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Abstract. Popular representation learning methods encourage feature
invariance under transformations applied at the input. However, in 3D
perception tasks like object localization and segmentation, outputs are
naturally equivariant to some transformations, such as rotation. Us-
ing pre-training loss functions that encourage equivariance of features
under certain transformations provides a strong self-supervision signal
while also retaining information of geometric relationships between trans-
formed feature representations. This can enable improved performance
in downstream tasks that are equivariant to such transformations. In this
paper, we propose a spatio-temporal equivariant learning framework by
considering both spatial and temporal augmentations jointly. Our experi-
ments show that the best performance arises with a pre-training approach
that encourages equivariance to translation, scaling, and flip, rotation
and scene flow. For spatial augmentations, we find that depending on
the transformation, either a contrastive objective or an equivariance-by-
classification objective yields best results. To leverage real-world object
deformations and motion, we consider sequential LIDAR scene pairs and
develop a novel 3D scene flow-based equivariance objective that leads to
improved performance overall. We show that our pre-training method
for 3D object detection outperforms existing equivariant and invariant
approaches in many settings.

Keywords: LiDAR - 3D object detection - Self-supervised learning

1 Introduction

Relying on fully-supervised training paradigms can be limiting as manual an-
notation is expensive. Interest in autonomous navigation and lowering cost of
sensing hardware has enabled access to large amounts of LiDAR data [19, 26],
a crucial source of depth information useful for perception tasks. However, the
annotation of outdoor LiDAR point clouds is challenging due to their irregulari-
ties and sparsity. Self-supervised learning (SSL) enables learning of generic visual
representations of unlabelled data by completing tasks designed based on human
intuition about what information can be inferred from its inherent properties,
without the need for explicit supervision. The availability of large amounts of
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unlabelled LiDAR data thus makes SSL pre-training methods a natural choice
for improving performance of perception tasks in limited label scenarios.

Many pretext tasks in state-of-the-art
(SOTA) representation learning approaches
encourage feature invariance under different
views, transformations, and across time by
training under a contrastive learning objec-
tive [3, 14, 31, 39]. These frameworks show
which transformations can train the network
to learn rich visual representations useful
for downstream tasks [3, 30]. Methods like
STRL [15] use a BYOL-like [11] framework
to encourage invariance of the features over
time. However, in tasks like object detection
and semantic segmentation, input orienta-
tion is important information that should be

Fig.1: An illustration of invari-
ance (left) vs. equivariance (right),
as described in Sec. 1. Invariance
of f to group of transformations G
means that the output representa-
tion does not change with the ap-

plied input transformation, whereas
equivariance of f to G means the
output representation changes by T,
for some applied input transforma-
tion Ty. In this visualization, Ty is
3D rotation. Figure inspired by [7].

retained in the feature representation. That
is, if the LiDAR scene is rotated, all the ob-
ject bounding boxes should also rotate by the
same amount. Encouraging invariance to ro-
tations conflicts with this task. In PointCon-
trast [32], networks are trained to be equiv-
ariant to transformations such as rotation, scaling, and translation, variations
over time are not considerd. In contrast, we propose a training scheme, which
encourages learning features that transform in an equivariant fashion over spa-
tial augmentations as well as over time. We also show improved performance for
rotation equivariance via equivariance-via-classification strategy.

We can define invariance and equivariance to group action more formally.
Let the inputs be denoted by = € X, f(-) be the encoder, and the output be
f(z). A group G is a set along with a binary operation o that respects closure
(V9,9 € G,gog’ € G), associativity (Vg,g',g* € G,go (9" 0g*) = (gog') o g*),
has a unique identity element e € G and an inverse g~ ! exists for each element
g € G such that gog™! = g 'og =e. If G is a group of transformations, for
g € G, let Ty(z) and Ty(x) be the group action on z and f(x), respectively.
The invariance of f to G means that the output representation does not change
with the applied transformation, Va, Vg, f(Ty(x)) = f(x). By the equivariance
of f to G, we mean that Vx, Vg, f(Ty(z)) = Ty(f(x)), where Ty is the same
transformation acting on the features, see Fig. 1.

Dangovski et al. [5] show that certain transformations discarded for training
for invariance can instead be leveraged to train for equivariance, but the down-
stream tasks they consider include only image classification, which is invariant
to the transformations at the input. We are interested in better understanding
the effect of, and improving methods for equivariant pre-training for LiDAR
point clouds for object detection that inherently has an equivariant component
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— bounding box regression should be equivariant to geometric transformations
applied at the input.

Data augmentation methods are an important component for self-supervised
learning and influence the nature of learned visual representations [30]. Existing
augmentations for LIDAR scenes do not include realistic transformations that
describe things such as ego-motion and geometric object deformations over time.
For perceiving moving objects, relative motion becomes a useful property to
localize objects. We expand the study of equivariant feature learning to more
natural transformations by considering temporal sequences of LiDAR frames.
We model the point-level transformation over time as a scene flow matrix. Scene
flow naturally captures local transformations of objects through their motion. 3D
scene understanding tasks should be equivariant to these local transformations.
We thus include 3D scene flow as an additional transformation under which to
train the network to be equivariant.

We present a study into Equivariance for Self-Supervised Learning for 3D
perception tasks on LiDAR point clouds and propose the framework E-SSL3P.
We consider LiDAR scenes applied with a series of spatial and temporal augmen-
tations to train a 3D feature encoder under a joint equivariant contrastive learn-
ing and flow equivariance objective. To encourage spatial equivariance, trans-
formed views of a scene are contrasted at the point level as well as passed to a
classification head to predict the applied geometric transformation. To encourage
temporal equivariance, the network is trained to minimize the distance between
sequential pairs of LiDAR frames in the voxel feature space, where the feature
map of the first frame is warped to the second frame. Extensive experiments
on 3D object detection in low-data regime show effectiness of E-SSL3P. We
summarize our contributions below:

1. We propose E-SSL3P | a self-supervised pre-training method for LiDAR
scenes that trains a network to learn spatio-temporal equivariance through
a joint loss objective. We are the first to leverage 3D scene flow to encourage
equivariance to temporal augmentations in LiDAR scenes.

2. We show that our pre-training strategy is effective in improving performance
on downstream tasks, particularly in low-data scenarios. An object detector
pre-trained using E-SSL3P and fine-tuned on just 20% of data can achieve
comparable performance to a network trained from scratch on 100% data.

3. We show improved performance for rotation equivariance over standard con-
trastive approaches through an equivariance-via-classification strategy.

2 Related work

2.1 Equivariant self-supervision

In recent years, there has been a growing interest in exploring the role of equiv-
ariance in learning visual representations in a self-supervised manner [1,5,7,9,
12,31]. Dangovski et al. generalize the standard contrastive SSL framework to
a equivariant SSL framework and improve the existing performance of purely
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invariant SSL methods on the tasks such as image classification and regression
problems in photonics. In this work, we follow the intuition of probing for com-
plementary augmentations, but apply equivariant SSL to more complex down-
stream tasks that are inherently equivariant, such as object detection. In [9],
Garrido et al. propose a benchmark for evaluating equivariance on both inher-
ently equivariant tasks such as 3D rotation prediction, as well as invariant ones
such as classification, and present a method of splitting representations into in-
variant and equivariant parts. CARE [12] learns to translate augmentations such
as cropping into linear transformations in a spherical feature space. The above
approaches evaluate their frameworks on the tasks that generally benefit from
invariance, such as classification or on the benchmarks specifically designed to
evaluate learned equivariance. However, little investigation has been made into
the pretext tasks that encourage equivariance for improving downstream tasks
for 3D scene understanding. Xiong et al. propose FlowE [33], an SSL framework
for image segmentation and object detection that is a variation of BYOL [11],
where they introduce a flow equivariance objective by applying the flow transfor-
mation to a reference video frame, thus covering natural deformations, but this
method is only applied to image video sequences. To the best of our knowledge,
we are the first to explore the role of equivariance to both spatial and temporal,
synthetic and natural transformations for 3D scene understanding with LiDAR.

2.2 Self-supervision for point cloud scenes

Self-supervised pre-training shows promise for learning useful representations
from unlabeled point cloud scenes, both indoors and outdoors. Xie et al. pro-
pose PointContrast [32], which uses point-level contrastive training across partial
transformed views of indoor scenes. This objective encourages equivariance to
rigid transformations. In this work, we explore more effective ways of learning
equivariant features under the more natural augmentation of 3D scene flow,
as well as including an equivariance-via-classification strategy. Several follow-
up works such as SegContrast [20] and DepthContrast [40] contrast point-level
and segment-level features of transformed point clouds. The methods specif-
ically tailored to outdoor LiDAR point clouds leverage contrastive learning,
occupancy prediction, and point cloud completion to learn meaningful repre-
sentations. TARL [21] learns temporally consistent feature representations by
associating objects across time and maximizing their feature similarity. This
approach depends on indexing and spatial clustering to compute object corre-
spondence, which can be a limiting factor when considering LiDAR sequences
captured with a high frame rate. ALSO [2] employs surface reconstruction as
an auxiliary task to improve downstream performance in object detection and
semantic segmentation. This pre-training strategy is specific to the downstream
task and network, and thus lacks general applicability. Our pre-training frame-
work is unified for all downstream networks that share a 3D feature backbone.
ProposalContrast [39] considers region-level features obtained through a spatial
clustering approach to enforce feature similarities between transformed objects.
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However, the success of their method depends on the quality of unsupervised
region clustering, which becomes difficult for sparse LiDAR scenes.

The above approaches perform self-supervised learning using convolutional
feature backbones. Recent approaches propose the pretext tasks for representa-
tion learning to improve the performance of transformer-based 3D object detec-
tion networks. Yang et al. propose GD-MAE [37], a generative approach based on
the masked autoencoder (MAE) [13], which uses hierarchical fusion to infer infor-
mation from masked voxels. MV-JAR, [34] employs both masked reconstruction
and voxel position estimation in the form of a classification objective to perform
self-supervised learning on LiDAR scenes. These approaches are effective as pre-
training strategies for transformer-based detection networks such as SST |[§],
however cannot be applied to sparse convolutional backbones. We provide a
more general solution for representation learning for LiDAR scenes, and focus
on feature extractor backbones that are sparse convolution based, as the same
backbone may then be used for a large number of detection [6,17,22,24,25, 36]
and segmentation [4,27,41] networks.

2.3 3D object detection

The neural networks that perform 3D object detection on LiDAR scenes process
point clouds as points [24,38], as a set of 3D grids known as voxels [6, 17, 36],
or a combination of the two [22,23]. Single-stage networks [36, 38| directly es-
timate bounding box dimensions and predict category labels whereas two-stage
networks include an additional bounding box refinement head [6,24]. The popu-
lar detection network SECOND [36] is a single-stage detector consisting of a 3D
sparse convolution backbone and a 2D convolutional layer following a Bird’s-Eye
View (BEV) compression step. The two-stage detector VoxelRCNN [6] shares
a similar architecture but has an additional region refinement head and pro-
poses a novel region pooling approach. Despite differences in architectures many
sparse-convolutional 3D detectors share a common 3D feature extractor, which
is advantageous for pre-training. Recently, attempts have been made to move
away from the sparse convolutional approaches that operate on voxels and move
towards transformer-based backbones [8], but these methods have high memory
requirements. In this work, we focus on the detectors with convolutional back-
bones due to the broader applicability to downstream tasks. A single pre-trained
3D backbone is applicable to multiple detectors.

3 Proposed method: E-SSL3P

Our goal is to train a network to be equivariant to certain spatial and tempo-
ral transformations in order to learn meaningful geometric representations that
aid the network in performing dense scene prediction tasks. E-SSL3P trains
a feature encoder to learn dense voxel-level features that reflect the natural
deformations that arise from object motion and that are equivariant to rigid
transformations as well as naturally occurring temporal augmentations. This is
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Fig. 2: E-SSL3P: A LiDAR point cloud undergoes spatial and temporal augmentations
before being input to the network that consists of a 3D feature extraction backbone
f, a projector network m, a predictor network ¢, and a classifier s. (f, m, ¢) form the
online branch and the copies (f’, m’) form the target network that is only updated
through an exponential moving average (EMA) of the weights of the online network.

done by a joint training procedure that consists of learning equivariant features
for both spatial augmentations and temporal changes via computing 3D scene
flow. Our overall framework is summarized in Fig. 2.

Consider an input point cloud p from a sequence of LiDAR scenes. The
network that is being trained using self-supervision can be divided into four
parts — (a) a 3D feature encoder f that is a point-based or a voxel-based neural
network that maps the input point cloud to a set of 3D features which are then
mapped into 2D BEV features, (b) a projector m that maps the BEV features
into a lower feature dimension, (c) a predictor ¢ that matches the output of the
projector to a target feature map, and (d) an augmentation classifier s.

3.1 Equivariance to global rigid spatial augmentations

We focus on common global rigid geometric transformations that are invertible —
rotations, translations, scaling, and flips. We train the network to be equivariant
to a group of spatial transformations in two ways, through a contrastive training
objective and through an augmentation prediction objective.

Let the set of rigid transformations be A. During training, for each iteration
and each input point cloud, two instances from A are sampled randomly and ap-
plied to the input point cloud. We apply the contrastive loss PointInfoNCE [32]
at the point level, which encourages invariance to the applied rigid transforma-
tions through a point-level contrastive objective between matched points in a
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scene. Considering the two augmented views, Let P+ be the set of all positive
matched points from both views. For a matched pair (4, j) € P*:

Lpnce _ Z log exp((xi 'Xj)/T) (1)

(i.0)EP+ 2 mer, Xp((Xi - xk)/T)]

where (x;,x;) are the point features for each scene and 7 is the scaling parameter.
Inspired by [5], we consider a uniform discrete subset of rigid transformations
to further encourage equivariance through a classification objective. For example,
for planar rotations, we consider 10 randomly sampled rotations. The features
extracted for these augmentations are passed through an additional classifier
layer s that is trained to predict the transformation applied at the input. The
parameters of f, g, and s are trained by minimizing the cross-entropy loss L.
between the input transformation and the predicted transformation. Thus, the
network is trained to retain the information of the transformation that was ap-
plied at the input, i.e., the features are equivariant to the input transformation.
Note that the cross-entropy loss is applied in addition to the contrastive loss.

3.2 Equivariance to temporal changes via 3D scene flow estimation
and feature warping

While spatial augmentations help in improving the final downstream perfor-
mance, the augmentations are not realistic, in general. In addition to spatial
augmentations, we exploit real frames that are captured sequentially to provide
additional self-supervision. The key insight for temporal self-supervision is that
the features of the network should evolve in a manner equivariant to how the
points move in the real world. We term this 3D scene flow equivariance, where
the 3D scene flow is the vector field that describes the motion of points in a point
cloud frame at some time instance to locations in a different time instance. The
3D scene flow is therefore a locally varying transformation computed between
two real frames and the features learned by the network are trained to respect
the 3D scene flow constraint.

Estimating 3D scene flow. Given the point cloud p, we consider its natural
temporal augmentation by taking the previous frame in the sequence. For the
purpose of illustrating scene flow, let the previous frame be denoted at p;_; and
pt be the current frame. We model the temporal transformation between scenes
as 3D scene flow, represented as per-point displacement, d;_;_,; € R3 for each
point in the point clouds. We denote the forward time transformation operation
as Fi_1-¢ Thus, we can represent the relationship between p; and p;_1 as:
Pt = Fi—15¢(Dt—1). di—1-+ i estimated from a frozen 3D scene flow estimation
network based on PV-RAFT [29] trained on synthetic data and adapted to
real-world LiDAR data in an unsupervised manner through a student-teacher
framework [16].

Learning flow equivariance. We build the flow equivariance component on
BYOL [11]. Under this SSL framework, a set of two networks — online and target
— are trained to minimize the distance between predicted feature maps. Given
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an augmented view, the online network is trained to predict the representation
of the scene from the target network under a different augmentation. We choose
this framework as an alternative to the contrastive learning approach since in
the case of natural augmentations such as object motion across time, there is
no useful discriminative feature to be learned by considering “negative” samples.
This strategy for training for flow equivariance has seen success for images [33].
The information of the architectures of the online and target networks is in
Sec. 4.1. An illustration of the online-target architecture can be seen in Fig. 2.

The 3D feature backbone f, the projector m, and the feature predictor ¢ are
considered as the online network, while the copies f’ and m’ are considered as
the target network. Note that f is shared with the spatial augmentations branch.
The role of m is to create more general representations for ease of adaptation of f
to downstream tasks. The feature predictor matches the representation from the
online network to that of the target network. The online network is updated with
the standard training process while the weights of the target network are updated
only through an exponential moving average (EMA) of the online network. This
prevents representation collapse during the prediction step. Let the parameters
of the online network as a whole be denoted as ©, and that of the target network
be ¥. The EMA weight update step can be written as ¥ <« ¥ + (1 — v)6O,
where v € [0,1] is the target decay rate. v is updated at every training step
using the formula 7 £ 1 — (1 — Ypase) - (cos(mk/K) +1)/2, where k is the current
training step and K is the maximum number of training steps, with Yp,se being
the initial target decay rate.

The point cloud scene pair (p;—1, p:) is fed to the target network and online
network, respectively. We get the 3D voxel feature representations h;_1, h; by

he = f(pe), hee1 = f'(pe—1)- (2)

hi—1 is warped to the future feature frame h;"*/” using the 3D scene flow estimate

in a process detailed in the next section. After BEV compression, the features
(h*T*, hy) are passed to the projectors m’ and m respectively to give (z¢—1, 2t).
The projected feature map z; is the input to feature predictor ¢ to give y, which
is matched to the output of the target network z;_;.

Warping with 3D scene flow. At the input, the point cloud p;_; can be trans-
formed to the next scene, point cloud p;, by simply adding the per-point displace-
ment from the scene-flow matrix, assuming index correspondence is maintained,
which holds for the datasets used [21]. Let this warped estimate at the input
be p,’*"?. Performing the same transformation in the feature space is not as
straightforward, as we deal with the 3D sparse spatial feature maps (h¢—1, h)
instead of sets of points. The 3D feature maps are represented as sparse tensors,
which consist of voxel features and their corresponding 3D coordinates denoting
their position in the feature volume. From the flow estimate p;_ 5, we estimate
the voxel coordinates of the points of the estimated future frame by applying
the standard input voxelization process on p;’*"?. These estimated future voxel
coordinates are then used to sample voxel features from h;_1 to get the warped

feature estimate h, “/”.
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Loss function. The loss function minimizes of the L2 distance between the
normalized z;_1 and y; averaged over the spatial dimensions, defined as:

1 2
Lftow = T 12e-1 = 9ell5, (3)
where HW is the spatial dimension. (2;_1, ¢;) are the normalized feature maps.

The final loss function used to train the network is the sum of the contrastive
loss and L2 distance loss, both of which are brought to similar scales through
loss coefficients Apnce; Ace and Afiow (i.e., we set the loss coefficients such that

all the loss terms have comparable ranges). The final loss is written as:

L= )\pnceﬂpnce + )\ceﬁce + )\flow‘cflow- (4>

4 Experiments

4.1 Pre-training

Datasets. We use the KITTI-360 [18] and the Waymo Open Dataset (WOD) [26]
datasets for pre-training. KITTI-360 consists of 100k LiDAR scenes from 11
sequences captured in urban roads. The WOD consists of 230k LiDAR scenes
from 1150 scenes, of which we use 100k for pre-training. For pre-training, we
remove the validation sequences. To mitigate the distribution gap between the
pre-training and fine-tuning datasets, we consider the front field-of-view (FFOV)
scenes during pre-training.

Augmentation. As established, we choose the spatial augmentations that are
invertible, namely global rotation about the vertical axis with an angle in the
range (=, %), global translation in the (z, y, z) axes with the displace-
ment range (Om, 0.2m), global scaling with magnitudes falling in the range
(0.95, 1.05), and random vertical flip with a probability of 50%. We choose to
train the network to be equivariant to rotations, based on the experiments in
Sec. 4.3. For ease of prediction, we sample from a discrete set of 10 rotation
angles. For the temporal augmentation, we sample the previous frame from the
sequence of LiDAR frames. KITTI-360 consists of LIDAR sequences that capture
around 1.2 frames for every meter, with a 10 meter overlap between consecutive
frames. SemanticKITTI consists of sequences that capture 10 frames per second.
Network architecture. In this section, we detail the network architectures of
each module of the the proposed framework.

3D feature encoder (f): We perform pre-training on the sparse convolutional
feature backbone, SparseVoxel, popular among recent 3D object detection net-
works [6,17, 36].

Projector (m): We perform feature projection on the 2D BEV compressions of
3D volumetric feature maps. The BEV feature maps are obtained by max-pooling
the densified sparse tensor along the height dimension. The feature projector is
a 3-layer 2D convolutional network with batch normalization and ReLU layers.
It maintains the spatial dimensions of the BEV feature map while reducing the
channel dimension from 256 to 128.
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Classifier (s): The classification branch of the network predicts the applied n-fold
transformation. This is a simple 3-layer fully connected network with 2 batch
normalization layers. In practice, we choose n = 10.

Predictor (¢q): The predictor network of the online branch consists of a single
1x1 convolutional layer to maintain the spatial dimensions.

Implementation details. We use the AdamW optimizer with a cyclic learning
rate schedule, with the maximum learning rate 10™%, a weight decay of 0.01,
and momentum 0.9. The network is trained for 80 epochs with a batch size
of 56 split over 8 NVIDIA A6000 GPUs. We use the codebase OpenPCDet
[28] for the implementation of the 3D encoder and BEV projection modules.
We follow [11] for the hyperparameters and EMA update rules of the online-
target networks, with an initial vypese = 0.999. We use the implementation of
PointContrast for LIDAR scenes from the 3DTrans codebase [35]. Here, point
features are sampled from the multi-scale 3D features and the compressed BEV
feature map. We modify the computation of the point features to include the
output after projection. We sample 2048 points for both the positive and negative
samples. We set A\ppce = 0.01, Af1o0 = 300, Ace = 1.

4.2 3D Object detection

We demonstrate the effectiveness of our pre-training strategy for 3D object de-
tection using the two detectors SECOND [36] and VoxelRCNN [6]. We fine-tune
VoxelRCNN on the KITTI object detection dataset [10] and the Waymo Open
Dataset [26] under the standard training and validation splits, and perform eval-
uation using the official metrics. In the case of fine-tuning on KITTI, we per-
form fine-tuning in 3 data availability scenarios, 5%, 20%, and 100% of data. In
the case of fine-tuning on Waymo, we demonstrate the performance on 5 % of
data. To account for class bias, we perform subset sampling thrice for each split
and report the average performance. We fine-tune the SECOND detector on the
KITTI dataset. See the supplement for results on SECOND and the performance
of VoxelRCNN pre-trained and fine-tuned on the Waymo Open Dataset.
Network architectures. SECOND |[36] is a single-stage detector that consists
of a sparse convolution 3D encoder, a BEV encoder, and a region proposal net-
work. VoxelRCNN [6] is a two-stage network that shares a similar 3D backbone
and 2D encoder but includes an additional proposal refinement head.
Datasets and metrics. We fine-tune the object detection networks on the
KITTT object detection dataset [10], which consists of 3712 training samples
and 3769 validation samples. We perform evaluation under the standard protocol
detailed in [10] on three difficulty categories and report performance on the “Car,”
“Pedestrian,” and “Cyclist” categories as well as the mean average precision.
Precision is calculated under 40 recall positions, as is followed in [2]. We use
the standard division of objects into their respective difficulties based on their
truncation, occlusion, and distance from the camera [10,26]. Additionally, we
fine-tune VoxelRCNN on the Waymo object detection dataset, and demonstrate
results on the “Cyclist” category.
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Table 1: 3D object detection with VoxelRCNN [6] pre-trained on the Waymo Open
Dataset [26] and fine-tuned on KITTI [10] under different data splits. Each result is
an average over 3 fixed subsets of the dataset. We report 3D average precision for 3
categories as well as the mean average precision over 40 recall positions. The best and
second best performance is marked in bold and underline, respectively.

average precision (AP) (%)
Split Method Car Pedestrian Cyclist mAP (%)

easy moderate hard easy moderate hard easy moderate hard

No pre-training 88.89 79.21 75.55 57.50 49.84 44.27 78.92 5973 55.97 65.54
PointContrast 88.25 76.30 71.65 51.90 44.37 40.01 80.67 60.60 56.54 63.37
STRL 89.15 77.20 73.73 56.04 49.13 43.59 83.55 63.81 59.61 66.21
E-SSL3P  89.13 77.33 73.84 56.06 48.87 43.70 83.57 63.28 59.12 66.10

No pre-training 91.99 82.10 79.40 56.09 49.29 44.26 85.24 67.55 63.13 68.78
PointContrast 91.74  80.47 77.35 59.30 51.05 45.90 85.97 65.70 61.25 68.75

5%

20% STRL 91.95 81.04 77.89 58.25 50.53 45.37 85.36 66.24 62.00 68.74

E-SSL3P 91.74 80.46 77.27 59.26 51.82 46.6586.51 6744 62.86 69.33

No pre-training 92.45 83.00 80.20 62.41 55.89 50.31 88.40 68.81 64.42 71.77

100% PointContrast 91.61  82.26 79.76 55.47 48.06 43.28 89.68 71.90 67.57 69.95
0

STRL 91.86 82.29 79.80 59.65 51.82 46.23 87.28 70.49 65.79 70.58
E-SSL3P 92.16 82.16 79.77 59.14 50.45 45.04 88.68 71.17 66.44 70.56

Implementation details. We use the AdamW optimizer with a cyclic learning
rate schedule, with the maximum learning rate 3 x 10~3. We use a weight decay
of 0.01, and momentum 0.9. We use the codebase OpenPCDet [28] for the imple-
mentation of the detection networks. Each network is fine-tuned for 80 epochs
with a batch size of 8 over 2 NVIDIA A6000 GPUs. The temperature parameter
7 in Eq. (1) is 7 = 1. The value of the target decay rate for the exponential
moving averaging is Ypgse = 0.9996.

Comparative methods. We compare the performance of E-SSL3P with the
recent SOTA SSL methods for LiDAR scenes:

— PointContrast [32] encourages point-level equivariance to different trans-
formed views. We perform spatial augmentations to create view pairs and
implement the adapted version for LiDAR scenes that samples point-level
features from multi-scale 3D and BEV features. We sample 2048 points.

— STRL [15] encourages feature invariance across synthetically created tem-
poral sequences of point cloud scenes by minimizing the L2 distance between
samples passed through a BYOL-like online-target network. This becomes
an invariant counterpart to our temporal equivariance component, and we
re-implement this method by training the online-target networks with se-
quential LiDAR scene pairs.

— ALSO 2] uses occupancy prediction as a pretext task. We use the model
pre-trained on KITTI-360 for the SECOND detector, and reproduce the
fine-tuning result to the best of our ability. We note that our reproduction is
slightly lower than reported. We note that this is a generative representation
learning approach that differs fundamentally from our discriminative one.
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Table 2: 3D object detection with VoxelRCNN [6] pre-trained on KITTI-360 [18]
and fine-tuned on KITTI [10] under different data splits. Each result is an average
over 3 fixed subsets of the dataset. We report 3D average precision for 3 categories as
well as the mean average precision over 40 recall positions. The best and second best
performance is marked in bold and underline, respectively.

average precision (AP) (%)
Split Method Car Pedestrian Cyclist mAP (%)

easy moderate hard easy moderate hard easy moderate hard

No pre-training 88.89 79.21  75.55 57.50 49.84 44.27 78.92 59.73 55.97 65.54
PointContrast 89.94 79.21 76.12 56.13 48.13 43.01 77.98 5892 55.20 64.96

5% STRL 89.30 78.92 75.94 55.68 48.13 42.73 73.98 56.85 53.26 63.87
ALSO 89.74 79.37 7591 56.33 49.79 44.77 82.84 64.09 60.16 67.00
E-SSL3P  88.79 7893 75.41 56.02 4855 43.19 82.85 64.40 60.53 66.52

No pre-training 91.99  82.10 79.40 56.09 49.29 44.26 85.24 67.55 63.13 68.78
PointContrast 92.23 82.25 79.57 57.33 50.74 45.43 84.16 66.74 62.28 68.97

20% STRL 91.97 82.07 79.41 57.40 50.85 45.38 86.36 68.64 64.23 69.59
ALSO 92.46 82.44 79.77 60.57 53.21 48.61 86.22 69.88 6540 70.95
E-SSL®P  92.67 8242 79.8960.72 53.94 49.1988.04 71.40 66.36 71.63

No pre-training 92.45 83.00 80.20 62.41 55.89 50.31 88.40 68.81 64.42 71.77
PointContrast 91.73 82.41 79.89 59.82 54.14 48.54 87.28 69.15 63.54 70.72
100% STRL 92.27 8254 79.99 61.38 54.01 4831 86.95 67.64 63.31 70.71
ALSO 92.57 82.88 80.24 60.10 52.12 46.76 90.71 73.94 69.21 72.06
E-SSL3® 92,08 82.73 80.18 61.00 53.82 4858 91.15 72.68 69.32 72.41

Quantitative results. We evaluate our pre-training framework for object de-
tection on two networks SECOND [36] and VoxelRCNN [6]. Please see the sup-
plement for quantitative results on SECOND. These detectors share a common
sparse convolutional 3D feature extraction backbone and are initialized with the
same model pre-trained on KITTI-360. We compare these fine-tuning results
against PointContrast, STRL, and ALSO, as well as fine-tuning from a random
weight initialization, denoted as “No pre-training.” In Table 2, we demonstrate
performance on the detector VoxelRCNN [6]. We perform best or second best in
most categories. Overall, we outperform both PointContrast and STRL in gen-
eral, showing that joint spatio-temporal equivariance is a good self-supervision
signal for 3D object detection. We perform on-par with the recent state-of-the-
art method ALSO. We note that for SECOND, ALSO’s pre-training strategy
trains both the 3D feature backbone as well as the 2D convolutional layers of
the detection network, leaving only the classification and regression box predic-
tion layers to be randomly initialized. On the other hand, we train only the 3D
backbone and leave the rest of the network to be randomly initialized. Addi-
tionally, our method converges much more quickly than ALSO, which is trained
for 75 epochs, whereas our approach converges at around 10-20 epochs. Impor-
tantly, that these two approaches use different types of self-supervised learning
techniques — ALSO uses a generative strategy while E-SSL3P uses specially
designed loss functions for representation learning.

Ablation study. We conduct an ablation study on the spatial and temporal
equivariance constraints and evaluate on the task of training VoxelRCNN [6] on
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5% of KITTI data. We show the results in Table 3 where we report the 3D mean
average precision for all the three object categories with 40 recall positions. By
spatial equivariance, we mean training the network to be equivariant to the n-fold
rotations using the cross-entropy loss and equivariant to random flips, scaling,
and translations using the contrastive objective. By temporal equivariance, we
mean training the network to be only be equivariant to 3D scene flow. Table 3
shows that enforcing both the spatial and temporal equivariance constraints per-
forms the best overall and that both equivariance constraints contribute to the
performance. We find that for the pedestrian class, pre-training with both objec-
tives is not beneficial, but overall proves to be the better pre-training strategy.

4.3 Choice of loss function for equivariant pre-training

We compare the efficacy of the
learning equivariance through con-
trastive training versus equivariance-
via-classification as a pretext task for
3D object detection on KITTI with
SECOND [36]. We test the effect of %=
replacing the contrastive objective for Es
the classification objective for individ-
ual transformations in Fig. 3. Specif- 4
ically, we use PointContrast [32] with
a single “random flip” augmentation as
the baseline contrastive pretext task.
The baseline performance under Point-
Contrast is indicated by the gray dot-
ted line. We encourage the network to

B contrastive training B classification

baseline

rotation translation scaling

Fig.3: 3D mean average precision of
SECOND [36] pre-trained for equivari-
ance for random spatial augmentations
flip, rotation, translation, and scaling us-
ing the contrastive and classification ob-

be equivariant to three types of rigid
transformations using the two learning
objectives. For each additional transfor-

jectives. The baseline network is pre-
trained to be equivariant to “random flips”
with contrastive learning.

mation, we train the network to either

predict the transformation in addition to the baseline or only train the network
under PointInfoNCE loss. For random rotation and scaling, prediction is a 10-
class classification problem. For translation, we predict the translation along each
axes using a multi-label multi-class loss objective. We observe that encouraging
equivariance to global translation along each axis as well as to scaling purely
through the contrastive objective improves the performance. On the other hand,
training for equivariance to rotation using the classification objective boosts
performance relative to using the PointInfoNCE loss. The right choice of loss
function depends on the nature of the augmentation. The standard ranges for
translation augmentation for LIDAR object detectors is (0m,0.2m) along each
axis. Considering that the range of the KITTI dataset reaches 70m, this is a
difficult fine-grained prediction task. The range of the scaling transformation is
similarly small, (0.95,1.05). For n-fold rotations, the scene is rotated along the

vertical axis by an angle ranging from (5", ), a much larger range resulting



14 D. Hegde et al.

Table 3: The ablation study of the spatial and temporal equivariance evaluated on
the task of object detection with VoxelRCNN [6]. The reported numbers are 3D mean
average precision (%) for the “Car,” “Pedestrian,” and “Cyclist” categories for the 3
difficulty levels and 40 recall positions.

average precision (AP) (%)
Car Pedestrian Cyclist mAP (%)

Spatial Temporal
equivariance equivariace

easy moderate hard easy moderate hard easy moderate hard

88.68 78.85 74.36 56.30 49.13 43.33 76.48 58.62 54.79 64.50
88.98 77.80 73.81 56.53 49.73 44.61 81.50 61.74 57.67 65.82
87.12 77.34 74.63 58.66 50.34 45.19 81.09 61.71 58.00 66.01
88.79 78.93 75.41 56.02 48.55 43.19 82.85 64.40 60.53 66.52

LA X
WX X

in more distinct augmentations. We show that training the network to predict
n-fold rotations while training the network under the point-level contrastive loss
for the scaling, flip, and translation augmentations is a good strategy.

4.4 Limitations

We acknowledge certain limitations in our proposed self supervised learning
framework. We observe that when fine-tuning on the KITTI dataset, self su-
pervised pre-training does not always boost performance for the “Car” category.
We believe this is due to the fact that this category is well represented in the
dataset, and is a relatively “easier” object to detect. Additionally, E-SSL3P does
not always outperform the SOTA approach ALSO , and performs second-best for
certain categories. However, we point out that ALSO is a generative approach,
which is not directly comparable to our method, which also may be integrated
with our discriminative method, which we hope to explore in the future. We also
observe that when plenty of annotated samples are available (e.g., 100% of data
in Table 2), pre-training does not have a large impact on performance, and we
emphasize that E-SSL3P is most helpful in low-data scenarios, and it achieves
close to full-data performance with just 20% of annotated training data in the
case of KITTI object detection dataset.

5 Conclusion

In this work, we examine the role of equivariance in representation learning for
large scale outdoor point clouds. We present E-SSL3P | a self supervised learning
method for 3D object detection on LiDAR scenes that learns meaningful geomet-
ric representation by encouraging joint spatial and temporal equivariance. We
developed a novel 3D scene flow equivariance objective to incorporate temporal
information for improved representation learning. We showed that the choice of
equivariance objective affects the final performance significantly depending on
the type of augmentation applied. Our experiments demonstrate the usefulness
of our learned representations and suggest that for certain transformations, it is
helpful to encourage equivariance through augmentation classification.
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