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Ecological forecasts of insect range dynamics: a broad 
range of taxa includes winners and losers under future 
climate
Naresh Neupane, Elise A Larsen and Leslie Ries 

Species distribution models are the primary tools to project 
future species’ distributions, but this complex task is influenced 
by data limitations and evolving best practices. The majority of 
the 53 studies we examined utilized correlative models and did 
not follow current best practices for validating retrospective or 
future environmental data layers. Despite this, a summary of 
results is largely unsurprising: shifts toward cooler regions, but 
otherwise mixed dynamics emphasizing winners and losers. 
Harmful insects were more likely to show positive outcomes 
compared with beneficial species. Our restricted ability to 
consider mechanisms complicates interpretation of any single 
study. To improve this area of modeling, more classic field and 
lab studies to uncover basic ecology and physiology are crucial.

Address
Georgetown University, Department of Biology, Washington, DC 
20057, USA  

Corresponding author: Neupane, Naresh  
(Naresh.Neupane@georgetown.edu)

Current Opinion in Insect Science 2024, 62:101159

This review comes from a themed issue on Global change biology

Edited by Matthew Forister, Angela Smilanich, Lee Dyer and Zach 
Gompert

For complete overview about the section, refer “Global change 
Biology (October 2023)”

Available online 9 January 2024

https://doi.org/10.1016/j.cois.2024.101159

2214–5745/© 2024 Elsevier Inc. All rights reserved.

Introduction
Humans have drastically altered our living environment, 
placing many species in peril and ultimately culminating 
in an ongoing sixth mass extinction [1]. Many stressors, 
such as land-use conversion, pollution, and the over
exploitation of natural resources, have long been the main 
factors believed to be driving this crisis. Climate change 
has emerged as an increasingly dominant stressor [1] as 
the last ten years have been among the hottest on record 
[2]. This recent acceleration in climate warming demands 
that we understand how climate has been and will con
tinue to impact biodiversity and ecosystem function, 

especially in combination with other ongoing threats [1]. 
Insects in particular have received a great deal of atten
tion because of recently reported taxon-wide declines that 
appear to be global in nature [3–5], presenting a risk of 
widespread loss of ecosystem function [6]. One of the 
most popular research tools for understanding how global 
change impacts biodiversity is the use of species dis
tribution models (SDMs), which leverage the relationship 
between a species’ distribution and its putative environ
mental drivers; SDMs are primary tools for making eco
logical forecasts [7]. These forecasts allow us to compare 
possible outcomes of alternative societal decisions and 
also have a scientific value by allowing iterative im
provements of predictive models [8] and sharpening 
ecological theory [9]. Yet, the approaches to projecting 
current and future ranges vary substantially and a growing 
body of research has shown that specific modeling choices 
have considerable impacts on the reliability of outputs 
and, ultimately, our ability to anticipate or adapt to on
going changes [10–14].

There are many different methods associated with 
SDMs, but terminology and usage vary between practi
tioners. Here, we adopt the terms ‘correlative’ [7] and 
‘mechanistic’ [15] and use the following definitions for 
the purpose of this review. Correlative SDMs are built 
by combining species locality data (usually presence- 
only [PO]) and environmental data layers and estimating 
the correlations between them [7]. The parameterized 
model is used to predict the expected full extent of their 
entire range (and also to project ranges into the future) 
[7]. There are many different modeling approaches 
available and performance varies substantially [11,12]
and variable validation methods can also lead to different 
modeling choices [16]. Correlative models are often 
completely ‘naive,’ meaning that there is no considera
tion of that species’ biology in building the model 
structure [10]. In contrast, ‘mechanistic’ SDMs are built 
and parameterized from a priori knowledge of species’ 
biology emerging from natural history observations or lab 
and field experiments (e.g. thermal constraints, species 
interactions) [15]. Both correlative and mechanistic ap
proaches have long relied primarily on climate factors to 
project future species distributions, although other types 
of layers have often been included, both biotic (e.g. 
land-use land cover [LULC] and specific interacting 
species) and abiotic (e.g. soil). When the specific goal is 
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to project ranges or population dynamics into the future, 
three component steps are required [8]: 1) an SDM that 
links distributions (correlative) or performance metrics 
(mechanistic) to environmental covariates; 2) spatial data 
layers that project key environmental conditions (i.e. the 
significant covariates chosen during the modeling phase) 
into the future; and 3) combining the SDM with future 
environmental layers to project future distributions. 
Notably, one potential primary driver of recent insect 
declines, the use of pesticides, is extremely challenging 
to include in retrospective or future projections because 
spatial data are sparse and technologies are constantly 
changing [17].

The challenges of implementing species 
distribution models
The primary challenge for developing SDMs has always 
been the limitation of data available to build and validate 
large-scale distribution models (step 1). By far, the 
greatest source of distribution data has always been, and 
likely will always be, PO data from ‘opportunistic’ col
lection of field specimens and (more recently) photo
graphs. Unfortunately, the vast majority of historical 
specimens remain undigitized and so unavailable for 
model- building [18]. Further, SDMs based on these data 
have unknown sample biases that are difficult to correct 
[12,19], although new methods are more effectively 
tackling these problems, for example, [20,21]. Survey data 
provide for more robust models [19] but these are ex
tremely limited and, without a global effort to expand 
them (e.g. [22]), they will rarely be available for SDMs. 
Correlative SDMs are also criticized for providing little 
basis to understand the underlying mechanistic drivers 
[12,23], and are often validated using in-sample tests that 
show poor transferability when projecting into novel 
conditions [24] or regions [25]. In contrast, mechanistic 
approaches provide model variables that are based on 
known mechanisms and are included as a priori factors in 
a model. With these models, it is possible to validate the 
model with completely independent distribution data, 
providing a more robust validation than in-sample tests 
[12]. However, the reality is that the mechanistic data 
needed to effectively implement mechanistic SDMs are 
not available for the vast majority of species.

While much has been written in the ecological literature 
about the pros and cons of different classes of SDMs (e.g. 
mechanistic vs. correlative) and distribution data types 
(e.g. PO data vs. surveys), there has been less exploration 
of how choices relative to the environmental data layers 
themselves can impact results, future projections, and 
their interpretation [12,14,26]. One issue that we believe 
is particularly important, but is rarely addressed, is the 
temporal alignment of distribution and environmental 
data [12,14]. SDMs are structured to overlay spatial data 
to examine relationships; if these data are temporally 

disjunct, biases may be introduced into the model. While 
SDMs assume a system in equilibrium, the reality is this 
entire field of modeling is predicated on the idea that 
species’ distributions are responding to an environment 
that is changing directionally over time [27]. Thus, the 
assumption of equilibrium, especially relative to para
meterizing SDMs with retrospective distribution ana
lyses, should be met with great caution [10,12,24] and 
care should be taken to align data layers temporally.

Another methodological factor that can profoundly im
pact ecological forecasts is how future climate layers are 
built for projections (step 2) [26]. Global climate models 
(e.g. atmosphere–ocean general circulation models 
[AOGCMs], but hereafter GCMs) are built on physical 
models and are used not only to forecast future climate 
conditions, but also to project backward for the purposes 
of model validation. These GCMs are implemented by a 
network of collaborating climate centers around the 
globe under a shared framework organized by the Cou
pled Model Intercomparison Project (CMIP), part of the 
Intergovernmental Panel on Climate Change. The 
output of these projections can vary greatly among the 
GCMs and some are better suited to a specific region 
than others [14,26]. Because climate centers also project 
past conditions [28], these predictions can be used to 
choose models best suited for a study system by vali
dating retrospective model simulations for the climate 
metrics found to be most important drivers of a species’ 
range dynamics. While there remains controversy on 
whether it is better to use a validated subset of models or 
as many GCMs as is tractable, our opinion is that 
building ensembles based on validation using retro
spective projections produces more defensible results 
[14]. Even (or especially) without validation, the use of 
multimodel ensemble dataset for projections is generally 
considered as current best practice because it minimizes 
the influence of the variability of individual GCM when 
making projections [26]. Another particularly acute 
challenge for making future projections is that while 
most researchers acknowledge the importance of other 
environmental factors such as LULC, development of 
future scenario projections for these variables is either 
limited or entirely unavailable [29,30]. Finally, propa
gating uncertainty when combining ecological and fu
ture environmental models (step 3) is especially difficult 
and best practices are only beginning to emerge [13]. 
Here, we review the recent insect SDM literature for 
insights about how insect communities may be most 
likely to change into the future, while accounting for the 
wide range of methodological differences that can im
pact output and interpretability.

Survey of the literature
Our goal is to evaluate what the most recent SDM-based 
forecasts have suggested about potential insect responses 
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to future environmental change while accounting for 
different modeling approaches and evolving best prac
tices. We took the approach of targeting a comprehensive 
sweep of all studies we could locate to reduce taxonomic 
bias in our review, but limited our search to a restricted, 
recent time period (2018–2022). This is because of how 
much best practices continue to evolve and the sub
stantial methodological influences on projection out
comes. We conducted a literature search (various 
combinations of words: GCM, AOGCM, future predic
tion, insect, and SDM) for studies using Google Scholar 
and Web of Science. We found additional papers by ex
amining backward and forward citations and located an 
initial 144 papers published from 2018 to 2022 that pro
ject range-wide insect distributions into the future. We 
only accepted papers that covered a limited number of 
species (< 30) so that biological realism in the results 
could be more carefully considered. All papers must have 
included a retrospective SDM to parameterize the eco
logical projections (step 1); had future forecasts that were 
based, at least in part, on climate projections from the 
CMIP consortium (step 2); and the ecological model was 
then projected into the future based on the environ
mental covariates (step 3). Using these criteria, 53 papers 

were selected to review (each detailed in Supplemental 
Table 1). We then categorized each of the 53 papers re
lative to the basic motivation and approach (Table 1). To 
quantify the methodological approaches, we developed a 
scoring system that we applied to each paper based on 
seven criteria related to best practices as described above; 
the basis for each score is detailed in Table 2.

Our search showed that the use of SDMs to make future 
projections has grown even in the last 5 years (Figure 1) 
and their scope includes a broad range of insect taxa, 
including representatives of 47 families among 8 orders 
(Supplemental Table 1). Most studies focused on four 
orders (Coleoptera, Hemiptera, Hymenoptera, and Le
pidoptera) and were most often motivated by under
standing the ecology of harmful species (pests, invasive 
species, or disease vectors, n = 36), including species 
used as biocontrol agents (n = 4). But many other studies 
were motivated by the understanding of general range 
dynamics and the ecology or conservation of nonharmful 
species (n = 13). We separated our summary of study 
methods and results by whether they were focused on 
harmful and nonharmful species (Table 1) because there 
are a priori reasons to believe that harmful species may 

Table 1 

Summary of the category of papers reviewed*, including how each category was broken down and the number of paper representing 
each type. 

Category Type Description # papers

Motivation: H=harmful 
species; N = not harmful

Pest/invasive (H) Insects that cause economic damage 31
Disease agent (H) Insect that can directly cause disease or serves as a disease 

vector
5

Biodiversity/ conservation (N) Studies that are focused on ecological responses for biodiversity 
and/or conservation concerns, not control of harmful species

13

Biocontrol (N) Biocontrol agents 4
SDM approach; H=harmful 
species; N = not harmful

Correlative only Model covariates chosen and parameterized solely based on 
the relationship between observed distribution and environmental 
data layers

24H, 12N

Mechanistic only Model covariates chosen a priori based on known biology and 
parameterized solely with that information

8H, 4N

Both correlative and 
mechanistic components

Model covariates chosen using both methods, or using correlative 
approaches, but constrained by a priori mechanistic knowledge

4H, 1N

SDM distribution data PO only PO (e.g. GBIF) 32
Trait only Trait only 1
PO + trait Also includes consideration of traits in SDM modeling 13
PA + trait Presence/absences and trait data used in SDM modeling 2
SA only Species abundance data 1
SA+trait Species abundances and trait data used in SDM modeling 3
PO, SA, and trait Multiple types of data 1
Change in range size or 
habitat suitability (NH)

Increase (+), decrease (-), no change (NC), and mixed (M) 39+, 27-, 
2M, 2NC

Shift in range position (NH) Shift to either cooler (poleward or higher latitude, C) or warmer 
(opposite, W), or mixed (M)

6C

Harm risk (H) For harmful insects, this includes any risk of inhabiting new areas 
(invasion) or increased/decreased population within the current 
range (including outbreaks). Increased invasion risk (+), decrease 
(-), and mixed (M). Also scored separately for reported range 
shifts (C, W as above).

22+, 9-, 8M; 
7C, 1W

The response variable category also includes a score for general outcome. Details for each study are in Supplemental Table 1. Citations for review 
papers (details for each paper are in Supplementary Table 1): [33,36–39,41–88] GBIF, Global Biodiversity Information Facility.
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be more resilient to (or even benefit from) human-re
lated environmental changes [31]. Correlative, mechan
istic, and mixed approaches were well-represented, but 
correlative models far outnumbered those using me
chanistic information (n = 36, 12 respectively), while 5 
used elements of both approaches (Table 1). Most of the 
studies we reviewed used PO data (n = 45), with 32 of 
these using PO data only (Tables 1,2), not a surprising 
outcome given that the vast majority of species have 
only these data available through most or all of their 
ranges.

Species distribution model practices are 
becoming more robust over time
Including some mechanisms rooted in a priori knowl
edge of species biology provides a stronger basis for 
making future projections [12,15,23] and, in our review, 
studies that focused on species of disease or agricultural 
importance (including biocontrol agents) were the most 
likely to use this information (scored as using ‘trait data’ 
in Table 1). This is likely because species of economic 
importance often have a richer mechanistic research 
history, even leading to a generic software package, 

Table 2 

Summary of the numeric scores assigned to reviewed papers based on criteria related to our assessment on the rigor of analysis. 

Criteria Category Score # papers

Number of SDM modeling approaches Correlative or mechanistic only 1 48
Combination of correlative and mechanistic 
approaches

2 5

Distribution of data type PO only 0 32
Not PO only 1 21

Environmental data types Only climate data 0 34
Any combination of other factors in addition to climate 
data (more than one category possible for each paper)

1 19 (12 abiotic, 8 land cover, 4 
species interactions, and 2 other)

SDM validation Validation not obvious 0 7
Validation using data subsets 1 38
Validation using independent data 2 8

SDM temporal alignment for distribution 
and environmental data inputs

No temporal alignment evident 0 41
Some temporal alignment of data between distribution 
and environmental data sets

1 12

Use of an ensemble of multiple GCMs Only 1 GCM used 0 24
An ensemble of GCMs used (including details on which 
GCMs were used)

1 2–3 used (10) 
4–10 used (10)  
>  10 used (9)

GCM validation GCM regional performance not assessed 0 48
GCM regional performance assessed 1 5

Some of these categories are beyond researchers’ ability to choose, especially when data types are limited. Details for each study are in 
Supplemental Table 1.

Figure 1  

Current Opinion in Insect Science

The distribution of methodological scores for each paper published in our 5-year review period. Higher scores indicate greater use of best practices. 
The explanation for each score is in Table 2 and score details for each of our 53 review papers are in Supplemental Table 1.  
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Mechanistic Model, that is well-suited to project insect 
responses based on experimental thermal constraints [32]. 
Mechanistic Model was used in 8 of 12 purely mechan
istic studies, largely for pest species. Of studies motivated 
purely for ecological or conservation reasons, only studies 
focused on butterflies were able to include a priori me
chanistic components, and this likely reflects that, as a 
group, butterflies are the most comprehensively studied 
insect taxa and therefore are often used as a model system 
for understanding insect biodiversity. Most studies used 
only climate data as explanatory variables (n = 34), which, 
by far, are the easiest to acquire for future projections. Of 
the 19 that did use other layers, most were abiotic (soil 
and/or elevation), which do not tend to vary on ecological 
timescales, thus making it reasonable to build current 
data layers into future projections. However, several stu
dies considered more dynamic environmental factors, in
cluding LULC (n = 8) or the distribution of specific food 
resources (n = 4). Most studies (n = 46) clearly stated their 
validation procedures, but in 7 studies, those were less 
obvious. Eight studies (mostly mechanistic) used com
pletely independent ‘out-of-sample’ distribution data sets 
(see Supplementary Table 1).

SDM modeling frameworks all require distribution data 
to be spatially aligned with the underlying environ
mental layers [7], but only 11 studies described any ef
fort to match the temporal extent of the environmental 
data layers with the available distribution (Table 2). In 
terms of developing climate data layers based on future 
emission scenarios, most studies used ensembles 
(n = 29), but the vast majority did not include any vali
dation procedure for choosing which GCMs to build 
those ensembles (n = 48), meaning it is unclear if the 
future climate layers chosen provide the most defensible 
representation of future regional environmental condi
tions. However, especially in the case where no valida
tion procedure is used, the more GCMs included in 
ensembles, the better and 19 used at least 4 (Table 2). It 
is heartening to note the adoption of many of the listed 
best practices during our study, including an increase at 
the end of our short period of review (Figure 1), despite 
them being relatively rare in the years prior [10].

Grappling with variability in future projections
The most consistent result we observed, unsurprisingly, 
was that projected shifts were predominantly to
ward cooler latitudes or altitudes (Table 3). Only one 
study, focusing on eight invasive bee species, showed 
that most expansion would be into lower (warmer) alti
tudes [33]. These results align with many observational 
studies already documenting such range shifts for insect 
species [4]. For changes in range size and habitat suit
ability (or projected population changes), the results 
were decidedly mixed for nonharmful species, high
lighting that species-specific variability (so-called cli
mate ‘winners’ and ‘losers’) is expected to be the norm 
across insect species, as is generally accepted for most 
taxa [34]. However, pest species showed a greater ten
dency toward increased invasion or outbreaks (20 in
creased risk, 8 decreased, and 3 mixed), suggesting that 
harmful insects may do better, on average, under 
warming conditions (Table 2), which aligns with a recent 
review of on-the-ground trends [35]. This is an im
portant result because it shows that species that tend to 
cause economic or health harms are not only more re
silient to anthropogenic changes, but also may not be 
good indicators of how other species will respond.

Constructed SDMs without any a priori consideration of 
mechanism or without carefully aligning environmental 
layers to distribution data can lead to unreliable predictions 
that can be difficult to interpret and thus undermine their 
individual usefulness [12]. As acknowledged by most au
thors in our review, studies that rely only on climate are 
likely missing important factors in species’ distributions, 
yet only about one-third of these studies were able to use 
nonclimate explanatory variables (Table 2). Including di
gital data on various other environmental factors, such as 
LULC, slope, distance to water, or vegetation types, can 
reduce prediction uncertainties [10,26]. Thus, we en
courage future SDM implementations to incorporate di
verse explanatory variables whenever possible, especially 
LULC, which is often the best proxy for species’ resource 
needs. Those types of layers are increasingly the focus of 
future scenarios [29,30] and so they should be more widely 
available and easier to access into the future.

Table 3 

Future projection summary scored separately for each species within studies so that there are more results than studies. 

Projected change Direction of change Tally of results

Shift in range position (NH) Shift to either cooler (poleward or higher latitude, C) or warmer (opposite, W), or 
mixed (M)

6C

Change in range size or habitat 
suitability (NH)

Increase (+), decrease (-), no change (NC), and mixed (M) 39+, 27-, 
2M, 2NC

Harm risk (H) For harmful insects, this includes any risk of inhabiting new areas (invasion) or increased/ 
decreased population within the current range (including outbreaks). Increased invasion 
risk (+), decrease (-), and mixed (M). Also scored separately for reported range shifts (C, 
W as above).

22+, 9-, 8M; 
7C, 1W

When multiple emission scenarios are used, and also focused on the results of most extreme climate scenario.
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The best practices we reviewed are easiest to incorporate 
when studies are focused on only one or a few species. 
Studies that incorporate dozens or even hundreds of 
species in correlative SDMs are common, but in our 
opinion, these lead to results that may be the most dif
ficult to interpret. In our review, most studies focused on 
only one (n = 42) or a few species (Supplemental Table 1) 
and this allowed substantial consideration by the authors 
of individual species’ biology and how relaxing certain 
assumptions may have influenced their results. The au
thors often stressed that their models largely made pro
jections based solely on climate and that ignoring other 
factors could strongly impact the results, but that they 
were constrained to assume that other drivers remained 
fixed. In addition to including future LULC scenarios, a 
key advancement is explicitly modeling range shifts of 
interacting species as a layer to include in projecting focal 
species distributions into the future. We found only two 
examples of this, one showed potential changes in crop 
distribution on a pest [36]. The other modeled a key host 
plant as a basis for future modeling of an insect herbivore, 
specifically modeled futures of milkweed distributions 
were used as a covariate for projected changes in monarch 
butterfly distributions [37]. Another substantial advance
ment was to include dispersal behavior directly into the 
model and show how this dampened potential range 
shifts [38], but dispersal data are rarely available. Alter
natively, another study stressed the assumption of no 
dispersal limitation by presenting results solely as the 
shifting thermal conditions that species would need to 
track in order to stay within their climate envelope, not a 
specific projection of future distributions [39]. These ca
veats and more nuanced framing reinforces a narrative 
that these projections are generally just for abiotic con
ditions and do not really model future distributions per se, 
but capture an altered thermal landscape that species may 
confront in different ways. This helps better grapple with 
the variable results of these studies and also presents an 
intuitive understanding of the uncertainty around what 
may actually happen without formally quantifying that 
uncertainty, which remains very difficult [13].

Conclusions
In this review, we examined 53 recent papers that used 
SDMs to make projections about future insect dis
tributions. This is an inherently difficult task fraught 
with uncertainties, yet our sweep of this literature 
highlights that best practices are increasingly being 
adopted and many predicted outcomes make sense in 
light of our general understanding of insect ecology. 
Changes in range boundaries and habitat suitability favor 
shifts toward the poles or higher elevations, and faster 
development and additional generations are expected 
due to higher temperatures. Compared with nonharmful 
groups, species that cause economic or health harms 
appear to be more resilient to climate change, or are 

even expected to benefit from it. But variability in out
comes is projected for both, highlighting the wide 
variety of outcomes (e.g. ‘winners’ and ‘losers’) expected 
across any taxon. Thus, as we consider how insects as a 
group may respond to climate change, the variability and 
complexity of outcomes need to be a dominant compo
nent of our summaries, especially to the public. At the 
same time, it is important to point out that projections 
suggest that harmful species are more likely to benefit 
from projected climate change, as has been shown al
ready from retrospective studies [35]. However, we 
caution against adopting a simplistic narrative that future 
conditions are expected to uniformly help spread disease 
and crop damage while causing widespread losses for 
‘beneficial’ species or species of conservation interest.

SDMs can provide valuable insights into species dis
tributions, but require rigorous methods. We emphasize 
four best practices to improve the reliability of future 
SDM predictions: (1) incorporating diverse explanatory 
variables based on species’ biology, (2) aligning SDM 
inputs temporally, (3) conducting SDM validation when 
possible, or cross-validation as needed, and (4) selecting 
regionally appropriate climate models for future projec
tions. We acknowledge that these steps can be difficult 
or, in some cases, impossible. However, by adopting 
these practices whenever possible, projections based on 
SDMs will provide more defensible insights into esti
mations of future outcomes. SDM methods will also 
continue to become more powerful through continued 
model development and the application of advancing 
technologies such as machine learning and artificial in
telligence models [40]. Wider adoption of best practices 
will improve our understanding of the trajectory and 
uncertainty of insect populations into the future. We 
especially highlight the importance of using a priori 
knowledge of species’ individual biology whenever 
possible when choosing environmental covariates in 
order to increase confidence in the underlying drivers 
represented in the model. This suggests that, as we 
move into the future, modeling platforms that ease the 
ability to tailor environmental layers for individual spe
cies will help promote more comparable and inter
pretable research. However, these advances in tool 
development for large-scale modeling will be most ef
fective if they occur along with a substantial expansion 
in classic studies of natural history, thermal constraints, 
and basic ecology that are lacking for most invertebrates 
but form the basis for the most rigorous models of cur
rent and future distributions.
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