 2008), we conducted minor corrections of the current NHD data and then extended the
NHD to the scale 1:12,000 by digitizing small stream segments manually using the HRDEM and the most recent (released in 2022) NAIP aerial
images as base maps (Figure 2). This ‘corrected’ version of NHD was regarded as ‘ground truth’, serving as the benchmark for comparison and
validation (Figure 3). To identify the optimal threshold for flowline accumulation, a set of channel initiation points were also digitized at the

scale of 1:12,000. Manually digitalized vector lines crossing through bridges and culverts were also utilized for DEM excavation.

3 | METHODOLOGY

The workflow is shown as Figure 4. Based on digitized vector lines crossing the hydraulic structures, AGREE algorithm, the technique of DEM
excavation, was employed to breach flow barriers in HRDEMs to generate modified DEM. Flow accumulation based on modified DEM was
utilized to delineate the flowlines. By comparing the generated flowlines with corrected NHD ‘benchmark’, we evaluated the quality of DEM-
derived flowlines on a finer scale.

3.1 | HRDEM preprocessing

To produce a consistent hydrologic connectivity dataset, a HRDEM should be modified by excavating the hydraulic drainage barriers to a lower eleva-
tion. Stream burning has been used widely to reduce the elevations within the existing channels, which ensures that the water will flow downstream
along the channels (Lindsay, 2016). To apply stream burning for drainage barrier processing (DBP), we adopted the AGREE algorithm that allows a
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TABLE 1 Datasources for Flat Creek Watershed, Nebraska.

Data Sources Scale/resolution
DEM Nebraska Department of Natural Resource 1.0m

Aerial orthophotos USGS National Agriculture Imagery Program (NAIP) 1.0m

NHD USGS 1:24,000

FIGURE 2 Anexample of NHD update caused by terrain surface changes. An artificial ditch was constructed after NHD generated (left).
In the right image, the red line represents the original NHD flowline, while the cyan line is the corrected NHD flowline.

smooth change of surface elevation. AGREE is designed by Hellweger (1997), which is a DEM reconditioning algorithm to adjust the surface elevation
of the DEM to be consistent with a stream. By providing a linear fit to the grid cells from the edge of the buffer zone to the cell locations of the raster
streams, AGREE algorithm drops the elevation of the DEM cells corresponding to user-defined buffer distance around the stream flowlines, avoiding
the abrupt jumps in elevation between stream and non-stream cells and ensuring straight flow paths between the network cells and the buffer border
cells. This process will effectively remove the ‘digital dams’ caused by road embankments, culverts, or bridges (Bhadra et al., 2021; Li et al., 2013;
Saunders, 2000). In this study, the AGREE was conducted in ArcGIS 10.8 by using DEM reconditioning in ArcHydro Toolbox. Manually digitalized
vector line segments, which indicate drainage crossing locations, were used for the DBP. Along these vector lines, a channel with specified width and
depth is excavated by the AGREE algorithm. Two user-specified elevation offset values are accepted by AGREE, a “smooth” value for integrating the
vector stream network into the DEM, and a “sharp” value for integrating the smoothed buffer zone into the DEM. In our study, we selected buffer 5m,
smooth drop 5m, and sharp drop 1 m as the parameters of the algorithm, which is consistent with the general river geomorphology in the study area.

Depressions, also referred to as sinks or pits, are areas with low elevation in DEMs that are surrounded by higher terrain and have no outlet
(Barnes et al., 2014a). Since the depressions could interfere with the flow routing, depression-free DEMs are commonly required in standard
DEM-based hydrological analysis. Depression filling removes the depressions by raising their elevation to the point where the water drains off
the edge of the domain (Tarboton & Mohammed, 2013). We implemented Pit Remove Tools in Terrain Analysis Using Digital Elevation Models
(TauDEM v5.3) to fill all depressions in the study area.

3.2 | Flowlines delineation

Commonly there are four key steps for modeling stream flowlines based on preprocessed DEMs, including flow direction calculation, flow
accumulation, stream definition by thresholds, and vector-based stream flowlines construction. Depression processing ensures the water
can flow downstream without interruption, based on which flow direction and flow accumulation algorithms are applied to DEM (Jenson &
Domingue, 1988). There are two types of flow direction algorithms, Single Flow Direction (SFD) and Multiple Flow Direction (MFD). The SFD
algorithm assumes that the water from one cell should flow into only one neighboring cell that has the lowest elevation (Bhadra et al., 2021).
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FIGURE 3 Comparison between original HR NHD (black lines) and corrected NHD ground truth (red lines).
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FIGURE 4 Workflow for hydrologic modeling based on the HRDEMs.

As its idea of the steepest descent direction is easy to implement, SFD algorithms have been widely adopted by GIS software packages, which
are suitable for modeling convergent flow (Qin et al., 2007). MFD algorithms allow continuous flow angles, assuming that the flow from a DEM
cell could drain into more than one downslope neighboring cell (Qin et al., 2007). The fraction of flow draining among downslope neighboring
cells is determined based on slope gradient (Quinn et al., 1991). Compared with SFD, MFD could compute contributing areas more accurately
on divergent hillslopes. To compare the performance of these two types of flow direction algorithms, Deterministic Eight (D8) from SFD and

Deterministic Infinity (D-Infinity) from MFD will be used in this study.

3.21 | Flow direction algorithms

D8 is one of the most popular SFD algorithms. The major idea of D8 is to track the flow from each pixel to one of its eight neighbor pixels
(O'Callaghan & Mark, 1984; Wang et al., 2011). As a powerful algorithm, it could assign reasonable flow directions even in very complex and
ambiguous situations. D-Infinity algorithm (Tarboton, 1997) assumes that water flows down one or two cells by partitioning the flow between
the two cells nearest to the steepest slope direction (Yang et al., 2015). The flow direction is a vector along the direction of the steepest down-
ward slope on the eight triangular facets formed in a 3x 3 grid cell window centered on the grid cell of interest.
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3.2.2 | Flow accumulation threshold (FAT)

The flow accumulation threshold (FAT) is a parameter that could directly affect the structure and density of extracted river networks from
DEMs (Ozulu & Gokgoz, 2018). As a user-defined parameter, a too-large FAT would omit useful details of river networks, while a too-small FAT
would lead to a highly dense river network dominated by pseudo flowlines (Zhang et al., 2021). The traditional method to determine a stream
threshold was trial and error based on visual interpretation, which is often subjective and time-consuming. The identification of channel initia-
tions, which could determine the essential topology and morphometric characteristics of downstream, is critical for the extraction of a drain-
age network from DEMs. Since the positioning of the ends of drainage networks fluctuates with the threshold value, a method that should be
more objective and accurate than an arbitrary visual judgment is needed. Lin et al. (2006) developed the fitness index, a quantitative analysis
method, which calculates the channel initiation error length between the observed and calculated values to determine the reasonable stream
threshold. The fitness index Equation is shown in (1),

22:1 (Li)s + Z?:l (Lr)s
Ly

F= : &
where L; is the insufficient stream length, L, is the redundant stream length, and L; is the total stream length extracted from aerial photographs. As
we generated a “ground truth” stream under a constant scale, the formula of the fitness index could be simplified as Equation (2), where the FAT
which minimizes the value of F could be regarded as the reasonable threshold,

F=:th+ﬁﬂhk 2

s s=1

3.3 | Flowline comparison and accuracy assessment

The coefficient of line correspondence (CLC) has been developed by Stanislawski (2009), which is a ratio being used to compare how two sets
of lines that represent similar features on the ground match each other. In the equation of CLC (shown as Equation (3)), M is the sum of the
lengths of matching benchmark lines, omission error O is the sum of the length of benchmark lines that are omitted from the generated lines,
and commission error C is the sum of the length of lines in the generated data that do not have a match in the benchmark. The higher the CLC,

the better two sets of lines match spatially. A high CLC value indicates a substantial degree of agreement between two sets of lines,

M

CclC=tro7c

The proportions of commission errors are calculated by Equation (4),

C
P=—— .
¢ M+0O+C

The proportions of omission errors are calculated by Equation (5),

]

“Mto+C ©

Po

We generated buffers around the modeled and ground truth flow network features to assess omission and commission errors respectively.
Omission errors were defined as the flowlines in the ‘ground truth’ benchmark network that fall mostly outside the buffer of the modeled
flowlines, while the commission errors were estimated as the modeled flowlines which mostly fall outside the buffer of ground truth flowlines.
In this study, the buffer size was set as 33.33 feet (around 10.2m), following the National Map Accuracy Standard (NMAS) for 1:12,000-scale
maps (Thomas et al., 2009).
4 | RESULTS
4.1 | D8 flowlines derived from HRDEM with DBP

41.1 | FAT for stream delineation

Based on the D8 algorithm, the drainage networks were delineated by using various FATs. The FAT increases starting from 10,000 with a
step of 10,000. The relationship between the fitness index and FAT is shown in Figure 5. With the FAT increases, the stream network density
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decreases gradually, but the fitness index exhibits a U-shape trend. The FAT corresponding to the minimal fitness index is 40,000, which was

selected as the optimal threshold for defining stream channels based on flow accumulation.

4.1.2 | D8 drainage network

The modeled flowlines are shown in Figure 6. The flowlines modeled using the excavated HRDEM are composed of natural streams,

artificial canals and ditches, and the unrealistic parallels patterns. Based on the Elevation-derived Hydrography—Representation,

1200
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0 10000 20000 30000

FIGURE 5 The relationship between fitness index and FAT.
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FIGURE 6 D8-derived drainage network.
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Extraction, attribution, and Delineation (READ) Rules (Archuleta & Terziotti, 2020) and elevation-derived hydrography acquisition speci-
fications (Terziotti & Archuleta, 2020), a canal/ditch that does not provide network connectivity, is located in agricultural fields drain-
ing to another hydrologic feature, or is isolated should not be captured to avoid overcollection. Thus, we only focus on those streams,
which are either flowing water channels with visible edge of the banks or the canals that connect different drainage lines (Archuleta
& Terziotti, 2020). To evaluate the quality of the modeled D8 flowlines derived from the excavated HRDEM, we use the corrected
NHD as the “ground truth” benchmark and the CLC as the quality metric. The comparison between the D8-modeled drainage lines and
benchmark flowlines (1:12,000) is shown in Figure 7. Compared with the corrected NHD benchmark, the modeled drainage lines con-
tain substantial flow accumulation artifacts that do not align with the corrected NHD. In the upstream area, a few branches disconnect
from the primary flowlines because of the difficulty in determining the connectivity patterns. Further details will be addressed in the

following section.

—— Corrected NHD 'Benchmark'

|:]Watershed Boundary (l) '1f5' 3I S (ISKiIometers

—— D8-derived Streams
D Watershed Boundary ) 6 Kilometers

FIGURE 7 The comparison between benchmark flowlines (upper) and D8-derived stream network (lower) at scale 1:12,000.
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The CLC results are in Table 2. The results show that the similarity between D8-derived drainage and the NHD benchmark is 47.11%, with

the proportions of commission errors 47.72% and proportions of omission errors 5.17%. The distribution of omission and commission errors

are shown in Figures 8 and 9.

4.2 | D8 flowlines derived from HRDEM without DBP

To assess the improvement of hydrologic connectivity that results from HRDEM excavation, flow networks were derived using the HRDEM,
which maintained the elevation at drainage structures. The streams/rivers in D8-derived flowlines without DBP were then compared with
the corrected NHD at a scale of 1:12,000. Figures 10 and 11 illustrate the omission and commission errors observed in this comparison.
Additionally, the CLC results, comparing the D8 flowline without HRDEM excavation against the corrected NHD “benchmark,” are presented
in Table 3. The CLC for flowlines derived from HRDEM without excavation and corrected NHD ‘ground truth’ is 40.59%, which is 6.52% lower
than flowlines derived from the excavated HRDEM. The proportion of commission errors is 50.49% and the proportion of omission errors is
8.92%, which increased by 2.77% and 3.75% respectively compared with flowlines derived from the excavated HRDEM.

4.3 | D-infinity flowlines derived from HRDEM

To explore the impact of flow direction algorithms on flowline generation, flowlines were produced using the D-Infinity algorithm with a FAT
of 40,000. To evaluate the similarity between the flowlines generated by the D-Infinity algorithm and those created using the D8 algorithm,

TABLE 2 CLCresults for D8-derived steams with a FAT of 40,000 and a scale of 1: 12,000.

M (meter) O (meter) C (meter) CLC Po P,
134,587 14,770 136,348 0.4711 0.0517 0.4772

......
-

............. Matching Benchmark Lines

—— Omission Errors
EWatershed Boundary 6 15 8 6Kiomeers

FIGURE 8 Omission errors on benchmark lines when compared with D8-derived streams.
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FIGURE 9 Commission errors from D8-derived streams.
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FIGURE 10 Omission errors on benchmark lines when compared with D8-derived streams without HRDEM excavation.
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FIGURE 11 Commission errors from D8-derived streams without HRDEM excavation.

TABLE 3 CLCresults for D8-derived steams based on the HRDEM without HRDEM excavation. The FAT is 40,000 with a scale of 1:
12,000.

M (meter) O (meter) C (meter) CLC Po P,
122,448 26,909 152,300 0.4059 0.0892 0.5049

the CLC was calculated, yielding a value of 0.9845. Since the high similarity between the flowlines generated by D8 and D-Infinity, we only

discussed the difference between D8 flowlines and benchmark lines instead of D-Infinity.

5 | DISCUSSION
5.1 | Evaluation of fine-scale flowlines derived by the excavated HRDEM

The commission errors were mainly caused by flow accumulation and the use of a fixed FAT. Due to the fine elevation details captured by the
HRDEM, it is common to include extra tributaries that may be missed in the corrected NHD benchmark. With the construction of civil infra-
structures like roads, the difference between the natural topographic flowpaths and human-made flowpaths became a dilemma for flowlines
simulation (Figure 12). In such a case, it was difficult to determine the actual ground truth without a field verification. Another factor contribut-
ing to the commission errors was the unrealistic flowline artifacts in flat areas (Figure 13). Apart from the naturally occurring flats like wetlands
areas, the use of a depression-filling algorithm to generate a depression-less DEM also led to flat regions without any local elevation gradient.
Flow directions in these areas were obscured by the elevation artifacts, resulting in local indeterministic flow directions and problematic paral-
lel flow lines connecting stream segments (Zhang et al., 2017).

The omission errors in flowlines can be categorized into three types. The first type is associated with the canals that connect natu-
ral drainage lines (Figure 14a). According to the Elevation-Derived Hydrography READ Rules by Archuleta and Terziotti (2020), canals
or ditches necessary for network connectivity should be included into the hydrography features. In agricultural areas, widespread
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~——— Artificial Path in NHD

Natural Flow Path
Elevation (Meter)

— High : 626.4

- Low : 562.0

(a) (b)

FIGURE 12 Anexample of conflict between the natural topographic flow path and human-made flow path. (a) is the aerial photo where
the cyan line is the human-made flow path (NHD), and red line is the natural topographic flow path; (b) is the HRDEM in the same area.

(b)

Elevation (Meter)
High : 626.4

~——— Ground Truth

Parallel Flow Lines

Depression Boundary - Low: §62.0

FIGURE 13 Anexample of unrealistic flowlines in the flat area caused by filled depression. Black lines are the boundary of filled
depression. (a) is the ariel photo where the cyan line is the ground truth and red line is the problematic parallel flow lines; (b) is the HRDEM
in the same area where the original flow path is clear.

artificial drainage channels often create complicated connectivity patterns, which are difficult to identify or even verify in elevation-
derived hydrography. The second type of omission errors (Figure 14b) are caused by missing canals that route water deliveries as a
critical component of surface water irrigation infrastructures. To accurately determine these canals, additional information like the
length and location of the canal, the direction of flow, and the historical canal network data in NHD should be taken into consideration
(Terziotti & Archuleta, 2020). The third type is related to the headwater drainage channels that convey intermittent flows instead of
perennial flows (Figure 14c). The challenge in generating these drainage ways caused by the difficulty in determining the headwater
of a stream using the HRDEM and a fixed FAT, which can only approximate the representations of these drainageways (Terziotti &
Archuleta, 2020). Ortho-imagery does not assist in the correction of these errors, as these drainageways are typically either less visible
or lack clearly defined channels or banks. Therefore, in addition to the HRDEM, further field investigation may be needed to confirm
these drainage channels.
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Drainages where the
v modelled data and the
NHD match

Drainages present in the
~— NHD but absent in the
modelled data

(b)

FIGURE 14 Three types of omission errors. (a) The canals (purple lines) provided by NHD which connect two drainage networks (cyan
lines). (b) Canal features (purple lines) that extend existing canal networks (cyan lines). (c) Representations of drainage channels (cyan lines)
which did not capture the headwater (purple lines).

5.2 | Comparison between flowlines with and without DBP

To assess the improvement of generated flowlines associated with the removal of flow barriers, the flow accumulation method was applied to
the original HRDEM without HRDEM excavation. In a comparison of error distribution maps before and after HRDEM excavation (Figures 8-
11), the flow barriers were found to be responsible for the increases in commission errors and omission errors. Figure 15 is an example that
shows the influence of a drainage structure, in which a drainage passing through the road was intercepted by road embankment. This ‘digital
dam’ diverts the original flowpath to a more distant crossing location, contributing to new commission errors (red lines in Figure 15) and omis-
sion errors (yellow lines in Figure 15). The results in Tables 2 and 3 also prove that combining the drainage crossing lines with HRDEM can
improve the elevation-derived hydrography. The CLC increased by 6.52% with combination of drainage crossing lines, meanwhile the commis-
sion errors and omission errors decreased by 2.77% and 3.75% respectively. This result is also consistent with the results from Li et al. (2013)
and Bhadra et al. (2021). To resolve the flow barriers commonly present in the HRDEMs, new GeoAl models are being actively developed for
the classification and detection of drainage barriers (Jalalipour et al., 2023; Wu et al., 2023; Zhang et al., 2023).

5.3 | Influence of different algorithms on flowlines derived by the excavated HRDEM

Based on the calculated CLC metric, we found that D-Infinity flowlines are similar to the D8 flowlines derived from the excavated HRDEM.
The CLC for D8 and D-Infinity flowlines is 98.45%, which means that the similarity between these two flowlines is up to 98%. This similarity is
also confirmed by Bhadra and his group (Bhadra et al., 2021), who also found that, after HRDEM excavation, D-Infinity and D8 flow direction
was very similar for 1-meter HRDEM. Thus, we only focused on the D8-derived flowlines in this section.

5.4 | Uncertainties and future research
As aforementioned, unrealistic flow patterns in flat regions cause commission errors in hydrography network extraction. These flat regions

may occur naturally or artificially arising from depression filling in DEM preprocessing. As elevation-derived flow direction relies on elevation
differences, the accuracy of accumulated flowlines in flat areas is commonly low due to the lack of topographic variations (Liao et al., 2023). The
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Ground Truth

Omission Errors

Commission Errors

=4
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FIGURE 15 An example of the influence of drainage structure on accumulated flowlines. In the upper graph, cyan lines represent the
ground truth. The yellow lines are omission errors, and the red lines are commission errors caused by drainage structure. In the lower graph,
(a) is the flowline derived from HRDEM without excavation, while (b) is the flowline derived from the excavated HRDEM.

FIGURE 16 Elevation-derived flowlines (red lines) and flowlines from NHD (cyan lines) in Long Lake-Sutter Basin watershed, CA.

extraction of flow direction is confounded in flat areas to produce problematic parallel flow lines, and calculations also tend to be time-consuming.
For those large depressions which are inhabited and don't accumulate water due to the disturbance of human activities, the situation could be too
complex to delineate the correct flowpath based on elevation. Figure 16 shows an example of inhabited depressions, the Long Lake-Sutter Basin
watershed in CA. After depression filling processing, the elevation-derived flowlines (red lines) are unrealistic parallels, while the flowpath should
be controlled by artificial drainage channels (cyan lines) according to NHD. This example shows that the omission errors caused by complex artificial
canal networks and commission errors caused by unrealistic parallels in the flat areas may be resolved using methods other than flow accumulation
(for example, spatial segmentation by Xu et al., 2021). In these places, artificial drainage channels emerge as the predominant hydrographic features.

Although several flow-routing algorithms have been developed (Barnes et al., 2014b; Garbrecht & Martz, 1997; Jana et al., 2007;
Tribe, 1992), it is still challenging to extract accurate flow directions for flat regions in DEMs (Zhang et al., 2017). For example, DBP ina HRDEM
requires reference drainage flowlines in the flat areas, which are usually unavailable.
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To address these limitations, spatial segmentation models like the U-net model may serve as a potential alternative solution. The U-net
model could work with very few training images and yields more precise segmentations (Ronneberger et al., 2015). For hydrologic flowlines
extraction, U-net could overcome the difficulties that are caused by spatial heterogeneity of surface water features, ensuring adequate con-
nectivity of results by taking both the global and local information into consideration. Xu et al. (2021) developed an attention U-net model for
fine-scale flowline detection by taking advantage of high-accuracy LiDAR data. The image was segmented based on the binary classification
of stream and non-stream pixels. The results indicated that the attention U-net model could provide flowlines with better smoothness and
connectivity. Thus, by using factors derived by HRDEM and corrected NHD “ground truth” as inputs, the U-net model could be a promising

tool for our further research, which may conquer the challenge of flowlines delineation in flat areas.

6 | CONCLUSIONS

Fine-scale stream flowlines are crucial for managing small local basins and tributaries, yet they are often unavailable or unreliable. A key chal-
lenge in developing accurate fine-scale flowline data is the presence of flow barriers in HRDEMSs, particularly at stream-road crossings, which
can lead to incorrect flow patterns. By processing drainage barriers in HRDEMs, we created a flowlines dataset at a finer scale than the exist-
ing NHD and evaluated its quality. The unique contribution of this study is to develop a method and metrics for evaluating the effects of flow
barrier processing on the accuracy of the modeled flowlines using HRDEMSs. This evaluation also includes a comparative analysis of different

flow delineation methods. The results suggest that:

1. The similarity of simulated flowlines with D8 and D-infinity algorithms is in a high degree, approximately 98%.

2. The commission errors are mainly associated with the presence of flow accumulation using a fixed FAT and unrealistic flowline artifacts oc-
curring in large depressions, resulting in the divergence between the simulated flowlines and ground truth (corrected NHD) at a finer scale.

3. The omission errors primarily involve missing canals connecting natural drainage lines, missing irrigation canals that are crucial for delivering
water, and challenges in identifying intermittent headwater drainage channels, resulting in discrepancies between simulated flowlines and
the actual hydrography at a finer scale.

4. Processing flow barriers on HRDEMs can substantially improve the quality of hydrography mapping at fine scales.
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