

Dependence of tropical cyclone weakening rate in response to an imposed moderate environmental vertical wind shear on the warm-core strength and height of the initial vortex

Qi Gao^{a,b} and Yuqing Wang^c

^aDepartment of Atmospheric and Ocean Sciences, Institute of Atmospheric Sciences,
Fudan University, Shanghai, China

^bState Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, China
Meteorological Administration, Beijing, China

⁹ International Pacific Research Center and Department of Atmospheric Sciences, School of
¹⁰ Ocean and Earth Science and Technology, University of Hawaii at Manoa, Honolulu, HI, USA

December 8, 2023 (submitted)

January 31, 2024 (first revision)

February 29, 2024 (second revision)

Dateline

Key Points:

- The TC weakening rate in response to an imposed moderate environmental VWS is proportional to the strength and height of the TC warm core.
- The warm-core weakening induced by upper-level ventilation is the primary factor to the early TC weakening induced by the imposed VWS.
- The boundary-layer ventilation shows no relationship with the early weakening rate of the TC in response to the imposed moderate VWS.

Submitted to *Geophysical Research Letters*

23 **Corresponding author:** Yuqing Wang, yuqing@hawaii.edu

24

Abstract

25

This study investigated the dependence of the early tropical cyclone (TC) weakening rate in response to an imposed moderate environmental vertical wind shear (VWS) on the warm-core strength and height of the TC vortex using idealized numerical simulations. Results show that the weakening of the warm core by upper-level ventilation is the primary factor leading to the early TC weakening in response to an imposed environmental VWS. The upper-level ventilation is dominated by eddy radial advection of the warm-core air. The TC weakening rate is roughly proportional to the warm-core strength and height of the initial TC vortex. The boundary-layer ventilation shows no relationship with the early weakening rate of the TC in response to an imposed moderate VWS. The findings suggest that some previous diverse results regarding the TC weakening in environmental VWS could be partly due to the different warm-core strengths and heights of the initial TC vortex.

36

Plain language summary

37

The warm core is a basic structural feature of a tropical cyclone (TC), and TC intensity is closely related to the warm-core strength and height. This study investigated the dependence of the initial TC weakening rate in response to an imposed moderate environmental vertical wind shear (VWS) on the strength and height of the TC vortex during the TC intensifying period using idealized numerical simulations. It is found that the weakening of the warm core is the primary factor leading to the early weakening of the TC, and the TC weakening rate is roughly proportional to the warm-core strength and height of the TC vortex. It is also found that the boundary-layer ventilation associated with VWS-induced convective downdrafts show no relationship with the early weakening rate of the TC in response to an imposed moderate VWS. The findings of this study can help explain why some TCs can continuously develop under the influence of moderate environmental VWS while some others cannot, which are partly due to the different warm-core strengths and heights of the initial TC vortex.

49 **1. Introduction**

50 Environmental vertical wind shear (VWS) is an essential dynamical factor that affects the
51 tropical cyclone (TC) structure and intensity change, which has been extensively studied in the
52 literature (e.g., Braun & Wu, 2007; Gray, 1968; Gu et al., 2015, 2018, 2019; Tang & Emanuel,
53 2012; Wang & Holland, 1996; Wang et al., 2015; Xu & Wang, 2013; Zeng et al., 2010). Previous
54 studies identified several ventilation effects associated with the impact of environmental VWS on
55 TC intensity change, including the so-called “upper-level ventilation”, “mid-level ventilation”,
56 “low-level ventilation” (Frank & Ritchie, 2001; Gray, 1968; Riemer et al., 2010; Tang & Emanuel,
57 2010, 2012), and also “radial ventilation” and “downdraft ventilation” as recently presented by
58 Alland et al. (2021a, 2021b).

59 Zehr (1992) found that if the environmental VWS between 200–850 hPa was greater than 10 m s^{-1}
60 TCs in the western North Pacific generally did not form or develop. However, Nguyen &
61 Molinari (2012) showed that the ambient southwesterly VWS of Hurricane Irene (1999) increased
62 from $6\text{--}7\text{ m s}^{-1}$ to $10\text{--}13\text{ m s}^{-1}$ during rapid intensification. Therefore, although large VWS is known
63 to be detrimental to TC genesis and often leads to TC weakening, large uncertainty on the TC
64 intensity change remains for TCs embedded in a moderate environmental VWS, namely around 10 m s^{-1}
65 (see also Bhatia & Nolan, 2013; Chen et al., 2021; Hendricks et al., 2010; Molinari et al.,
66 2006; Reasor & Eastin, 2012; Ryglicki et al., 2019).

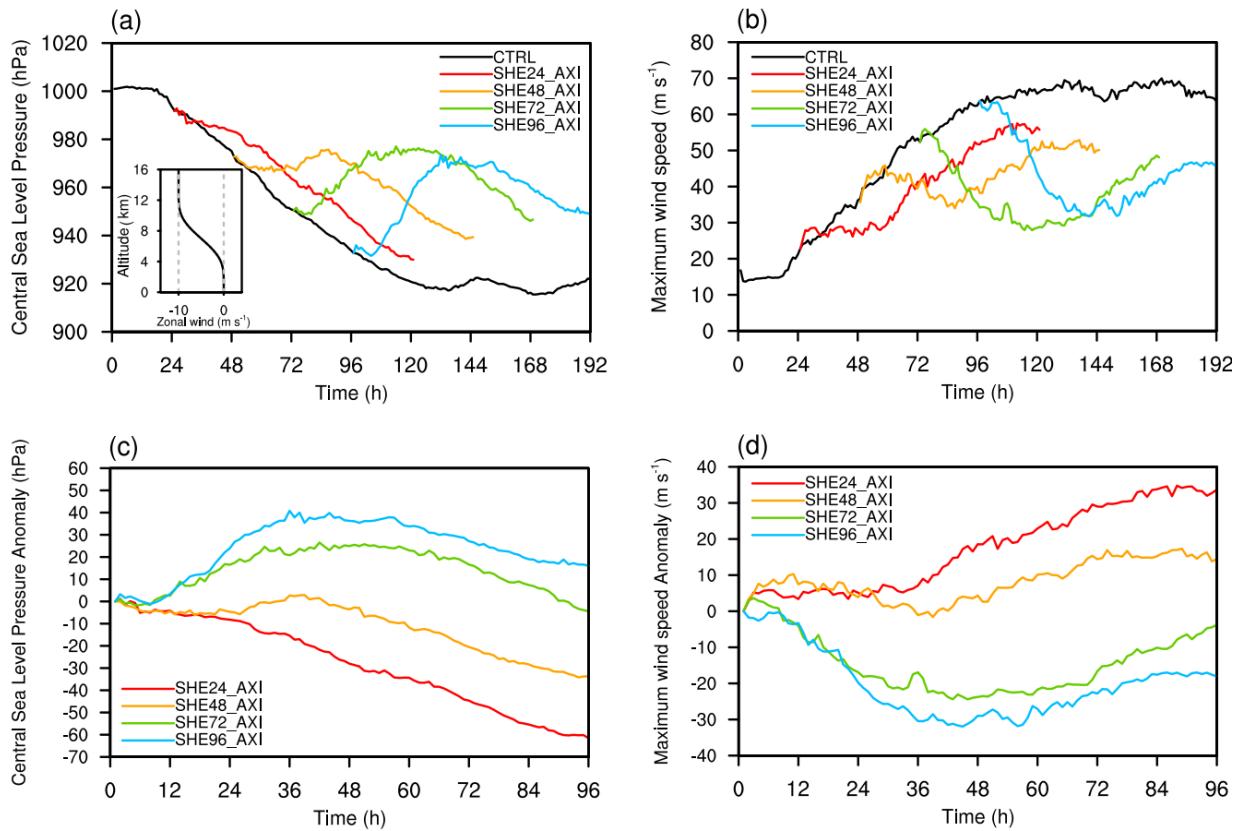
67 We conjecture that the uncertainty in the effect of moderate environmental VWS may arise
68 from the dominant role of different ventilation pathways mentioned above. The mid- and upper-
69 level ventilations suggest the “top-down” pathway of TC weakening. Namely, the warm-core
70 structure of the TC weakens from the top down in response to an imposed environmental VWS
71 (Alland et al., 2021b; Frank & Ritchie, 2001; Fu et al., 2019; Gray, 1968; Tang & Emanuel, 2010).
72 The low-level ventilation hypothesis suggests the “bottom-up” weakening of the TC, namely the
73 TC weakening is triggered by the decrease of eyewall entropy in the boundary layer (Alland et al.,
74 2021a; Gu et al., 2015; Riemer et al., 2010). Fu et al. (2019) pointed out that the ventilation of the
75 upper-level warm core played the most important role in TC weakening in response to an imposed

76 moderate upper-level and lower-level VWS, respectively, during the mature stage of the TC. Their
77 results supported the “top-down” pathway of TC weakening, while results of Riemer et al. (2010)
78 seemed to support the dominant role of the low-level ventilation in TC weakening by adding the
79 moderate to strong deep-layer VWS to the TC during its intensifying stage. Therefore, the way by
80 which an imposed moderate environmental VWS affects the TC intensity change, particularly the
81 predominant pathway of initial TC weakening process, has not been fully understood.

82 The “upper-level ventilation” pathway is closely related to the weakening of the warm core.
83 A question arises as to how the TC weakening rate in response to the imposed moderate
84 environmental VWS depends on the intensity and thus the warm-core strength and height of the
85 initial TC vortex. Previous studies have conducted numerical experiments using either initially
86 weak or strong TCs, and thus with different warm-core strengths and heights (Fu et al., 2019; Gu
87 et al., 2015; Onderlinde & Nolan, 2017; Reasor et al., 2013). Riemer et al. (2010) found in their
88 idealized simulation that for mature storms the moderate to strong VWS might produce persistent
89 vortex-scale downdrafts, flushing the boundary layer and leading to the TC weakening. However,
90 Nguyen et al. (2019) focused on relatively weak TCs and found that enhanced surface enthalpy
91 flux produced by high surface winds of intensifying TCs allowed downdraft-modified boundary
92 layer air to recover effectively and quickly. Riemer & Montgomery (2011) found that stronger TCs
93 are more resilient to radial ventilation. These studies seem to suggest that weak TCs are less
94 resistant to moderate to strong VWS than strong TCs. However, many other studies have shown
95 that weaker TC vortices can intensify rapidly in moderate environmental VWS after a period of
96 adjustment (Molinari et al., 2006; Rios-Berrios et al., 2016; Rios-Berrios, 2020).

97 Most above studies have focused only on one category of weak or strong sheared TCs.
98 However, few studies have focused on TCs at different intensifying stages under the influence of
99 an imposed moderate environmental VWS. Finocchio & Rios-Berrios (2021) described a set of
100 idealized simulations using the point-downscaling method in which VWS increases from 3 to 15
101 m s^{-1} at different stages of an intensifying TC. They found that all experiments exhibited hindered
102 TC intensification, and TCs exposed to increasing shear during or just after rapid intensification

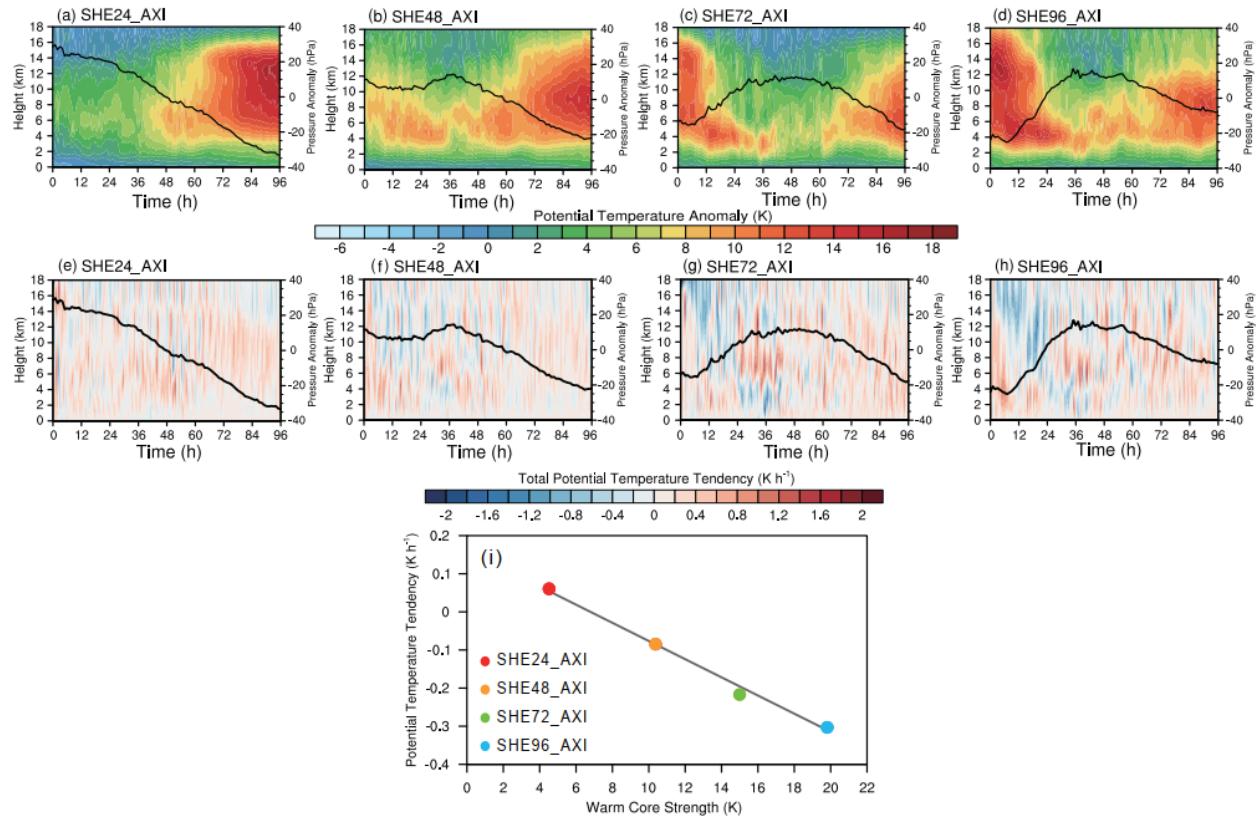
103 tended to weaken the most. However, their study focused on strong environmental VWS, which
104 increases with time to reach 15 m s^{-1} . As mentioned above, the diverse intensity changes have been
105 reported in previous studies for TCs embedded in moderate environmental VWS.


106 In a recent study, Gao & Wang (2023) found a strong dependence of TC weakening in response
107 to an imposed moderate VWS on the stage of an intensifying TC. Since the different stages of the
108 intensifying TC correspond to different warm-core strengths and heights of the TC, they
109 hypothesized that the TC intensity change rate in response to an imposed moderate VWS might
110 depend on the warm-core strength and height of the initial TC vortex, which was defined as the
111 maximum potential temperature (θ) anomaly over the TC center relative to the TC environment
112 (Xi et al., 2021). The environmental θ at a certain level was defined as the mean θ of the
113 outermost grids in four directions in the outermost domain. Because Gao & Wang (2023) focused
114 on how the asymmetric structure of the initial TC vortex affects the TC intensity change in response
115 to an imposed moderate VWS, they did not examine the detailed physical processes. This study
116 can be considered as an extension of Gao & Wang (2023) with the focus on the dependence of the
117 initial weakening rate of an intensifying TC on the warm-core strength and height in response to
118 an imposed moderate VWS on an f -plane using idealized numerical experiments performed in Gao
119 & Wang (2023).

120 **2. Model and experimental design**

121 The three-dimensional, compressible, nonhydrostatic, full-physics Weather Research and
122 Forecasting (WRF) model version 4.2.2 (Skamarock et al., 2008) was used to conduct a series of
123 numerical experiments as in Gao and Wang (2023). All numerical experiments were conducted on
124 an f -plane at 15°N over the ocean with a uniform sea surface temperature of 28.5°C . The initial
125 unperturbed sounding of the model atmosphere was the moist-tropical sounding documented in
126 Dunion (2011). The initial TC vortex in the control experiment was axisymmetric and in gradient
127 and thermal wind balance as in Rotunno and Emanuel (1987) with a maximum tangential wind
128 speed of 18 m s^{-1} near the surface at a radius of 90 km. The other model settings and experimental
129 design are the same as those described in Gao and Wang (2023) and thus are not repeated here. The

130 vertical profile of the environmental zonal winds is showed in Figure 1a (inset vignette). Only
 131 results from four VWS experiments with an initially axisymmetric TC vortex in Gao and Wang
 132 (2023) are used in this study. Namely, in these experiments, the moderate environmental VWS was
 133 imposed onto an initially axisymmetric vortex after 24 (SHE24_AXI), 48 (SHE48_AXI), 72
 134 (SHE72_AXI), and 96 h (SHE96_AXI) of the simulation during the TC intensifying period in a
 135 quiescent environment experiment (CTRL), respectively.


136 **3. Results**

137
 138 Figure 1. Time evolutions of (a) the simulated central sea level pressure (hPa), (b) the maximum near-surface
 139 wind speed (m s^{-1}) in CTRL (black) and in all easterly VWS experiments (colored), and (c, d) the differences
 140 from their corresponding values at the initial time in CTRL. The inset vignette indicates the vertical profile of
 141 the environmental zonal wind. The colors represent the VWS experiments as given in each panel.

142 Figures 1a and 1b show the time evolutions of the TC intensity in terms of the central sea level
 143 pressure and the maximum azimuthally averaged total wind speed at the lowest model level (30 m
 144 above sea level) in CTRL (black) and four VWS experiments initialized with the axisymmetric TC

145 vortices after 24, 48, 72, and 96 h of the simulation in CTRL (colored), respectively. We can see
 146 that the TC experienced a reduced intensification rate in the early intensifying stage (SHE24_AXI
 147 and SHE48_AXI), while the TC experienced obvious weakening when the moderate VWS was
 148 imposed onto the TC vortices at the later intensifying stage (SHE72_AXI and SHE96_AXI). The
 149 TC weakening rate increases roughly with the increasing initial TC intensity at the time when the
 150 VWS is added (Figures 1c and 1d).

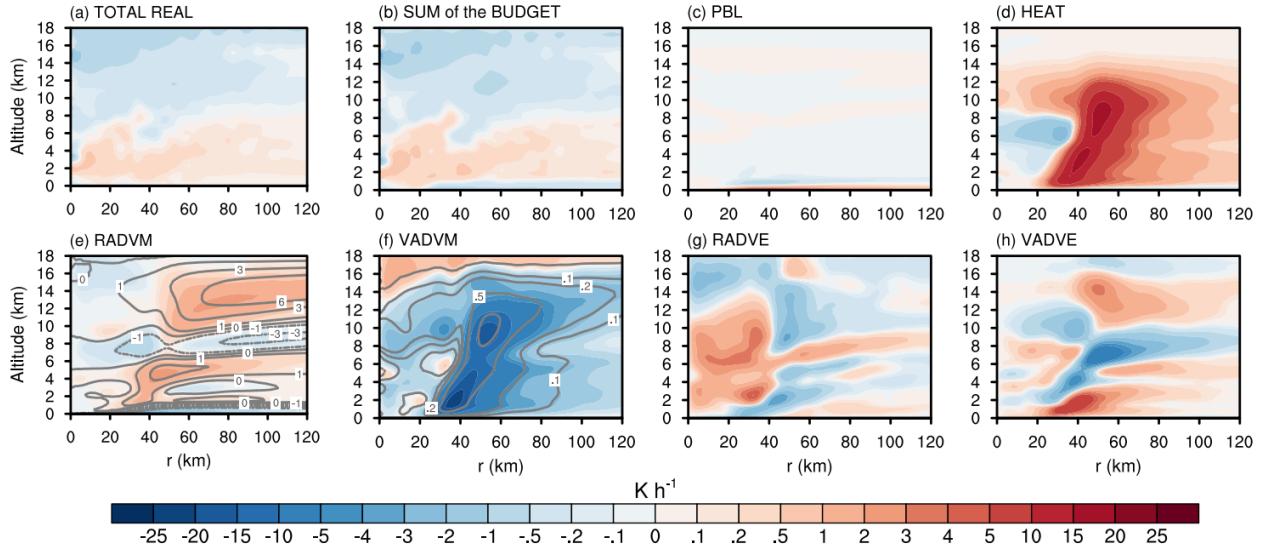
151
 152 Figure 2. (a-d) Time-height cross section of the θ anomaly (shading; K) and (e-h) the θ tendency (shading; $K h^{-1}$)
 153 averaged within a radius of 50 km from the surface TC center obtained from the model output at 6-min intervals
 154 during the simulations, along with the time evolution of the central sea level pressure anomaly of the TC in each
 155 VWS experiment (black solid, hPa, right axis). (i) The scatter plots (dots) of the warm-core strength (K) versus
 156 the θ tendency ($K h^{-1}$) averaged between 10–16-km heights during 0–24 h in VWS experiments, the gray line
 157 shows the linear fitting.

158 The initial vortices at the time when the moderate environmental VWS was introduced
 159 correspond to different warm-core strengths and heights at different intensifying stages of the TC
 160 (Figures 2a-d). The initial TC vortex in SHE24_AXI had a very weak and lower upper-level warm
 161 core (Figure 2a), with a weak θ anomaly maximized near 8 km altitude. The warm core intensified

162 with positive θ tendency (Figure 2e) even after the VWS was introduced, indicating that the VWS
163 had little effect on the TC intensification at the early stage of an intensifying TC. The initial TC
164 vortex in SHE48_AXI had a weak warm core centered at the height of 8 km (Figure 2b). The warm
165 core weakened slightly after the VWS was introduced (Figure 2f), which is consistent with the
166 slowed intensification followed by a slight weakening of the TC during the first 36 h in
167 SHE48_AXI. However, the initial TC vortices in SHE72_AXI and SHE96_AXI had stronger and
168 higher (near the height of 15-16 km) upper-level warm cores (Figures 2c-d). The strong and high
169 warm core weakened significantly in response to the imposed moderate VWS. The θ tendency
170 showed negative values from top down as the TC weakened (Figures 2g-h). This strongly suggests
171 that the weakening of the warm core is the important factor reflecting to the early weakening rate
172 of the TC. As we can see from Figure 2i, which shows the θ tendency averaged between 10–16 km
173 heights during 0–24 h and the warm core strength in each VWS experiment, the θ tendency is
174 almost linearly proportional to the warm-core strength of the initial TC vortex.

175 To understand the warm-core weakening processes of the simulated TCs in the shear
176 experiments, we performed a budget analysis for the azimuthal mean potential temperature ($\bar{\theta}$)
177 during the warm-core weakening stage in SHE72_AXI as an example. The budget equation can be
178 given below (Stern & Zhang, 2013):

$$179 \quad \Delta\bar{\theta} = (TADV + HEAT + PBL + HDIF)\Delta t \quad (1)$$

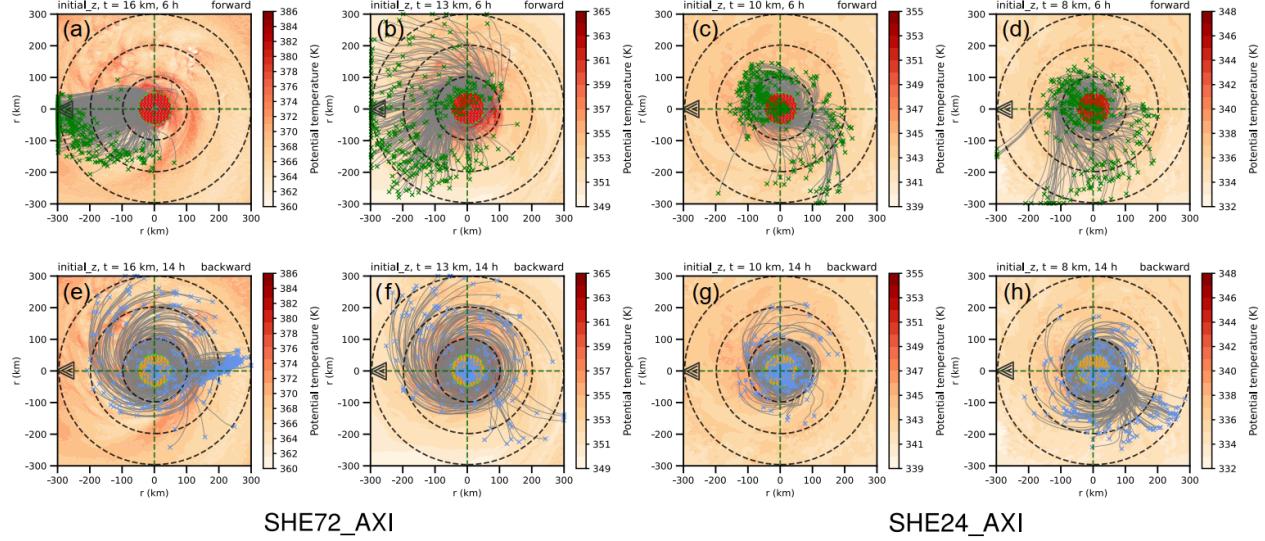

180 where $\Delta\bar{\theta}$ is the actual change of $\bar{\theta}$ over a given period of Δt ; TADV, HEAT, PBL, HDIF are the
181 tendencies of $\bar{\theta}$ contributed by, respectively, both horizontal and vertical advection of $\bar{\theta}$, the
182 azimuthal mean diabatic heating, boundary layer turbulent mixing, and subgrid-scale horizontal
183 diffusion. Since HDIF is quite small, it is not considered in our following discussion. All terms on
184 the right-hand side of Eq. (1) were directly obtained from the model output at 6 min intervals during
185 the model simulations. Following previous studies (Stern & Zhang, 2013, Wang et al., 2019, Liu
186 et al., 2021), we further decomposed the total advection term (TADV) into the horizontal and
187 vertical advection and azimuthal mean and eddy advection components. Namely, we have
188 $TADV = RADVM + VADVM + RADVE + VADVE$. Terms on the right-hand side represent the

189 mean radial advection, mean vertical advection, eddy radial advection, and eddy vertical advection,
 190 respectively, defined below:

$$\begin{aligned}
 191 \quad RADVM &= -\bar{u} \frac{\partial \bar{\theta}}{\partial r} \\
 VADVM &= -\bar{w} \frac{\partial \bar{\theta}}{\partial z} \\
 RADVE &= -\frac{\partial}{\partial r} \overline{(u' \theta')} - \frac{\overline{(u' \theta')}}{r} \\
 VADVE &= -\frac{\partial}{\partial z} \overline{(w' \theta')}
 \end{aligned} \tag{2}$$

192 where u and w are the radial and vertical velocities, respectively, r and z are radius and height. In
 193 Eq. (2), the overbar denotes the azimuthal mean, and the prime denotes the deviation from the
 194 corresponding azimuthal mean. The variables u, w , and θ are also output at 6-min intervals. The
 195 vortex center at the lowest model level was used to calculate the azimuthal mean.

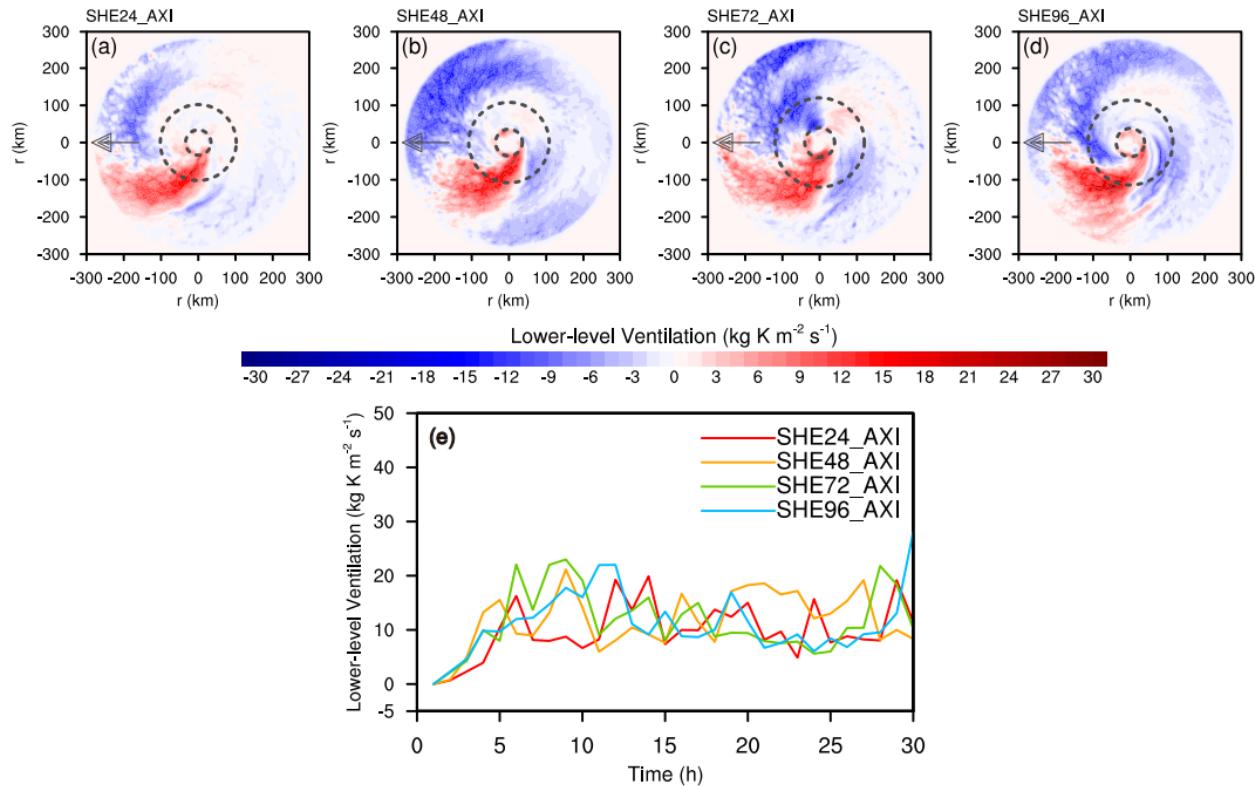
196 Figure 3 shows the $\bar{\theta}$ budget results for the 12-h period from 6 to 18 h of the simulation in
 197 SHE72_AXI during which the TC was in its early weakening stage (Figure 1). The actual $\bar{\theta}$
 198 change is mostly positive below 6 km height and negative above (Figure 3a). The large negative
 199 change in the layer between 14 and 16 km heights indicates the ventilation of $\bar{\theta}$ in the upper
 200 troposphere, suggesting a top-down weakening of the warm core of the simulated TC in response
 201 to the imposed VWS. The budgeted $\bar{\theta}$ change is generally consistent with the actual $\bar{\theta}$ change
 202 (Figure 3b). Although some unavoidable discrepancies between the actual and the budgeted $\bar{\theta}$
 203 changes exist mainly due to the ignored HDIF, the decomposition and interpolation from the
 204 Cartesian coordinates to the cylindrical coordinates, the discrepancies are generally small. The
 205 large negative $\bar{\theta}$ change inside a radius of 30 km in the upper troposphere was mainly contributed
 206 by advection terms (Figures 3e–3h). Since the mean vertical advection (Figure 3f) is nearly
 207 balanced by the contribution of diabatic heating (Figure 3d) in the eyewall region, the azimuthal
 208 mean and eddy radial advections dominated the negative $\bar{\theta}$ change in the upper troposphere
 209 (Figures 3e and 3g) and thus the warm-core ventilation. The mean radial advection is smaller than
 210 the eddy horizontal advection, suggesting that the radial eddy advection was key to the upper-level
 211 warm-core ventilation. This is consistent with the result of Frank & Ritchie (2001). Note that the
 212 low-level ventilation in the boundary layer will be explained in detail later.


213
214 Figure 3. Radial-height cross sections of $\bar{\theta}$ budget terms (K h^{-1} ; shading). (a) The actual 12-h change of $\bar{\theta}$, (b)
215 the sum of the right-hand side of Eq. (1); terms on the right-hand side contributed by (c) PBL; (d) diabatic heating
216 (HEAT); (e) the azimuthal mean radial advection (RADVM); (f) the azimuthal mean vertical advection
217 (VADVM); (g) eddy radial advection (RADVE); (h) eddy vertical advection (VADVE), based on the model
218 output at 6-min intervals from 6 to 18 h of the simulation in SHE72_AXI. Contours in (e) and (f) are the radial
219 wind speed and vertical motion, respectively (m s^{-1} , solid is positive and dashed is negative).

220 To understand how the high θ air within the upper-level warm core is transported outward,
221 leading to the weakening of the warm core, we tracked the air particles using an advection
222 correction trajectory algorithm following Miller & Zhang (2019), Liu et al. (2022), and Dai et al.
223 (2023). Since the warm core in SHE72_AXI was centered at about 15–16 km height, we chose 16
224 km and 13 km as examples to show how the warm-core particles were transported outward and the
225 surrounding particles were transported inward during the early TC weakening (Figures 4a-b, e-f).
226 We also calculated the change of θ_e in the warm core during this stage. We selected 375 particles
227 within the radius of 50 km from the TC center at the initial heights of 16 and 13 km and at the time
228 of 6 h (14 h) after the VWS was introduced as the initial tracking warm-core particles and tracked
229 them forward (backward) for 8 h. We calculated the averaged θ_e of the particles at the time of 6-
230 h based on the forward trajectory, which were transported outward from the region within the 50-
231 km radius, which corresponded to air particles of the warm core. We also calculated the averaged
232 θ_e of the particles at the time of 14 h based on the backward trajectory, which was transported
233 inward from outside the 50-km radius and replaced the air in the original warm core from the outer

core and weakened the warm core during this period. Combining the results of backward and forward trajectories, we found that the θ_e decreased by 7.28 K during the 8 hours at the 16-km height and by 1.5 K at the 13-km height due to the radial export of warm parcels in SHE72_AXI. Since the warm core centered at around the 8-km height in SHE24_AXI, we also conducted the same trajectory analysis for SHE24_AXI to make a comparison with SHE72_AXI but at the heights of 10 and 8 km (Figures 4c-d, g-h). Results show that θ_e increased by 0.82 K during the 8 hours at the 10-km height and by 0.83 K at the 8-km height instead of weakening like in SHE72_AXI, which is consistent with the intensification of the TC during this period. To further illustrate the VWS effect, we also show the corresponding results with no-shear environment in CTRL in supplementary Figures S1 and S2. We can see that there are much less particles that are transported outward from the warm core and the θ_e in the warm core increased, especially at the height of 16 km in SHE72_AXI, during the 8 h. Therefore, the comparisons between these results clearly demonstrate that the VWS substantially enhanced the radial ventilation in the upper levels compared to the no-shear environment.

As we can see from Figure 4, the stronger environmental flow at higher levels led to stronger eddy outflow, which transported more warm particles outward, leading to the stronger upper-level ventilation for the TC with a stronger and higher warm core (Figures 2a-d) and thus weakening of the TC as inferred from the hydrostatic relationship (Durden, 2013; Ohno et al., 2016; Shi & Chen, 2021). The stronger initial TCs (SHE72_AXI and SHE96_AXI) with higher-level warm core are subject to stronger outflow induced by the imposed VWS and thus larger weakening rate of the warm core and the TC (Figure 3 and Figure S5), while the weaker initial TCs (SHE24_AXI and SHE48_AXI) with weaker and lower warm core are subject to relatively weaker eddy outflow and thus weaker ventilation of the warm core and less weakening of the TC (Figures S3-S4). In the very early intensifying stage (SHE24_AXI), the warm core of the TC is too weak and too low to be ventilated, and thus the TC is little affected by the imposed moderate VWS (Figure S3). The TC in SHE96_AXI weakened slightly more rapidly than that in SHE72_AXI mainly because the upper-level warm core and thus the upper-level ventilation is stronger in the former than in the latter


261 (Figure S5). Therefore, the stronger the initial vortex with a stronger and higher warm core, the
 262 more the initial weakening of the TC in response to an imposed moderate VWS.

263
 264 Figure 4. (a, b, e, f) The horizontal distribution of θ (shading; K) at $z=16$ and 13 km heights after the 6-h
 265 simulation with shear, superposed with the following 8-h horizontal trajectories (gray lines) in SHE72_AXI with
 266 red (orange) points (in the lime circle) and green (blue) crosses indicating the beginning and ending points of the
 267 forward (backward) trajectories, respectively. The start times for the forward and backward trajectories are 6 h
 268 and 14 h of shear simulation, and the start levels are 16-km and 13-km heights, respectively. The black arrows
 269 indicate the direction of the environmental VWS, and the dashed black circles are plotted every 100 km from the
 270 TC center. (c, d, g, h) As in (a, b, e, f) but for SHE24_AXI at the 10-km and 8-km heights, respectively.

271 The above discussion focuses mainly on the weakening due to the upper-level ventilation
 272 associated with the warm-core structure. Since previous studies have also demonstrated the
 273 importance of boundary layer ventilation to the TC weakening in environmental VWS (e.g., Gu et
 274 al., 2015; Riemer et al., 2010), it is of interest to further examine the boundary-layer ventilation
 275 during the early weakening stage of the TC when the upper-level ventilation obviously occurred.
 276 We calculated the low-level ventilation, which is the sum of the radial and downdraft ventilations
 277 averaged in the boundary layer. The radial ventilation is defined as $\rho u' \theta'_e$ ($u' < 0$) and the
 278 downdraft ventilation is defined as $\rho w' \theta'_e$ ($w' < 0$), where ρ is density, u' and w' are
 279 asymmetric radial and vertical velocities, and θ'_e is the perturbation equivalent potential
 280 temperature from its azimuthal mean. The positive radial ventilation represents the radial eddy flux
 281 of anomalously low θ_e air into the inner core, as defined in Tang & Emanuel (2010), and the

282 positive downdraft ventilation represents the downward transport of anomalously low θ_e air into
 283 the boundary layer, as discussed in Riemer et al. (2010).

284
 285 Figure 5. (a-d) Low-level ventilation ($\text{kg K m}^{-2} \text{s}^{-1}$) averaged below $z=1.5$ km in the 24-h period after the VWS
 286 was imposed. Red shading means radially inward and vertically downward transport of anomalously low θ_e air.
 287 The area within the black dashed big circle indicates the inner core and the small circle nearly indicates the central
 288 location of the eyewall. The grey arrows indicate the direction of the environmental VWS; (e) time evolutions of
 289 the low-level ventilation ($\text{kg K m}^{-2} \text{s}^{-1}$) averaged in the inner core up to 30 h in the shear experiments. The red,
 290 orange, green and blue colors represent the VWS experiments with TC vortices after 24, 48, 72, and 96 h of the
 291 simulation in CTRL, respectively.

292 Figures 5a-d show the horizontal distribution of the low-level ventilation averaged within the
 293 boundary layer and in the first 24 h after shear was imposed. To quantify these values, we calculated
 294 the averaged values within the inner core (3 times the radius of the maximum wind) and found that
 295 the averaged low-level ventilations in four shear experiments were 10.03, 12.13, 12.06, 11.42 kg
 296 $\text{K m}^{-2} \text{s}^{-1}$, respectively, which showed no clear relationship with the early TC intensity change rate.
 297 Figure 5e shows the time evolution of low-level ventilation averaged in the inner core during the
 298 first 30 h of shear experiments, which does not show any clear relationship with the TC weakening
 299 rate. Therefore, we can conclude that the different early TC intensity change rates among the four

300 shear experiments resulted mainly from the upper-level ventilation with little contributions by the
301 low-level ventilation.

302 **4. Conclusions**

303 In this study, idealized numerical experiments were conducted to investigate the dependence
304 of TC intensity change rate in response to an imposed environmental moderate deep-layer VWS
305 on the initial warm-core strength and height during the TC intensifying period on an *f*-plane.
306 Results show that the weakening of the upper-level warm core is the primary factor to the early TC
307 weakening in response to an imposed moderate environmental VWS. The stronger and higher the
308 warm core of the initial TC vortex is, the stronger the upper-level ventilation and thus the larger
309 weakening rate of the upper-level warm core and the TC in response to the imposed moderate VWS.
310 At the early intensifying stage with a weak and lower warm core, the TC intensification is little
311 affected by the imposed moderate VWS because there is almost no significant warm-core
312 ventilation. However, at the later intensifying stage when the warm core becomes stronger and
313 higher, the upper-level warm-core implies relatively strong ventilation, resulting in a great
314 weakening of the upper-level warm core and thus the TC.

315 Results from the azimuthal mean potential temperature ($\bar{\theta}$) budget reveal that the weakening
316 of the upper-level warm core was largely contributed by the eddy radial advection. Namely, the
317 stronger and higher asymmetric outflow transports the inner-core high θ air outward downshear
318 and downshear-left, as demonstrated by the trajectory analysis, leading to the weakening of the
319 upper-level warm core and thus the TC. In addition, we also show that the magnitudes of the low-
320 level ventilation do not exhibit any clear differences among all shear experiments, suggesting that
321 the different rates of TC intensity change among different shear experiments resulted primarily
322 from the upper-level ventilation in the early response of the TC to the imposed environmental VWS.

323 Our findings are supported by recent case studies by Rogers et al. (2020) and Stone et al.
324 (2023), who showed that Hurricanes Hermine (2016) and Sally (2020) experienced intensification
325 in their early weak stage (with weak warm core) in the presence of moderate VWS. Our results
326 also support the result of Fu et al. (2019) and Finocchio & Rios-Berrios (2021) who found that the

327 environmental VWS caused the more significant TC weakening at the later intensification stage of
328 the TC in moderate VWS. Although Riemer et al. (2010) found the importance of the low-level
329 ventilation to TC weakening in environmental VWS, their results might be applicable to the
330 environment with VWS over 15 m s^{-1} and a relatively dry mid-troposphere. The findings from this
331 study can help understand why some TCs can develop under the influence of the moderate
332 environmental VWS while some others cannot. The key to the rate of TC intensity change in
333 response to an imposed environmental VWS could be the different warm-core strengths and heights
334 of the initial TC vortices. In addition, we would mention that the upper-level ventilation may be
335 sensitive to the inner-core (warm-core) size of a TC. Namely, a larger TC with a large-sized warm
336 core could have a stronger resilience to an imposed moderate environmental VWS. This can explain
337 why larger TCs weaken less in environmental VWS as found in previous studies (e.g., Wong &
338 Chan, 2004; Bi et al., 2023).

339 **Acknowledgments**

340 The authors acknowledge three anonymous reviewers for their valuable comments that helped
341 to improve the manuscript and thank Prof. Qingqing Li and Prof. Jianfeng Gu for their helpful
342 discussions in early stage of this study. Q. Gao was supported by National Natural Science
343 Foundation of China under grant 41730960 and Y. Wang was supported by NSF grant AGS-
344 1834300.

345 **Open Research**

346 All simulation data that support the findings of this study are publicly available from Gao and
347 Wang (2024).

348 **References**

349 Alland, J. J., Tang, B. H., Corbosiero, K. L., & Bryan, G. H. (2021a). Combined effects of midlevel dry air and
350 vertical wind shear on tropical cyclone development. Part I: Downdraft ventilation. *Journal of the*
351 *Atmospheric Sciences*, 78(3), 763–782. <https://doi.org/10.1175/JAS-D-20-0054.1>

352 Alland, J. J., Tang, B. H., Corbosiero, K. L., & Bryan, G. H. (2021b). Combined effects of midlevel dry air and
353 vertical wind shear on tropical cyclone development. Part II: Radial ventilation. *Journal of the Atmospheric*
354 *Sciences*, 78(3), 783–796. <https://doi.org/10.1175/JAS-D-20-0055.1>

355 Bhatia, K. T., & Nolan, D. S. (2013). Relating the skill of tropical cyclone intensity forecasts to the synoptic
356 environment. *Weather Forecasting*, 28(4), 961–980. <https://doi.org/10.1175/WAF-D-12-00110.1>

357 Bi, M.-Y., Wang, R.-F., Li, T., & Ge, X.-Y. (2023). Effects of vertical shear on intensification of tropical cyclones
358 of different initial sizes. *Frontiers in Earth Science*, 11, 1106204. <https://doi.org/10.3389/feart.2023.1106204>

359 Braun, S. A., & Wu, L. (2007). A numerical study of Hurricane Erin (2001). Part II: Shear and the organization
360 of eyewall vertical motion. *Monthly Weather Review*, 135(4), 1179–1194.
361 <https://doi.org/10.1175/MWR3336.1>

362 Chen, X., Gu, J. -F., Zhang, J. A., Marks, F. D., Rogers, R. F., & Cione, J. J. (2021). Boundary layer recovery and
363 precipitation symmetrization preceding rapid intensification of tropical cyclones under Shear. *Journal of the*
364 *Atmospheric Sciences*, 78(5), 1523–1544. <https://doi.org/10.1175/JAS-D-20-0252.1>

365 Dai, Y. F., Li, Q. -Q., Liu, X. H., & Wang, L. J. (2023). A Lagrangian trajectory analysis of azimuthally
366 asymmetric equivalent potential temperature in the outer core of sheared tropical cyclones. *Advanced in*
367 *Atmospheric Sciences*, 40(9), 1689-1706. <https://doi:10.1007/s00376-023-2245-0>

368 Dunion, J. P. (2011). Rewriting the climatology of the tropical north Atlantic and Caribbean Sea atmosphere.
369 *Journal of Climate*, 24(3), 893–908. <https://doi.org/10.1175/2010JCLI3496.1>

370 Durden, S. L. (2013). Observed tropical cyclone eye thermal anomaly profiles extending above 300 hPa. *Monthly*
371 *Weather Review*, 141(2), 4256–4268. <https://doi.org/10.1175/MWR-D-13-00021.1>

372 Finocchio, P. M., & Rios-Berrios, R. (2021). The intensity- and size-dependent response of tropical cyclones to
373 increasing vertical wind shear. *Journal of Atmospheric Sciences*, 78(11), 3673-3609.
374 <https://doi:10.1175/JAS-D-21-0126.1>

375 Frank, W. M., & Ritchie, E. A. (2001). Effects of vertical wind shear on the intensity and structure of numerically
376 simulated hurricanes. *Monthly Weather Review*, 129(9), 2249–2269. [https://doi.org/10.1175/1520-0493\(2001\)129<2249:EOVWSO>2.0.CO;2](https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2)

377 Fu, H., Wang, Y., Riemer, M., & Li, Q.-Q. (2019). Effect of unidirectional vertical wind shear on tropical cyclone
378 intensity change – Lower-layer shear versus upper-layer shear. *Journal of Geophysical Research –*
379 *Atmospheres*, 124(12), 6265–6282. <https://doi.org/10.1029/2019JD030586>

380 Gao, Q., & Wang, Y. (2023). The effect of initial vortex asymmetric structure on tropical cyclone intensity change
381 in response to an imposed environmental vertical wind shear. *Geophysical Research Letters*, 50(16),

383 e2023GL104222. <https://doi.org/10.1029/2023GL104222>

384 Gao, Q., & Wang, Y. (2024). Simulation data for “Dependence of tropical cyclone weakening rate in response to
385 an imposed moderate environmental vertical wind shear on the warm-core strength and height of the initial
386 vortex.” [Dataset]. Dryad. <https://doi.org/doi:10.5061/dryad.xgxd254nq>

387 Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. *Monthly Weather Review*,
388 96(10), 669–700. [https://doi.org/10.1175/1520-0493\(1968\)096<0669:GVOTOO>2.0.CO;2](https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2)

389 Gu, J.-F., Tan, Z.-M., & Qiu, X. (2015). Effects of vertical wind shear on inner-core thermodynamics of an
390 idealized simulated tropical cyclone. *Journal of Atmospheric Sciences*, 72(2), 511–530.
391 <https://doi.org/10.1175/JAS-D-14-0050.1>

392 Gu, J.-F., Tan, Z.-M., & Qiu, X. (2018). The evolution of vortex tilt and vertical motion of tropical cyclones in
393 directional shear flows. *Journal of the Atmospheric Sciences*, 75(10), 3565–3578.
394 <https://doi.org/10.1175/JAS-D-18-0024.1>

395 Gu, J.-F., Tan, Z.-M., & Qiu, X. (2019). Intensification variability of tropical cyclones in directional shear flows:
396 vortex tilt–convection coupling. *Journal of the Atmospheric Sciences*, 76(6), 1827–1844.
397 <https://doi.org/10.1175/JAS-D-18-0282.1>

398 Hendricks, E. A., Peng, M. S., Fu, B., & Li, T. (2010). Quantifying environmental control on tropical cyclone
399 intensity change. *Monthly Weather Review*, 138(8), 3243–3271. <https://doi.org/10.1175/2010MWR3185.1>

400 Liu, H.-Y., Wang, Y., & Gu, J.-F. (2021). Intensity change of binary tropical cyclones (TCs) in idealized numerical
401 simulations: Two initially identical mature TCs. *Journal of the Atmospheric Sciences*, 78(4), 1001–1020.
402 <https://doi.org/10.1175/JAS-D-20-0116.1>

403 Liu, X. H., Li, Q. -Q. & Dai, Y. F. (2022). Stronger vertical shear leads to earlier secondary eyewall formation in
404 idealized numerical simulations. *Geophysical Research Letters*, 49(10), e2022GL098093.
405 <https://doi.org/10.1029/2022GL098093>

406 Miller, W., & Zhang, D.-L. (2019). A three-dimensional trajectory model with advection correction for tropical
407 cyclones: Algorithm description and tests for accuracy. *Monthly Weather Review*, 147(9), 3145–3167.
408 <https://doi.org/10.1175/MWR-D-18-0434.1>

409 Molinari, J., Dodge, P., Vollaro, D., Corbosiero, K. L., & Marks, F. (2006). Mesoscale aspects of the downshear
410 reformation of a tropical cyclone. *Journal of the Atmospheric Sciences*, 63(1), 341–354.
411 <https://doi.org/10.1175/JAS3591.1>

412 Nguyen, L. T., & Molinari, J. (2012). Rapid intensification of a sheared, fast-moving hurricane over the Gulf
413 Stream. *Monthly Weather Review*, 140(10), 3361–3378. <https://doi.org/10.1175/MWR-D-11-00293.1>

414 Nguyen, L. T., Rogers, R., Zawislak, J., & Zhang, J. A. (2019). Assessing the influence of convective downdrafts
415 and surface enthalpy fluxes on tropical cyclone intensity change in moderate vertical wind shear. *Monthly
416 Weather Review*, 147(10), 3519–3534. <https://doi.org/10.1175/MWR-D-18-0461.1>

417 Ohno, T., Satoh, M., & Yamada, Y. (2016). Warm cores, eyewall slopes, and intensities of tropical cyclones
418 simulated by a 7-km-mesh global nonhydrostatic model. *Journal of the Atmospheric Sciences*, 73(11), 4289–

419 4309. <https://doi.org/10.1175/JAS-D-15-0318.1>

420 Onderlinde, M. J., & Nolan, D. S. (2017). The tropical cyclone response to changing wind shear using the method
421 of time-varying point-downscaling. *Journal of Advances in Modeling Earth Systems*, 9(2), 908–931.
422 <https://doi.org/10.1002/2016MS000796>

423 Reasor, P. D., & Eastin, M. D. (2012). Rapidly intensifying Hurricane Guillermo (1997). Part II: Resilience in
424 shear. *Monthly Weather Review*, 140(2), 425–444. <https://doi.org/10.1175/MWR-D-11-00080.1>

425 Reasor, P. D., Rogers, R., & Lorsolo, S. (2013). Environmental flow impacts on tropical cyclone structure
426 diagnosed from airborne Doppler radar composites. *Monthly Weather Review*, 141(9), 2949–2969.
427 <https://doi.org/10.1175/MWR-D-12-00334.1>

428 Riemer, M., & Montgomery, M. T. (2011). Simple kinematic models for the environmental interaction of tropical
429 cyclones in vertical wind shear. *Atmospheric Chemistry and Physics*, 11(17), 9395–9414.
430 <https://doi.org/10.5194/acp-11-9395-2011>

431 Riemer, M., Montgomery, M. T., & Nicholls, M. E. (2010). A new paradigm for intensity modification of tropical
432 cyclones: Thermodynamic impact of vertical wind shear on the inflow layer. *Atmospheric Chemistry and
433 Physics*, 10(7), 3163–3188. <https://doi.org/10.5194/acpd-9-10711-2009>

434 Rios-Berrios, R. (2020). Impacts of radiation and cold pools on the intensity and vortex tilt of weak tropical
435 cyclones interacting with vertical wind shear. *Journal of the Atmospheric Sciences*, 77(2), 669–689. <https://doi.org/10.1175/JAS-D-19-0159.1>

437 Rios-Berrios, R., Torn, R. D., & Davis, C. A. (2016). An ensemble approach to investigate tropical cyclone
438 intensification in sheared environments. Part I: Katia (2011). *Journal of the Atmospheric Sciences*, 73(1),
439 71–93. <https://doi.org/10.1175/JAS-D-15-0052.1>

440 Rogers, R. F., Reasor, P. D., Zawislak, J. A., & Nguyen, L. T. (2020). Precipitation processes and vortex alignment
441 during the intensification of a weak tropical cyclone in moderate vertical shear. *Monthly Weather Review*,
442 148(5), 1899–1929. <https://doi.org/10.1175/MWR-D-19-0315.1>

443 Rotunno, R., & Emanuel, K. A. (1987). An air-sea interaction theory for tropical cyclones. Part II: Evolutionary
444 study using a nonhydrostatic axisymmetric numerical model. *Journal of the Atmospheric Sciences*, 44(3),
445 542–561. [https://doi.org/10.1175/1520-0469\(1987\)044<0542:AAITFT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1987)044<0542:AAITFT>2.0.CO;2)

446 Ryglicki, D. R., Doyle, J. D., Hodyss, D., Cossuth, J. H., Jin, Y., Viner, K. C., & Schmidt, J. M. (2019). The
447 unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part III: Outflow–
448 environment interaction. *Monthly Weather Review*, 147(8), 2919–2940. <https://doi.org/10.1175/MWR-D-18-0370.1>

450 Shi, D. L., & Chen, G. H. (2021). Double warm-core structure and potential vorticity diagnosis during the rapid
451 intensification of Supertyphoon Lekima (2019). *Journal of the Atmospheric Sciences*, 78(8), 2471–2492.
452 <https://doi.org/10.1175/JAS-D-20-0383.1>

453 Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., &
454 Powers, J. G. (2008). A description of the advanced research WRF version 3. *NCAR Tech. Note NCAR/TN-*

455 4751STR, 113. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

456 Stern, D. P., & Zhang, F. (2013). How does the eye warm? Part I: A potential temperature budget analysis of an
457 idealized tropical cyclone. *Journal of the Atmospheric Sciences*, 70(1), 73–90. <https://doi.org/10.1175/JAS-D-11-0329.1>

458

459 Stone, Z., Alvey, G. R., Dunion, J. P., Fischer, M. S., Raymond, D. J., Rogers, R. F., Sentic, S., & Zawislak, J.
460 (2023). Thermodynamic contribution to vortex alignment and rapid intensification of Hurricane Sally (2020).
461 *Monthly Weather Review*, 151(4), 931–951. <https://doi.org/10.1175/MWR-D-22-0201.1>

462 Tang, B., & Emanuel, K. (2010). Midlevel ventilation's constraint on tropical cyclone intensity. *Journal of the*
463 *Atmospheric Sciences*, 67(6), 1817–1830. <https://doi.org/10.1175/2010JAS3318.1>

464 Tang, B., & Emanuel, K. (2012). Sensitivity of tropical cyclone intensity to ventilation in an axisymmetric model.
465 *Journal of the Atmospheric Sciences*, 69(8), 2394–2413. <https://doi.org/10.1175/JAS-D-11-0232.1>

466 Wang, H., Wang, Y., Xu, J., & Duan, Y. (2019). Evolution of the warm-core structure during the eyewall
467 replacement cycle in a numerically simulated tropical cyclone. *Journal of the Atmospheric Sciences*, 76(8),
468 2559–2573. <https://doi.org/10.1175/JAS-D-19-0017.1>

469 Wang, Y., & Holland, G. J. (1996). Tropical cyclone motion and evolution in vertical shear. *Journal of the*
470 *Atmospheric Sciences*, 53(22), 3313–3332. [https://doi.org/10.1175/1520-0469\(1996\)053,3313:TCMAEI.2.0.CO;2](https://doi.org/10.1175/1520-0469(1996)053,3313:TCMAEI.2.0.CO;2)

471

472 Wang, Y., Rao, Y., Tan, Z.-M., & Schönemann, D. (2015). A statistical analysis of the effects of vertical wind
473 shear on tropical cyclone intensity change over the western North Pacific. *Monthly Weather Review*, 143(9),
474 3434–3453. <https://doi.org/10.1175/MWR-D-15-0049.1>

475 Wong, M. L. M., & Chan, J. C. L. (2004). Tropical cyclone intensity in vertical wind shear. *Journal of the*
476 *Atmospheric Sciences*, 61(15), 1859–1876. [https://doi.org/10.1175/1520-0469\(2004\)061<1859:TCIIVW>2.0.CO;2](https://doi.org/10.1175/1520-0469(2004)061<1859:TCIIVW>2.0.CO;2)

477

478 Xi, D., Chu, K., Tan, Z.-M., Gu, J.-F., Shen, W., Zhang, Y., & Tang, J. (2021). Characteristics of warm cores of
479 tropical cyclones in a 25-km-mesh regional climate simulation over CORDEX East Asia domain. *Climate*
480 *Dynamics*, 57, 2375–2389. <https://doi.org/10.1007/s00382-021-05806-9>

481 Xu, Y.-M., & Wang, Y. (2013). On the initial development of asymmetric vertical motion and horizontal relative
482 flow in a mature tropical cyclone embedded in environmental vertical shear. *Journal of the Atmospheric*
483 *Sciences*, 70(11), 3471–3491. <https://doi.org/10.1175/JAS-D-12-0335.1>

484 Zehr, R. Branch, M., R., & Collins, F. (1992). Tropical cyclogenesis in the western North Pacific. *NOAA*
485 *Technical Report NESDIS*, 46. https://repository.library.noaa.gov/view/noaa/13116/noaa_13116_DS1.pdf

486 Zeng, Z., Wang, Y. & Chen, L.-S. (2010). A statistical analysis of vertical shear effect on tropical cyclone intensity
487 change in the north Atlantic: Vertical shear effect on TC intensity. *Geophysical Research Letters*, 37(2),
488 L02802. <https://doi.org/10.1029/2009GL041788>