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ABSTRACT: In the realm of combustion and reacting flow modeling, the calibration of the kinetic model parameters often relies
on experimental data. However, not all data obtained under different experimental conditions (pressure, temperature, equivalence
ratio, etc.) hold equal weight or feasibility for effective model calibration. Consequently, experimental design emerges as an
important topic in combustion kinetics, aiming at identifying the most informative conditions computationally. In this work, we built
a Bayesian experimental design framework enabling the highly efficient uncertainty reduction of kinetic parameters and model
predictions. Our contributions are 3-fold. First, inspired by previous works aiming at uncertainty reduction of prediction or selected
parameters, we proposed two new optimization objectives via model linearization oriented directly to quantities of interest (QoI),
parameter-oriented and prediction-oriented design, for uncertainty reduction of specific parameters and prediction targets, respectively.
We conducted theoretical analyses to link Bayesian information gain with dimensionless sensitivity (referred to as impact numbers)
and to demonstrate the necessity of implementing QoI-oriented Bayesian experimental design (QBED). Second, neural network
response surfaces with both kinetic parameters and experimental conditions as inputs were applied to the experimental design so that
a single unified response surface can provide fast, differentiable predictions under a wide range of conditions. It not only facilitates
gradient-based design but also accelerates enumeration-based design by parallel computing. Third, we integrated the posterior
approximation by linearizing response surfaces with gradient ascent for design optimization. Comparisons with the enumeration-
based method demonstrate that gradient-based design usually has a higher average information gain, while enumeration-based
design, when assisted by the unified response surface, shows a faster computational speed with acceptable suboptimality.
Comprehensive numerical experiments were conducted on the ignition delay times and laminar flame speeds of methanol. Statistical
analysis was performed to prove the effectiveness of our methods. The dynamic evolution of uncertainty reduction was unraveled
and is well supported by the insights from impact numbers. The proposed method can finish one design-inference iteration in 0.5 s
in the 3-D design space and 1.6 s in the 9-D space on an NVIDIA GeForce RTX 2080 Ti graphics processing unit. The QBED
source code was made available online.

1. INTRODUCTION
Kinetic parameters in combustion chemistry models are usually
determined by theoretical calculation or direct measurements,
both of which can introduce a large uncertainty into the
parameters. To mitigate the uncertainty, a common approach
is to calibrate these parameters against global combustion
measurements, such as laminar flame speeds (LFS), ignition
delay times (IDT), and species time-histories.1 However, not
all measurements are equally informative: some would be very

helpful to reduce the posterior uncertainty, while others are
not. Then, an important question arises: how to pick these
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more informative experimental conditions, a concept com-
monly known as experimental design or design of experiments
(DoE).
Empirically, we have two simple principles to evaluate the

information provided by an experiment. The first principle
involves selecting experimental conditions where the model
prediction for a specific target is highly sensitive to the
parameters being inferred. This principle is evident in direct
measurements of rate constants, which are typically conducted
under conditions where the model prediction is extremely
sensitive and primarily depends on one or two reaction rate
constants.2 The second principle is to select conditions with
minimal measurement uncertainty. Experimentalists consis-
tently strive to reduce the uncertainty of instruments3 and to
eliminate the interference of nonchemical factors, or nonideal
effects in measurements.4 In the past, combustion researchers
have been passionate about determining the accurate values of
kinetic parameters. These two empirical principles have been
generally adopted by experimentalists. However, from the
1980s, the community gradually realized that developing a
sufficiently accurate kinetic model is neither possible nor
necessary.1 A practical approach is to develop models with a
well-quantified uncertainty. As uncertainty quantification
(UQ) draws increasing attention in the combustion
community, many systematic DoE algorithms for uncertainty
reduction, instead of ambiguous, empirical principles, have
been developed or implemented by combustion engineers5 in
recent years. At the same time, as an important topic of
statistics, many DoE algorithms have been developed by
statisticians and computer scientists.6,7

The earliest attempt for DoE in the combustion community
is sensitivity analysis,2,8 and it has dominated the design of
kinetic experiments for several decades. However, it cannot
provide a decision when multiple parameters or multiple
targets are included. Frenklach and co-workers9 developed the
first DoE algorithm for combustion kinetics besides sensitivity
analysis, where the posterior interval of parameters was
evaluated. Mosbach et al.10 designed experiments of
compression engines using the determinant of the Fisher
information matrix. Huan and Marzouk11 combined poly-
nomial chaos response surfaces and double-loop Monte Carlo
(MC) sampling to evaluate expected information gain (EIG).
This is the first work in which Bayesian experimental design
was applied to combustion problems. vom Lehn et al.12

evaluated EIG using the posterior covariance matrix analyti-
cally derived by the method of uncertainty minimization using
polynomial chaos expansion (MUMPCE).13 Wang et al.14

assumed that both kinetic uncertainty and systematic errors
would linearly impact the measurement so that the information
gain can be analytically derived. It is worth noting that both
Wang et al.14 and vom Lehn et al.,12 where the parameter-
prediction relation was linearized to avoid MC sampling, can
be considered as an approximated version of Huan and
Marzouk.11 Sheen and Manion15 developed a method called
experimental design by differential entropy, where a subset of
potential experimental conditions was selected by assessing
information flux in and out of targets. Li et al.16 proposed
sensitivity entropy as a measure of information gain, where the
sensitivity entropy could measure the degree to which the
sensitivities of different parameters are concentrated or
dispersed.
An experimental design framework for uncertainty reduction

usually includes three components. (1) Information measure,

which quantifies the information one experiment provides
given a design, such as the EIG in ref 11 (computed by double-
loop MC) and sensitivity entropy in ref 16. (2) Design
optimization methods that find the optimal condition in the
design space by maximizing the information measure. The
aforementioned research (except for ref 11, where gradient-free
optimization was employed) first constructed a set of
candidate conditions, evaluated the information gain for each
candidate condition, and chose the optimal condition as the
one with the highest information gain. (3) Response surfaces,
which map the parameters to model predictions directly
instead of performing physical model evaluations to reduce the
computational cost, since model prediction will be repeatedly
evaluated. Response surfaces have generally been used in both
UQ and DoE works, such as polynomials in ref 12, polynomial
chaos expansion in ref 11, and neural networks (NNs) in refs
16 and 17. In this study, we aim to identify and bridge gaps for
these three components accordingly.
The gap in the information measure part is that most

algorithms focus on reducing the uncertainty of the entire
model,12 or of several unspecified parameters.16 This is an
obvious goal mismatch from the common needs of reducing the
uncertainty of specific parameters or prediction targets. Some
studies only calibrated parameters of interests while fixed
parameters out of interests,11 leading to an overconf ident
estimation of uncertainty (see the analysis in Section 2.5).
Some algorithms have been proposed to deal with this issue,
such as the focused optimal Bayesian experimental design18 for
uncertainty reduction of selected parameters, goal-oriented or
prediction-oriented experimental design for uncertainty
reduction of model prediction.19,20 In this paper, our first
contribution is to propose fast estimators via model
linearization for parameter-oriented and prediction-oriented
design, collectively termed as QoI-oriented Bayesian exper-
imental design (QBED), based on the determinant of the
posterior covariance matrix used in ref 12. QBED entails a
minimal increase in computational cost and requires only
minor changes to the existing measure but shows better
performance than model-oriented design in various scenarios.
Prediction-oriented design can also be used to determine
alternative conditions for reducing the prediction uncertainty
of targets that cannot be reached by experimental facilities. For
example, data measured under low temperatures can be used
to reduce the prediction uncertainty at high temperatures.
Some algorithms have been developed to deal with this
task,21,22 but our method takes priors and measurement noise
into consideration (instead of only sensitivity) and directly
optimize the prediction uncertainty.
In the design optimization part, most previous works used

an enumeration-based method on grid points, which can be
inefficient when the design space is high-dimensional. In the
machine learning and statistics communities, several gradient-
based experimental design algorithms have been devel-
oped.23−26 However, in these studies, the information measure
involves time-consuming MC sampling or variational infer-
ence. We combine gradient-based optimization with a highly
efficient information measure developed by vom Lehm et al.,12

enabling fast and fully differentiable evaluation of the expected
information gain (EIG). All the matrix operations are done in
PyTorch environment,27 and hence fully differentiable.
For the construction of response surfaces, previous work

usually built an individual response surface for each discretized
condition, excluding the possibility of applying gradient-based
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methods in high-dimensional problems and accelerating
enumeration-based methods via parallel computing on
advanced hardware. Thus, a single, unif ied response surface is
necessary. However, building a unified response surface has
several challenges. First, since the inputs must include design
conditions, the output can change across several orders of
magnitude under different conditions (such as IDT), and such
a change can be highly nonlinear and even nonmonotonic
(such as LFS versus equivalence ratio). Second, we cannot use
active learning algorithms such as the one proposed by Oh et
al.,28 to make training samples focus on the posterior region,
since the posterior region is not known a priori. Inspired by
Zhang et al.,17 where thermodynamic conditions are also
included as inputs of a response surface for UQ, a unified
response surface that can provide fast, accurate prediction was
applied to the DoE task for the first time. Neural networks are
chosen due to their great expressive power and compatibility
with the parallelism of graphics processing units (GPU).

2. METHODS
2.1. Pipeline. The pipeline of the kinetic experimental design in

this work is shown in Figure 1. The steps in this pipeline can be

divided into offline preparation and online running. In the offline
stage, we need to generate training samples and train the NN-based
response surface so that we can replace the physical model by
surrogate models for fast evaluation in the online stage. Then before
we start the online stage, preliminary numerical experiments are
needed to determine which design optimization should be used. We
provide two choices, point-wise enumeration and gradient ascent. A
proper sample size for enumeration and a proper number of
initializations for gradient ascent should also be determined. In the
online stage, we perform sequential experimental design. Starting from
the prior distribution, we evaluate the information provided by an
experimental measurement according to a predefined information
measure and then maximize such as measure within the design space.
After each design time, we collect experimental measurements
(synthetic data generated by response surfaces in this paper) at the
design point (according to eq 1). Then, these data are used to
perform inference to obtain the posterior distribution. The inference
method we employ is MUMPCE, but our approach is different from
the method in ref 17 in two aspects. First, we do not eliminate
inconsistent data since we generate synthetic data using the presumed
model plus Gaussian noise; second, we do not freeze any parameters.
In the next iteration of design inference, the posterior distribution is

used as the prior. Such a design-inference iteration is repeated a given
number of times (5 in this work). The response surfaces are used in
both design and inference. Our main contributions lie in the three
steps highlighted in Figure 1. It is worth noting that if design cannot
be conducted along with the experimentation, our pipeline can also
design all experiments at once by just taking n in eq 11 equal to the
number of experiments that will be conducted.

2.2. Preliminaries. We present the preliminaries for Bayesian
DoE following Huan and Marzouk11 and vom Lehm et al.12

In the Bayesian model calibration, we assume that the experimental
measurement is generated by model prediction at ground truth
parameters plus noise:

y k dM( , )= + (1)

where k is the vector of kinetic parameters, y is the vector of
experimental measurements, d is the vector of design (including
conditions such as temperature, pressure, equivalence ratio, etc.), and
M(·) is the model prediction. ϵ is the measurement noise, which
usually follows a uniform Gaussian distribution. The Bayes’ Theorem
with design d can be expressed as

k y d
y k d k

y d
y k d k
y k d k k

p
p p

p
p p
p p

( , )
( , ) ( )

( )
( , ) ( )

( , ) ( ) d
K

| = |
|

= |
| (2)

where K is the support of k. Here, we assume that the prior
distribution p(k) is irrelevant to d. Kullback−Leibler (K-L)
divergence is commonly employed to quantify the difference between
two distributions from an information-theoretic standpoint. The K-L
divergence of prior and posterior distributions serves as a metric to
gauge the information gain:

k y d k k y d
k y d
k

kD p p p
p
p

( , ) ( ) ( , )ln
( , )
( )
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ÑÑÑÑÑÑÑÑÑÑ (3)

K-L divergence is always non-negative, and it equals zero if and only if
two distributions are identical. The larger the K-L divergence is, the
larger the difference between the two distributions. Since we cannot
ascertain the experimental data y beforehand, we can weight the K-L
divergence by the probability density function (PDF) of y, resulting in
the expected information gain (EIG) U(d):

d y d k y d k y

y d k y d
k y d
k

k y
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In addition, EIG can also be viewed as the expected entropy difference
between prior and posterior distribution:29

d y d k y d k y d k y k d

y k d k k y

U p p p p

p p

( ) ( ) ( , )ln ( , )d d ( )

( , )ln ( )d d
Y K Y K

= | | | |

× | (5)

y d k y d y y k d k yp H p p H p( ) ( , ) d ( , ) ( ) d
Y Y

= | [ | ] + | [ ] (6)

y d k y d y kp H p H p( ) ( , ) d ( )
Y

= | [ | ] + [ ] (7)

y d k k y d yp H p H p( ) ( ) ( , ) d
Y

= | { [ ] [ | ]} (8)

where H[p(θ)] = −∫ Θp(θ)ln p(θ)dθ is the entropy of a distribution
with PDF p(θ).

The goal of Bayesian DoE is to find the optimal experimental
condition within the design space :

d dUarg max ( )
d

* = (9)

In Huan and Marzouk,11 eq 4 is estimated through double-loop
Monte Carlo (MC) sampling, which is asymptotically unbiased but
computationally expensive. For the details of this algorithm, readers

Figure 1. Pipeline of kinetic experimental design in this work. The
three components to which our contribution corresponds are
highlighted as Information Measure, Design Optimization, and
Response Surface Training.
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should refer to the original paper.11 Rainforth et al.30 have
demonstrated that this double-loop (or nested) MC estimator has
an error that scales with the computational cost at an order of −1

3
. So

prohibitively expensive computation is inevitable if one sticks to the
full Bayesian formulation. In the combustion community, a simplified
version of the full Bayesian DoE is often implemented. In this work,
we adopted the criterion proposed by vom Lehn et al.,12 where the
posterior was evaluated using MUMPCE.

In the MUMPCE framework with Gaussian prior and independent
and identically distributed (iid) additive Gaussian noises,13 the
posterior distribution is obtained by maximizing the numerator part of
eq 2 to get the maximum a posteriori (MAP) estimation k* first, and
then by linearizing the response surface around MAP point, the
posterior distribution would be Gaussian and the covariance matrix
can be analytically derived:

J k d J k d( , ) ( , )

( )
r r r r

r

n T

r1
2

0

1
1

=
* *

+
=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (10)

Here, Jr(k*, dr) is the m × p Jacobian matrix of model response
evaluated at k* and condition dr, i.e., ∂M(k, dr)/∂k|k=k*, where m is
the number of parameters, p is the dimension of measurements for
one experiment, n is total number of measurements. Σ0 is the
covariance matrix of the prior distribution (for uniform prior
distributions, the posterior is just the above equation with all-zero
matrix for Σ0

−1), and σr is the standard deviation of the Gaussian noise.
In Bayesian statistics, the technique of approximating posterior
distribution by linearizing models around the MAP point is called
Laplacian approximation, which provides a Gaussian distribution
whose logarithm of PDF has a curvature same as that of the actual
posterior distributions.31

vom Lehn et al.12 did not draw samples from p(y), evaluate
information gain for each sample of y, and take the average. Instead,
they used the information gain where the measurement y is the
prediction at the nominal values of kinetic parameters, as the EIG. In
this case, the MAP estimation is exactly the same as the nominal
values. Thus, the “expected” posterior covariance matrix is assumed to
be

d
J k d J k d

( )
( ; ) ( ; )

( )
r r r r

E
r

n T

r

0 0

1
2 0

1

1

= +
=
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ÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑ (11)

and dr is the condition for r-th experiment, d = {d1, d2, ..., dn}. Note
that the Jacobian matrix would change if we change the conditions
under which the experiment is conducted. From eq 8 we can know
that for a certain Gaussian prior, maximizing EIG is equivalent to
minimizing the expected posterior entropy. The “expected” posterior
is a Gaussian distribution with a covariance matrix, shown in eq 11.
For a Gaussian distribution with covariance matrix Σ, the entropy is

H m
2
(1 ln(2 ))

1
2
ln det= + + (12)

where m is the dimension of the Gaussian distribution. Thus,
minimizing the expected posterior entropy is equivalent to minimizing
the determinant of the expected posterior covariance matrix:

d darg min det ( )
d

E
* = (13)

To gain more insight into eq 13, consider a Bayesian linear model
with Gaussian prior N(0, Σ0) and Gaussian noise ϵ ∼ N(0, Σϵ), where
the measurement is given as y = Xk + ϵ. In this case, the EIG in eq 4 is
exactly ln[det(Σ0)] − ln[det (XΣϵ

−1 XT + Σ0
−1)−1].32 Again

maximizing EIG is equivalent to minimizing the second term. Then,
the minimization in eq 13 is a linear approximation for the
maximization of EIG of nonlinear model, where the parameter−
prediction relation is linearized by the Jacobian matrix. Thus, as long
as the physical model is linear enough around the nominal value,
linear approaches of DoE should be close to a full Bayesian design. In

fact, before ref 12, this estimator extended from Bayesian linear
models has been generally used by statisticians.32

When the noise is multiplicative instead of additive, we just use a
new Jacobian where the output is the logarithm of the original output
and replace the noise level with the logarithm (same base as above) of
the original noise level:

d
J k d J k d

( )
( ; ) ( ; )

(ln )
r r r r

E
r

n T

r

0 0

1
2 0

1

1
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2.3. Gradient-Based Design. In our framework, since the
constructed NN response surface is fully differentiable with respect to
kinetic parameters and experimental conditions, the optimization
problem in eq 13 or 14 can be solved by gradient-based optimization
algorithms. Here, we employed Adam optimizer33 due to its adaptive
step sizes. The learning rate and weight decay are set as 0.01 and 0.
Other parameters are kept as default values. Our experience shows
that using gradient descent with a fixed step size suffers from
divergence or very slow convergence if the step size is not picked
carefully, while Adam can work very well with a learning rate fixed at
0.01. We transformed each condition linearly into the range [−1, 1].
Since we need to constrain our decision variable within the design
space, we clamped each condition within the range of design space
after each iteration (clamping within [−1, 1] after linear trans-
formation). Multiple initializations in optimization can avoid being
trapped in the local minimum, and the effect of the number of
initializations is discussed in Section 3. After the optimization finishes,
the initialization with the largest EIG can be picked as the final
optimal design.

2.4. QoI-Oriented Bayesian Experimental Design. In eq 13 or
14, the optimizer would minimize the volume of a hyper-ellipse
described by the covariance matrix of all kinetic parameters. We call it
a model-oriented experimental design. As mentioned in Section 1, in
practice, minimizing the uncertainty of all kinetic parameters is often
not the primary objective in model calibration using experimental
measurements. Therefore, depending on the specific QoI, a modified
objective function can be employed, which is termed QoI-oriented
Bayesian experimental design (QBED). First, consider the scenario
where the aim is to minimize the uncertainty of one or several kinetic
parameters. This approach is termed a parameter-oriented exper-
imental design. In this case, only the rows and columns corresponding
to the parameters of interest are selected before computing the
determinants:

d
J d J d0 0
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where I is the set of indices of parameters of interests. For example, if
we only want to minimize the uncertainty of parameters 2 and 3, then
I = {2, 3}, and (·)I,I means picking the second and third rows and
second and third columns of the matrix so that we would obtain a new
2 × 2 matrix.

The second scenario involves minimizing the prediction
uncertainty of one or a series of targets,19,20 referred to as
prediction-oriented experimental design. Given the covariance matrix
of parameters, we can obtain the covariance of (a series of) targets
(such as IDT or LFS at several different conditions) analytically by
linearizing the response surface (first-order version of that in
MUMPCE13). In practice, we usually consider minimizing the
absolute value of uncertainty of each target instead of the volume
of hyper-ellipse of the targets’ covariance matrix. Thus, here we
minimize the sum of prediction standard deviations of all targets:

d J
J d J d

J
0 0

diag
( ; ) ( ; )

( )t
T r r r r
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r
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(16)
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where diag(·) means taking the diagonal elements of a matrix, and Jt
means the Jacobian matrix of the targets whose uncertainty is desired
to be reduced. We notice that this objective function is similar to the
goal of A-optimality for linear models, where one minimizes the sum
of variances of linear combinations of model parameters.34 For targets
that lie in a continuous condition range, we discretize the range into
uniform points and then compute the Jacobian matrix on these points.
For the covariance matrix, it is exactly the sum of standard deviations
of all targets after picking diagonal elements, taking elementwise
square root and summing them over.
2.5. Theoretical Analysis. In this subsection, we derive the

relation between the Bayesian EIG and sensitivity analysis by
leveraging the approximation algorithm described above. Suppose
that we have a m-parameter, p-output model M(k, d), where k is the
vector of parameters and d is the vector of design. The Jacobian
matrix with respect to parameters at their nominal values and a design
d (i.e., ∇kM(k, d) at nominal values) is J m p× . The prior p(k) is a
Gaussian distribution with the covariance matrix Σ0. The measure-
ment noise follows a Gaussian distribution with covariance matrix Σϵ.

Theorem 1: By linearizing the model around the nominal values of
parameters, the expected information gain in eq 4 can be approximated as

J J1
2
ln

det( )
det( )

T
0 +

(17)

This can be easily proven by the equivalent definition of EIG of
mutual information29 and basic properties of Gaussian random
variables. The proof details are shown in the Supporting Information.
Following a similar way, we can obtain the EIG for selected
parameters.

Corollary 1.1: By linearizing the model around the nominal values of
parameters, the expected information gain in eq 4 for a subset of
parameters I can be approximated as

J J
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where IC is the complement of I.
Here (Σ0)IC,IC means only retaining the rows and columns of the

prior covariance corresponding to the parameters out of I, and JIC
means only retaining the rows of the Jacobian matrix corresponding to
the parameters out of I. The proof is also shown in the Supporting
Information. In fact, this is exactly the EIG estimator used in ref 14,
where the parameters out of interest are “latent random variables” in
systematic uncertainty, such as reflected shock temperature or
pressure, etc. This indicates that kinetic parameters that are of our
interest can be interpreted as some random variables that would cause
systematic measurement uncertainty.

To gain some insights, we can consider a single-output toy problem
with iid Gaussian prior.

Corollary 1.2: For a single-output model with iid Gaussian prior and
Gaussian measurement noise, af ter linearizing the model around the
nominal values of parameters, the expected information gain in eq 4 for a
subset of parameters I is
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where f i = Jiσi/σ.
Here, Ji is the sensitivity of output with respect to parameter i, σi is

the standard deviation of the Gaussian prior of parameter i, and σ is
the standard deviation of the Gaussian measurement noise. The proof
is just substituting a specific form of Jacobian matrix, noise covariance,
and prior variance into eq 18, which is also included in the Supporting
Information

We can have several insights from the analysis above. (1) f i = Jiσi/σ,
defined as impact numbers, play a key role in Bayesian EIG. It can
represent the impact of the uncertainty of parameter i on the model
prediction compared with measurement noise, which is similar to the
signal-to-noise ratio in the scenario of model calibration. Intuitively, if

the impact of the uncertain parameter i on model prediction is small
compared with measurement noise, then this parameter is hard to
calibrate. We note that this is similar to the impact factor defined in
Tao et al.,35 but impact numbers are dimensionless as it is divided by
the noise level. (2) Increasing the impact number out of QoI can
cause the opposite change for the EIG of the entire model and the
EIG of QoI. Thus, model-oriented design can mismatch with the goal
of reducing the uncertainty of specific parameters. For the scenario of
reducing the uncertainty of prediction, suppose we have a target that
is only related to parameters in subset I, and then the conditions
identified by model-oriented design also mismatch with the goal.
Thus, QoI-oriented Bayesian experimental design (QBED) is
necessary. (3) Since fixing the parameters out of QoI (such as ref
11) is equivalent to setting all the impact numbers out of QoI as 0, it
can lead to overconfident estimation of uncertainty of QoI. At the
same time, eq 19 can provide a way to quantify the error of fixing
some parameters a priori. Thus, fixing parameters with small impact
numbers is still feasible as long as the error is at an acceptable level.
(4) Some previous methods, such as choosing conditions where the
prediction is only sensitive to the parameter of interests, or conditions
with small sensitivity entropy16 (i.e., the sensitivities to different
reactions have a small degree of dispersion), can be considered as a
heuristic approximated of Bayesian experimental design, but they can
be misleading. For example, for a two-input model with parameter 1
as QoI, f f0.5 , 01 2= = has a smaller EIG than f1 = f 2 = 2, but the
former obviously has a smaller sensitivity entropy.

2.6. Task Setup and Data Generation. In the case studies, our
objective is to design experiments for laminar flame speed (LFS) and
ignition delay time (IDT) measurements to minimize the uncertainty
of a methanol combustion kinetic model developed by Zhang et al.,36

which is also used in Zhou et al.37 Pressure P, temperature T, and
equivalence ratio ϕ are chosen as design conditions. Only pre-
exponential factors are considered uncertain parameters for
demonstration, while other kinetic parameters are fixed. The
uncertainty factors UFi are adopted from the Supporting Information
of Zhou et al.37 The prior distribution is log-normal:

x
k k
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i i

i
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1
2

=
(20)

where ki is the random variable of each kinetic parameters, and ki,0 is
its nominal value. This mechanism includes 32 species and 197
elementary reactions. Plus, the high- and low-pressure limits of 16
falloff reactions, the dimension of parameters is 213. Two duplicate
reactions, R95 and R96, were assigned with the same uncertainty
factor. Observing the data set used by FFCM-1,38 the 1 − σ additive
noise is around 10% of measured values for LFS and 20% for IDT.
Thus, we assigned a multiplicative noise σr = 1.1 for LFS and σr = 1.2
for IDT.

To minimize computational costs, we employ NN-based response
surfaces to replace expensive physical simulations. The training data
were generated from physical simulations. We used 300,000 samples
to build the response surface of IDT, among which 243000 samples
were for the training set, 30000 for the test set, and 27000 for the
validation set. 106920 samples were used to build the response surface
of LFS, among which 87480 samples were for the training set, 9,720
for the test set, and 9720 for the validation set. We take ln(ki/ki,0) as
the input of response surfaces, which follows zero-mean Gaussian
distributions with standard deviation ln UFi

1
2

. In order to emphasize
the accuracy in the region near the prior mean, for each response
surface, we generated three hierarchical data subsets with different
ranges for parameters, similar to Zhang et al.17 Specifically, samples
were generated by Latin hypercube sampling39 from uniform
distributions for both parameters and design (except temperatures
in LFS). The space of the training samples is listed in Table 1. Please
note that for prediction-oriented design, the design space is smaller
than the space. For pressure, the uniform distribution was assumed for
the logarithm of pressure. The parameter space is defined by a
hypercube ln UF, ln UFk

i
k

i2 2
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ÑÑÑÑÑÑ, where k = 1, 2, and 3 for three
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subsets, respectively. In other words, the half-widths of the uniform
distribution region for three subsets are σp, 2σp, and 3σp, respectively,
where σp is the standard deviation of the prior distribution ln UFi

1
2

.
Clearly, the region near the prior mean is covered by all three sets.
Different from Zhang et al.,17 where three subsets were generated
from a Gaussian distribution with standard deviation 0.2σp, 0.6σp, and
σp respectively, our samples were generated from a uniform
distribution, so that the response surfaces can still have good accuracy
near the tail of the prior distribution. Then, each subset was split into
training, validation, and test sets using the same ratio. We did not
sample temperature from a uniform distribution in order to accelerate
the solution of laminar flame from the initial guess in Cantera,40

which is explained in the Data Generation Section of Supporting
Information. The detailed setting of Cantera is also included in the
Supporting Information.
2.7. Neural Network Response Surfaces. We used neural

networks as response surfaces due to their great expressive power,
especially in high-dimensional cases, and their good performance of
parallel evaluation on a GPU. Gradient-based experimental design
requires the gradient of information gain with respect to design
variables, so design variables must be included as inputs. The network
structure is shown in Figure 2, including three hidden layers with 32

neurons in each hidden layer. The input layer includes 216 neurons,
corresponding to 213 kinetic parameters and three experimental
conditions. In order to fit data across multiple orders of magnitude
(six orders for IDT and one order for LFS) and minimize the
multiplicative error during training, we took the logarithm of IDT and
LFS as the outputs of response surfaces.

Residual neural network (ResNet)41 structure was adopted for its
good property of mitigating gradient explosion and gradient vanishing
during back-propagation. Two short circuits were set in the second
and third hidden layer. The SiLU42 activation function was employed
to avoid zero Hessian (see Supporting Information for explanations).
Other details of the neural network and loss curves can also be found
in the Supporting Information.

The assessment for accuracy of response surfaces followed the
method in Zhang et al.,17 where the mean and 95th percentile relative
error of the test set were compared with a given criterion, as shown in
Table 2. Relative error is defined as |yNN − yG|/yG, where yNN is the
prediction of LFS or IDT by neural networks, yG is the corresponding
ground truth. Note that the outputs of neural networks are the
logarithms of LFS and IDT, while the relative error uses the original
value of LFS and IDT. The mean, 95th percentile, and maximum
relative errors are shown in Tables 3 and 4. Note that the parameters
of our data were sampled from uniform distributions covering a wider
range than the Gaussian distributions in Zhang et al.17 Thus, building
such a response surface is more challenging than in the case of Zhang

et al.17 However, the performance of our neural networks still can
satisfy the requirement, as shown in Table 2.

The scatter plot of prediction versus ground truth for samples in
test sets is shown in Figures S2 and S3 in the Supporting Information.
We can clearly see that, for subsets 1 and 2, almost all samples lie on
the diagonal line. For subset 3, only a small portion of samples
deviated from the diagonal line.

3. NUMERICAL EXPERIMENTS: RESULTS AND
DISCUSSION

In this section, we show the results of numerical experiments
using the algorithms presented in Section 2. In previous
studies,12,16 the proposed algorithms were usually assessed by a
single case. However, the results can be affected by
randomness (or uncertainty) from two sources: noise and
ground truth. The change of both can lead to different
synthetic data used for inference and hence different
information gain. However, noise differs among each
realization, while the ground truth is not known a priori. To
eliminate the randomness/uncertainty in assessment, we follow
Shen and Huan,43 where the pipeline was repeated lots of
times and statistical analysis was done. Specifically, in each
realization, we sample a parameter from a prior distribution as
the ground truth and generate noisy synthetic data from such a
“ground truth”. Then inference was done based on the noisy
data, and information gain for this case was computed from
posterior uncertainty, defined as the part within the curly
braces of eq 8, i.e., the difference of entropy of prior and
posterior distribution after getting the synthetic experimental
data. In all figures, the information gain was computed in the
way described above. This process would be repeated 100
times. The average and its variance would be computed (equal
to sample variance over sample size according to the central
limit theorem) to determine the optimal design optimization
strategies and to demonstrate the performance of our methods.
For figures involving multiple iterations of design-inference
(such as Figures 5 and 7), information gain refers to the
entropy difference of the prior distribution before the first
iteration and the current posterior distribution. All of the
experiments were run on an NVIDIA GeForce RTX 2080 Ti
GPU.

Table 1. Range of Training Samples

experimental targets P [atm] T [K] ϕ
ignition delay times 1−30 800−1600 0.5−5
laminar flame speeds 0.5−10 300−500 0.8−1.5

Figure 2. Schematic of a 3-hidden-layer ResNet structure for the
unified response surface, including both design conditions and
parameters as inputs.

Table 2. Requirement of the Accuracy of Response Surfaces
Proposed by Zhang et al.17

subsets mean error (%) 95th percentile error (%)

1 1 2
2 2 5
3 3 10

Table 3. Accuracy of Our Response Surface for IDT

subsets mean error (%) 95th percentile error (%) maximum error (%)

1 0.5 1.9 1.5
2 0.8 2.9 39.8
3 1.6 5.8 76.5

Table 4. Accuracy of Our Response Surface for LFS

subsets mean error (%) 95th percentile error (%) maximum error (%)

1 0.7 1.5 3.5
2 1.1 2.8 6.9
3 2.0 5.1 16
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3.1. Assessment of Design Optimization Methods. In
Section 2, we introduced two methods for design optimization:
enumeration-based methods and gradient-based methods. In
this subsection, we compare their performance for different
sample sizes and different initializations on both high-
dimensional design and low-dimensional design cases to
determine the optimal strategies for different scenarios. In
previous works, the enumeration was done on grid points
within the design space. In this work, since we need to
compare different design optimization methods, we evaluate
information gain on Monte Carlo points to avoid the case
where one of the predefined grid points is luckily very close to
the global maximum of EIG. Specifically, in each design, we
draw a given number of samples from the uniform distribution
of design space, evaluate the EIG in each MC point, and pick
the condition with the largest EIG as the optimal design. Since
we only have three design conditions T, P and ϕ, we use batch
design with n = 3 in eq 11, as a demonstration of high-
dimensional cases, whose dimension is 3 × 3 = 9; and n = 1 as
a demonstration of low-dimensional cases, whose dimension is
3. It is worth noting that designing three experiments
simultaneously would be more computationally expensive
than the problem of 9 design variables with the same size of

response surface since the back-propagation would be done in
parallel for three inputs (equivalent to improving the number
of initializations, see Figure 3b). Thus, the computational time
for a problem with 9 design variables and designing only one
experiment would be shorter than the 9-D problem here. In
this part, the number of iterations is chosen as 3 for n = 1 and 1
for n = 3. We only present the results of the prediction-
oriented design of LFS to demonstrate the properties, while
the results of the other three cases are shown in Figures S4 and
S9 of the Supporting Information. We can clearly see that
under different scenarios the optimal strategy can be different,
and it also depends on users’ trade-off between average
information gain and computational time. Thus, we need to do
a design optimization assessment before we start DoE for any
specific case.
The information gain and running time of gradient ascent

with different initializations and MC designs with different
sample sizes under n = 1 are shown in Figure 3. Please note
that the range of the y-axis of the left figure is small, which
makes the 1 − σ intervals seem bigger than it is. For gradient
ascent, we can conclude that beyond 5 initializations, the
increase in the number of initializations would not have an
obvious benefit. In fact, even if we only use one initialization,

Figure 3. (a) Average information gain and (b) computation time for 100 realizations of the gradient-based method and Monte Carlo method for
the prediction-oriented design of LFS with n = 1. Different numbers of initializations and samples are respectively considered for the gradient-based
method and the Monte Carlo method. Error bar shows the 1 − σ interval of mean values, which are the standard deviation of 100 samples over
100 according to the central limit theorem.

Figure 4. (a) Average information gain and (b) computation time for 100 realizations of gradient-based method and Monte Carlo method for the
prediction-oriented design of LFS with n = 3. Different numbers of initializations and samples are respectively considered for the gradient-based
method and the Monte Carlo method. Error bar shows the 1 − σ interval of mean values, which are the standard deviation of 100 samples over
100 according to the central limit theorem.
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the difference with 20 initializations is quite small. From eq 16,
we know that for one initialization, the average prediction σ
decreases to 1/2.83 = 0.353 of the prior one, while for 20
initializations this number is 0.351. We have shown that the
landscape of information gain is usually nonconvex (see the
landscape contours in Section 3.3 of ref 44.), so gradient-based
optimization using one initialization does not have a guarantee
to converge to the global minimum. Such a numerical
experiment shows that although there are several local maxima
in the landscape of information gain, the information gains of
different maxima are very similar. In other words, it is arguably
not necessary to arrive at the global maximum in some cases.
For the MC design, the average information gain increases as
the sample size increases, but similarly, the difference is not
very large. From 30 to 300 samples, the average information
gain is always lower than that of the gradient ascent. In terms
of the running time, the number of sample sizes hardly affects
the average running time of MC design since the information
gain is evaluated in parallel. For gradient ascent, however, with
an increase in the number of initializations, the optimization
time would increase. On the one hand, since the stop criterion
is based on the infinite norm of the difference between two
successive iterations, a larger number of iterations for
convergence is expected for a larger number of initializations;
on the other hand, the time per iteration will increase as the
number of initialization increases. Although the evaluation of
gradient is also in parallel, it involves the computation of
second-order derivative instead of just first-order derivative in
evaluating EIG.
Comparing the two methods, MC design with 300 samples

can achieve a slightly lower level of information gain as

gradient ascent but with far less computation time. Thus,
under a low-dimensional scenario, we prefer the MC design.
The sample-independence and initialization-independence

study under n = 3 is shown in Figure 4. For gradient ascent, the
number of initializations, ranging from 1 to 60, does not have
an obvious effect on the average information gain compared
with the standard deviation. It is highly possible that the
different local minima have similar EIG. For MC, the increase
of sample size from 150 to 1200, can increase the average
information gain. Similar to the low-dimensional case, the
average information gain of gradient ascent is always larger
than that of the MC method. Even with only one initialization,
gradient ascent can get a larger average information gain than
that of MC with 1200 samples and at the same time use less
time. Thus, in this work, we prefer gradient ascent under high-
dimensional cases, considering both the time and performance.
Again, the trade-off between computation time and informa-
tion gain depends on specific scenarios and users’ trade-offs. If
speed is more important, then the MC method should be
chosen. Here we fix the strategy for high-dimensional and low-
dimensional cases, respectively, for demonstration.

3.2. Comparison with Model-Oriented Design and
Random Experiments. In this subsection, we compare our
proposed QBED against model-oriented design and random
experiments (i.e., sampling one condition from a uniform
distribution of the design space every time) for both LFS and
IDT, and both high-dimensional (n = 3 in eq 10) and low-
dimensional (n = 1) cases, to demonstrate the effectiveness of
the proposed framework. According to the results in Section
3.1, under high-dimensional cases, the gradient-based method
was used, while under low-dimensional cases, the MC method

Figure 5. Average information gain of 100 runnings versus the number of iterations for parameter-oriented design (red), model-oriented design
(blue), and random experiments (green), for both LFS and IDT scenarios, and with both n = 1 and n = 3. The first, second, and third rows show
the results where the design target is the first and second most sensitive reactions, the second and third most sensitive reactions, and the third and
fourth most sensitive reactions, respectively. The information gain is also in terms of the corresponding two target reactions in each case. Two
circles highlight the two scenarios where the model-oriented design performs similarly to or even worse than random experiments, while the
parameter-oriented design can outperform both.

Energy & Fuels pubs.acs.org/EF Article

https://doi.org/10.1021/acs.energyfuels.4c02299
Energy Fuels 2024, 38, 15630−15641

15637

https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02299?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.energyfuels.4c02299?fig=fig5&ref=pdf
pubs.acs.org/EF?ref=pdf
https://doi.org/10.1021/acs.energyfuels.4c02299?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


was used. The sample or initialization independence study of
model-oriented design was also done to determine the
threshold number of samples or initialization, exceeding
which the information gain cannot be further increased. The
results are shown in Figure S10 of Supporting Information.
According to the results, and considering the computational
budget, in all the following studies we will use five
initializations for gradient ascent under high dimension and
300 samples for MC design under low dimension.
3.2.1. Parameter-Oriented Design. For parameter-oriented

design, the design space is the same as the range of training
samples listed in Table 1. For both IDT and LFS, the four
reactions with the largest impact numbers are assessed. For
IDT, they are CH3OH + HO2 = CH2OH + H2O2, CH2OH +
O2 = CH2O + HO2, 2HO2 = H2O2 + O2, and CH2O + HO2 =
H2O2 + HCO, from large impact number to small. For LFS,
they are the following: (i) CO + OH = CO2 + H, (ii) H + O2
= O + OH, (iii) CH2OH = CH2O + H, and (iii) CH2OH + O2
= CH2O + HO2.
Figure 5 shows the comparison of parameter-oriented

design, model-oriented design, and random experiments
under 12 different cases and under different numbers of
iterations. Each point shows the average of 100 cases and the
error bar shows the standard deviation of the mean value
computed by the central limit theorem. Different columns
show LFS/IDT or n = 1/n = 3. Different rows show the
different choices of our QoI. The first row shows the results
where the target is the most and the second most sensitive
reactions (all reactions were sorted in descending order by
their impact number among 6 × 6 × 6 condition grid points
within design space), the second row for the second and the
third most sensitive reactions, and the third row for the third
and fourth most sensitive reactions. The information gain is
defined in terms of the corresponding target reactions. From
the results, we can clearly see that under all cases and all
numbers of iterations, parameter-oriented design always shows
the largest information gain. This is not beyond our
expectation since the parameter-oriented design uses the
expected posterior covariance volume of only QoI as the
optimization objective, instead of the entire covariance matrix.
This can avoid the mismatch between the conditions beneficial
for the uncertainty reduction of the entire model and beneficial
for only QoI. The two circles in Figure 5 show the two
scenarios where the mismatch is very obvious so that the
information gain of model-oriented design can be similar to, or
even worse than random experiments.
This phenomenon can be explained by the sensitivity

analysis under different conditions, which is shown in Figure
S11 of the Supporting Information. For LFS, the condition
with the largest sum of squares of impact numbers has very
small impact numbers for reactions 2 and 3. Thus, the
conditions chosen by model-oriented design show bad
performance for the information gain of the second and
third most sensitive reactions. For the target of the third and
fourth sensitive reactions, the performance becomes better
(similar to random experiments), since at these conditions
with the largest sum of squares of impact numbers, the impact
numbers for the fourth most sensitive reaction are pretty large
compared with other conditions. Thus, the information gain at
least can be comparable with random experiments. A similar
phenomenon does not appear for the cases of IDT, which can
also be explained by the sensitivity analysis of IDT shown in
Figure S12 of the Supporting Information. The conditions with

the largest sum of squares of impact numbers have large impact
numbers for both the most and the third most sensitive
reactions, while small sensitivity for the second and fourth
most sensitive reactions. Thus, for the three targets here, none
of the random designs are better than model-oriented
experiments because in all three targets, at least one of the
target reactions is sensitive under the optimal condition
identified by the model-oriented design. However, we expect
that if we set the target reactions as the second and the fourth
most sensitive reactions, the model-oriented design would be
worse than random experiments under n = 1 setting, which is
verified by Figure S13 in the Supporting Information.
We then look at the evolution of uncertainty as the number

of iterations increases for the case of LFS with n = 1, and the
second and third most sensitive reactions are the target
reactions. The 1 − σ and 2 − σ contours of the PDF for one
case of 100 runnings are shown in Figure 6. We can clearly see

that after one experiment, the model-oriented design (blue
contours) largely reduces the uncertainty for the most sensitive
reaction, which is, unfortunately, not in our target reactions.
The parameter-oriented design (red contours), however, can
reduce the uncertainty of the second and the third most
sensitive reactions more than the model-oriented design. After
the second experiment, model-oriented design also reduce the
second and third most sensitive reactions. This is because after
reducing the most sensitive reaction, it is hard to further
reduce it in the second experiment due to its decreased impact
number, so the model-oriented design would reduce the
uncertainty of the second, third, and even fourth most sensitive
reactions. This explains why the model-oriented design
surpasses random experiments and achieves a level a little
lower than that of the parameter-oriented design at the second
iteration, as shown in Figure 5. This also can explain why in the

Figure 6. 1 − σ and 2 − σ PDF contours of four most sensitive
reactions for prior (black) and posterior distributions after one, two,
and five iterations done at conditions identified by parameter-oriented
(red) and model-oriented (blue) design, in one of 100 cases for LFS
with n = 1. Purple dots show the value of the “ground truth” for
generating the noisy data. The QoI is the second and third sensitive
reactions, corresponding to the horizontal axes of the left figures and
the vertical axes of the right figures.
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n = 3 case such phenomena are not observed, since within one
iteration the three experiments identified by model-oriented
design would reduce the uncertainty of several most sensitive
reactions instead of just the first one. After five experiments,
the posterior uncertainty for model-oriented design and
parameter-oriented design looks very similar in Figure 6,
which corresponds to the phenomenon that the difference of
information gain for the two methods is reduced after the fifth
experiment in Figure 5. Unsurprisingly, parameter-oriented
design still outperforms model-oriented design.
3.2.2. Prediction-Oriented Design. In this subsection, we

compared prediction-oriented design against model-oriented
design on the performance of reducing the uncertainty of the
prediction. The design space and prediction targets are shown
in Table 5. Note that prediction targets cannot be reached
within design space, so that the performance of identifying
alternative conditions for unreachable targets can be assessed.

Figure 7 shows the average information gain in terms of the
prediction uncertainty for both LFS and IDT with both n = 1

(n is the number of experiments that are simultaneously
designed, see eqs 10 and 11) and n = 3. In all the cases, the
prediction-oriented design outperforms both model-oriented
design and random experiments. It is worth noting that for
IDT, the model-oriented design is worse than or similar to
random experiments.
Figure 8 shows the prior uncertainty and posterior

uncertainty obtained by different design methods, of different
numbers of iterations, for LFS with n = 1. It is observed that
after one experiment, the uncertainty of the lean side is similar
for prediction- and model-oriented design, but on the rich side,

the prediction-oriented design obviously shows smaller
uncertainty. It is worth noting that the design space is
confined within ϕ = 0.8−1.2, so prediction-oriented design
shows smaller uncertainty at conditions that cannot be
accessed by experiments. After two experiments, on both the
lean and rich sides, the uncertainty is similar for the two
methods. After five experiments, the uncertainty of the two
methods is still very similar in Figure 8. But from Figure 7 we
can know that prediction-oriented design always outperforms
model-oriented design.
Figure 9 shows the prediction uncertainty comparison for

one case of IDT with n = 3. After one iteration (i.e., three
experiments), the uncertainty of the prediction-oriented design
shows slightly smaller uncertainty on both high-temperature
and low-temperature ends (check the zoomed-in figures), but
the difference is negligible. After five iterations (i.e., 15
experiments), we can see that the difference becomes larger.

4. CONCLUSION
In this paper, we built a fast QoI-oriented Bayesian
experimental design (QBED) framework for the efficient
uncertainty reduction of kinetic models. First, we proposed a
fast parameter-oriented and a prediction-oriented information
gain estimator based on the linearization of forward models.
Theoretical analysis verified such a mismatch and provided
insights for Bayesian DoE problems, while numerical experi-
ments showed superior performance under all of the scenarios
compared with the model-oriented design. Second, we
combined the Laplacian approximation-based fast EIG
estimator with the gradient ascent. The comparison with the
enumeration-based method shows gradient ascent usually
shows larger average information gain but runs slowly, while

Table 5. Design Space and Prediction Targets for
Prediction-Oriented Design Assessment

P [atm] T [K] ϕ
design space of IDT 1−15 800−1200 0.5−2
prediction targets of IDT 30 1200−1600 5
design space of LFS 0.5−5 300−400 0.8−1.2
prediction targets of LFS 10 500 0.8−1.5

Figure 7. Average information gain of 100 runnings versus the
number of iterations for prediction-oriented design (red), model-
oriented design (blue), and random experiments (green), for both
LFS and IDT and with both n = 1 and n = 3. The error bars show the
1 − σ bounds of the average computed by the central limit theorem.

Figure 8. Prior and posterior 1-σ prediction uncertainty for LFS with
n = 1 after one, two, and five iterations in one of 100 cases. Prior
uncertainty is denoted by two dashed curves, while posteriors are
denoted by shadows of different colors. The purple curve shows the
ground truth prediction, while other solid lines show the mean values
of prior and posterior models.
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enumeration-baed methods usually show slightly suboptimal
information gain but fast computational speed. Third, a single,
unified response surface that can provide fast, differentiable
predictions across the entire design space was built and largely
accelerated the design algorithms. For high-dimensional cases,
it renders gradient-based design optimization possible; for low-
dimensional cases, it can make enumeration-based methods
run faster utilizing the parallel evaluation of neural networks on
GPU. Comprehensive numerical experiments with a large
number of runnings were conducted to provide statistical
evidence of the advantages of the proposed methods. The
dynamical evolution of uncertainty as the number of
experiments increased was unraveled and explained by the
impact numbers. The proposed pipeline can finish one design
in 0.5 s for the 3-D design space and in 1.6 s for the 9-D design
space.
For experimentalists, this article provides a useful tool to

design kinetic experiments for efficient uncertainty reduction.
The entire pipeline was presented with detailed guidance. The
code and user manual of the proposed framework are publicly
available. For modelers, this paper can be a reference for
utilizing advances in computer science, especially machine
learning, to solve combustion problems. Even some commonly
seen techniques, such as parallel evaluation of neural networks
and autodifferentiation, can still be further exploited for
suitable combustion tasks.
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