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Abstract

Referring Image Segmentation (RIS) aims to segment ob-
jects from an image based on a language description. Recent
advancements have introduced transformer-based methods
that leverage cross-modal dependencies, significantly en-
hancing performance in referring segmentation tasks. These
methods are designed such that each query predicts differ-
ent masks. However, RIS inherently requires a single-mask
prediction, leading to a phenomenon known as Query Col-
lapse, where all queries yield the same mask prediction. This
reduces the generalization capability of the RIS model for
complex or novel scenarios. To address this issue, we pro-
pose a Multi-modal Query Feature Fusion technique, char-
acterized by two innovative designs: (1) Gaussian enhanced
Multi-Modal Fusion, a novel visual grounding mechanism
that enhances overall representation by extracting rich local
visual information and global visual-linguistic relationships,
and (2) A Dynamic Query Module that produces a diverse
set of queries through a scoring network where the network
selectively focuses on queries for objects referred to in the
language description. Moreover, we show that including an
auxiliary loss to increase the distance between mask repre-
sentations of different queries further enhances performance
and mitigates query collapse. Extensive experiments con-
ducted on four benchmark datasets validate the effectiveness
of our framework.

1. Introduction

Referring Image Segmentation (RIS) is a challenging multi-
modal task aimed at segmenting specific objects in an image
based on a textual description. This description often in-
cludes details about the object’s actions, category, color, or
position, as noted by [8, 21]. Compared to traditional se-
mantic and instance segmentation, RIS requires a precise
understanding of object locations and involves a comprehen-
sive modeling of the visual-linguistic relationships within
the global context. Additionally, RIS demands the extrac-

ReLA LQMFormer

Figure 1. [Top] Heatmap visualization of cosine similarity between
different query mask predictions of ReLA and LQMFormer , where
the yellow region indicates a similarity near 1, and the dark blue
region signifies a similarity of 0. [Bottom] Sample query mask
prediction visualizations for ReLA and LQMFormer .

tion of high-quality visual features at a local level. The
potential applications of RIS are extensive, particularly in
language-driven human-computer interaction domains.

Traditional RIS methods have employed linear fusion
approaches and Fully Convolutional Networks (FCNs) for
feature learning in RIS tasks [21, 33]. However, the re-
cent advancement of attention mechanisms has shifted the
focus towards extracting richer visual-language represen-
tation, with recent techniques demonstrating the effective-
ness of Transformers. These models excel at modelling
long-distance dependencies, making them suitable for cross-
modal fusion [45, 55]. Further, Vision Transformer (ViT)
methods such as VLT [13], EFN [16], and LAVT [54], which
are based on [14], have shown significant improvements in
RIS performance. Their ability to capture the nuances of
cross-modal dependencies is crucial, and through a series of
attention mechanisms, these models efficiently process and
integrate both visual and language inputs for precise object
segmentation.

Despite their advantages, transformer-based approaches
exhibit shortcomings in RIS mask prediction, with a notable
problem being query collapse. This phenomenon occurs
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when different queries within the transformer, intended to
identify distinct attributes or portions of objects, converge on
the same mask prediction. This is particularly problematic
in referring image segmentation, which inherently requires
a prediction of a single mask, where all queries are collec-
tively trained to predict the same mask. We experimentally
observed this phenomenon, as illustrated in Fig. 1. Here,
we visualize the heatmap of the cosine similarity between
mask predictions from ReLA [32] and our method. In ReLA,
most mask predictions are almost identical, leading to signif-
icantly overlapping mask predictions, whereas our method
demonstrates a diverse set of query embeddings and mask
predictions. Hence, prior transformer-based methods train
mask predictions for all queries to associate with a single,
specific ground truth mask. This training approach can lead
to query collapse, where the model is not penalized for pro-
ducing the same prediction across different queries, thereby
affecting its capability to identify diverse attributes of the
image. Consequently, this limitation restricts the variety of
mask predictions, diminishing the model’s ability to general-
ize effectively in complex scenarios.

To address these challenges, we propose LQMFormer,
which comprises two key components. Firstly, we introduce
a Gaussian Enhanced Multi-Modal Fusion (GMMF) module,
aimed at enhancing the visual grounding mechanism. This
module is designed to extract fine-grained local visual de-
tails while simultaneously enhancing global visual-language
relationships. The fusion of these modalities allows the
model to construct a more comprehensive understanding of
the scene, both globally and locally, thereby improving vi-
sual grounding. Secondly, in our Dynamic Query Module
(DQM), we generate a diverse set of language-dependent
queries through Language-Query Cross Attention (LQCA)
and employ a scoring network to prioritize queries relevant to
the referring expression. With an improved visual-grounded
representation facilitated by GMMF and selective query en-
hancement via DQM, our model effectively addresses query
collapse. Moreover, by incorporating an auxiliary loss that
increases the representational distance between mask predic-
tions, our method efficiently differentiates between queries,
mitigating the issue of query collapse. Our extensive experi-
ments across multiple benchmark datasets demonstrate the
effectiveness of our framework. Our contributions can be
summarized as follows:

• We introduce Gaussian enhanced Multi-Modal Fusion,
which innovates the integration of local and global cross-
modal information for more accurate visual grounding.

• We develop an effective Dynamic Query Module (DQM)
that not only generates a diverse query set but also employs
a scoring network to selectively focus on queries based on
given language expressions with respect to the decoder’s
references.

• To mitigate query collapse, we propose an auxiliary regu-

larization loss function that increases the representational
distance between queries, significantly improving mask
differentiation and preventing Query Collapse.

• We conduct comprehensive validation of the proposed
framework with extensive testing on four benchmark
datasets, demonstrating improvements in referring image
segmentation performance.

2. Related Works
2.1. Referring Image Segmentation

Early works [29, 31, 45, 57] employed Convolutional Neu-
ral Networks (CNNs) [5, 21, 22, 31] and Recurrent Neural
Networks (RNNs) [6, 31] to extract vision and language
features. These features were then fused via sequential con-
catenation and convolution operations to predict the seg-
mentation mask. In contrast, [58] proposed a two-stage
network that initially uses Mask R-CNN[19] to predict cate-
gorical masks, followed by a selection of the relevant masks
based on language descriptions. However, this approach
exhibits limited capacity to capture the intricate relations be-
tween language and visual content. The advent of the Trans-
former [11, 14, 42, 46] in the vision community has led to
the widespread adoption of Transformer-based architectures
for extracting both visual and textual features [11, 24, 34].
VLT [13] uses cross-attention to produce query vectors from
multi-modal features, which are then used to query images
in the transformer decoder. Similarly, LAVT [54] shows
early cross-modal fusion of features improves alignment.
CRIS [49] adopts Transformer blocks to leverage the pre-
trained CLIP model’s [44] robust image-text alignment capa-
bilities. Additionally, GRES [32] extends cross-attention in
the Transformer decoder to explicitly model visual-language
dependencies. However, these all transformer-based ap-
proaches require matching queries to corresponding mask
instances. In the context of referring expression segmenta-
tion, where typically only a single mask is available, this
can lead to all queries converging to a single mask, a phe-
nomenon known as query collapse. Motivated by this, in
our method, we try to produce a diverse set of query predic-
tion by overall improving visual-grounding and conditioning
with respect to language expression.

2.2. Vision and Language Representation Learning

Vision and Language Representation Learning focuses on un-
derstanding the semantics and alignment between vision and
language for multimodal reasoning tasks [36, 47, 59]. This
field has seen substantial progress in applications like visual
question answering [2], Image captioning [48], Image-text
retrieval [4], zero-shot classification [44], and Image seg-
mentation [23]. Contrastive pre-training strategies [28, 44]
using large-scale datasets effectively project multiple modal-
ities into a single embedding space. In contrast, as discussed,

12904



ot h er m et h o ds [ 3 2 , 5 4 ] cr e at e cr oss- m o d al i nt er a cti o n l a y ers
t o f us e a n d c o m pr e h e n d m ulti m o d al f e at ur es. T h e r e c e nt
a d o pti o n of d e e p l e ar ni n g t e c h ni q u es i n t h e fr e q u e n c y d o-
m ai n [ 9 , 1 7 , 3 9 , 4 0 ] h as g ai n e d att e nti o n f or t h eir gl o b al
i nt er a cti o n c a p a biliti es. S p e ci fi c all y, [4 0 ] p erf or ms s p e ctr al-
g ui d e d e n h a n c e m e nt of t h e m ulti-s c al e visi o n-l a n g u a g e f e a-
t ur es aft er f e at ur e e xtr a cti o n st a g e f or Vi d e o R ef erri n g S e g-
m e nt ati o n. Dr a wi n g fr o m t h es e a d v a n c e m e nts, o ur a p pr o a c h
i nt e gr at es g a ussi a n g ui d a n c e wit hi n visi o n-l a n g u a g e r e pr e-
s e nt ati o n l e ar ni n g t o f a cilit at e e n h a n c e d l o c al a n d gl o b al
m ulti- m o d al i nt er a cti o ns.

3. M et h o ds

Gi v e n a n i n p ut i m a g e I ∈ R H × W × 3 a n d a l a n g u a g e e x-
pr essi o n L = { w i }

N
i = 1 wit h N w or ds, o ur m o d el pr e di cts a

pi x el- wis e m as k M , w hi c h d eli n e ati n g t h e r ef err e d o bj e ct.

3. 1. O v e r vi e w

A n o v er vi e w di a gr a m of o ur a p pr o a c h is s h o w n i n Fi g ur e.
2 . First, t h e l a n g u a g e e x pr essi o n is e n c o d e d t o e xtr a ct hi g h-
di m e nsi o n al l a n g u a g e f e at ur es F l ∈ R N t × C , w h er e C , N t i n-
di c at es t h e n u m b er of c h a n n els, a n d w or ds i n t h e l a n g u a g e e x-
pr essi o n, r es p e cti v el y. T h e G a ussi a n- e n h a n c e d M ulti- M o d al
F usi o n ( G M M F) m o d ul e t h e n e xtr a cts l a n g u a g e- gr o u n d e d vi-
s u al f e at ur es F vl . F oll o wi n g [7 ], o ur a p pr o a c h i n c or p or at es
a m ulti-s c al e str at e g y t o e x pl oit hi g h er-r es ol uti o n f e at ur e
m a ps i n t h e tr a nsf or m er d e c o d er [ 7 , 6 1 ]. We i n p ut l a n g u a g e-
a w ar e q u eri es Q ′

b al o n g wit h m ulti-s c al e o ut p uts fr o m t h e
pi x el d e c o d er F i , w h er e i ∈ 1

4 , 1
8 , 1

1 6 , 1
3 2 of t h e ori gi n al

i m a g e. T h e D y n a mi c Q u er y M o d ul e pr o c ess es l a n g u a g e f e a-
t ur es F t t o pr e di ct l a n g u a g e- a w ar e q u eri es Q ′

b . T h e u p d ati n g
of q u eri es Q ′

b s e q u e nti all y utili z es r es ol uti o ns 1
8 , 1

1 6 , a n d
1
3 2 , a p pl yi n g a c y cl e of m as k e d cr oss- att e nti o n ( C A), s elf-
att e nti o n ( S A), a n d f e e d-f or w ar d n et w or k ( F F N) o p er ati o ns
L ti m es wit hi n t h e d e c o d er. F urt h er, w e m a p t h e fi n al q u er y
o ut p uts t o a n ’ o bj e ct’ or ’ n o- o bj e ct’ t w o- di m e nsi o n al s p a c e
t o e n a bl e ’ n o- o bj e ct’ pr e di cti o ns [3 2 ]. T h e fi n al pr e di ct e d
m as k is o bt ai n e d at f ull r es ol uti o n as t h e ori gi n al i m a g e b y
d e c o di n g t h e pi x el f e at ur es F 1

4
wit h t h e ei ns u m o p er ati o n

b et w e e n Q a n d F 1
4
, f oll o w e d b y u ps a m pli n g o p er ati o n.

3. 2. G a ussi a n- e n h a n c e d M ulti- M o d al F usi o n

Aft er e xtr a cti n g l a n g u a g e f e at ur es F l , w e c o m bi n e t h e m wit h
vis u al f e at ur es usi n g a f o ur-st a g e hi er ar c hi c al S wi n Tr a ns-
f or m er [3 4 ] t o o bt ai n j oi nt vis u al-l a n g u a g e e m b e d di n g. E a c h
st a g e c o m pris es Tr a nsf or m er l a y ers ( τ i ), m ulti- m o d al f e at ur e
f usi o n m o d ul es ( G M M F), a n d r esi d u al g ati n g (ψ i ). At e v er y
st a g e, as Tr a nsf or m er l a y ers ( τ i ) e n h a n c e pr e vi o us vis u al
f e at ur es (F v ), t h es e f e at ur es (F v ) c o m bi n e wit h l a n g u a g e
f e at ur es (F l ) vi a m ulti- m o d al m o d ul es ( G M M F) t o cr e at e
m ulti- m o d al f e at ur es ( F v l ). Fi n all y, w e us e g ati n g u nits (ψ v l )
t o w ei g ht a n d c o m bi n e F v l wit h F v , yi el di n g e n h a n c e d vi-
s u al f e at ur es wit h li n g uisti c i nf or m ati o n. R esi d u al g ati n g

als o w or ks w ell wit h pr e-tr ai n e d ( o nl y visi o n) tr a nsf or m er
w ei g hts a n d all o ws si m ult a n e o us f e at ur e m o d ul ati o n wit h
l a n g u a g e wit h o ut h a vi n g t o r e-tr ai n fr o m s cr at c h.

3. 2. 1 G a ussi a n E n h a n c e d M ulti- M o d al F usi o n M o d ul e
i n Vis u al B a c k b o n e

T h e dis cr et e F o uri er tr a nsf or m ( D F T) is e xt e nsi v el y us e d t o
a n al y z e t h e fr e q u e n c y r e pr es e nt ati o n of i m a g es. B y tr a ns-
f or mi n g t h e si g n al i nt o t h e fr e q u e n c y d o m ai n, c h ar a ct eri z e d
b y gl o b al st atisti c al pr o p erti es, it pl a ys a cr u ci al r ol e i n
v ari o us c o m p ut er visi o n t as ks [ 2 6 , 5 1 , 5 6 ]. M o d ul ati n g si g-
n als o n a p oi nt- wis e b asis i n t h e F o uri er d o m ai n alt ers t h e
r e pr es e nt ati o n of i n p uts i n t h e s p ati al d o m ai n [3 , 4 0 ]. F ur-
t h er m or e, i n t h e F o uri er d o m ai n, l o w-fr e q u e n c y c o m p o n e nts
us u all y c orr es p o n d t o t h e o v er all s e m a nti c c o nt e nt of t h e
i m a g e, c o nsist e nt wit h pri or r es e ar c h [4 0 , 5 2 , 5 3 , 5 6 ]. T h e
F o uri er tr a nsf or m is c a p a bl e of dis e nt a n gli n g gl o b al s e m a n-
ti c i nf or m ati o n a n d str u ct ur al c o h er e n c e, wit h t h e s e m a nti c
c o nt e nt pr e d o mi n a ntl y f o u n d i n t h e a m plit u d e c o m p o n e nt
[1 8 , 2 7 , 6 0 ]. T h es e i nsi g hts c a n b e l e v er a g e d t o cr e at e m o d-
ul es c e nt er e d o n F o uri er- b as e d m et h o ds, f a cilit ati n g ef fi ci e nt
a n d vit al gl o b al i nt er a cti o ns i n m ulti m o d al u n d erst a n di n g
a n d i m pr o vi n g vis u al gr o u n di n g.

T o i n c ul c at e t h e a b o v e o bs er v ati o n, as ill ustr at e d i n Fi g. 3 ,
f oll o wi n g [4 0 ], t h e G a ussi a n e n h a n c e d M ulti- M o d al F u-
si o n M o d ul e ( G M M F) is pr o p os e d as a k e y c o m p o n e nt
i n o ur m o d el. It e m pl o ys a n e n h a n c e m e nt bl o c k aft er
cr oss- att e nti o n o p er ati o ns t o c o m bi n e G a ussi a n- e n h a n c e d
visi o n a n d l a n g u a g e f e at ur es. Gi v e n a n i n p ut visi o n f e at ur e
F v i ∈ R N × H × W × C v i fr o m st a g e i a n d a l a n g u a g e f e at ur e
F l ∈ R N × T × C l , f or cr oss- att e nti o n bl o c k, w e first tr a nsf or m
vis u al a n d l a n g u a g e f e at ur es i nt o a c o m m o n di m e nsi o n C i

usi n g s e p ar at e 1 × 1 c o n v ol uti o n l a y ers. S u bs e q u e ntl y, tr a ns-
f or m visi o n a n d l a n g u a g e f e at ur es ar e p ass e d t o a n M H C A
( M ulti- H e a d Cr oss- Att e nti o n) m o d ul e, w h er e l a n g u a g e f e a-
t ur es a ct as q u eri es a n d visi o n f e at ur es as k e ys a n d v al u es.
T his o p er ati o n r es ults i n t h e cr e ati o n of a l a n g u a g e- a w ar e
visi o n-s h a p e d f e at ur e F

′

v l . We t h e n tr a nsf or m t h e vis u al-
l a n g u a g e f e at ur es usi n g t h e G a ussi a n E n h a n c e m e nt Bl o c k,
as s h o w n i n Fi g. 3 , f or m ul at e d as f oll o ws:

F v l = F − 1
F F T C o n v F R ϕ (F

′

v l , β) ∗ A (F
′

v l )

, P (F
′

v l ) + F
′

v l

H er e, A (F
′

v l ) a n d P (F
′

v l ) d e n ot e t h e a m plit u d e a n d p h as e

c o m p o n e nts of F
′

v l ’s F ast F o uri er Tr a nsf or m( F F T) [1 5 , 4 3 ],

F F F T (F
′

v l ). T h e ∗ r e pr es e nts l o w- p ass filt eri n g o n A (F
′

v l )

usi n g a d a pti v e G a ussi a n filt ers ϕ (F
′

v l , β), m at c hi n g F
′

v l ’s
s p ati al di m e nsi o ns a n d a dj usti n g t o i n p ut d at a vi a b a n d wi dt h
β [4 0 ]. F R a n d C o n v si g nif y f e at ur e r e c o nstr u cti o n fr o m
a m plit u d e a n d p h as e, a n d c o n v ol uti o n o p er ati o ns, r es p e c-
ti v el y.
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Fi g ur e 2. O v er vi e w of t h e L Q M F or m er m o d el ar c hit e ct ur e. T h e m o d el pr o c ess es a n i m a g e a n d a li n g uisti c e x pr essi o n, e xtr a cti n g visi o n-
l a n g u a g e f e at ur es F v l t hr o u g h a G a ussi a n- e n h a n c e d M ulti- m o d al F usi o n m o d ul e a n d l a n g u a g e f e at ur es F L . T h e m ulti-s c al e visi o n-l a n g u a g e
f e at ur es F v l ar e t h e n pr o c ess e d b y i nt o a pi x el d e c o d er. C o n c urr e ntl y, t h e L a n g u a g e Q u er y Cr oss- Att e nti o n M o d ul e ( L Q C A) r e fi n es t h e
L a n g u a g e- e n h a n c e d Q u er y b a n k Q ′

b wit h F L . A S c ori n g N et w or k ass ess es t h e r el e v a n c e of e a c h q u er y i n Q ′
b b y pr e di cti n g s oft- m as ks ( M b ),

w hi c h t h e n m o d ul at e t h e q u eri es f e d i nt o t h e tr a nsf or m er d e c o d er. Fi n all y, t h e m o d el e m pl o ys a gl o b al p o oli n g l a y er a n d a M ulti- L a y er
P er c e ptr o n ( M L P) t o pr e di ct t h e bi n ar y s e g m e nt ati o n m as k a n d d et er mi n e t h e pr es e n c e or a bs e n c e of t h e r ef err e d o bj e ct.

Fi g ur e 3. Ar c hit e ct ur e o v er vi e w of t h e G a ussi a n E n h a n c e m e nt
M o d ul e

O n c e F v l is o bt ai n e d, si mil ar t o [5 4 ], w e c o m bi n e t h e
o ut p ut fr o m G M M F, F v l , wit h t h at fr o m t h e Tr a nsf or m er
l a y ers, F v . T his pr o c ess e m pl o ys a g ati n g m e c h a nis m, ψ v l ,
w hi c h l e ar ns a s et of el e m e nt- wis e w ei g ht m a ps fr o m F v l t o
fi n el y t u n e t h e s c al e of e a c h el e m e nt wit hi n F v l . S u bs e q u e nt
t o t his a dj ust m e nt, a r esi d u al c o m bi n ati o n of F v a n d F v l ·ψ v l

is p erf or m e d. T h e r es ult a nt o ut p ut is t h e n f e d b a c k i nt o t h e
visi o n b a c k b o n e f or f urt h er c o m p ut ati o n.

3. 3. D y n a mi c Q u e r y M o d ul e

T h e D y n a mi c Q u er y M o d ul e ( D Q M) t a k es t h e l a n g u a g e
f e at ur e F l a n d a Q u er y b a n k Q b as i n p uts, t h e l att er c o n-
t ai ni n g N q b l e ar n a bl e q u eri es. Fi g ur e 4 ( b) s h o ws t h e i niti al

st e p, w h er e t h e att e nti o n b et w e e n t h e l a n g u a g e f e at ur e F l

a n d t h e N q b q u er y e m b e d di n gs Q b ∈ R N q b × C is c o m p ut e d,
r es ulti n g i n N q b att e nti o n m a ps:

A b i = s oft m a x (Q b σ (F l W i k )
T ), ( 1)

w h er e W i k is a C × C m atri x of l e ar n a bl e p ar a m et ers,
a n d σ d e n ot es t h e G e L U f u n cti o n [ 2 0 ]. T h e r es ulti n g
A b i ∈ R N q b × L pr o vi d es e a c h q u er y wit h a 1 × L att e n-
ti o n m a p, i n di c ati n g its i m p ort a nt li n g uisti c r el ati o n i n t h e
l a n g u a g e f e at ur es. F oll o wi n g t his, t h e l a n g u a g e-s u p p ort e d
q u er y b a n k f e at ur es ar e d eri v e d usi n g t h es e att e nti o n m a ps:
Q ′

b = A b i σ (F l W i v )
T , w h er e W i v is a n ot h er C × C m atri x

of l e ar n a bl e p ar a m et ers.

T h e v ari a bilit y i n l a n g u a g e e x pr essi o ns us e d t o d es cri b e
o bj e cts i n i m a g es r e q uir es a n a p pr o a c h t h at c a n a d a pt t o
diff er e nt d es cri pti o ns. T his is b e c a us e st a n d ar d m et h o ds,
li k e t h os e s e e n i n t h e i niti al tr a nsf or m er m o d els (li k e i n
v a nill a tr a nsf or m er [ 1 4 ]), str u g gl e t o c a pt ur e t h e n u a n c es
i n d es cri pti o ns t h at i n cl u d e c ol or, si z e, s h a p e, a n d p ositi o n.
T o a d dr ess t his, a l ar g er s et of a d a pt a bl e q u eri es is r e q uir e d.
T h es e q u eri es ar e fi n e-t u n e d b as e d o n t h e i n p ut l a n g u a g e,
r es ulti n g i n a r e fi n e d s et of q u eri es, d e n ot e d as Q ′

b . E a c h
q u er y i n t his r e fi n e d s et is t h e n ass ess e d wit h a s c ori n g
n et w or k, w hi c h o ut p uts a s oft- m as k M b . T his s oft- m as k
r e pr es e nts t h e r el e v a n c e of e a c h q u er y. T h e fi n al s et of
q u eri es, Q fi n al , is o bt ai n e d b y c o m bi ni n g M b wit h Q ′

b t hr o u g h
a d ot pr o d u ct, as s h o w n i n t h e e q u ati o n b el o w:

Q fi n al = M ′
b ⊙ Q ′

b ( 2)
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Fi g ur e 4. Ar c hit e ct ur e o v er vi e w of t h e ( A.) D y n a mi c Q u er y M o d ul e a n d ( B.) L Q C A Bl o c k

3. 3. 1 S c o ri n g N et w o r k

T h e s c ori n g n et w or k i n L Q M F or m er t a k es t h e L a n g u a g e-
e n h a n c e d Q u er y b a n k Q ′

b as i n p ut a n d pr o c ess es it t hr o u g h
a s e q u e n c e of li n e ar l a y ers. T his n et w or k c o nsists of f o ur
li n e ar l a y ers, wit h L a y er N or m ali z ati o n [1 ] a p pli e d b ef or e
t h e first l a y er. E a c h s u bs e q u e nt l a y er, e x c e pt t h e l ast si g m oi d,
i n c or p or at es G E L U [2 0 ] a cti v ati o n. T h e fi n al o ut p ut is a 1-
di m e nsi o n al l o git M b ∈ R N q b × 1 , s er vi n g as a s oft- m as k t o
m o d ul at e Q ′

b .
T o tr ai n t h e s c ori n g n et w or k f or pr e di cti n g a r el e v a nt

s oft- m as k M b eff e cti v el y f or t h e tr a nsf or m er d e c o d er, w e
utili z e its cr oss- att e nti o n m a p. T his m a p is ess e nti al i n i d e n-
tif yi n g t h e s u bs et of Q u eri es m ost r el e v a nt t o t h e r ef erri n g
e x pr essi o n a n d vis u al f e at ur es, as hi g hli g ht e d d uri n g tr ai n-
i n g. We s u m u p t h e att e nti o n m a ps fr o m e a c h d e c o d er l a y er
usi n g Bili n e ar I nt er p ol ati o n ( BI), t h er e b y pr oj e cti n g att e n-
ti o n A q f ∈ R N q b × H W dir e ct e d t o w ar ds t h es e Q u eri es. T h e
pr o c ess is m at h e m ati c all y d es cri b e d as f oll o ws:

A q f =

L

l= 1

3

r = 1

BI (A l, r , H W ) ( 3)

H er e, A l, r ∈ R N q b × h w r e pr es e nts t h e att e nti o n m a p fr o m
t h e lt h l a y er at t h e r t h r es ol uti o n, wit h h w b ei n g t h e ori gi n al
di m e nsi o n a n d H W t h e d esir e d o ut p ut di m e nsi o n. Aft er
ali g ni n g e a c h att e nti o n m a p t o t h e c o m m o n r es ol uti o n H W ,
w e t h e n s u m a cr oss t his di m e nsi o n t o g e n er at e a li k eli h o o d
m a p L M , as i n di c at e d i n t h e s u bs e q u e nt e q u ati o n:

L M =

H W

i = 1

A q f [:, i] ( 4)

T his li k eli h o o d m a p L M ∈ R N q b × 1 , n o w c a pt ur es t h e
c o n c e ntr at e d att e nti o n a cr oss all Q u eri es, s er v es as a c o n di-
ti o n i n r e fi ni n g t h e pr e di cti o ns of t h e s c ori n g n et w or k. T h e

s c ori n g n et w or k is tr ai n e d t o pr e di ct t h e li k eli h o o d of e a c h
Q u er y b ei n g i n cl u d e d i n t h e t o p- ρ % of t h e m ost r ef er e n c e d
t o k e ns. T his pr o c ess i n v ol v es bi n ari zi n g t h e li k eli h o o d m a p
L M t o r et ai n o nl y t h e t o p-ρ % Q u eri es, cr e ati n g a bi n ari z e d
v ersi o n L M bi n . T h e tr ai ni n g o bj e cti v e is t h e n f or m ul at e d as
a Bi n ar y Cr oss- E ntr o p y ( B C E) l oss b et w e e n t h e pr e di ct e d
s oft- m as k M b a n d t h e bi n ari z e d li k eli h o o d m a p L M bi n . T h e
B C E l oss f u n cti o n is d e fi n e d as:

B C E L oss = −
1

N q b

N q b

i = 1

[L M bi n , i l o g (M b, i )

+ ( 1 − L M bi n , i) l o g ( 1 − M b, i )]

( 5)

H er e, N q b r e pr es e nts t h e n u m b er of Q u eri es i n Q ′
b , a n d i

i n d e x es e a c h Q u er y. T his l oss f u n cti o n eff e cti v el y tr ai ns t h e
s c ori n g n et w or k t o ali g n its pr e di cti o ns wit h t h e m ost s ali e nt
Q u eri es as d et er mi n e d b y t h e d e c o d er’s cr oss- att e nti o n,
t h er e b y r e fi ni n g t h e m o d el’s a c c ur a c y i n i d e ntif yi n g a n d
s e g m e nti n g o bj e cts as d es cri b e d b y t h e r ef erri n g e x pr essi o ns.

3. 4. Q u e r y- M as k M a r gi n L oss

Q u er y- M as k M ar gi n L oss is d esi g n e d t o m ai nt ai n a m ar gi n
of s e p ar a bilit y b et w e e n diff er e nt q u er y f e at ur e r e pr es e nt a-
ti o ns, a n ess e nti al as p e ct f or t as ks wit h v ari a bl e o ut p uts. T h e
l oss f u n cti o n o p er at es b y i niti all y c o m p uti n g p air wis e dif-
f er e n c es a n d dist a n c es b et w e e n m as k e m b e d di n gs wit hi n a
b at c h. T his c o m p ut ati o n yi el ds a t e ns or of s h a p e B × N × N ,
w h er e B r e pr es e nts t h e b at c h si z e, a n d N is t h e n u m b er of
q u eri es. S u bs e q u e ntl y, t h es e dist a n c es f or e a c h e m b e d di n g
ar e s ort e d, wit h a p arti c ul ar f o c us o n t h e s e c o n d s m all est
v al u e, w hi c h si g ni fi es t h e dist a n c e t o t h e n e ar est n ei g h b or.
T h e m ar gi n l oss is d e fi n e d t hr o u g h t h e m a x f u n cti o n, e ns ur-
i n g a mi ni m u m dist a n c e of 1. 0 b et w e e n e m b e d di n gs. T h e
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m at h e m ati c al f or m ul ati o n of Q M-l oss is as f oll o ws:

Q M-l oss = m a x ( 0 , 1 .0 − dist (M i , Mj ))

H er e, dist (M i , Mj ) d e n ot es t h e c al c ul ati o n of p air wis e dis-
t a n c es b et w e e n t h e m as k e m b e d di n gs, r e pr es e nt e d as M .

4. E x p e ri m e nts a n d Dis c ussi o n

4. 1. D at as ets a n d I m pl e m e nt ati o n D et ails

D at as ets: O ur e x p eri m e nts ar e c o n d u ct e d o n f o ur pri-
m ar y b e n c h m ar k d at as ets i n R ef erri n g I m a g e S e g m e nt a-
ti o n: R ef C O C O [5 7 ], R ef C O C O + [5 7 ], R ef C O C O g [3 8 ],
a n d G R E S [ 3 2 ]. T h es e d at as ets d eri v e t h eir i m a g es fr o m
M S C O C O [ 3 0 ]. T h e d at as et d et ails ar e as f oll o ws: R e-
f C O C O ( 1 9, 9 9 4 i m a g es, 5 0, 0 0 0 o bj e cts, 1 4 2, 2 0 9 e x pr es-
si o ns), R ef C O C O + ( 1 9, 9 9 2 i m a g es, 4 9, 8 5 6 o bj e cts, 1 4 1, 5 6 4
e x pr essi o ns), R ef C O C O g ( 2 6, 7 1 1 i m a g es, 5 4, 8 2 2 o bj e cts,
8 5, 4 7 4 e x pr essi o ns), a n d G R E S ( 1 9, 9 9 4 i m a g es, 6 0, 2 8 7 o b-
j e cts, 2 7 8, 2 3 2 e x pr essi o ns). R ef C O C O m ai nl y f o c us es o n
e x pr essi o ns t h at s p e cif y o bj e ct l o c ati o ns, w hil e R ef C O C O +
pri oriti z es o bj e ct d es cri pti o ns. R ef C O C O g pr es e nts a hi g h er
c h all e n g e d u e t o l o n g er a n d m or e c o m pl e x e x pr essi o ns ( a v er-
a gi n g 8. 4 w or ds c o m p ar e d t o 3. 5 i n ot h ers). G R E S br o a d e ns
t h e s c o p e of R ef C O C O b y i n cl u di n g e x pr essi o ns t h at r e-
f er t o m ulti pl e o bj e cts or n o o bj e cts, t h er e b y e n h a n ci n g t h e
pr o bl e m’s g e n er ali z a bilit y. We us e b ot h U M D s plit [ 4 1 ] a n d
G o o gl e s plit [ 3 8 ] f or R ef C O C O g d at as et.

E v al u ati o n M et ri cs. F or si n gl e-t ar g et o bj e ct s e g m e n-
t ati o n, w e r e p ort o ur r es ults usi n g t w o ki n ds of m et-
ri cs [1 3 , 3 7 , 4 9 , 5 4 ]: o v er all I o U ( oI o U) a n d Pr e cisi o n @ X
( P @ X). oI o U di vi d es t h e t ot al i nt ers e cti o n pi x els b y t h e t ot al
u ni o n pi x els a cr oss all t est i m a g es. Pr e cisi o n @ X c al c ul at es
t h e p er c e nt a g e of t esti n g s a m pl es of w hi c h t h e m o d el pr e di c-
ti o n h as a n I o U s c or e hi g h er t h a n t h e t hr es h ol d v al u e X. T o
e xt e n d o ur e v al u ati o n t o n o n-t ar g et a n d m ulti-t ar g et o bj e ct
s e g m e nt ati o n, f oll o wi n g [ 3 2 ], w e i n cl u d e a d diti o n al m etri cs:
S e nsiti vit y ( N- a c c.), S p e ci fi cit y ( T- a c c.), a n d G e n er ali z e d
I o U ( gI o U). N- a c c. e v al u at es t h e m o d el’s p erf or m a n c e o n
i d e ntif yi n g n o n-t ar g et s a m pl es, w hil e T- a c c. m e as ur es t h e
i m p a ct of g e n er ali z ati o n o n n o n-t ar g et s a m pl es o n t h e p er-
f or m a n c e of t ar g et s a m pl es. We o pt f or gI o U o v er oI o U d u e
t o t h e l att er’s bi as t o w ar ds l ar g er o bj e cts. gI o U c o m p ut es t h e
m e a n I o U p er i m a g e f or all s a m pl es. I n c as es wit h n o-t ar g et
s a m pl es, I o U v al u es ar e assi g n e d as 1 f or tr u e p ositi v es a n d
0 f or f als e n e g ati v es, e ns uri n g a n e q uit a bl e m etri c f or all
o bj e ct si z es.

I m pl e m e nt ati o n D et ails. O ur m o d el us es S wi n
Tr a nsf or m er- B [ 3 4 ] as t h e vis u al e n c o d er a n d B E R T [1 1 ]
as t h e l a n g u a g e d e c o d er. T h e tr a nsf or m er l a y er i n S wi n-
B is i niti ali z e d wit h cl assi fi c ati o n w ei g hts pr e-tr ai n e d o n
I m a g e N et 2 2 K [1 0 ]. We us e B E R T i m pl e m e nt ati o n fr o m
t h e H u g gi n g F a c e Tr a nsf or m er li br ar y [5 0 ]. It c o m pris es 1 2
l a y ers wit h a hi d d e n si z e of 7 6 8, i niti ali z e d usi n g of fi ci al

pr e-tr ai n e d w ei g hts. We us e o ur Tr a nsf or m er d e c o d er pr o-
p os e d i n S e cti o n 3. 1 wit h L = 3 (i. e., 9 l a y ers t ot al) a n d 1 0 0
q u eri es b y d ef a ult. T h e A d a m W o pti mi z er [ 3 5 ] is e m pl o y e d
f or o pti mi z ati o n wit h a n i niti al l e ar ni n g r at e of 0. 0 0 0 0 1. O ur
m o d el is tr ai n e d o v er 1 0 0 K it er ati o ns wit h a b at c h si z e of 4 8.
O ur i m a g e r esi zi n g is st a n d ar di z e d t o 4 8 0 × 4 8 0 pi x els.

4. 2. C o m p a ris o n wit h t h e st at e of a rt m et h o ds

R ef e r ri n g I m a g e S e g m e nt ati o n Ta bl e 1 pr es e nts t h e r e-
s ults f or R ef erri n g I m a g e S e g m e nt ati o n, a n d o ur pr o p os e d
m et h o d, L Q M F or m er , pr o d u c es c o m p etiti v e p erf or m a n c e
a g ai nst e xisti n g st at e- of-t h e- art a p pr o a c h es a cr oss m ulti pl e
st a n d ar d b e n c h m ar ks. O n t h e R ef C O C O d at as et, o ur pr o-
p os e d m et h o d o bt ai ns t h e hi g h est oI o U a cr oss all di visi o ns
( v al, t est A, a n d t est B), s ur p assi n g r e c e nt l e a di n g m et h o ds
s u c h as V L T [ 1 3 ] a n d R e L A [3 2 ]. N ot a bl y, it s h o ws a si g-
ni fi c a nt m ar gi n i n t h e t est B s plit, i n di c ati n g e n h a n c e d c a p a-
bilit y i n c o m pl e x vis u al c o nt e xts. I n t h e R ef C O C O + d at as et,
L Q M F or m er als o d e m o nstr at es its eff e cti v e n ess i n t h e t est A
s et. S p e ci fi c all y, i n t h e t est A s plit wit h a cI o U of 7 1. 8 4 %. I n
t h e Val a n d Test B s plits, o ur pr o p os e d m et h o d a c hi e v es c o m-
p etiti v e p erf or m a n c e a g ai nst R e L A [ 3 2 ] a n d L A V T [5 4 ]. F or
t h e G- R ef d at as et, w hi c h pr es e nts v ari e d a n d l o n g er r ef erri n g
e x pr essi o ns, o ur pr o p os e d m et h o d a c hi e v es t h e t o p p erf or-
m a n c e i n t h e v al ( G) s plit a n d m ai nt ai ns c o m p etiti v e r es ults i n
t h e ot h er s plits. T his p erf or m a n c e is p arti c ul arl y n ot a bl e o v er
L A V T [ 5 4 ] i n t h e v al( G) s plit, hi g hli g hti n g its a d a pt a bilit y t o
di v ers e c h all e n gi n g d at as ets. W hil e t h e m ar gi n of i m pr o v e-
m e nt off er e d b y L Q M F or m er i n cl assi c RI S d at as ets m a y
b e c o m p ar ati v el y s m all er t h a n t h at o bs er v e d i n G R E S, t h e
r es ults si g nif y t h at G a ussi a n- e n h a n c e d M ulti- M o d al F usi o n
a n d e x pli cit m o d eli n g of Q u eri es fr o m D e c o d er ar e b e n e fi ci al
f or t h e g e n er al R ef erri n g I m a g e S e g m e nt ati o n s etti n g.

G e n e r alis e d R ef e r ri n g I m a g e S e g m e nt ati o n I n t h e G R E S
d at as et, t h e L Q M F or m er m o d el d e m o nstr at es n ot a bl e i m-
pr o v e m e nts i n R e gi o n I nst a n c e S e g m e nt ati o n ( RI S), as
s h o w n i n Ta bl e 2 . T h e m o d el a c hi e v es a g e n er ali z e d I nt ers e c-
ti o n o v er U ni o n ( gI o U) s c or e of 7 0. 9 4 % o n t h e v ali d ati o n s et,
s ur p assi n g ot h er m o d els s u c h as R e L A, L A V T, a n d C RI S b y
a m ar gi n of 7- 1 2 %. T his p erf or m a n c e i n di c at es its eff e cti v e
s e g m e nt ati o n a cr oss v ari o us o bj e ct si z es. T h e o bj e ct-l e v el
I nt ers e cti o n o v er U ni o n ( oI o U) s c or e of 6 4. 9 8 % f urt h er u n-
d ers c or es t h e m o d el’s s e g m e nt ati o n c a p a biliti es, hi g hli g hti n g
t h e eff e cti v e n ess of t h e I m pr o v e d Vis u al Gr o u n di n g a n d D y-
n a mi c Q u er y S el e cti o n m o d ul e. A n ot h er i m p ort a nt as p e ct
of L Q M F or m er is its p erf or m a n c e i n n o-t ar g et i d e nti fi c ati o n,
wit h a n a c c ur a c y s c or e of 6 7. 4 7 %. T his s c or e is 1 1 % hi g h er
t h a n t h at of e xisti n g m et h o ds, m ar ki n g si g ni fi c a nt pr o gr ess i n
a c c ur at el y i d e ntif yi n g n o-t ar g et s a m pl es — a n ot e d c h all e n g e
i n RI S. T h e i n cl usi o n of t h e D y n a mi c Q u er y M o d ul e ( D Q M)
a n d t h e T o p p % r ati o si g ni fi c a ntl y r e d u c es t h e i m p a ct of t h e
n u m b er of q u eri es a n d miti g at es q u er y c oll a ps e. As a r es ult,
f e w er b ut m or e eff e cti v e q u eri es m a k e it e asi er t o disti n g uis h
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Ta bl e 1. R es ults o n cl assi c R E S i n t er ms of oI o U. U: U M D s plit. G: G o o gl e s plit.

M et h o ds
Vis u al

E n c o d er
Te xt u al
E n c o d er

R ef C O C O R ef C O C O + G- R ef
v al t est A t est B v al t est A t est B v al ( U) t est( U) v al ( G)

M C N [ 3 7 ] D ar k n et 5 3 bi- G R U 6 2. 4 4 6 4. 2 0 5 9. 7 1 5 0. 6 2 5 4. 9 9 4 4. 6 9 4 9. 2 2 4 9. 4 0 -
V L T [ 1 2 ] D ar k n et 5 3 bi- G R U 6 7. 5 2 7 0. 4 7 6 5. 2 4 5 6. 3 0 6 0. 9 8 5 0. 0 8 5 4. 9 6 5 7. 7 3 5 2. 0 2
R e S T R [ 2 5 ] Vi T- B Tr a nsf or m er 6 7. 2 2 6 9. 3 0 6 4. 4 5 5 5. 7 8 6 0. 4 4 4 8. 2 7 - - 5 4. 4 8
C RI S [ 4 9 ] C LI P- R 1 0 1 C LI P 7 0. 4 7 7 3. 1 8 6 6. 1 0 6 2. 2 7 6 8. 0 8 5 3. 6 8 5 9. 8 7 6 0. 3 6 -
L A V T [ 5 4 ] S wi n- B B E R T 7 2. 7 3 7 5. 8 2 6 8. 7 9 6 2. 1 4 6 8. 3 8 5 5. 1 0 6 1. 2 4 6 2. 0 9 6 0. 5 0
V L T [ 1 3 ] S wi n- B B E R T 7 2. 9 6 7 5. 9 6 6 9. 6 0 6 3. 5 3 6 8. 4 3 5 6. 9 2 6 3. 4 9 6 6. 2 2 6 2. 8 0
R e L A [ 3 2 ] S wi n- B B E R T 7 3. 8 2 7 6. 4 8 7 0. 1 8 6 6. 0 4 7 1. 0 2 5 7. 6 5 6 5. 0 0 6 5. 9 7 6 2. 7 0
L Q M F or m er ( o urs) S wi n- B B E R T 7 4. 1 6 7 6. 8 2 7 1. 0 4 6 5. 9 1 7 1. 8 4 5 7. 5 9 6 4. 7 3 6 6. 0 4 6 2. 9 7

Ta bl e 2. C o m p aris o n o n G R E S d at as et.

M et h o ds
v al N o-t ar g et v al

oI o U gI o U N- a c c.  T- a c c.

M att N et [ 5 8 ] 4 7. 5 1 4 8. 2 4 4 1. 1 5 9 6. 1 3

L T S [ 2 4 ] 5 2. 3 0 5 2. 7 0 - -

V L T [ 1 2 ] 5 2. 5 1 5 2. 0 0 4 7. 1 7 9 5. 7 2

C RI S [ 4 9 ] 5 5. 3 4 5 6. 2 7 - -

L A V T [ 5 4 ] 5 7. 6 4 5 8. 4 0 4 9. 3 2 9 6. 1 8

R e L A [ 3 2 ] 6 2. 4 2 6 3. 6 0 5 6. 3 7 9 6. 3 2

L Q M F or m er ( o urs) 6 4. 9 8 7 0. 9 4 6 7. 4 7 9 9. 1 2

Ta bl e 3. A bl ati o n St u d y R es ults

C o n fi g ur ati o n oI o U gI o U

( a) A n al ysis o n D y n a mi c Q u er y m o d ul e

O urs 6 4. 9 8 7 0. 9 4
w/ o s c or e- b as e d l e ar ni n g 6 2. 7 5 6 7. 1 6
w/ o s c ori n g m o d ul e 6 2. 0 2 6 5. 4 8
w/ o Q M-l oss 6 4. 1 9 6 8. 3 7

( b) A n al ysis o n m ulti- m o d al f usi o n m o d ul e

O urs 6 4. 9 8 7 0. 9 4
w/ o m o d alit y f usi o n m o d ul e a n d Q M-l oss 4 9. 6 8 5 2. 3 4

Ta bl e 4. A bl ati o n st u d y of Q u er y N u m b ers N q b i n Q b . ‡ : wit h o ut
s c ori n g m o d ul e. T o p p % r ati o is 2 0

N q oI o U gI o U Pr @ 0. 7 Pr @ 0. 8 Pr @ 0. 9

2 0 5 7. 2 2 5 8. 3 1 6 9. 1 5 6 0. 2 6 2 2. 4 7
5 0 6 2. 4 8 6 4. 5 3 7 2. 0 2 6 1. 7 9 3 1. 5 8
1 0 0 6 4. 9 8 7 0. 9 4 7 5. 0 3 6 5. 5 1 3 4. 0 5
1 0 0 ‡ 6 2. 0 2 6 5. 4 8 7 3. 1 5 6 2. 8 7 3 1. 5 5

b et w e e n ”t ar g et ” a n d ” n o-t ar g et ”. T h e m o d el’s s p e ci fi cit y
(tr u e a c c ur a c y) s c or e of 9 9. 1 2 % als o r e fl e cts its eff e cti v e n ess
i n cl assif yi n g t ar g et s a m pl es.

4. 3. A bl ati o n St u d y

I n o ur c o m pr e h e nsi v e a bl ati o n st u di es, w e e v al u at e d t h e
p erf or m a n c e i m p a ct of v ari o us c o m p o n e nts of L Q M F or m er

Ta bl e 5. A bl ati o n st u d y of T o p p % r ati o i n Q b .

p % oI o U gI o U  N. a c c. Pr @ 0. 7 Pr @ 0. 8 Pr @ 0. 9

2 0 6 4. 9 8 7 0. 9 4 6 7. 4 7 7 5. 0 3 6 5. 5 1 3 4. 0 5
5 0 6 3. 8 5 6 7. 7 6 6 3. 2 5 7 4. 2 9 6 4. 4 2 3 3. 5 8
1 0 0 6 1. 3 3 6 3. 7 7 5 8. 9 2 7 2. 4 5 6 1. 8 8 3 1. 2 1

Ta bl e 6. A bl ati o n st u d y of Gr o u n di n g M o d ul e

F usi o n oI o U gI o U Pr @ 0. 7 Pr @ 0. 8 Pr @ 0. 9

B as eli n e 4 9. 6 8 5 2. 3 4 5 5. 2 7 4 1. 3 8 1 4. 7 2
P ost- C A 6 0. 2 2 6 1. 8 9 7 4. 1 5 6 4. 4 4 3 2. 6 7

S- P ost- C A [ 4 0 ] 6 2. 1 3 6 4. 4 1 7 3. 6 4 6 3. 3 5 3 2. 7 1
V L- Gr o u n di n g 6 3. 4 3 6 8. 8 1 7 2. 9 5 6 4. 1 9 3 3. 9 6

G M M F 6 4. 9 8 7 0. 9 4 7 5. 0 3 6 5. 5 1 3 4. 0 5

o n t h e G R E S d at as et. T h es e st u di es f o c us e d o n t h e D y n a mi c
Q u er y M o d ul e, Q u er y N u m b ers N q b i n Q b , t h e T o p p %
r ati o i n Q b , a n d t h e Gr o u n di n g M o d ul e. T h e r es ults h el ps
u n d erst a n di n g k e y i nsi g hts i nt o t h e m o d el’s f u n cti o ni n g a n d
o pti mi z ati o n.

A n al ysis o n D y n a mi c Q u e r y M o d ul e: Ta bl e 3 ( a) pr es e nts
t h e a bl ati o n r es ults f or t h e l a n g u a g e q u er y s el e cti o n m o d ul e.
T h e r e m o v al of s c or e- b as e d l e ar ni n g si g ni fi c a ntl y i m p a cts
s c or es as it li mits t h e e x pli cit tr ai ni n g of Q u er y s c or es fr o m
t h e s c ori n g n et w or k. Als o, n ot a bl y, r e m o vi n g t h e s c ori n g
m o d ul e a n d Q M-l oss l e a ds t o a d e cr e as e i n oI o U s c or e b y
2. 9 6 % a n d 0. 7 9 %, r es p e cti v el y, hi g hli g hti n g its criti c al r ol e
i n a c hi e vi n g o pti m al r ef erri n g s e g m e nt ati o n p erf or m a n c e.

Q u e r y B a n k n u m b e r N q b i n Q b : T h e a bl ati o n o n Q u er y
B a n k n u m b er d e m o nstr at e d a n ot a bl e i m p a ct o n t h e m o d el’s
p erf or m a n c e as s h o w n i n Ta bl e 4 . Wit h a n i n cr e as e i n
N q fr o m 2 0 t o 1 0 0, t h er e w as a c o nsist e nt i m pr o v e m e nt
i n b ot h oI o U fr o m 5 7. 2 2 % t o 6 4. 9 8 % a n d gI o U fr o m 5 8. 3 1 %
t o 7 0. 9 4 %, as w ell as i n Pr e cisi o n m etri cs. P arti c ul arl y,
N q = 1 0 0 yi el d e d t h e hi g h est s c or es a cr oss all m etri cs, i n-
di c ati n g a n o pti m al b al a n c e i n q u er y n u m b ers f or eff e cti v e
s e g m e nt ati o n. T h us, it o pti m al t o h a v e m or e n u m b er of
q u eri es wit h T o p p % as 2 0.

T o p p % R ati o i n Q b : T h e st u d y o n t h e T o p p % r ati o r e-
v e al e d t h at a 2 0 % r ati o a c hi e v e d t h e b est p erf or m a n c e i n
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Figure 5. Qualitave Comparison of our model with LQMFormer with ReLA [32] on GRES dataset.

terms of oIoU, gIoU, and Precision metrics(Table 5). Higher
ratios, like 50% and 100%, resulted in diminished perfor-
mance as it resulted in more and more query collapse issues
as many queries contribute towards the final mask gener-
ation. This finding indicates that a moderate selection of
top-performing queries is crucial for balancing precision and
recall.
Grounding Module: The ablation study of the Grounding
Module, as shown in Table 3(b) and Table 6, highlights
the effectiveness of Gaussian Enhancement for Referring
Image Segmentation (RIS) tasks. The Gaussian enhanced
Multi-Model Fusion (GMMF) method yields a improvement,
specifically enhancing oIoU by 1.5%, from 63.43% in VL-
Grounding to 64.98% in GMMF. This underlines the superior
performance of Gaussian Filtering in the Fourier Domain
over traditional cross-attention methods. Furthermore, com-
pared to the Post-CA which registers an oIoU of 60.22%,
the GMMF and VL-Grounding methods showcase substan-
tial improvements in multi-modal representation within the
backbone stage, with GMMF outperforming Post-CA by
4.76% and VL-Grounding by 3.21% in oIoU. The compar-
ison with S-Post-CA [40], which aims at enhancing visual
representation post-feature extraction, show the importance
of integrating advanced grounding techniques early in the
model’s architecture for improved RIS performance. Over-
all, our proposed Gaussian enhanced Multi-Model Fusion

(GMMF) improves the visual grounding compared to other
methods, resulting in a improved referring segmentation.

5. Conclusion

In this paper, we address the problem of query collapse
in Referring Image Segmentation by enhancing visual
grounding and generating diverse query sets, and by mod-
eling their relevance based on language expressions. Our
proposed model, LQMFormer , incorporates Gaussian En-
hanced Multi-Modal Fusion to improve visual grounding,
and a Dynamic Query Module that not only generates a
diverse set of queries but also employs a scoring network
to selectively focus on queries based on given language
expressions. Additionally, to mitigate query collapse, we
introduce a novel loss function that enforces a margin of
separation between query feature representations, facilitat-
ing improved representation without the need for additional
supervision. The LQMFormer method notably surpasses
state-of-the-art methods in both referring image segmenta-
tion and generalized referring image segmentation perfor-
mance in most settings. For future work, we aim to extend
the LQMFormer model’s capabilities along with LLM and
focus on effectively bridging LLM to better handle multi-
modal contexts.
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