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Species distribution models are the primary tools to project
future species’ distributions, but this complex task is influenced
by data limitations and evolving best practices. The majority of
the 53 studies we examined utilized correlative models and did
not follow current best practices for validating retrospective or
future environmental data layers. Despite this, a summary of
results is largely unsurprising: shifts toward cooler regions, but
otherwise mixed dynamics emphasizing winners and losers.
Harmful insects were more likely to show positive outcomes
compared with beneficial species. Our restricted ability to
consider mechanisms complicates interpretation of any single
study. To improve this area of modeling, more classic field and
lab studies to uncover basic ecology and physiology are crucial.
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Introduction

Humans have drastically altered our living environment,
placing many species in peril and ultimately culminating
in an ongoing sixth mass extinction [1]. Many stressors,
such as land-use conversion, pollution, and the over-
exploitation of natural resources, have long been the main
factors believed to be driving this crisis. Climate change
has emerged as an increasingly dominant stressor [1] as
the last ten years have been among the hottest on record
[2]. This recent acceleration in climate warming demands
that we understand how climate has been and will con-
tinue to impact biodiversity and ecosystem function,

especially in combination with other ongoing threats [1].
Insects in particular have received a great deal of atten-
tion because of recently reported taxon-wide declines that
appear to be global in nature [3-5], presenting a risk of
widespread loss of ecosystem function [6]. One of the
most popular research tools for understanding how global
change impacts biodiversity is the use of species dis-
tribution models (SDMs), which leverage the relationship
between a species’ distribution and its putative environ-
mental drivers; SDMs are primary tools for making eco-
logical forecasts [7]. These forecasts allow us to compare
possible outcomes of alternative societal decisions and
also have a scientific value by allowing iterative im-
provements of predictive models [8] and sharpening
ecological theory [9]. Yet, the approaches to projecting
current and future ranges vary substantially and a growing
body of research has shown that specific modeling choices
have considerable impacts on the reliability of outputs
and, ultimately, our ability to anticipate or adapt to on-
going changes [10-14].

There are many different methods associated with
SDMs, but terminology and usage vary between practi-
tioners. Here, we adopt the terms ‘correlative’ [7] and
‘mechanistic’ [15] and use the following definitions for
the purpose of this review. Correlative SDMs are built
by combining species locality data (usually presence-
only [PO]) and environmental data layers and estimating
the correlations between them [7]. The parameterized
model is used to predict the expected full extent of their
entire range (and also to project ranges into the future)
[7]. There are many different modeling approaches
available and performance varies substantially [11,12]
and variable validation methods can also lead to different
modeling choices [16]. Correlative models are often
completely ‘naive,” meaning that there is no considera-
tion of that species’ biology in building the model
structure [10]. In contrast, ‘mechanistic’ SDMs are built
and parameterized from @ priori knowledge of species’
biology emerging from natural history observations or lab
and field experiments (e.g. thermal constraints, species
interactions) [15]. Both correlative and mechanistic ap-
proaches have long relied primarily on climate factors to
project future species distributions, although other types
of layers have often been included, both biotic (e.g.
land-use land cover [LLULC] and specific interacting
species) and abiotic (e.g. soil). When the specific goal is
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2 Global change biology

to project ranges or population dynamics into the future,
three component steps are required [8]: 1) an SDM that
links distributions (correlative) or performance metrics
(mechanistic) to environmental covariates; 2) spatial data
layers that project key environmental conditions (i.e. the
significant covariates chosen during the modeling phase)
into the future; and 3) combining the SDM with future
environmental layers to project future distributions.
Notably, one potential primary driver of recent insect
declines, the use of pesticides, is extremely challenging
to include in retrospective or future projections because
spatial data are sparse and technologies are constantly
changing [17].

The challenges of implementing species
distribution models

The primary challenge for developing SDMs has always
been the limitation of data available to build and validate
large-scale distribution models (step 1). By far, the
greatest source of distribution data has always been, and
likely will always be, PO data from ‘opportunistic’ col-
lection of field specimens and (more recently) photo-
graphs. Unfortunately, the vast majority of historical
specimens remain undigitized and so unavailable for
model- building [18]. Further, SDMs based on these data
have unknown sample biases that are difficult to correct
[12,19], although new methods are more effectively
tackling these problems, for example, [20,21]. Survey data
provide for more robust models [19] but these are ex-
tremely limited and, without a global effort to expand
them (e.g. [22]), they will rarely be available for SDMs.
Correlative SDMs are also criticized for providing little
basis to understand the underlying mechanistic drivers
[12,23], and are often validated using in-sample tests that
show poor transferability when projecting into novel
conditions [24] or regions [25]. In contrast, mechanistic
approaches provide model variables that are based on
known mechanisms and are included as @ priori factors in
a model. With these models, it is possible to validate the
model with completely independent distribution data,
providing a more robust validation than in-sample tests
[12]. However, the reality is that the mechanistic data
needed to effectively implement mechanistic SDMs are
not available for the vast majority of species.

While much has been written in the ecological literature
about the pros and cons of different classes of SDMs (e.g.
mechanistic vs. correlative) and distribution data types
(e.g. PO data vs. surveys), there has been less exploration
of how choices relative to the environmental data layers
themselves can impact results, future projections, and
their interpretation [12,14,26]. One issue that we believe
is particularly important, but is rarely addressed, is the
temporal alignment of distribution and environmental
data [12,14]. SDMs are structured to overlay spatial data
to examine relationships; if these data are temporally

disjunct, biases may be introduced into the model. While
SDMs assume a system in equilibrium, the reality is this
entire ficld of modeling is predicated on the idea that
species’ distributions are responding to an environment
that is changing directionally over time [27]. Thus, the
assumption of equilibrium, especially relative to para-
meterizing SDMs with retrospective distribution ana-
lyses, should be met with great caution [10,12,24] and
care should be taken to align data layers temporally.

Another methodological factor that can profoundly im-
pact ecological forecasts is how future climate layers are
built for projections (step 2) [26]. Global climate models
(e.g. atmosphere—ocean general circulation models
[AOGCMs], but hereafter GCMs) are built on physical
models and are used not only to forecast future climate
conditions, but also to project backward for the purposes
of model validation. These GCMs are implemented by a
network of collaborating climate centers around the
globe under a shared framework organized by the Cou-
pled Model Intercomparison Project (CMIP), part of the
Intergovernmental Panel on Climate Change. The
output of these projections can vary greatly among the
GCMs and some are better suited to a specific region
than others [14,26]. Because climate centers also project
past conditions [28], these predictions can be used to
choose models best suited for a study system by vali-
dating retrospective model simulations for the climate
metrics found to be most important drivers of a species’
range dynamics. While there remains controversy on
whether it is better to use a validated subset of models or
as many GCMs as is tractable, our opinion is that
building ensembles based on validation using retro-
spective projections produces more defensible results
[14]. Even (or especially) without validation, the use of
multimodel ensemble dataset for projections is generally
considered as current best practice because it minimizes
the influence of the variability of individual GCM when
making projections [26]. Another particularly acute
challenge for making future projections is that while
most researchers acknowledge the importance of other
environmental factors such as LULC, development of
future scenario projections for these variables is either
limited or entirely unavailable [29,30]. Finally, propa-
gating uncertainty when combining ecological and fu-
ture environmental models (step 3) is especially difficult
and best practices are only beginning to emerge [13].
Here, we review the recent insect SDM literature for
insights about how insect communities may be most
likely to change into the future, while accounting for the
wide range of methodological differences that can im-
pact output and interpretability.

Survey of the literature
Our goal is to evaluate what the most recent SDM-based
forecasts have suggested about potential insect responses
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Modeling insect response to a warming climate Neupane, Larsen and Ries 3

to future environmental change while accounting for
different modeling approaches and evolving best prac-
tices. We took the approach of targeting a comprehensive
sweep of all studies we could locate to reduce taxonomic
bias in our review, but limited our search to a restricted,
recent time period (2018-2022). This is because of how
much best practices continue to evolve and the sub-
stantial methodological influences on projection out-
comes. We conducted a literature search (various
combinations of words: GCM, AOGCM, future predic-
tion, insect, and SDM) for studies using Google Scholar
and Web of Science. We found additional papers by ex-
amining backward and forward citations and located an
initial 144 papers published from 2018 to 2022 that pro-
ject range-wide insect distributions into the future. We
only accepted papers that covered a limited number of
species (<30) so that biological realism in the results
could be more carefully considered. All papers must have
included a retrospective SDM to parameterize the eco-
logical projections (step 1); had future forecasts that were
based, at least in part, on climate projections from the
CMIP consortium (step 2); and the ecological model was
then projected into the future based on the environ-
mental covariates (step 3). Using these criteria, 53 papers

were selected to review (each detailed in Supplemental
T'able 1). We then categorized each of the 53 papers re-
lative to the basic motivation and approach ('T'able 1). To
quantify the methodological approaches, we developed a
scoring system that we applied to each paper based on
seven criteria related to best practices as described above;
the basis for each score is detailed in Table 2.

Our search showed that the use of SDMs to make future
projections has grown even in the last 5 years (Figure 1)
and their scope includes a broad range of insect taxa,
including representatives of 47 families among 8 orders
(Supplemental Table 1). Most studies focused on four
orders (Coleoptera, Hemiptera, Hymenoptera, and Le-
pidoptera) and were most often motivated by under-
standing the ecology of harmful species (pests, invasive
species, or disease vectors, n = 36), including species
used as biocontrol agents (n = 4). But many other studies
were motivated by the understanding of general range
dynamics and the ecology or conservation of nonharmful
species (n = 13). We separated our summary of study
methods and results by whether they were focused on
harmful and nonharmful species ('T'able 1) because there
are a priori reasons to believe that harmful species may

Table 1
Summary of the category of papers reviewed*, including how each category was broken down and the number of paper representing
each type.
Category Type Description # papers
Motivation: H=harmful Pest/invasive (H) Insects that cause economic damage 31
species; N = not harmful Disease agent (H) Insect that can directly cause disease or serves as a disease 5)

vector

Biodiversity/ conservation (N)

Studies that are focused on ecological responses for biodiversity 13

and/or conservation concerns, not control of harmful species

SDM approach; H=harmful
species; N = not harmful

SDM distribution data

Biocontrol (N)
Correlative only

Mechanistic only

Both correlative and
mechanistic components
PO only

Trait only

PO + trait

PA + trait

SA only

SA+trait

PO, SA, and trait
Change in range size or
habitat suitability (NH)

Shift in range position (NH)

Harm risk (H)

Biocontrol agents 4

Model covariates chosen and parameterized solely based on 24H, 12N

the relationship between observed distribution and environmental

data layers

Model covariates chosen a priori based on known biology and 8H, 4N

parameterized solely with that information

Model covariates chosen using both methods, or using correlative 4H, 1N

approaches, but constrained by a priori mechanistic knowledge

PO (e.g. GBIF) 32

Trait only 1

Also includes consideration of traits in SDM modeling 13

Presence/absences and trait data used in SDM modeling 2

Species abundance data 1

Species abundances and trait data used in SDM modeling 3

Multiple types of data 1

Increase (+), decrease (-), no change (NC), and mixed (M) 39+, 27-,
2M, 2NC

Shift to either cooler (poleward or higher latitude, C) or warmer  6C

(opposite, W), or mixed (M)

For harmful insects, this includes any risk of inhabiting new areas 22+, 9-, 8M;

(invasion) or increased/decreased population within the current 7C, 1W

range (including outbreaks). Increased invasion risk (+), decrease
(-), and mixed (M). Also scored separately for reported range
shifts (C, W as above).

The response variable category also includes a score for general outcome. Details for each study are in Supplemental Table 1. Citations for review
papers (details for each paper are in Supplementary Table 1): [33,36-39,41-88] GBIF, Global Biodiversity Information Facility.
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4 Global change biology

Table 2

Summary of the numeric scores assigned to reviewed papers based on criteria related to our assessment on the rigor of analysis.

Criteria Category Score # papers
Number of SDM modeling approaches  Correlative or mechanistic only 1 48
Combination of correlative and mechanistic 2 5
approaches
Distribution of data type PO only 0 32
Not PO only 1 21
Environmental data types Only climate data 0 34
Any combination of other factors in addition to climate 1 19 (12 abiotic, 8 land cover, 4
data (more than one category possible for each paper) species interactions, and 2 other)
SDM validation Validation not obvious 0 7
Validation using data subsets 1 38
Validation using independent data 2 8
SDM temporal alignment for distribution No temporal alignment evident 0 41
and environmental data inputs Some temporal alignment of data between distribution 1 12
and environmental data sets
Use of an ensemble of multiple GCMs Only 1 GCM used 0 24
An ensemble of GCMs used (including details on which 1 2-3 used (10)
GCMs were used) 4-10 used (10)
> 10 used (9)
GCM validation GCM regional performance not assessed 0 48
GCM regional performance assessed 1 5

Some of these categories are beyond researchers’ ability to choose, especially when data types are limited. Details for each study are in

Supplemental Table 1.
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The distribution of methodological scores for each paper published in our 5-year review period. Higher scores indicate greater use of best practices.
The explanation for each score is in Table 2 and score details for each of our 53 review papers are in Supplemental Table 1.

be more resilient to (or even benefit from) human-re-
lated environmental changes [31]. Correlative, mechan-
istic, and mixed approaches were well-represented, but
correlative models far outnumbered those using me-
chanistic information (n = 36, 12 respectively), while 5
used elements of both approaches ('T'able 1). Most of the
studies we reviewed used PO data (n = 45), with 32 of
these using PO data only (Tables 1,2), not a surprising
outcome given that the vast majority of species have
only these data available through most or all of their
ranges.

Species distribution model practices are
becoming more robust over time

Including some mechanisms rooted in @ priori knowl-
edge of species biology provides a stronger basis for
making future projections [12,15,23] and, in our review,
studies that focused on species of disease or agricultural
importance (including biocontrol agents) were the most
likely to use this information (scored as using ‘trait data’
in Table 1). This is likely because species of economic
importance often have a richer mechanistic research
history, even leading to a generic software package,

Current Opinion in Insect Science 2024, 62:101159
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Table 3

Future projection summary scored separately for each species within studies so that there are more results than studies.

Projected change Direction of change

Tally of results

Shift in range position (NH) Shift to either cooler (poleward or higher latitude, C) or warmer (opposite, W), or 6C
mixed (M)
Change in range size or habitat Increase (+), decrease (-), no change (NC), and mixed (M) 39+, 27-,
suitability (NH) 2M, 2NC
Harm risk (H) For harmful insects, this includes any risk of inhabiting new areas (invasion) or increased/ 22+, 9-, 8M;
decreased population within the current range (including outbreaks). Increased invasion 7C, 1W

risk (+), decrease (-), and mixed (M). Also scored separately for reported range shifts (C,

W as above).

When multiple emission scenarios are used, and also focused on the results of most extreme climate scenario.

Mechanistic Model, that is well-suited to project insect
responses based on experimental thermal constraints [32].
Mechanistic Model was used in 8 of 12 purely mechan-
istic studies, largely for pest species. Of studies motivated
purely for ecological or conservation reasons, only studies
focused on butterflies were able to include @ priori me-
chanistic components, and this likely reflects that, as a
group, butterflies are the most comprehensively studied
insect taxa and therefore are often used as a model system
for understanding insect biodiversity. Most studies used
only climate data as explanatory variables (n = 34), which,
by far, are the easiest to acquire for future projections. Of
the 19 that did use other layers, most were abiotic (soil
and/or elevation), which do not tend to vary on ecological
timescales, thus making it reasonable to build current
data layers into future projections. However, several stu-
dies considered more dynamic environmental factors, in-
cluding LULC (n = 8) or the distribution of specific food
resources (n =4). Most studies (n =46) clearly stated their
validation procedures, but in 7 studies, those were less
obvious. Eight studies (mostly mechanistic) used com-
pletely independent ‘out-of-sample’ distribution data sets
(see Supplementary Table 1).

SDM modeling frameworks all require distribution data
to be spatially aligned with the underlying environ-
mental layers [7], but only 11 studies described any ef-
fort to match the temporal extent of the environmental
data layers with the available distribution (Table 2). In
terms of developing climate data layers based on future
emission scenarios, most studies used ensembles
(n=29), but the vast majority did not include any vali-
dation procedure for choosing which GCMs to build
those ensembles (n=48), meaning it is unclear if the
future climate layers chosen provide the most defensible
representation of future regional environmental condi-
tions. However, especially in the case where no valida-
tion procedure is used, the more GCMs included in
ensembles, the better and 19 used at least 4 ('I'able 2). It
is heartening to note the adoption of many of the listed
best practices during our study, including an increase at
the end of our short period of review (Figure 1), despite
them being relatively rare in the years prior [10].

Grappling with variability in future projections
The most consistent result we observed, unsurprisingly,
was that projected shifts were predominantly to-
ward cooler latitudes or altitudes (T'able 3). Only one
study, focusing on eight invasive bee species, showed
that most expansion would be into lower (warmer) alti-
tudes [33]. These results align with many observational
studies already documenting such range shifts for insect
species [4]. For changes in range size and habitat suit-
ability (or projected population changes), the results
were decidedly mixed for nonharmful species, high-
lighting that species-specific variability (so-called cli-
mate ‘winners’ and ‘losers’) is expected to be the norm
across insect species, as is generally accepted for most
taxa [34]. However, pest species showed a greater ten-
dency toward increased invasion or outbreaks (20 in-
creased risk, 8 decreased, and 3 mixed), suggesting that
harmful insects may do better, on average, under
warming conditions ("T'able 2), which aligns with a recent
review of on-the-ground trends [35]. This is an im-
portant result because it shows that species that tend to
cause economic or health harms are not only more re-
silient to anthropogenic changes, but also may not be
good indicators of how other species will respond.

Constructed SDMs without any « priori consideration of
mechanism or without carefully aligning environmental
layers to distribution data can lead to unreliable predictions
that can be difficult to interpret and thus undermine their
individual usefulness [12]. As acknowledged by most au-
thors in our review, studies that rely only on climate are
likely missing important factors in species’ distributions,
yet only about one-third of these studies were able to use
nonclimate explanatory variables ('I'able 2). Including di-
gital data on various other environmental factors, such as
LULGC, slope, distance to water, or vegetation types, can
reduce prediction uncertainties [10,26]. Thus, we en-
courage future SDM implementations to incorporate di-
verse explanatory variables whenever possible, especially
LULC, which is often the best proxy for species’ resource
needs. Those types of layers are increasingly the focus of
future scenarios [29,30] and so they should be more widely
available and easier to access into the future.
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6 Global change biology

The best practices we reviewed are easiest to incorporate
when studies are focused on only one or a few species.
Studies that incorporate dozens or even hundreds of
species in correlative SDMs are common, but in our
opinion, these lead to results that may be the most dif-
ficult to interpret. In our review, most studies focused on
only one (n =42) or a few species (Supplemental Table 1)
and this allowed substantial consideration by the authors
of individual species’ biology and how relaxing certain
assumptions may have influenced their results. The au-
thors often stressed that their models largely made pro-
jections based solely on climate and that ignoring other
factors could strongly impact the results, but that they
were constrained to assume that other drivers remained
fixed. In addition to including future LULC scenarios, a
key advancement is explicitly modeling range shifts of
interacting species as a layer to include in projecting focal
species distributions into the future. We found only two
examples of this, one showed potential changes in crop
distribution on a pest [36]. The other modeled a key host
plant as a basis for future modeling of an insect herbivore,
specifically modeled futures of milkweed distributions
were used as a covariate for projected changes in monarch
butterfly distributions [37]. Another substantial advance-
ment was to include dispersal behavior directly into the
model and show how this dampened potential range
shifts [38], but dispersal data are rarely available. Alter-
natively, another study stressed the assumption of no
dispersal limitation by presenting results solely as the
shifting thermal conditions that species would need to
track in order to stay within their climate envelope, not a
specific projection of future distributions [39]. These ca-
veats and more nuanced framing reinforces a narrative
that these projections are generally just for abiotic con-
ditions and do not really model future distributions per se,
but capture an altered thermal landscape that species may
confront in different ways. This helps better grapple with
the variable results of these studies and also presents an
intuitive understanding of the uncertainty around what
may actually happen without formally quantifying that
uncertainty, which remains very difficult [13].

Conclusions

In this review, we examined 53 recent papers that used
SDMs to make projections about future insect dis-
tributions. This is an inherently difficult task fraught
with uncertainties, yet our sweep of this literature
highlights that best practices are increasingly being
adopted and many predicted outcomes make sense in
light of our general understanding of insect ecology.
Changes in range boundaries and habitat suitability favor
shifts toward the poles or higher elevations, and faster
development and additional generations are expected
due to higher temperatures. Compared with nonharmful
groups, species that cause economic or health harms
appear to be more resilient to climate change, or are

even expected to benefit from it. But variability in out-
comes is projected for both, highlighting the wide
variety of outcomes (e.g. ‘winners’ and ‘losers’) expected
across any taxon. Thus, as we consider how insects as a
group may respond to climate change, the variability and
complexity of outcomes need to be a dominant compo-
nent of our summaries, especially to the public. At the
same time, it is important to point out that projections
suggest that harmful species are more likely to benefit
from projected climate change, as has been shown al-
ready from retrospective studies [35]. However, we
caution against adopting a simplistic narrative that future
conditions are expected to uniformly help spread disease
and crop damage while causing widespread losses for
‘beneficial’ species or species of conservation interest.

SDMs can provide valuable insights into species dis-
tributions, but require rigorous methods. We emphasize
four best practices to improve the reliability of future
SDM predictions: (1) incorporating diverse explanatory
variables based on species’ biology, (2) aligning SDM
inputs temporally, (3) conducting SDM validation when
possible, or cross-validation as needed, and (4) selecting
regionally appropriate climate models for future projec-
tions. We acknowledge that these steps can be difficult
or, in some cases, impossible. However, by adopting
these practices whenever possible, projections based on
SDMs will provide more defensible insights into esti-
mations of future outcomes. SDM methods will also
continue to become more powerful through continued
model development and the application of advancing
technologies such as machine learning and artificial in-
telligence models [40]. Wider adoption of best practices
will improve our understanding of the trajectory and
uncertainty of insect populations into the future. We
especially highlight the importance of using a prior
knowledge of species’ individual biology whenever
possible when choosing environmental covariates in
order to increase confidence in the underlying drivers
represented in the model. This suggests that, as we
move into the future, modeling platforms that ease the
ability to tailor environmental layers for individual spe-
cies will help promote more comparable and inter-
pretable research. However, these advances in tool
development for large-scale modeling will be most ef-
fective if they occur along with a substantial expansion
in classic studies of natural history, thermal constraints,
and basic ecology that are lacking for most invertebrates
but form the basis for the most rigorous models of cur-
rent and future distributions.
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