

The role of diabatic heating/cooling in outer rainbands in the secondary eyewall formation and evolution in a numerically simulated tropical cyclone

Hui Wang^a, and Yuqing Wang^b

^a*State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing, China*

^b*International Pacific Research Center and Department of Atmospheric Sciences, University of Hawaii at Manoa, Honolulu, Hawaii*

July 2, 2024 (submitted)

September 14, 2024 (first revision)

October 8, 2024 (second revision)

Key points:

12 1. Increasing diabatic heating in outer rainbands leads to earlier SEF, and faster weakening and
13 earlier dissipation of the primary eyewall.

14 2. Increasing diabatic cooling in outer rainbands suppresses convective activity in outer rainbands
15 and is unfavorable for the SEF.

16 3. When the area-averaged diabatic heating rate in outer rainbands and the eyewall become similar
17 in magnitude, the secondary eyewall forms.

Submitted to *Atmospheric Research*

*Corresponding author:

Prof. Yuqing Wang
International Pacific Research Center
University of Hawaii at Manoa
404A/POST, 1680 East West Road,
Honolulu, HI 96822, USA.
Email: yuqing@hawaii.edu

26

Abstract

27

In this study, the role of diabatic heating/cooling in outer rainbands (ORBs) in the formation and evolution of the secondary eyewall of a numerically simulated tropical cyclone (TC) is investigated. This is done through a series of sensitivity experiments under idealized conditions using a high-resolution cloud-resolving atmospheric model. The results show that artificially increasing diabatic heating in rainbands enhances convective activities in ORBs and leads to an earlier secondary eyewall formation (SEF), and later the faster weakening and earlier dissipation of the primary eyewall. Reducing diabatic heating in ORBs weakens the rainbands and delays the SEF but prolongs the duration of the double eyewall structure if the SEF occurs. Reducing diabatic cooling in ORBs enhances convective activity in rainbands but has little effect on convection in the primary eyewall prior to the SEF. However, it results in a widened eyewall structure and a stronger TC after the eyewall replacement. Increasing diabatic cooling in ORBs largely suppresses convection in rainbands and prohibits the SEF. These results demonstrate that diabatic heating/cooling in ORBs plays important roles in the SEF and evolution. Since diabatic heating/cooling in rainbands is sensitive to the near-core environmental relative humidity, our results demonstrate the critical importance of large-scale environmental moist condition to the formation and evolution of secondary eyewall in TCs. In addition, it is also found that when the area-averaged diabatic heating rate in ORBs becomes similar in magnitude to that in the primary eyewall, the secondary eyewall forms.

45

Plain language summary: Previous studies have demonstrated the importance of diabatic heating/cooling in outer rainbands to the structure and intensity changes of tropical cyclones (TCs) with a single eyewall. It is unclear whether and how diabatic heating/cooling in outer rainbands may affect the formation and evolution of the secondary eyewall in TCs. These issues have been addressed based on a series of sensitivity experiments under idealized conditions using a high-resolution atmospheric model. Results show that diabatic heating in outer rainbands is favorable for the secondary eyewall formation (SEF). Increasing diabatic heating in outer eyewall can lead to faster weakening and thus earlier dissipation of the primary eyewall. Diabatic cooling in outer

53 rainbands suppresses convection in outer rainbands and prohibits the SEF. Since diabatic
54 heating/cooling in outer rainbands is sensitive to the near-core environmental relative humidity,
55 our results demonstrate the importance of the large-scale environmental moist condition to the SEF
56 of TCs. We also found that when the area-averaged diabatic heating rate in outer rainbands becomes
57 similar in magnitude to that in the primary eyewall, the secondary eyewall would form, which can
58 be considered as a measure of the SEF in TCs.

59 **1. Introduction**

60 The concentric (double) eyewall structure, which is characterized by a secondary eyewall
61 forming outside the primary eyewall, is a distinct feature in intense tropical cyclones (TCs). The
62 secondary eyewall formation (SEF) and the subsequent replacement of the primary eyewall by the
63 secondary eyewall are often accompanied with a temporary weakening followed by a re-
64 intensification (Willoughby et al., 1982; Black and Willoughby 1992; Hawkins et al., 2006; Houze
65 et al., 2007). Observational studies have demonstrated that the SEF is often related to active outer
66 spiral rainbands, the subsequent enhancement of convection and axisymmetrization to form a
67 quasi-axisymmetric convective ring structure accompanied with a secondary tangential wind
68 maximum in the lower troposphere (Willoughby et al., 1982; Hawkins, 1983; Black and
69 Willoughby, 1992; Houze et al., 2007; Yang et al., 2013). Understanding the processes involved in
70 the SEF and the associated eyewall replacement cycle (ERC) is essential for improving the
71 accuracy of predictions regarding TC structure and intensity, which are critical for effective weather
72 forecasting and disaster preparedness (Kossin and Stikowski, 2009, 2012; Kossin and DeMaria,
73 2016). It is key to understand what determines the duration of the double eyewall structure and the
74 intensity change during the ERC.

75 Most previous studies have mainly focused on how spiral rainbands develop into a quasi-
76 axisymmetric convective ring, or how the nascent secondary eyewall forms and intensifies.
77 Meanwhile, some other studies have concentrated on the triggers for strong spiral rainbands to be
78 integrated into the secondary eyewall. These triggers are either internal dynamics or external

79 factors, such as vortex Rossby waves, the beta - effect, orographic forcing, and environmental
80 vertical wind shear (e.g., Willoughby, 1979; Hawkins, 1983; Montgomery & Kallenbach, 1997;
81 Nong & Emanuel, 2003; Terwey & Montgomery, 2008; Kuo et al., 2009; Qiu et al., 2010; Abarca
82 & Corbosiero, 2011; Rozoff et al., 2012; Fang & Zhang, 2012; Menelaou et al., 2012; Huang et al.,
83 2012, 2018; Kepert, 2013; Sun et al., 2013; Zhu & Zhu, 2014; Zhang et al., 2017; Zhang et al. 2018;
84 Wang et al., 2016, 2019; Dai et al., 2017, Guimond et al., 2020; Wang and Tan 2020, 2022, ; Liu et
85 al, 2022).

86 Observational studies have demonstrated the importance of both convective structure and the
87 stratiform sector in spiral rainbands and their evolution to the SEF (Didlake and Houze, 2011,
88 2013a, b; Didlake et al. 2017; 2018; Wunsch and Didlake, 2018; Tyner et al. 2018; Fischer et al.
89 2020; Zhu et al, 2022). These studies found that the left-of-shear mesoscale descending inflow in
90 the stratiform rainband complex occurs in a region of latent cooling and negative buoyancy. The
91 descending inflow can initiate the coupling between the boundary layer and the upper troposphere.
92 Persistent low-level updrafts are then triggered along the inner edge of the surface cold pool, locally
93 accelerating the tangential wind prior to the SEF. Wang et al. (2019) demonstrated from their
94 idealized numerical simulation that diabatic heating in outer rainbands (ORBs) may induce deep-
95 layer inflow and bring the absolute angular momentum inward and spin up the tangential wind near
96 and outside the ORBs. The perturbation radial and tangential winds spiral cyclonically inward and
97 downward along the rainband, showing a "top-down" pathway to the SEF. Continuous
98 downward/inward propagation and axisymmetrization of the downwind sector of the rainbands in
99 the boundary layer eventually lead to the SEF. Several recent studies have also confirmed the
100 mechanism (Yu et al., 2021).

101 Both observational studies and idealized numerical simulations have found that diabatic
102 heating in ORBs enhances prior to the SEF. When the diabatic heating rate in ORBs reaches a
103 certain magnitude, the ERC process begins (Zhu and Zhu, 2014; Wang et al., 2019). Chen (2018)
104 examined the sensitivity of TC intensity and structure changes to the magnitude and radial location
105 of the increased inner-core diabatic cooling rate during the SEF and ERC. They found that both a

106 40% increase and a 10-km radial outward shift of cooling could lead to the occurrence of active
107 ORBs at a larger radius, resulting in the delay of the SEF. These limited studies seem to suggest
108 that both diabatic heating and cooling in spiral rainbands play some important but different roles
109 in triggering the SEF and the subsequent intensity change during the ERC. However, a systematic
110 study focusing on the roles of diabatic heating/cooling prior to and during the SEF is lacking so far.
111 Questions remain unclear, including how diabatic heating affects the timing of the SEF, the duration
112 of the double eyewall structure, and the structure and intensity changes during the ERC.

113 Numerous studies have devoted to the roles of diabatic heating/cooling in spiral rainbands in
114 affecting the intensity and structure changes of single-eyewall TCs based on either balanced vortex
115 dynamics or full-physics numerical simulations (Wang, 2009; Vigh & Schubert, 2009; Pendergrass
116 & Willoughby; 2009; Moon & Nolan, 2010; Fudeyasu & Wang, 2011; Li et al., 2014; Navarro et
117 al., 2017). These studies have confirmed that diabatic heating/cooling, regardless in the inner or
118 ORBs, can lead to significant structure and intensity changes by affecting the secondary circulation.
119 Among these studies, Wang (2009) demonstrated the importance of enhanced diabatic heating in
120 ORBs to the SEF. Motivated by previous studies on the SEF and the earlier study of Wang (2009)
121 and Li et al. (2014), in this study, we attempt to systematically investigate how the timing of the
122 SEF and the duration of double eyewall structure, and the associated structure and intensity changes
123 would be affected by diabatic heating/cooling in ORBs (or the outer eyewall) on the simulated ERC
124 under idealized conditions. This was done following Wang (2009) by artificially modifying the
125 diabatic heating/cooling rate in ORBs prior to and during the SEF. The rest of the article is
126 organized as follows. The model used and the experimental design are briefly introduced in section
127 2. Section 3 presents an overview of the simulated SEF in the control experiment. Results from
128 the sensitivity experiments both well before and shortly prior to the SEF in the control experiment
129 are analyzed in section 3. Main conclusions are summarized and discussed in section 4.

130 **2. Model and experimental design**

131 We employed the widely used Weather Research and Forecasting (WRF) model, version 4.2.1

132 (Skamarock et al., 2008) in this study. The model configurations were basically the same as those
133 utilized in Wang et al. (2016, 2019). The model domain was quadruply nested with the horizontal
134 resolutions of 45, 15, 5, and 1.67 km, respectively, to achieve high-resolution in the TC inner core
135 and the active spiral rainbands. The model atmosphere had 50 vertical levels extending from the
136 surface up to 50 hPa. The four domains consisted of 200×200, 250×250, 268×268, and 388×388
137 grid points. The three inner nested domains moved automatically with the TC center. The innermost
138 domain was large enough to cover the TC inner core, including the eyewall and both inner and
139 outer rainbands. The model physics comprised the Yonsei University (YSU) planetary boundary
140 layer scheme (Noh et al. 2003), the WRF single-moment 6-class microphysics scheme (Hong et al.
141 2006), the shortwave radiation scheme of Dudhia (Dudhia 1989), the Rapid Radiative Transfer
142 Model (Mlawer et al. 1997). The Kain–Fritch cumulus parameterization scheme (Kain and Fritsch
143 2004) was applied only in the two outer domains.

144 The model was initialized with an axisymmetric TC-like vortex (Wang, 2007) on an *f*-plane (a
145 constant Coriolis parameter) at 20°N with a constant sea surface temperature (SST) of 29°C. The
146 initially unperturbed environmental sounding was that of the western Pacific clear-sky environment
147 given in Gray et al. (1975). The maximum tangential wind in the initial axisymmetric cyclonic
148 vortex was 45 m s⁻¹ at the radius of 60 km at the surface and decreases sinusoidally with height and
149 became zero at 100 hPa, and the tangential wind speed decreased to zero at the 1000-km radius.
150 The TC vortex was initially in hydrostatic and gradient wind balances and was located at the center
151 of each domain.

152 Following the approach of Wang (2009) and Li et al. (2014), several sensitivity experiments
153 (Table 1) were conducted by artificially modifying the diabatic heating rate (Q) from the cloud
154 microphysics scheme in the WRF model. The total Q at a given time step at a grid point in three
155 dimensions can be decomposed into diabatic heating rate (Q_+) and diabatic cooling rate (Q_-):

$$156 \quad Q = Q_+ + Q_- = \max(Q, 0.0) + \min(Q, 0.0). \quad (1)$$

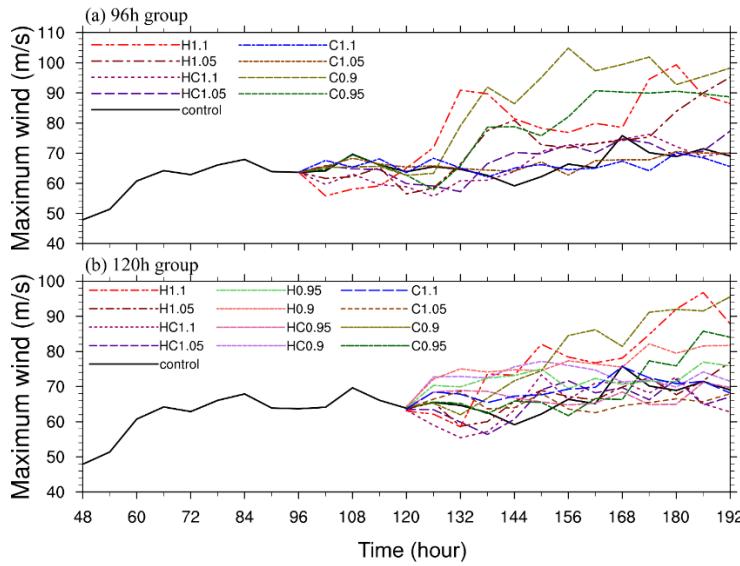
157 The radius of 70 km was selected as the innermost edge of the ORBs and the outermost of the
158 primary eyewall (the outer edge of the anvil clouds of the primary eyewall) and inner rainbands.

159 Only Q in the ORBs was modified to examine the effects of diabatic heating and cooling on the
 160 rainband activities and the accompanied SEF and ERC processes. To reduce the discontinuity in
 161 diabatic heating rate at the radius of 70 km, a linear transition zone was applied to the radial range
 162 between the radii of 65–70 and 70–75 km, respectively. The vortex center, which was defined as
 163 the circulation center, was determined at each time step to ensure the accurate modifications to
 164 diabatic heating/cooling in ORBs.

165 **Table1.** Summary of the numerical experiments conducted in this study, with r being the
 166 radius from the TC center, which is defined as the circulation center at the lowest model level.

Exp.	Comments on the experimental design
CTRL	The default model settings.
HC0.9	Both the Q_+ and Q_- are reduced to 90% outside $r=70$ km.
HC0.95	Both the Q_+ and Q_- are reduced to 95% outside $r=70$ km.
HC1.05	Both the Q_+ and Q_- are increased by 5% outside $r=70$ km.
HC1.1	Both the Q_+ and Q_- are increased by 10% outside $r=70$ km.
H0.9	Only the Q_+ is reduced to 90% outside $r=70$ km.
H0.95	Only the Q_+ is reduced to 95% outside $r=70$ km.
H1.05	Only the Q_+ is increased by 5% outside $r=70$ km.
H1.1	Only the Q_+ is increased by 10% outside $r=70$ km.
C0.9	Only the Q_- is reduced to 90% outside $r=70$ km.
C0.95	Only the Q_- is reduced to 95% outside $r=70$ km.
C1.05	Only the Q_- is increased by 5% outside $r=70$ km.
C1.1	Only the Q_- is increased by 10% outside $r=70$ km.

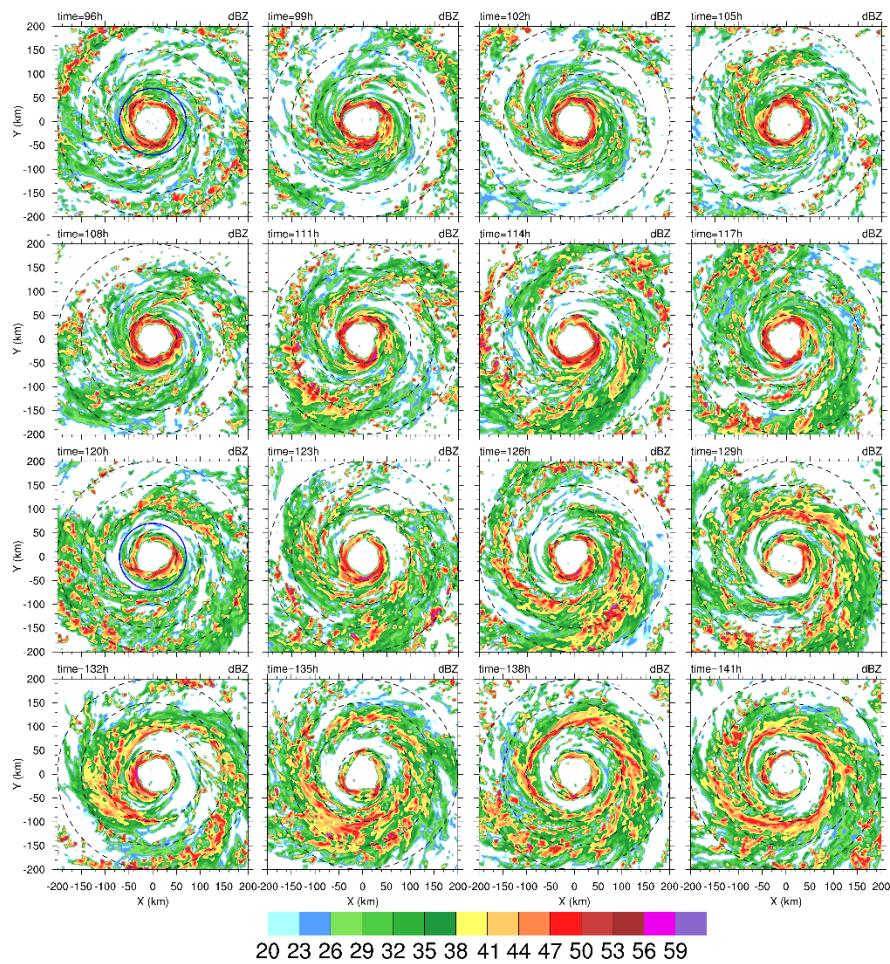
167 In the control experiment (CTRL), all default model settings were adopted. Two sets of
 168 sensitivity experiments were performed with initial conditions from CTRL but after different times
 169 of model run. One set of experiments started after 96 h of the simulation in CTRL, well before the
 170 SEF in CTRL, and the other set of experiments started after 120 h of the simulation in CTRL,
 171 shortly prior to the SEF in CTRL. Three groups of experiments were conducted for each set. In the
 172 first group, both diabatic heating and cooling rates increased by 5% outside the radius of 70 km in
 173 HC1.05 and 10% in HC1.1 and reduced by 5% in HC0.95 and 10% in HC0.9. In the second group,
 174 only the diabatic heating rate increased by 5% in H1.05 and 10% in H1.1 and reduced by 5% in
 175 H0.95 and 10% in H0.9. In the third group, only the diabatic cooling rate increased by 5% in C1.05

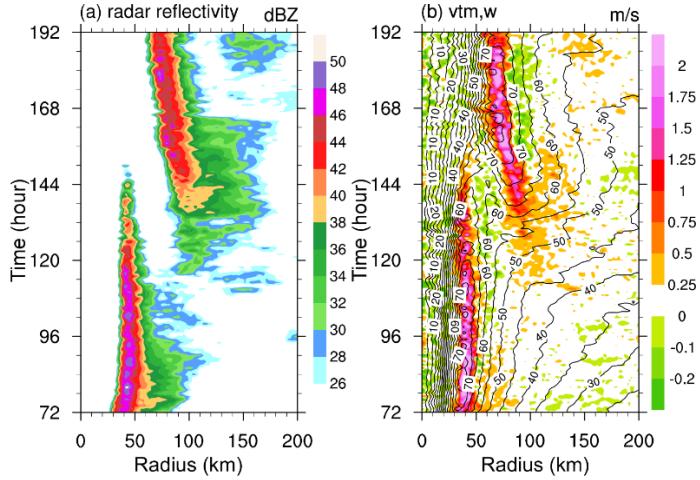

176 and 10% in C1.1 and reduced by 5% in C0.95 and 10% in C0.9. Therefore, in addition to CTRL,
177 12 sensitivity experiments in total (Table 1) were conducted to understand the role of diabatic
178 heating/cooling in ORBs in the timing of the SEF, the duration of the double eyewall structure, and
179 the associated intensity changes. Note that if the outer eyewall formed outside the 70-km radius,
180 the diabatic heating/cooling rate in the outer eyewall were also modified, which may enhance the
181 outer eyewall convection and the contraction of the outer eyewall, and thus the weakening and
182 dissipation of the primary eyewall. The artificially modifying diabatic heating/cooling in the outer
183 rainband region can also directly modifying the activity of outer spiral rainbands. Therefore, the
184 consequence due to changes in diabatic heating/cooling rate can also be considered as a result of
185 changing outer rainband activity in sensitivity experiments. Note also that increasing diabatic
186 heating rate in outer rainbands is equivalent to increasing moisture content in the TC near-core
187 environment, while increasing the diabetic cooling rate is equivalent to having a dry near-core
188 environmental condition or dry air intrusion as discussed in Wang (2009).

189 **3. Results**

190 *a. An overview of the SEF in the control experiment*

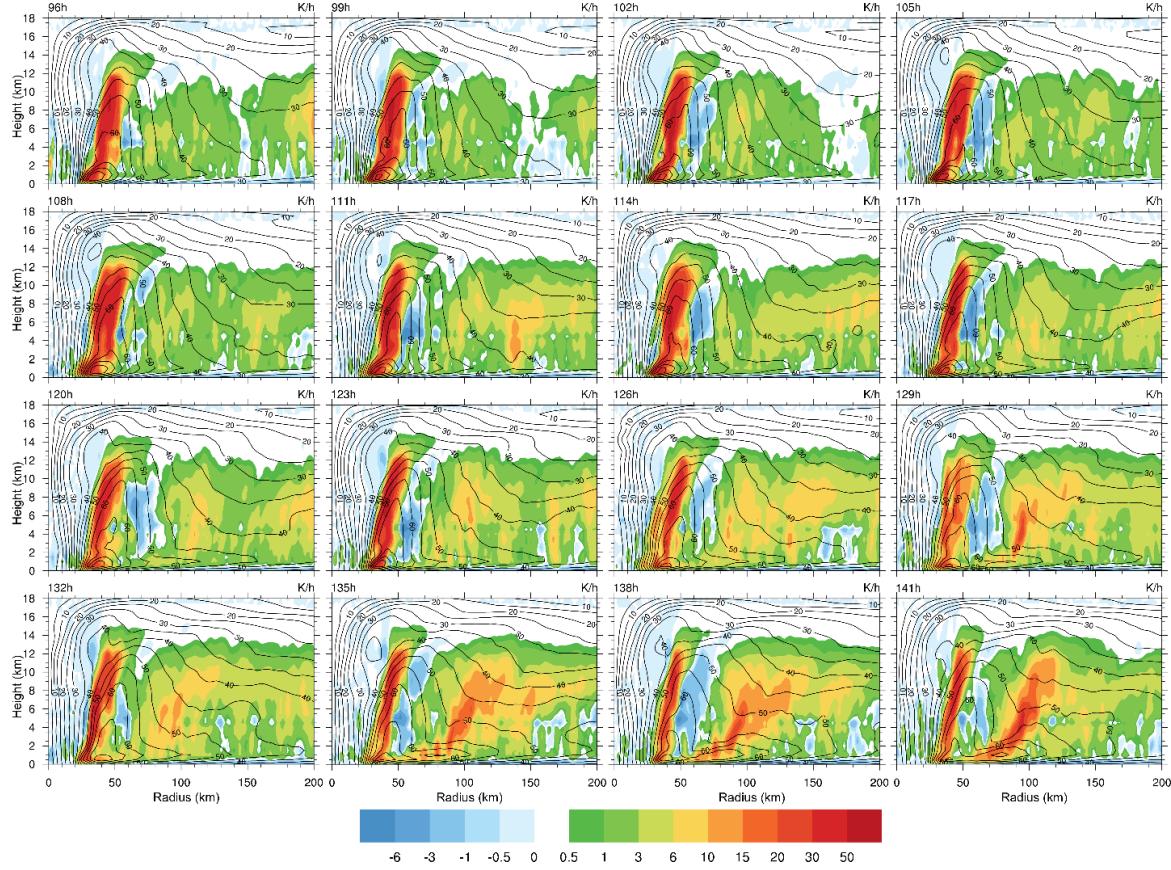
191 Figure 1 shows the intensity evolutions of the simulated TCs in all experiments listed in Table
192 1 in terms of the maximum near-surface wind speed. Here, we first discuss the intensity evolution
193 of the TC in CTRL. After an initial spinup period of about 48 hours, the simulated TC achieved a
194 maximum wind speed of approximately 48 m s^{-1} . The TC then steadily intensified for 24 h, and
195 reached its quasi-steady evolution with moderate intensity oscillations. The TC weakened from
196 126 h (approximately 9 hours prior to the SEF) to 150 h (the completion of the ERC), followed by
197 a weak intensification followed by an intensity oscillation until the end of the 192-h simulation.
198 Figure 2 presents the simulated radar reflectivity at the 3-km height prior to and during the onset
199 of the SEF at 3-hour intervals. By 96 h, the TC presented an eyewall at a radius of about 40 km,
200 surrounded by scattered convective activities outside the eyewall. The scattered convective
201 activities were then organized into spiral rainbands. By 111 h, a main spiral rainband progressively


202 formed around a radius of 150 km to the south and west of the TC center. The rainband spiraled
 203 cyclonically inward and intensified, but gradually stagnated at a radius of about 100 km and
 204 continued strengthening around this radius. The spiral rainbands eventually evolved into a nearly
 205 closed convective ring at approximately 100 km by 117 h, along with the formation of the clear
 206 moat structure. Based on the definition commonly used in previous studies, namely the time when
 207 the secondary maximum in the azimuthally averaged tangential wind appears, the outer eyewall
 208 formed completely by 135 h. With further intensification and contraction of the outer eyewall, the
 209 inner eyewall weakened and eventually dissipated after about 150 h of the simulation.


210
 211 Figure 1. Time evolution of the simulated TC intensity in terms of the maximum near-surface wind speed (m s^{-1})
 212 in CTRL and all sensitivity experiments initiated after (a) 96 h and (b) 120 h of the simulation in CTRL.

213 Figure 3 shows the time-radial cross-sections of the azimuthal-mean radar reflectivity at 3-km
 214 height and vertical motion and tangential wind speed at 1.5-km height in CTRL. The evolution of
 215 radar reflectivity and vertical motion indicates deep convection in the primary eyewall, which
 216 remained at the radius of about 40 km after 72 h of the simulation (Fig. 3a). The radius of maximum
 217 wind (RMW) was located between 30 and 40 km radii with a maximum wind speed over 70 m s^{-1}
 218 after 72 h of the simulation (Fig. 3b). By 111 h, scattered updrafts developed outside a radius of
 219 120 km, indicating the development of ORBs and the formation of weak convective ring structure.
 220 These ORBs propagated radially inward and eventually evolved into a nearly axisymmetric

221 structure by 135 h. The TC inner-core size showed a steady increase as seen from the contour of
 222 40 m s⁻¹ tangential wind speed, showing an outward expansion, consistent with the development
 223 of ORBs after 111 h. As the tangential wind expanded outward and accelerated, updrafts in ORBs
 224 organized into a convective ring after 120 h, a secondary maximum in tangential wind speed started
 225 to develop with the strengthening of the outer convective ring. The secondary peak in upward
 226 motion (larger than 0.5 m s⁻¹) and a clear secondary tangential wind maximum appeared by 135 h,
 227 indicating the SEF. With the strengthening and contraction of the outer eyewall, the inner eyewall
 228 began to weaken and eventually dissipated by around 150 h. The double eyewall structure
 229 maintained for about 15 h.

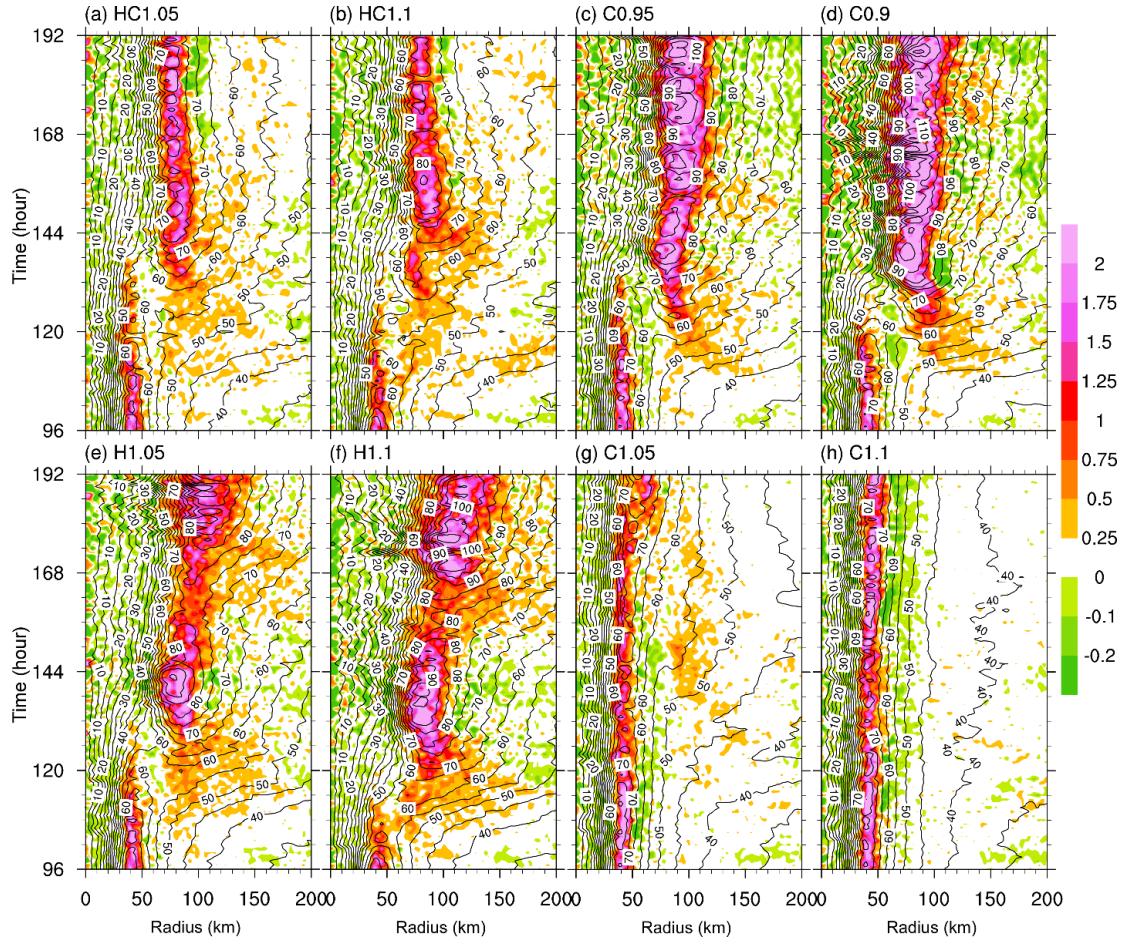


230
 231 Figure 2. Plan view of radar reflectivity (shaded; dBZ) at a 3-km height from 96 to 141 h at 3-h interval in CTRL
 232 with the model time given at the top of each panel. The four concentric circles denote the radii of 50, 100,
 233 150, and 200 km from the TC center in each panel. A blue circle is placed at the 70-km radius circle for 96 h
 234 and 120 h, namely the times the two sets of sensitivity experiments started.

235
 236 Figure 3. Time-radius Hovmöller diagrams of the azimuthally averaged (a) radar reflectivity at 3 km (dBZ), (b)
 237 vertical motion at 3 km (shaded, m s^{-1}) and tangential wind speed at the 1.5-km height (contours, m s^{-1}) from
 238 72 to 192 h in CTRL.

239 The development of ORBs and the associated SEF can be further viewed in the radius–vertical
 240 cross sections of the azimuthally averaged diabatic heating rate and tangential wind speed given in
 241 Fig. 4. At 96 h (Fig. 4a), a single eyewall was located between radii of 30–40 km of the TC center
 242 and sloped outward with height. Strong diabatic heating occurred in the primary eyewall. Diabatic
 243 cooling appeared both inside and outside the primary eyewall. The region with diabatic cooling
 244 gradually evolved into the moat area as the ORBs (and later the outer eyewall) intensified. Diabatic
 245 heating outside the primary eyewall was not pronounced until the enhancement of ORBs around
 246 the radii between 130–160 km by 111 h, especially above the 2-km height. The continuous
 247 strengthening of diabatic heating in ORBs coincided with the outward tangential wind expansion,
 248 indicating that the latter was closely related to diabatic heating in ORBs. Diabatic heating outside
 249 a radius of 150 km progressively shifted inward and strengthened after 111 h and slowed down and
 250 remained between radii of 70–120 km. During 117–132 h, diabatic heating in the ORB region
 251 became stronger and better organized, implying the continuous axisymmetrization of ORBs. By
 252 135 h, diabatic heating showed a sudden enhancement with a clear convective ring structure as also
 253 seen from Fig. 2, together with the appearance of a secondary tangential wind maximum between
 254 70–90 km radii, indicating the SEF. The primary eyewall convection weakened and eventually
 255 disappeared, and the secondary eyewall contracted inward gradually and intensified.

256


257 Figure 4. Radius–height cross sections of the azimuthal mean tangential wind speed (contour, m s^{-1}) and diabatic
 258 heating rate (shaded, K h^{-1}) in CTRL. Model time is given at the top left of each panel.

259 ***b. Modified heating/cooling well before the SEF***

260 Based on the above analysis, ORBs were inactive before 96 h but became active about 111 h
 261 of the simulation, resulting in the SEF in about 24 h (by 135 h). Therefore, diabatic heating/cooling
 262 outside a radius of 70 km at 96 h can be regarded as the region with ORBs (Figs. 3 and 4). We thus
 263 conducted sensitivity experiments by artificially modifying the diabatic heating rate outside the
 264 radius of 70 km to understand the role of diabatic heating in ORBs in affecting the timing of the
 265 SEF and duration of the double eyewall structure simulated in CTRL. Eight sensitivity experiments
 266 were carried out with the diabatic heating rate modified after 96 h of the simulation in CTRL (Table
 267 1). Figure 1a shows the time evolution of the maximum wind speed for all eight sensitivity
 268 experiments. Note that HC0.95 and HC0.9 and H0.95 and H0.9 were not shown here because
 269 reducing the diabatic heating rate resulted in too weak ORBs with no SEF.

270 The concurrent increase in both diabatic heating and cooling rates outside the primary eyewall

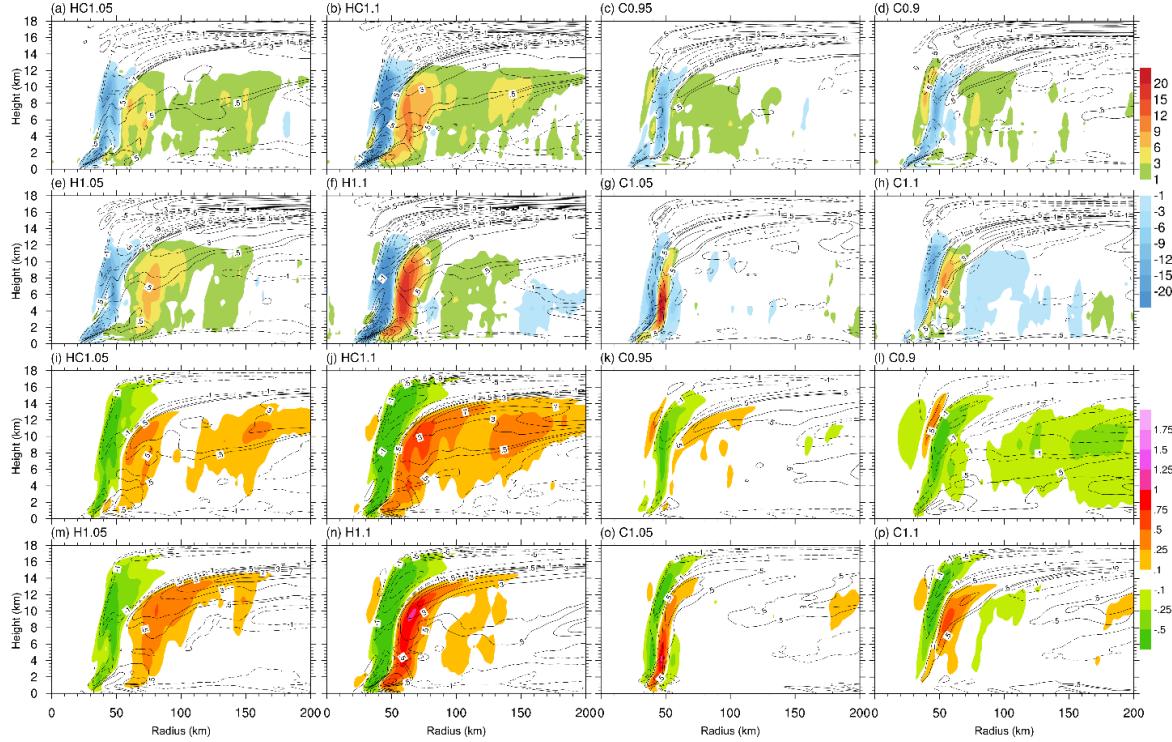
271 led to the earlier SEF and the persistent weakening of the TC in the first 36 h of the simulation in
272 HC1.05 (Fig. 5a and Table 2) and in the first 30 h of the simulation in HC1.1 (Fig. 1a). Note that
273 the time in our following discussion is referred to the time from the modification of diabatic heating
274 in sensitivity experiments. TCs in both experiments intensified again after the completion of the
275 ERC during 36–48 h of the modified diabatic heating in HC1.05 and during 30–60 h in HC1.1.
276 Eventually, a quasi-steady intensity achieved and maintained until the end of the simulations.
277 Increasing diabatic heating rate only led to the greatest weakening of the TCs in the first 24 h of
278 the simulation in H1.05 and in the first 6 h of the simulation in H1.1, both much earlier than in
279 HC1.05 and HC1.1. This was followed by the greatest intensification from 24 to 48 h in H1.05 and
280 from 6 to 36 h in H1.1, and then a moderate intensity oscillation thereafter. The results indicate that
281 diabatic heating in ORBs can significantly affect the TC intensity by controlling the timing of the
282 SEF and the duration of the double eyewall structure. The TC intensity evolution in C0.9 and C0.95
283 with reduced diabatic cooling rate was similar to that in CTRL in the first 48-h simulation, and then
284 underwent a slight weakening for 6 hours. A gradual intensification began after 54 h until 120 h of
285 the simulation in C0.9 and after 66 h of the simulation in C0.95, and the TCs eventually reached
286 their quasi-steady states in both experiments. In contrast, the TCs with the increased diabatic
287 cooling rate in ORBs in both C1.05 and C1.1 intensified and maintained a higher quasi-steady
288 intensity due to the inactive ORBs and the absence of the SEF. All TCs in H1.05, H1.1, C0.9, and
289 C0.95 reached a final intensity comparable to that in CTRL. TCs in HC1.05, HC1.1, H1.05, H1.1,
290 C0.9, and C0.95 experienced the SEF and subsequent ERC, showing the weakening of the TC
291 accompanied by the SEF and re-intensification after the completion of the ERC.

292
293 Figure 5. Time-radius Hovmöller diagrams of the azimuthal-mean tangential wind speed at 1.5-km height
294 (contours, m s^{-1}) and vertical motion at 3 km (shaded, m s^{-1}) from (a) HC1.05, (b) HC1.1 (c) C0.95, (d) C0.9,
295 (e) H1.05, (f) H1.1, (g) C1.05, and (h) C1.1, respectively.

296 Figure 5 compares the time evolution of the azimuthal-mean vertical motion at the 3-km height
297 and tangential wind speed at the 1.5-km height in the eight sensitivity experiments. The timing of
298 the SEF and the duration of the double eyewall structure in those corresponding experiments with
299 the ERC are listed in Table 2. Substantial differences in vertical motion are present among the
300 experiments with different modifications to diabatic heating/cooling in ORBs. In HC1.05 and
301 HC1.1 with the diabatic heating and cooling rates increased (Figs. 5a, b), convective activities are
302 discernible outside the eyewall after 6 h of the simulations and gradually developed afterwards,
303 consistent with the initial weakening of the TCs. Convective activities in ORBs gradually
304 strengthened and evolved into a strong convective ring, accompanied by the appearance of a local
305 azimuthal-mean tangential wind maximum by 130 h in HC1.05 and by 128 h in HC1.1, indicating

306 the earlier SEF than in CTRL (135 h). The duration of the double eyewall structure is 8 hours in
307 HC1.05 and about 4 hours in HC 1.1 (Table 2). The results are understandable because enhancing
308 diabatic heating and cooling in ORBs speeds up the SEF and the intensification of the outer eyewall
309 (after its formation), suppressing the inner eyewall, leading to an earlier weakening and dissipation
310 of the inner eyewall. In both HC1.05 and HC1.1, the outer eyewall remained at the radii of 70–80
311 km, similar to that in CTRL.

312 The evolution of the TCs in H1.05 and H1.1, with increased diabatic heating rate only (Figs.
313 5e, f), resembles those in HC1.05 and HC1.1 in the early stages with convective activities
314 developing after the first 6 h of the simulations. The secondary eyewall formed at around 122 h in
315 H1.05 (Fig. 5e) and at around 110 h in H1.1. Different from those in HC1.05 and HC1.1, the inner
316 eyewall weakened and dissipated shortly after the SEF in both H1.05 and H1.1. This indicates that
317 the enhanced diabatic heating rate in ORBs weakened the primary eyewall and accelerated the
318 formation and intensification of the outer eyewall, giving rise to the rapid weakening and
319 dissipation of the inner eyewall and shortening the duration of the double eyewall structure.
320 Different from that in HC1.05, HC1.1, and CTRL, convective ring of the eyewall after the ERC in
321 H1.05 and H1.1 is much stronger and wider and shows a gradual outward expansion with time.
322 The SEF and evolution with the increased diabatic heating rate in ORBs (and later in the outer
323 eyewall) are similar to that discussed in Wang (2009), who also simulated the SEF and the
324 subsequent ERC with the diabatic heating rate artificially increased in ORBs.


325 With the reduced diabatic cooling rate in C0.95 and C0.9 (Figs. 5c, d), the SEF and the ERC
326 show great similarity to those in H1.05 and H1.1, with the SEF occurring after 116 h of the
327 simulation in C0.95 and 114 h in C0.9, much earlier than that in CTRL. The inner eyewall
328 dissipated by 130 h in C0.95, resulting in a 14-h duration of the double eyewall structure, and by
329 120 h in C0.9, resulting in a duration of the double eyewall structure for only 6 h (Table 2). This
330 indicates that the duration of the double eyewall structure is greatly shortened with the reduced
331 diabatic cooling rate in the outer eyewall. Like that in experiments with the increased diabatic
332 heating rate in H1.05 and H1.1, the replaced eyewall became wider and stronger than that in CTRL

333 and HC1.05 and HC1.1, and also showed a slow outward expansion after the completion of the
 334 ERC with the strongest TCs in C0.95 and C0.9 (Fig. 2a). This indicates that diabatic cooling in
 335 ORBs suppresses the TC intensity, as also indicated in Wang (2009). Finally, increasing diabatic
 336 cooling rate in ORBs in C1.05 and C1.1 (Figs. 5g, h) suppressed convective activities in ORB,
 337 leading to the single eyewall structure throughout the simulations.

338 **Table2.** Summary of the time of SEF, the ending time of ERC, and the duration time in different experiments.

EXP (96h)	SEF	ERC	Duration time
CTRL	135 h	150 h	15 h
HC1.05	130 h	138 h	8 h
HC1.1	128 h	132 h	4 h
H1.05	122 h	122 h	0 h
H1.1	110 h	110 h	0 h
C0.95	116 h	130 h	14 h
C0.9	114 h	120 h	6 h
C1.05	--	--	--
C1.1	--	--	--

339 The above results indicate that increasing diabatic heating rate in ORBs can lead to the
 340 strengthening of convective activities in ORBs, resulting in the weakening of the primary eyewall
 341 and accelerating the SEF and ERC. Reducing diabatic cooling in ORBs can enhance convection in
 342 ORBs but has insignificant effect on the intensity of the primary eyewall prior to the SEF and leads
 343 to a stronger TC after the completion of the ERC. However, increasing diabatic cooling in ORBs
 344 would suppress convective activity in ORBs, preventing the SEF. To further understand how the
 345 modified diabatic heating rate in ORBs affects the simulated TC intensity change during the SEF
 346 and ERC, we examined the secondary circulation response to the difference in diabatic heating rate
 347 between each of the sensitivity experiments and CTRL. The model output in the 2-h period from
 348 107 to 109 h of the simulations at 6-min intervals were used in the diagnostics.

349

350 351 352 353 354 355 356

Figure 6. Upper two rows: the radius–vertical cross-sections of the differences in the azimuthal–men diabatic heating rate (shaded, K) and radial wind speed (contours, m s^{-1}) between the sensitivity experiments and CTRL from the WRF model output in the 2-h period from 107 to 109 h of the simulations based on model output at every 6 minutes (upper two rows) and the radius–vertical cross-sections of the vertical motion (shaded, m s^{-1}) and radial wind speed (contours, m s^{-1}) diagnosed using the Sawyer–Eliassen equation in response to the given difference in diabatic heating rate in the corresponding upper rows (lower two rows). The contours are $\pm 15, \pm 13, \pm 11, \pm 9, \pm 7, \pm 5, \pm 3, \pm 1, \pm 0.5 \text{ m s}^{-1}$.

357 358 359 360 361 362 363 364 365 366

Figure 6 shows the differences in the azimuthal mean diabatic heating rate and radial wind speed between each of the sensitivity experiments and CTRL averaged over the chosen 2-h period. Increasing both diabatic heating and cooling rates in ORBs in HC1.05 and HC1.1 (Figs. 6a, b) led to a moderate increase in diabatic heating rate between 100 and 150 km from the TC center and also a couplet of reduced and increased diabatic heating rate across the radius of 50 km. The latter indicates an outward shift of the primary eyewall. In response to the increased diabatic heating rate in ORBs are the increase in both the boundary layer inflow and the upper-level outflow outside the ORBs but the decreased boundary layer inflow and upper-level outflow in the inner eyewall relative to those in CTRL. Note that an inflow layer appears immediately outside the enhanced diabatic heating region below about 10-km height, which brings absolute angular momentum inward and is

367 responsible for the outward tangential wind expansion prior to the SEF.

368 The diabatic heating rate between radii of 90 and 180 km is much larger in both H1.05 than in
369 H1.1 than in CTRL (Figs. 6e, f), indicating much stronger ORBs than in CTRL and also in both
370 HC1.05 and HC1.1. This suggests that the increased diabatic cooling rate partially suppressed
371 effect of the increased diabatic heating rate in HC1.05 and HC1.1. The relatively smaller diabatic
372 heating rate inside a radius of 75 km implies the weaker convection in the primary eyewall in H1.05
373 and H1.1, consistent with the finding of Wang (2009), who also found that increasing diabatic
374 heating rate in ORBs often led to the weakening of eyewall convection, leading to a weaker TC.
375 Note that both HC1.1 and H1.1 show relatively larger outward shifts of the primary eyewall than
376 HC1.05 and H1.05, as inferred from the larger couplets of the negative and positive diabatic heating
377 rate differences (Figs. 6a, b, e, f). In response to the changes in diabatic heating rate in the primary
378 eyewall, the low-level inflow and upper-level outflow near the primary eyewall greatly weakened
379 compared to those in CTRL. The increased diabatic heating rate in ORBs substantially enhanced
380 the boundary layer inflow under the ORBs as well as the inflow in a deep layer below 10-km height
381 outside the increased heating region. This led to the earlier outward tangential wind expansion and
382 the SEF in H1.05 and H1.1 (Figs. 5e, f).

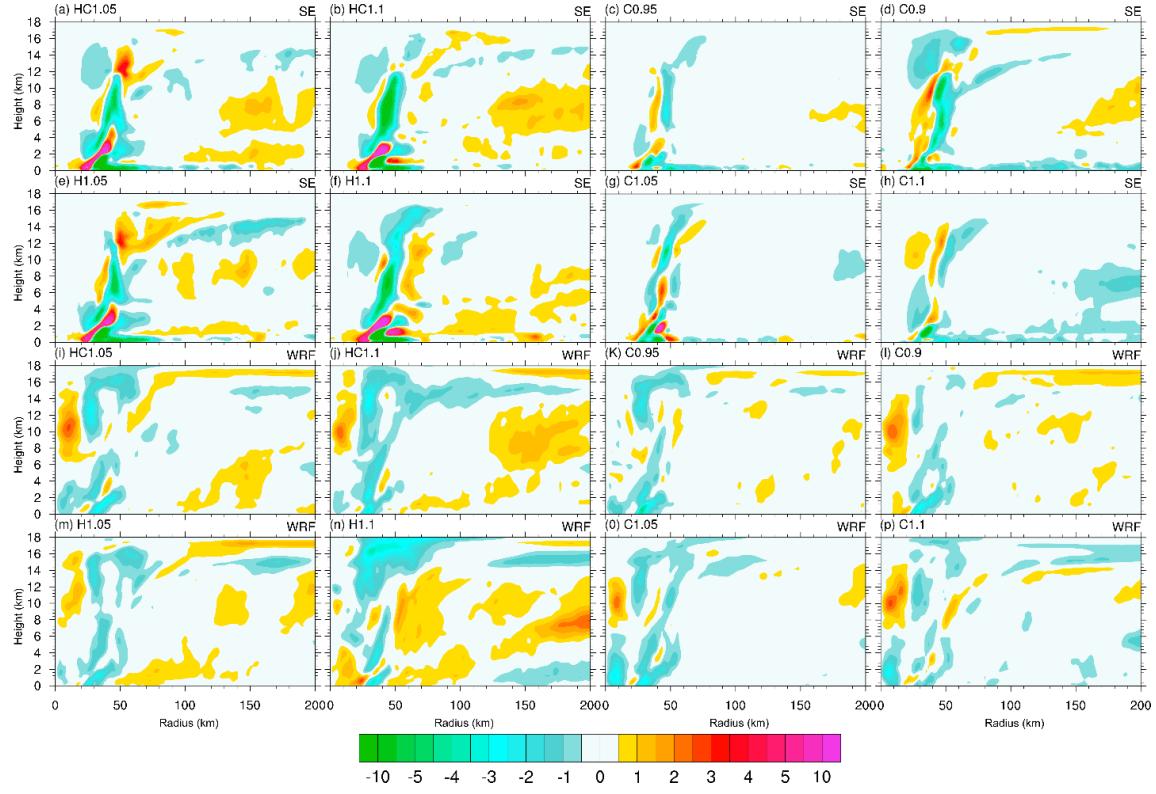
383 Reducing diabatic cooling rate in ORBs in C0.95 and C0.9 (Figs. 6c, d) led to a slight decrease
384 in diabatic heating rate in the primary eyewall and an increase in diabatic heating rate between the
385 radii of 50–120 km compared with those in CTRL. Both the boundary layer inflow and the upper-
386 level outflow decreased in the primary eyewall region. The low-level inflow increased in the outer
387 region, especially outside a radius of 100 km where the ORBs were enhanced compared with those
388 in CTRL. These changes suggest an earlier SEF in C0.95 and C0.9 than in CTRL (Figs. 5c, d). The
389 increased diabatic cooling rate in C1.05 and C1.1 (Figs. 6g, h) led to the reduced diabatic heating
390 rate in ORBs, suggesting a substantial weakening of ORBs. As a result, the SEF did not occur in
391 either C1.05 or C1.1 (Figs. 5g, h). Note that the increased diabatic cooling rate in ORBs also
392 resulted in an increased diabatic heating rate in the primary eyewall, which also became narrower
393 than that in CTRL, as seen from the negative differences in diabatic heating rate near the outer and

394 inner edges of the eyewall heating (Figs. 6g, h). Consistently, both the boundary layer inflow and
395 the upper-level outflow near the eyewall in C1.05 and C1.1 were enhanced compared with those in
396 CTRL. Therefore, diabatic cooling in ORBs is unfavorable for convective activity in ORBs but
397 may contribute to a more compact inner-core TC, as previously found in Wang (2009).

398 The above results strongly suggest that the difference in the secondary circulation between any
399 of the sensitivity experiments and CTRL is largely attributed to the difference in diabatic heating
400 in the simulations. We found that the change in the secondary circulation can be largely explained
401 by the balance response to the change in diabatic heating/cooling. To verify this hypothesis, we
402 examined the balanced responses of the secondary circulation to the heating difference between
403 each of the sensitivity experiments and CTRL using the Sawyer–Eliassen (SE) equation widely
404 used to examine the forced transverse circulation in TCs in response to the given diabatic heating
405 or momentum forcing or both (Eliassen, 1951; Willoughby, 1979; Schubert & Hack, 1982;
406 Fudeyasu & Wang, 2011). Previous studies have demonstrated that the balanced dynamics can
407 reasonably capture the transverse circulation and the tangential wind spinup in the SEF region
408 (Fang & Zhang, 2012; Sun et al., 2013; Zhu & Zhu, 2014; Wang et al., 2016; Qin et al., 2021). The
409 details of the procedure used can be found in Wang et al. (2016). Note that although the balanced
410 dynamics often underestimates the inflow and thus tangential wind tendency in the boundary layer,
411 it can well capture the secondary circulation and the spinup of tangential wind above the boundary
412 layer (Bui et al., 2009; Fudeyasu & Wang, 2011; Wang et al., 2016, 2019). Since our focus is on
413 the tangential wind tendency contributed by the modified diabatic heating rate in the sensitivity
414 experiment, to diagnose the balanced response using the SE equation is helpful to understand the
415 role of diabatic heating/cooling in ORBs in the simulated SEF.

416 Comparing the upper and lower two rows in Fig. 6, we can see that the diagnosed radial wind
417 using the SE equation can well capture the difference in radial wind between each of the sensitivity
418 experiments and CTRL derived from model output. The diagnosed vertical motion compares well
419 with the difference in diabatic heating rate between the sensitivity experiment and CTRL. Namely,
420 the increase in diabatic heating rate corresponds to upward motion, while the decrease in diabatic

421 heating corresponds to descending motion. Previous studies indicate an outward tangential wind
 422 expansion prior to the SEF, as also seen from Fig. 3b in CTRL and Fig. 5 in all sensitivity
 423 experiments. To quantify the balanced contribution of the modified diabatic heating rate in ORBs,
 424 we also diagnosed the tangential wind tendency using the diagnosed secondary circulation as
 425 shown in the lower two rows in Fig. 6. The azimuthal mean tangential wind budget equation is


$$426 \quad \frac{\partial \bar{v}}{\partial t} = -\bar{u}\bar{\zeta}_a - \bar{w}\frac{\partial \bar{v}}{\partial z} + \bar{F}_v, \quad (1)$$

427 where overbar indicates the azimuthal mean of the corresponding quantity, \bar{v} , $\bar{\zeta}_a$, and \bar{F}_v are the
 428 azimuthal mean tangential wind, vertical absolute vorticity, and vertical diffusion (including
 429 surface friction), all are temporally averaged between 107–109 h of the simulations using model
 430 outputs at 6-min intervals; and \bar{u} , \bar{w} are the azimuthal mean and temporally averaged radial wind
 431 and vertical motion between 107–109 h of the simulations either from the model output or from
 432 those diagnosed using the SE equation. As a result, we consider the left-hand side being the
 433 azimuthal mean tangential wind tendency either from the model output or the the balanced response
 434 in our following discussion.

435 Figure 7 shows the tangential wind tendencies calculated from the balanced response to the
 436 diabatic heating difference between each of the sensitivity experiments and CTRL (upper two rows)
 437 and those calculated directly using the model output (lower two rows). We can see that although
 438 some discrepancies exist, the balanced response largely captures the tangential wind tendencies
 439 obtained from the model output. The large discrepancies are present mainly in the primary eyewall
 440 region where large truncation errors often exist. The balanced response also underestimates the
 441 azimuthal mean tangential wind tendencies in the lower boundary layer as pointed out in previous
 442 studies (Bui et al., 2009; Heng et al. 2017). Nevertheless, the balanced dynamics well reproduces
 443 the azimuthal mean tangential wind tendency in response to the diabatic heating difference in the
 444 ORB region. The positive tangential wind tendencies are largely induced by the inflow forced by
 445 the increased diabatic heating rate (Fig. 6). This suggests that the outward tangential wind
 446 expansion prior to the SEF in sensitivity experiments (Fig. 5) is largely driven by diabatic heating
 447 in ORBs, as also demonstrated in previous studies (Rozoff et al., 2012; Wang et al., 2016, 2019).

448 Modifying the diabatic cooling rate in C0.95, C0.9, C1.05 and C1.1 results in relatively small
449 changes in diabatic heating rate because the diabatic cooling rate is often considerably smaller than
450 diabatic heating rate (Figs. 6c, d, g, h). This also explains relatively small tangential wind
451 tendencies in those experiments (Figs. 7c, d, g, h). Note that increasing diabatic cooling rate in
452 ORB region in C1.05 and C1.1 results in overall weak negative tendencies in tangential wind
453 outside the 7-km radius, which prevents the outward tangential wind expansion and thus the SEF
454 (Figs. 5g, h).

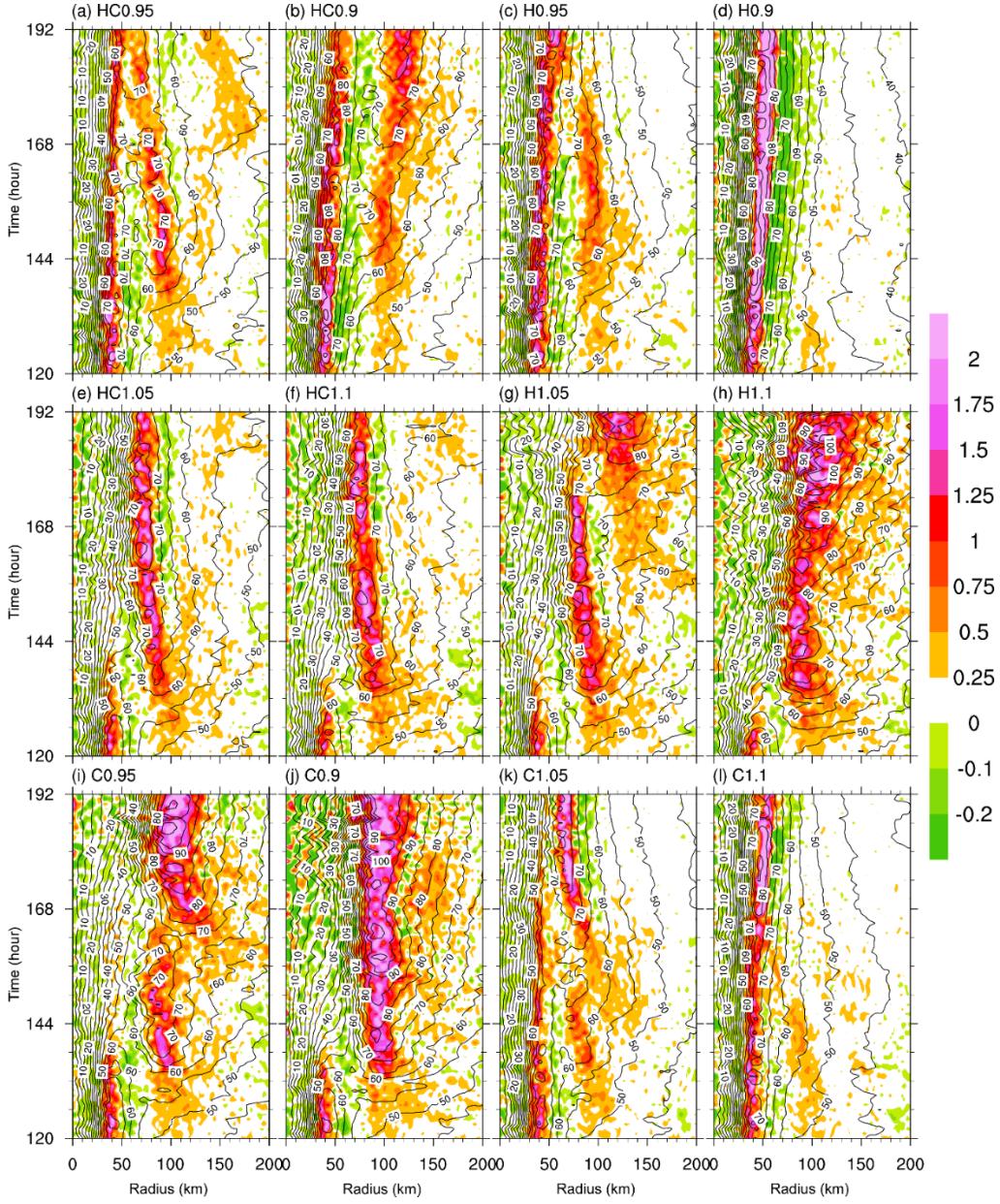
455 The above analysis indicates that the balanced dynamics can capture the main processes
456 associated with the SEF in the simulations. In particular, diabatic heating in ORBs drives the inflow
457 and thus the positive tangential wind tendency immediately outside the region of the SEF. This
458 caused the outward expansion of tangential wind and the increase in inertial stability and thus
459 diabatic hating efficiency in driving the low-level tangential wind in the SEF region as
460 demonstrated by Rozoff et a. (2012). As a result, increasing diabatic heating rate in ORBs in H1.05
461 and H1.1 resulted in earlier SEF (Figs. 5e, f). Reducing diabatic cooling in ORBs in C0.95 and
462 C0.9 also led to somewhat earlier SEF (Figs 5c, d). In contrast, increasing diabatic cooling rate in
463 C1.05 and C1.1 largely suppressed the convective activity in ORBs, leading to the absence of SEF.
464 These findings thus further demonstrate that active ORBs and their corresponding diabatic heating
465 are crucial to the SEF in TCs although some other processes may play some roles in details.

466
467
468
469
470

Figure 7. The azimuthal mean tangential wind tendency (shaded, $\text{m s}^{-1} \text{h}^{-1}$) diagnosed using the SE equation as the response to the change in the azimuthal mean diabatic heating rate between each of the sensitivity experiments and CTRL (upper two rows) and those calculated from the model output (lower two rows) between 107–109 of the simulation for all sensitivity experiments.

471 **c. Modified heating/cooling shortly prior to the SEF**

472 Shortly prior to the SEF in CTRL, ORBs became active from 111 h of the simulation in CTRL,
473 and the azimuthally averaged tangential wind shows rapid broadening after 120 h (Figs. 2 and 3).
474 Convective activities were concentrated with a thread-like structure at around 100 km radius. It is
475 our interest to understand how the heating/cooling outside the radius of 70 km radius after 120 h
476 of the simulation, about 15 hours prior to the SEF in CTRL may affect the formation and duration
477 of the double eyewall structure and the subsequent eyewall replacement. For this purpose, we
478 designed five groups of sensitivity experiments with the diabatic heating/cooling rate artificially
479 modified from 120 h prior to the SEF in CTRL (see Table 1). The first three groups are similar to
480 those discussed in section 3b. Two additional groups of experiments were carried out. In the fourth
481 group, both diabatic heating and cooling rates were reduced by 5% in HC0.95 and 10% in HC0.9


482 outside the 70-km radius. In the fifth group, only the diabatic heating rate was reduced by 5% in
 483 H0.95 and 10% in H0.9 outside the 70-km radius. The evolutions of TC intensity in all sensitivity
 484 experiments are compared with the intensity evolution in CTRL in Fig. 1b. Note that the intensity
 485 evolution was closely related to the structure change, such as the SEF, the eyewall replacement, or
 486 dissipation of the newly formed outer eyewall without an eyewall replacement. Therefore, to better
 487 understand the intensity change, we show in Fig. 8 the time evolutions of the azimuthal mean
 488 tangential wind at 1.5 km and vertical motion at 3 km height from all sensitivity experiments. The
 489 timings of the SEF and the durations of the double eyewall structure for those experiments with
 490 TCs experiencing the ERC are listed in Table 3.

491 **Table 3.** Summary of the time of SEF, the ending time of ERC, and the duration time in different experiments
 492 with diabatic heating/cooling modified after 120 h of the simulation in CTRL.

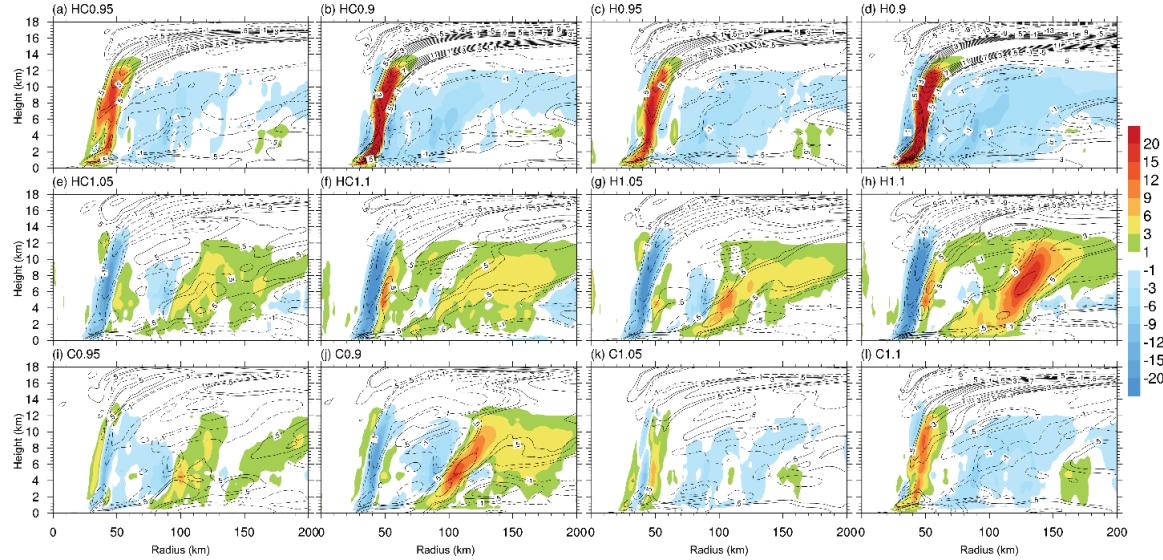
EXP (96h)	SEF	ERC	Duration time
CTRL	135 h	150 h	15 h
HC0.9	166 h	--	--
HC0.95	138 h	180 h	52 h
HC1.05	132 h	138 h	6 h
HC1.1	126 h	132 h	6 h
H0.9	--	--	--
H0.95	--	--	--
H1.05	132 h	138 h	6 h
H1.1	126 h	130 h	4 h
C0.95	132 h	138 h	6 h
C0.9	132 h	136 h	4 h
C1.05	136 h	--	--
C1.1	--	--	--

493 From Fig. 1b, we can see that reducing both diabatic heating and cooling rates in ORBs led to
 494 an increase in TC intensity compared to that in CTRL. The intensity decreased during the SEF,
 495 which occurred after about 18 h in HC0.95 and 30 h in HC0.9, but re-intensified after the merging

496 of the inner and outer eyewalls after about 60 h of the simulation in HC0.95 (Fig. 8a). The TC in
497 HC0.9 weakened slowly afterwards because the outer eyewall was too weak to replace the inner
498 eyewall (Fig. 8b). Reducing diabatic heating rate only in ORBs in H0.95 led to an increase in TC
499 intensity up to 30 h of the simulation, followed by a decrease due to the SEF, and then a re-
500 intensification after the dissipation of the secondary eyewall after 60 h of the simulation (Fig. 8c).
501 Quite differently, the TC in H0.9 experienced an intensification until the end of the simulation with
502 a single eyewall structure without active spiral rainbands (Fig. 8d), indicating that diabatic heating
503 in ORBs or the outer eyewall suppresses the TC intensity. Consistent with the results in section 3b,
504 increasing diabatic heating and cooling rates outside the 70-km radius resulted in the persistent
505 weakening of the TC (corresponding to the SEF) in the first 18 h of the simulation in HC1.05 and
506 12 h of the simulation in HC1.1, and then both TCs intensified again (corresponding to the
507 completion of the ERC) during 18–26 h in HC1.05 and 12–50 h in HC1.1 (Figs. 8e, f), which was
508 followed by a quasi-steady intensity evolution until the end of the simulations (Fig. 1b). The TCs
509 in H1.05 and H1.1 weakened greatly in the first 12 h of the simulations, followed by the greatest
510 intensification until the end of the simulations. This means that the increased diabatic heating rate
511 in outer eyewall accelerated the SEF and shortened the duration of the double eyewall structure,
512 and thus is critical to TC intensity. The intensity evolution of the TC in C0.95 is similar to that in
513 CTRL and shows a gradual intensification until the end of the simulation. The TC in C0.9
514 experienced a 12-h weakening and then intensified, achieving the strongest final intensity by the
515 end of the simulation. The TC in C1.05 underwent two periods of intensification and then
516 weakening, and then a quasi-steady evolution. The TC in C1.1 shows a quasi-steady evolution due
517 to inactive ORBs and the absence of the SEF, reaching a steady-state intensity similar to that in
518 CTRL.

519
 520 Figure 8. Time-radius cross-sections of the azimuthal mean vertical motion at 3-km height (shaded, m s^{-1}) and
 521 tangential wind at 1.5-km height (contours, m s^{-1}) from (a) HC 0.95, (b) HC0.9 (c) H0.95, (d) H0.9, (e) HC1.05,
 522 (f) HC1.1, (g) H1.05, (h) H1.1, (i) C0.95, (j) C0.9, (k) C1.05, and (l) 1.1, respectively.

523 With reduced diabatic heating and cooling rates in the outer eyewall region in HC0.95 and
 524 HC0.9, the inner eyewall persisted until the end of the simulations and both diabatic heating and
 525 cooling rates in the outer eyewall/rainband region continuously decreased (Figs. 8a, b). The
 526 secondary eyewall formed after about 18 h of the simulation in HC 0.95 and 46 h in HC0.9 (Table
 527 3), and no eyewall replacement occurred in either case. The weaker convective activity in ORBs


528 due to the reduced diabatic heating and cooling rates delayed the local tangential wind maximum
529 appearance and the SEF. This suggests that the reduced diabatic heating rate in the outer eyewall
530 imposed a less suppression to convection in the inner eyewall. The relatively weaker outer eyewall
531 in HC0.9 even showed no obvious contraction and was not strong enough to suppress and replace
532 the inner eyewall. With the diabatic heating rate only reduced in ORBs in H0.95 and H0.9, the
533 inner eyewall did not only exist but also strengthened over time, especially in H0.9 (Figs. 8c, d).
534 Weak rainbands were still visible in H0.95 but almost no active rainbands occurred in H0.9. The
535 results confirm that diabatic heating in ORBs is crucial to the SEF and the subsequent eyewall
536 replacement.

537 With both diabetic heating and cooling rates increased in HC1.05 and HC1.1 (Figs. 8e, f),
538 convective activities in the ORB region strengthened with time, leading to the SEF at around 132
539 h of the simulation (Table 3), about 3 hours earlier than that in CTRL. The continuous
540 intensification of the outer eyewall weakened the inner eyewall, leading to a quick dissipation of
541 the inner eyewall. This considerably shortened the duration of the double eyewall structure to about
542 6 h in HC1.05 and even slightly less than 6 h in HC1.1. With only the diabatic heating rate increased
543 in the ORB region (Figs. 8g, h), the secondary eyewall formed at 132 h in H1.05 and 126 h in H1.1,
544 with the inner eyewall weakened and dissipated shortly after the SEF. The outer eyewall appeared
545 at a relatively larger radius and was considerably wider in H1.1 than in CTRL, and also showed a
546 continuous outward expansion and widening (Fig. 8h). Interestingly, a second SEF episode
547 occurred in H1.05 after about 158 h of the simulation as the previous outer eyewall continuously
548 contracted, with the second ERC completed by 180 h of the simulation (Fig. 8g). This is because
549 increasing diabatic heating rate outside the previous outer eyewall enhanced the convective activity
550 in ORBs, causing the second SEF and ERC episode.

551 Modifying diabatic cooling rate in the ORB region resulted in some distinct responses in the
552 SEF and the ERC (Figs. 8i, j, k, h). As in H1.05, two episodes of SEF occurred in C0.95 (Fig. 8i),
553 the first secondary eyewall formed at about 132 h with the inner eyewall dissipated after about 6 h
554 of the simulation. The second secondary eyewall formed at about 162 h, with the inner eyewall

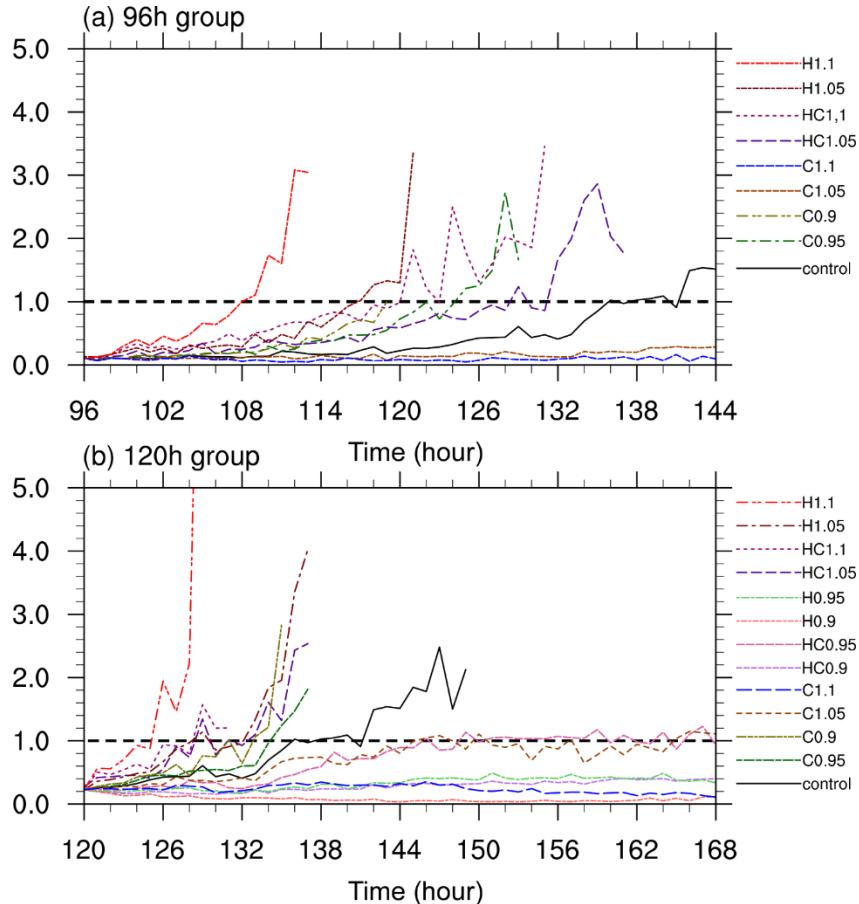
555 dissipated in less than 6 h with a very large eyewall at around a radius of 100 km. In C0.9 (Fig. 8j),
556 the secondary eyewall formed after about 132 h of the simulation, with the inner eyewall dissipated
557 in about 4 h after the SEF. The outer eyewall continuously intensified and remained at a radius of
558 about 100 km, leading to the TC intensification throughout the simulation (Fig. 2b). With the
559 increased diabatic cooling rate in the ORB region in C1.05 (Fig. 8k), the TC also experienced two
560 episodes of SEF. The first and second SEFs occurred at about 136 h and 156 h of the simulation,
561 respectively. Note that the first episode did not result in the eyewall replacement. The outer eyewall
562 in the first episode formed at a radius of around 100 km and showed a contraction as the inner
563 eyewall weakened. However, active ORBs formed outside the outer eyewall, leading to the outer
564 eyewall weakened and dissipated as the new ORBs organized into a new secondary eyewall by 156
565 h of the simulation. The original inner eyewall then gradually weakened and dissipated at about
566 168 h of the simulation. The increased diabatic cooling rate in C1.05 suppressed the activity of
567 convection outside the new outer eyewall, resulting in a strong but narrow eyewall after the eyewall
568 replacement. Further increasing the diabatic cooling rate in ORBs in C1.1 led to the weakening of
569 ORBs. As a result, the TC remained a single eyewall structure throughout the simulation (Fig. 8l).
570 This also resulted in a relatively stronger TC than that in CTRL (Fig. 2b).

571 The above results with diabatic heating artificially modified shortly prior to the SEF further
572 confirm that diabatic heating in ORBs is key to active rainbands and the SEF and often shortens
573 the duration of the double eyewall structure. Diabatic cooling in ORBs is unfavorable for
574 convection in ORBs and thus suppresses the development of double eyewall structure. However,
575 suppressed ORBs due to increased cooling favors the TC intensification and a relatively compact
576 inner-core structure.

577
 578 Figure 9. The differences in the azimuthally averaged the diabatic heating rate (shaded, K) and the radial wind
 579 (contour, m s^{-1}) between sensitivity experiments and CTRL from the WRF model. The contours are $\pm 15, \pm 13,$
 580 $\pm 11, \pm 9, \pm 7, \pm 5, \pm 3, \pm 1, \pm 0.5 \text{ m s}^{-1}$.

581 To further illustrate the structure change in sensitivity experiments relative to that in CTRL,
 582 we shown in Fig. 9 the differences in the azimuthal mean diabatic heating rate and radial wind
 583 (sensitivity experiment minus CTRL) averaged over the 2-h period 131–133 h of the simulations
 584 based on the WRF model output at 6-minute intervals. Reducing both diabatic heating and cooling
 585 rates in ORBs in HC0.95 and H0.9 or diabatic heating only in H0.95 and H0.9 (Figs. 9a–9d) led to
 586 the weakening of ORBs and the strengthening of the inner eyewall heating, preventing the eyewall
 587 replacement or even the SEF. Increasing both diabatic heating and cooling rates in ORBs in HC1.05
 588 and HC1.1 or diabatic heating only in H1.05 and H1.1 substantially enhanced convective activity
 589 in ORBs and the SEF. This led to suppressed convection in the inner eyewall and largely shortened
 590 the duration of the ERC, and even leading to the second episode of SEF, such as in H1.05 (Fig. 8g).
 591 Note that larger increased diabatic heating/cooling rate in HC1.1 and H1.1 also led to somewhat
 592 outward shift of the inner eyewall (Figs. 9f, h). The reduced diabatic cooling rate in C0.95 and C0.9
 593 (Figs. 9i, j) resulted in an increase in diabatic heating rate in ORBs, indicating more active ORBs,
 594 the weakening of the primary eyewall, and the early SEF and short duration of the double eyewall
 595 structure. Increasing diabatic cooling rate in the ORB region in C1.05 and C1.1 (Figs. 9k, l) largely
 596 suppressed the activity of ORBs, as implied by the negative difference in diabatic heating rate

597 outside the radius of 70 km. The increased diabatic heating rate in the inner eyewall region indicates
598 intensification of the TC, especially in C1.1.


599 Changes in diabatic heating rate led to changes in the secondary circulation. As discussed in
600 section 3b, in general, the reduced diabatic heating rate in ORBs results in enhanced boundary layer
601 inflow into the inner eyewall region and the enhancement of the outflow in the upper troposphere,
602 such as in HC0.95, HC0.9, H0.95 and H0.9 (Figs. 9a–9d). The increased diabatic heating rate in
603 ORBs corresponds to the enhanced low-level inflow in the ORB region but the decreasing
604 boundary layer inflow into the inner eyewall region and thus the weakened TC, such as in HC1.05,
605 HC1.1, H1.05, H1.1 (Figs. 9e–9h). With the reduced (increased) diabatic cooling rate in the ORB
606 region, ORBs would be strengthened (suppressed), leading to the enhanced (reduced) boundary
607 layer inflow in the ORB region, while the reduced (enhanced) inflow toward the inner eyewall,
608 such as in C0.95 and C0.9 (C1.05 and C1.1). Changes in the radial wind in the mid-lower
609 troposphere show similarity to those discussed in section 3b for the sensitivity experiments
610 initialized with the TCs well before the SEF in CTRL. Those changes can also be explained as a
611 balanced response to changes in diabatic heating/cooling in ORBs as we discussed in section 3b.

612 **4. Conclusions and discussion**

613 Although it has been known that ORBs are critical to the SEF in intense TCs and the TC
614 intensity changes during the subsequent ERC (e.g., e.g., Hawkins, 1983; Kuo et al., 2009; Wang et
615 al., 2016, 2019; Yang et al. 2024), the role of diabatic heating/cooling in the SEF and the subsequent
616 structural changes in TCs have not been systematically evaluated in the literature. This has been
617 attempted here based on a series of sensitivity experiments using the high-resolution WRF model
618 under idealized conditions by artificially increasing or decreasing diabatic heating/cooling rate in
619 the ORB region in a control simulation. Results show that increasing diabatic heating rate in ORBs
620 both before and shortly prior to the SEF resulted in the earlier SEF and the quick weakening of the
621 eyewall, substantially shortening the duration of the double eyewall structure. Reducing diabatic
622 heating rate in ORBs weakens the rainbands and delays the SEF, but prolongs the duration of the

623 double eyewall structure if it develops. Reducing diabatic cooling rate in ORBs enhances
624 convective activity in ORBs but has little effect on convection in the primary eyewall prior to the
625 SEF. However, reducing diabatic cooling rate results in a wider eyewall structure and a stronger
626 TC after the eyewall replacement. Increasing diabatic cooling rate in ORBs largely suppresses
627 convection in rainbands and prohibits the SEF or leads to prolonged duration of the double eyewall
628 if the outer eyewall already formed. Therefore, in general diabatic heating is key to the
629 strengthening of ORBs, the outward expansion of tangential wind, and thus the SEF and the
630 subsequent replacement of the inner eyewall by the outer eyewall. Diabatic cooling is unfavorable
631 for convective activity in ORBs, prohibiting the outward expansion of tangential wind and thus
632 negative to the SEF.

633 Our results strongly suggest that the relative magnitude of diabatic heating rates in ORBs and
634 in the primary eyewall is crucial to the SEF and the eyewall replacement. To quantify this, we
635 defined the ratio between the area-averaged diabatic heating rate in the eyewall and in ORBs. The
636 area used in the average was the area in 20 km width centered at the maximum azimuthal mean
637 diabatic heating rate vertically-averaged between 2–6 km heights in the eyewall or in the ORBs.
638 Figure 10 shows the time series of the ratio so defined. The SEF in CTRL occurred at around 135
639 h as the ratio increased to approximately 1.0, indicating that the diabatic heating rates in ORBs and
640 in the primary eyewall are comparable at the time of the SEF. After the SEF, the ratio often
641 increased with time, indicating the strengthening of the outer eyewall and the weakening of the
642 inner eyewall. However, the ratio could not imply the duration of the double eyewall structure
643 because the inner eyewall dissipated at quite different rates as implied from the slope of the ratio
644 in Fig. 10. Nevertheless, the ratio defined in this study can provide a quantitative measure to assess
645 the likelihood of ORBs evolving into the outer eyewall in almost all experiments. Note that the
646 measure of the relative heating rate between the primary eyewall and ORBs defined in this study
647 is slightly different from the definition in Zhu and Zhu (2014), who selected the ratio of the
648 maximum heating rates in ORBs and in the inner eyewall as the reference.

649
650
651
652
653

Figure 10. Ratio of the outer rainband heating rate to the inner eyewall heating rate between individual sensitivity experiments and CTRL. (a) Initialized sensitivity experiments well before the SEF in CTRL and (b) initialized sensitivity experiments shortly prior to the SEF in CTRL. Here the heating rate is area average in 20 km width centered at the maximum heating rate averaged between 2–6 km heights in the eyewall or the outer rainbands.

654 Diabatic heating /cooling in outer rainbands is affected by the near-core environmental relative
655 humidity. High moisture content often favors diabatic heating, while dry near-core environmental
656 conditions or dry air intrusion may promote diabatic cooling. In the western North Pacific region,
657 as TCs are often influenced by the abundant water vapor in the western Pacific monsoon trough,
658 most TC rainbands develop vigorously. As a result, most strong TCs would experience the ERC
659 processes. Our finding can help to explain why the ERCs are more common in the western North
660 Pacific than over the North Atlantic. We should also mention that although most previous studies
661 have demonstrated the importance of ORBs to the SEF in TCs, no studies have examined the roles
662 of diabatic heating/cooling in ORBs in determining the timing of the SEF and the duration of the
663 double eyewall structure. Since diabatic heating/cooling in ORBs is associated with the near-core

664 environmental moisture condition, our results can explain why the frequency of the secondary
665 eyewall occurrence is much higher in the western North Pacific than in the North Atlantic. This is
666 because over the western North Pacific, most TCs form in western Pacific monsoon trough with
667 relatively higher moisture conditions in the mid-lower troposphere. However, over the North
668 Atlantic, the lack of active monsoon trough and the effect of Saharan air layer produce a relatively
669 drier environment, making the North Atlantic less favorable for the SEF than the western North
670 Pacific. In addition, we should point out that the importance of diabatic heating/cooling in ORBs
671 to the SEF and the structural change of the simulated TC is demonstrated from axisymmetric
672 perspectives. The details of heating/cooling distribution in ORBs are not analyzed. For example,
673 diabatic heating/cooling in ORBs may occur in convective and stratiform regions, which may have
674 some different effects and could be studied in a future study.

675 **Acknowledgments:** This work was supported by the National Key R&D Program of China under
676 grant 2022YFC3004200, the National Natural Science Foundation of China (42305007), and the
677 S&T Development Fund of CAMS (2024KJ017). Y. Wang was supported by NSF grant AGS-
678 1834300.

679 **Data Availability Statement:** All numerical experiments were conducted using the WRF model
680 V4.2.1, which was downloaded from <https://github.com/wrf-model/WRF/releases>. All model
681 outputs used in this study will be made available after the acceptance of the manuscript.

682 **REFERENCES**

683 Abarca, S. F., and K. L. Corbosiero, 2011: Secondary eyewall formation in WRF simulations of hurricanes Rita
684 and Katrina (2005). *Geophys. Res. Lett.*, **38**, L07802, <https://doi.org/10.1029/2011GL047015>.

685 Black, M. L., and H. E. Willoughby, 1992: The concentric eyewall cycle of Hurricane Gilbert. *Mon. Wea. Rev.*,
686 **120**, 947–957, [https://doi.org/10.1175/1520-0493\(1992\)120<0947:TCECOH>2.0.CO;2](https://doi.org/10.1175/1520-0493(1992)120<0947:TCECOH>2.0.CO;2).

687 Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical
688 cyclone intensification. *Quart. J. Roy. Meteor. Soc.*, **135**, 1715–1731, <https://doi.org/10.1002/qj.502>.

689 Chen, G., 2018: Secondary eyewall formation and concentric eyewall replacement in association with increased
690 low-level inner-core diabatic cooling. *J. Atmos. Sci.*, **75**, 2659–2685, <https://doi.org/10.1175/JAS-D-17-0207.1>.

691 Dai, Y., S. J. Majumdar, and D. S. Nolan, 2017: Secondary eyewall formation in tropical cyclones by outflow–
692 jet interaction. *J. Atmos. Sci.*, **74**, 1941–1958, <https://doi.org/10.1175/JAS-D-16-0322.1>.

693 Didlake, A. C., Jr., and R. A. Houze Jr., 2011: Kinematics of the secondary eyewall observed in Hurricane Rita
694 (2005). *J. Atmos. Sci.*, **68**, 1620–1636, <https://doi.org/10.1175/2011JAS3715.1>.

695 Didlake, A. C., Jr., and R. A. Houze Jr., 2013a: Convective-scale variations in the inner-core rainbands of tropical
696 cyclones. *J. Atmos. Sci.*, **70**, 504–523, <https://doi.org/10.1175/JAS-D-12-0134.1>.

697 Didlake, A. C., Jr., and R. A. Houze Jr., 2013b: Dynamics of the stratiform sector of a tropical cyclone rainband.
698 *J. Atmos. Sci.*, **70**, 1891–1911, <https://doi.org/10.1175/JAS-D-12-0245.1>.

699 Didlake, A. C., Jr., G. M. Heymsfield, P. D. Reasor, and S. R. Guimond, 2017: Concentric eyewall asymmetries
700 in Hurricane Gonzalo (2014) observed by airborne radar. *Mon. Wea. Rev.*, **145**, 729–749,
701 <https://doi.org/10.1175/MWR-D-16-0175.1>.

702 Didlake, A. C., Jr., P. D. Reasor, R. F. Rogers, and W.-C. Lee, 2018: Dynamics of the transition from spiral
703 rainbands to a secondary eyewall in Hurricane Earl (2010). *J. Atmos. Sci.*, **75**, 2909–2929,
704 <https://doi.org/10.1175/JAS-D-17-0348.1>.

705 Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a
706 mesoscale two-dimensional model. *J. Atmos. Sci.*, **46**, 3077–3107, [https://doi.org/10.1175/1520-0469\(1989\)046<3077:NSOCOD>2.0.CO;2](https://doi.org/10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2).

707 Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. *Astrophys.*
708 *Norv.*, **5**, 19–60.

709 Fang, J., and F. Zhang, 2012: Effect of beta shear on simulated tropical cyclones. *Mon. Wea. Rev.*, **140**, 3327–
710 3346, <https://doi.org/10.1175/MWR-D-10-05021.1>.

711 Fischer, M. S., R. F. Rogers, and P. D. Reasor, 2020: The rapid intensification and eyewall replacement cycles of
712 Hurricane Irma (2017). *Mon. Wea. Rev.*, **148**, 981–1004, <https://doi.org/10.1175/MWR-D-19-0185.1>.

713 Fudeyasu, H., and Y. Wang, 2011: Balanced Contribution to the Intensification of a Tropical Cyclone Simulated
714 in TCM4: Outer-Core Spinup Process. *J. Atmos. Sci.*, **68**, 430–449, <https://doi.org/10.1175/2010JAS3523.1>.

715 Gray, W. M., E. Ruprecht, and R. Phelps, 1975: Relative humidity in tropical weather systems. *Mon. Wea. Rev.*,
716 **103**, 685–690, [https://doi.org/10.1175/1520-0493\(1975\)103<0685:RHITWS>2.0.CO;2](https://doi.org/10.1175/1520-0493(1975)103<0685:RHITWS>2.0.CO;2).

717 Guimond, S. R., P. D. Reasor, G. M. Heymsfield, and M. M. McLinden, 2020: The dynamics of vortex Rossby
718 waves and secondary eyewall development in Hurricane Matthew (2016): New insights from radar
719 measurements. *J. Atmos. Sci.*, **77**, 2349–2374, <https://doi.org/10.1175/JAS-D-19-0284.1>.

720 Hawkins, H. F., 1983: Hurricane Allen and Island Obstacles. *J. Atmos. Sci.*, **40**, 1360–1361,
721 [https://doi.org/10.1175/1520-0469\(1983\)040<1360:HAAIO>2.0.CO;2](https://doi.org/10.1175/1520-0469(1983)040<1360:HAAIO>2.0.CO;2).

722

723 Hawkins, J. D., M. Helveston, T. F. Lee, F. J. Turk, K. Richardson, C. Sampson, J. Kent, and R. Wade, 2006:
724 Tropical cyclone multiple eyewall configurations. 27th Conf. on Hurricanes and Tropical Meteorology,
725 Monterey, CA, Amer. Meteor. Soc., 6B.1.

726 Heng, J.-Y., Y. Wang, and W.-C. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical cyclone
727 intensification. *J. Atmos. Sci.*, **74**, 2575–2591. <https://doi.org/10.1175/JAS-D-17-0046.1>

728 Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of
729 entrainment processes. *Mon. Wea. Rev.*, **134**, 2318–2341, <https://doi.org/10.1175/MWR3199.1>.

730 Houze, R. A., Jr., S. S. Chen, B. F. Smull, W.-C. Lee, and M. M. Bell, 2007: Hurricane intensity and eyewall
731 replacement. *Science*, **315**, 1235–1239, <https://doi.org/10.1126/science.1135650>.

732 Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008).
733 Part II: Axisymmetric dynamical processes. *J. Atmos. Sci.*, **69**, 662–674, <https://doi.org/10.1175/JAS-D-11-0114.1>.

735 Huang, Y.-H., C.-C. Wu, and M. T. Montgomery, 2018: Concentric eyewall formation in Typhoon Sinlaku (2008).
736 Part III: Horizontal momentum budget analyses. *J. Atmos. Sci.*, **75**, 3541–3563, <https://doi.org/10.1175/JAS-D-18-0037.1>.

738 Kain, J. S., and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain–Fritsch scheme.
739 *The Representation of Cumulus Convection in Numerical Models, Meteor. Monogr.*, No. 46, Amer. Meteor.
740 Soc., 165–177.

741 Kepert, J. D., 2013: How does the boundary layer contribute to eyewall replacement cycles in axisymmetric
742 tropical cyclones? *J. Atmos. Sci.*, **70**, 2808–2830, <https://doi.org/10.1175/JAS-D-13-046.1>.

743 Kossin, J. P., and M. Sitkowski, 2009: An objective model for identifying secondary eyewall formation in
744 hurricanes. *Mon. Wea. Rev.*, **137**, 876–892, <https://doi.org/10.1175/2008MWR2701.1>.

745 Kossin, J. P., and Sitkowski M. , 2012: Predicting hurricane intensity and structure changes associated with
746 eyewall replacement cycles. *Wea. Forecasting*, **27**, 484–488, <https://doi.org/WAF-D-11-00106.1>.

747 Kossin, J. P., and M. DeMaria, 2016: Reducing Operational Hurricane Intensity Forecast Errors during Eyewall
748 Replacement Cycles. *Wea. Forecasting*, **31**, 601–608, <https://doi.org/10.1175/WAF-D-15-0123.1>.

749 Kuo, H.-C., C.-P. Chang, Y.-T. Yang, and H.-J. Jiang, 2009: Western North Pacific typhoons with concentric
750 eyewalls. *Mon. Wea. Rev.*, **137**, 3758–3770, <https://doi.org/10.1175/2009MWR2850.1>.

751 Li, Q., Y. Wang, and Y. Duan, 2014: Effects of Diabatic Heating and Cooling in the Rapid Filamentation Zone
752 on Structure and Intensity of a Simulated Tropical Cyclone. *J. Atmos. Sci.*, **71**, 3144–3163,
753 <https://doi.org/10.1175/JAS-D-13-0312.1>.

754 Liu, X., Q. Li, and Y. Dai, 2022: Stronger vertical shear leads to earlier secondary eyewall formation in idealized
755 numerical simulations. *Geophys. Res. Lett.*, **49**, e2022GL098093. <https://doi.org/10.1029/2022GL098093>

756 Menelaou, K., M. K. Yau, and Y. Martinez, 2012: On the dynamics of the secondary eyewall genesis in Hurricane
757 Wilma (2005). *Geophys. Res. Lett.*, **39**, L04801, doi:10.1029/2011GL050699.

758 Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for
759 inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. *J. Geophys. Res.*, **102**,
760 16 663–16 682, <https://doi.org/10.1029/97JD00237>.

761 Montgomery, M. T., and R. T. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral
762 bands and intensity changes in hurricanes. *Quart. J. Roy. Meteor. Soc.*, **123**, 435–465,
763 <https://doi.org/10.1002/qj.49712353810>.

764 Moon, Y., and D. S. Nolan, 2010: The dynamic response of the hurricane wind field to spiral rainband heating.
765 *J. Atmos. Sci.*, **67**, 1779–1805, <https://doi.org/10.1175/2010JAS3171.1>.

766 Navarro, E. L., G. J. Hakim, and H. E. Willoughby, 2017: Balanced Response of an Axisymmetric Tropical
767 Cyclone to Periodic Diurnal Heating. *J. Atmos. Sci.*, **74**, 3325–3337, <https://doi.org/10.1175/JAS-D-16-0279.1>.

768 Noh, Y., W. G. Cheon, S. Y. Hong, and S. Raasch, 2003: Improvement of the K-profile model for the planetary
769 boundary layer based on large eddy simulation data. *Bound.-Layer Meteor.*, **107**, 401–427,
770 <https://doi.org/10.1023/A:1022146015946>.

771 Nong, S., and K. A. Emanuel, 2003: A numerical study of the genesis of concentric eyewalls in hurricanes. *Quart.*
772 *J. Roy. Meteor. Soc.*, **129**, 3323–3338, <https://doi.org/10.1256/qj.01.132>.

773 Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part
774 I: Quasi-steady forcing. *Mon. Wea. Rev.*, **137**, 805–821, <https://doi.org/10.1175/2008MWR2657.1>.

775 Qin, N., L. Wu, and Q. Liu, 2021: Evolution of the Moat Associated with the Secondary Eyewall Formation in a
776 Simulated Tropical Cyclone. *J. Atmos. Sci.*, **78**, 4021–4035, <https://doi.org/10.1175/JAS-D-20-0375.1>.

777 Qiu, X., Z.-M. Tan, and Q. Xiao, 2010: The roles of vortex Rossby waves in hurricane secondary eyewall
778 formation. *Mon. Wea. Rev.*, **138**, 2092–2019, <https://doi.org/10.1175/2010MWR3161.1>.

779 Rozoff, C. M., D. S. Nolan, J. P. Kossin, F. Zhang, and J. Fang, 2012: The roles of an expanding wind field and
780 inertial stability in tropical cyclone secondary eyewall formation. *J. Atmos. Sci.*, **69**, 2621–2643,
781 <https://doi.org/10.1175/JAS-D-11-0326.1>.

782 Schubert, W. H., and J. J. Hack, 1983: Transformed Eliassen balanced vortex model. *J. Atmos. Sci.*, **40**, 1571–
783 1583, [https://doi.org/10.1175/1520-0469\(1983\)040<1571:TEBVM>2.0.CO;2](https://doi.org/10.1175/1520-0469(1983)040<1571:TEBVM>2.0.CO;2).

784 Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and
785 momentum. *J. Atmos. Sci.*, **39**, 378–394, [https://doi.org/10.1175/1520-0469\(1982\)039<0378:TROBHT>2.0.CO;2](https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2).

786 Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J.
787 G. Powers, 2008: A description of the advanced research WRF Version 3. *NCAR Tech. Note NCAR/TN-475/STR*, **113 pp.** [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf].

788 Sun, Y. Q., Y. Jiang, B. Tan, and F. Zhang, 2013: The governing dynamics of the secondary eyewall formation of
789 Typhoon Sinlaku (2008). *J. Atmos. Sci.*, **70**, 3818–3837, <https://doi.org/10.1175/JAS-D-13-044.1>.

790 Terwey, W. D., and M. T. Montgomery, 2008: Secondary eyewall formation in two idealized, full-physics
791 modeled hurricanes. *J. Geophys. Res.*, **113**, D12112, <https://doi.org/10.1029/2007JD008897>.

792 Tyner, B., P. Zhu, J. A. Zhang, S. Gopalakrishnan, F. Marks Jr., and V. Tallapragada, 2018: A top-down pathway
793 to secondary eyewall formation in simulated tropical cyclones. *J. Geophys. Res. Atmos.*, **123**, 174–197,
794 <https://doi.org/10.1002/2017JD027410>.

795 Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. *J. Atmos. Sci.*, **66**,
796 3335–3350, <https://doi.org/10.1175/2009JAS3092.1>.

797 Wang, H., C. Wu, and Y. Wang, 2016: Secondary eyewall formation in an idealized tropical cyclone simulation:
798 Balanced and unbalanced dynamics. *J. Atmos. Sci.*, **73**, 3911–3930, <https://doi.org/10.1175/JAS-D-15-0146.1>.

799 Wang, H., Y. Wang, J. Xu, and Y. Duan, 2019: The axisymmetric and asymmetric aspects of the secondary eyewall
800 formation in a numerically simulated tropical cyclone under idealized conditions on an f plane. *J. Atmos. Sci.*,
801 **76**, 357–378, <https://doi.org/10.1175/JAS-D-18-0130.1>.

802 Wang, Y., and Z. Tan, 2020: Outer Rainbands–Driven Secondary Eyewall Formation of Tropical Cyclones. *J.*

805 *Atmos. Sci.*, **77**, 2217–2236, <https://doi.org/10.1175/JAS-D-19-0304.1>.

806 Wang, Y., and Z. Tan, 2022: Essential Dynamics of the Vertical Wind Shear Affecting the Secondary Eyewall
807 Formation in Tropical Cyclones. *J. Atmos. Sci.*, **79**, 2831–2847, <https://doi.org/10.1175/JAS-D-21-0340.1>.

808 Wang, Y., 2007: A multiply nested, movable mesh, fully compressible, nonhydrostatic tropical cyclone model—
809 TCM4: Model description and development of asymmetries without explicit asymmetric forcing. *Meteor.
810 Atmos. Phys.*, **97**, 93–116, <https://doi.org/10.1007/s00703-006-0246-z>.

811 Wang, Y., 2009: How Do Outer Spiral Rainbands Affect Tropical Cyclone Structure and Intensity?. *J. Atmos. Sci.*,
812 **66**, 1250–1273, <https://doi.org/10.1175/2008JAS2737.1>.

813 Willoughby, H. E., 1979: Excitation of Spiral Bands in Hurricanes by Interaction Between the Symmetric Mean
814 Vortex and a Shearing Environmental Steering Current. *J. Atmos. Sci.*, **36**, 1226–1235,
815 [https://doi.org/10.1175/1520-0469\(1979\)036<1226:EOSBIH>2.0.CO;2](https://doi.org/10.1175/1520-0469(1979)036<1226:EOSBIH>2.0.CO;2).

816 Willoughby, H. E., J. A. Clos, and M. G. Shoreibah, 1982: Concentric eye walls, secondary wind maxima, and
817 the evolution of the hurricane vortex. *J. Atmos. Sci.*, **39**, 395–411, [https://doi.org/10.1175/1520-0469\(1982\)039<0395:CEWSWM>2.0.CO;2](https://doi.org/10.1175/1520-
818 0469(1982)039<0395:CEWSWM>2.0.CO;2).

819 Wunsch, K. E. D., and A. C. Didlake Jr., 2018: Analyzing tropical cyclone structures during secondary eyewall
820 formation using aircraft in situ observations. *Mon. Wea. Rev.*, **146**, 3977–3993, [https://doi.org/10.1175/MWR-D-18-0197.1](https://doi.org/10.1175/MWR-
821 D-18-0197.1).

822 Yang, Y.-T., H.-C. Kuo, E. A. Hendricks, and M. S. Peng, 2013: Structural and intensity changes of concentric
823 eyewall typhoons in the western North Pacific basin. *Mon. Wea. Rev.*, **141**, 2632–2648,
824 <https://doi.org/10.1175/MWR-D-12-00251.1>.

825 Yu, C. L., A. C. Didlake, F. Zhang, and R. G. Nystrom, 2021: Asymmetric rainband processes leading to
826 secondary eyewall formation in a model simulation of Hurricane Matthew (2016). *J. Atmos. Sci.*, **78**, 29–49,
827 <https://doi.org/10.1175/JAS-D-20-0061.1>.

828 Zhang, F., D. Tao, Y. Q. Sun, and J. D. Kepert, 2017: Dynamics and predictability of secondary eyewall formation
829 in sheared tropical cyclones. *J. Adv. Model. Earth Syst.*, **9**, 89–112, <https://doi.org/10.1002/2016MS000729>.

830 Zhang, G., and W. Perrie, 2018: Effects of asymmetric secondary eyewall on tropical cyclone evolution in
831 Hurricane Ike (2008). *Geophys. Res. Lett.*, **45**, 1676–1683, <https://doi.org/10.1002/2017GL076988>.

832 Zhu, X., H. Yu, and Y. Wang, 2022: Downwind Development in a Stationary Band Complex Leading to the
833 Secondary Eyewall Formation in the Simulated Typhoon Soudelor (2015). *Mon. Wea. Rev.*, **150**, 2459–2483,
834 <https://doi.org/10.1175/MWR-D-21-0318.1>.

835 Zhu, Z., and P. Zhu, 2014: The role of outer rainband convection in governing the eyewall replacement cycle in
836 numerical simulations of tropical cyclones. *J. Geophys. Res. Atmos.*, **119**, 8049–8072,
837 <https://doi.org/10.1002/2014JD021899>.