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A B S T R A C T

Kolmogorov–Arnold networks (KANs) as an alternative to multi-layer perceptrons (MLPs) are
a recent development demonstrating strong potential for data-driven modeling. This work
applies KANs as the backbone of a neural ordinary differential equation (ODE) framework,
generalizing their use to the time-dependent and temporal grid-sensitive cases often seen
in dynamical systems and scientific machine learning applications. The proposed KAN-ODEs
retain the flexible dynamical system modeling framework of Neural ODEs while leveraging
the many benefits of KANs compared to MLPs, including higher accuracy and faster neural
scaling, stronger interpretability and generalizability, and lower parameter counts. First, we
quantitatively demonstrated these improvements in a comprehensive study of the classical
Lotka–Volterra predator–prey model. We then showcased the KAN-ODE framework’s ability to
learn symbolic source terms and complete solution profiles in higher-complexity and data-lean
scenarios including wave propagation and shock formation, the complex Schrödinger equation,
and the Allen–Cahn phase separation equation. The successful training of KAN-ODEs, and their
improved performance compared to traditional Neural ODEs, implies significant potential in
leveraging this novel network architecture in myriad scientific machine learning applications
for discovering hidden physics and predicting dynamic evolution.

1. Introduction

Dynamical system modeling is a key part of many branches of engineering and science. Traditionally, governing equations
(often partial differential equations (PDEs)) have been derived through extensive observations and careful selection of model
equations. These processes, heavily relying on expert knowledge, have gradually been augmented and sometimes replaced with
machine learning techniques by leveraging the data-fitting power in neural networks [1–4]. Despite the potential to reduce the
need for detailed expert knowledge, these data-driven modeling approaches are often subject to tradeoffs between the amount
of prior knowledge embedded in the model versus the interpretability of the model: purely data-driven approaches tend to
lack interpretability, and conversely, interpretable methods typically require substantial knowledge or enforcement of preexisting
governing laws [1]. To mitigate this issue, there have been extensive efforts to develop novel modeling schemes that blend
data-driven modeling with traditional dynamical system tools, including sparse identification of nonlinear dynamics (SINDy) [5],
physics-informed neural network (PINNs) [6], and neural ordinary differential equations (Neural ODEs) [7]. Such studies that bridge
this gap have the potential to not only infer high-accuracy models from data but also provide useful insights into the dynamics of
what are often unknown physical processes.
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Neural ODEs have been developed to learn a continuous evolution of states [7–9], as opposed to the discrete sequences learned
y residual networks [10,11]. Chen et al. coupled black box neural networks used as gradient getters with standard ODE solvers
n order to learn the relationship between the current state of a system and its gradient [7]. This mapping gives Neural ODEs
nherent grid and timescale flexibility, allowing for substantial interpolation and generalization of learned models compared with
ypical fixed grid neural network approaches. Neural ODEs do not require prior knowledge of a system in order to infer dynamical
odels from large datasets thanks to their use of black box multi-layer perceptrons (MLPs). However, on the flip side of this benefit,
hey typically deliver models with thousands to millions of parameters, making any deeper interpretation or extraction of physical
nsights difficult.
In contrast to Neural ODEs, physics-informed neural networks (PINNs) leverage the governing equations of the dynamical system,

herever available, in the loss function to train a traditional (i.e. not ODE based) neural network that maps the time and spatial
oordinates directly to the state variables [6,12,13]. This physics-embedded loss function allows for training that aims to fit both
he data and the known governing equations without having to directly solve what are typically expensive PDEs. These networks
re significantly interpretable thanks to the governing equations used as a soft constraint in the training cycle, giving physical
eaning to trends and patterns that emerge from the training process. The inclusion of the governing equations as a soft constraint
lso allows PINNs to train with relatively small datasets, which is a useful benefit in many scientific and engineering applications
ith high costs of data acquisition [6]. Other frameworks have also been developed using a physics-based structure similar to
INN. The auto-regressive dense encoder–decoder model [14] encodes physics into a time-integration network scheme, while the
hysics-informed convolutional-recurrent network [15] runs PDE solutions through convolutional filters with physical penalty terms
nd hard-encoded initial and boundary conditions to efficiently develop models. Other works have also investigated the use of hard
onstraints with PINN-type models for initial and boundary conditions with strong results [16,17]. PINN-type loss functions have
dditionally been included in Neural ODE frameworks [18]. Further combinations exist in the area of physics-based Neural ODEs,
uch as Chemical Reaction Neural Networks [19], which hard constrain Neural ODE frameworks to directly learn governing equation
arameters from real [20,21] and noisy [22,23] experimental data. A downside shared throughout these numerous physics-based
echniques is their requirement of strong prior knowledge of the system’s governing laws. In cases where such knowledge is not
vailable, other methods are required.
The SINDy approach [4,5,24,25] tackles dynamical system modeling via sparse regression. Given training data and a set of

andidate functions (polynomials, trigonometric functions, constant functions, etc.), it carries out sparse regression to parsimoniously
elect only the candidate functions needed to describe trends present in the data. The use of a presumed set of candidate functions
ives SINDy models significant interpretability over pure black box methods like MLPs or Neural ODEs. It also requires less of the
etailed physical knowledge behind the system dynamics as in PINNs and other physics-based methods, and less data with a reduced
odel search space compared to Neural ODEs.
While most advances in data-driven modeling lie in MLPs and polynomial basis approaches, Liu et al. recently proposed

olmogorov–Arnold networks (KANs) as an alternative to MLP-based networks [26]. Instead of learning weights and biases given
ixed activation functions as in MLPs, the activation functions themselves are learnable in KANs with gridded basis functions and
ssociated trainable scaling factors. Major advantages of KANs over MLPs are increased interpretability thanks to the direct learning
f activation functions, faster convergence to low training loss with significantly fewer parameters thanks to their faster neural
caling laws, and the possibility of postprocessing via sparse regression to deliver human-readable expressions. With this potential,
ecent efforts have been dedicated to extending KANs for time-series predictions based on residual networks by directly mapping
raining data onto future testing windows [27,28]. However, such a discrete time-step approach has a limited ability to predict the
tates where various time scales and data collection windows are involved. This research gap naturally motivates our work to embed
ANs into Neural ODE-type dynamical system solvers, allowing us to resolve these drawbacks while preserving the interpretability
nd inference potential of KANs.
In this study, we introduce the possibility of learning interpretable and modular ODE and PDE models for dynamical systems

ithout prior knowledge or functional form assumptions by leveraging KANs as gradient-getters within the concept of Neural ODEs.
n doing so, we propose a combined framework that benefits from the high-accuracy, parameter-lean, and strongly interpretable KAN
tructure coupled with the general-purpose, grid-independent, and solver-flexible Neural ODE framework. A qualitative depiction
f the comparison between the currently proposed KAN-ODE method and the other discussed data-driven approaches for dynamical
ystem modeling is shown in Fig. 1. While the current state of the art is generally situated on the diagonal of this plot, where
ncreased prior knowledge fed into a machine learning method delivers better interpretability, we place KAN-ODEs slightly below
he diagonal, thanks to their potential to deliver interpretable activations and even symbolic relationships without requiring prior
nowledge or presumed functional forms in the training cycle. The ODE-based formulation is also inherently flexible, allowing for
ariable timesteps depending on the gradient landscape as well as the application of the KAN-ODEs as components of a larger-
cale model, for example as the source term in a nonlinear transport PDE. We demonstrated the promise of KAN-ODEs through a
omprehensive comparison against standard Neural ODEs, as well as an array of tests at different scales and levels of complexity
ncluding a predator–prey ODE, wave propagation and shock formation PDEs, the complex Schrödinger equation, and a phase
eparation PDE. We found that KAN-ODEs succeeded in all of these cases and were able to reconstruct complete temporal profiles
ven when given sparse training data. KAN-ODEs with a small number of parameters were able to converge with remarkable
ccuracy, and sparsity or symbolic relationships imposed during the training cycle or during postprocessing were able to give
AN-ODEs substantial generalization capability. Overall, we found that this encoding of KANs into the Neural ODE framework

s a promising step toward small-data and low-knowledge yet interpretable machine learning for dynamical system modeling.
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Fig. 1. Qualitative depiction of KAN-ODE’s general capability compared to similar machine learning techniques.

2. Methodology

The formulation proposed here leverages KANs and the neural network-ODE solver concept of Neural ODEs. Section 2.1
introduces the concept of a KAN. Then, we describe how we couple KANs to differentiable ODE solvers to model dynamical systems
in Section 2.2.

2.1. Kolmogorov-Arnold networks as gradient evaluators

In contrast to MLPs based on the universal approximation theorem [29], KANs [26] are based on the Kolmogorov–Arnold
representation theorem (KAT) [30], which states that any multivariate function 𝑓 (𝐱) ∶ [0, 1]𝑛 → R that is continuous and smooth
can be represented by a finite sum of continuous univariate functions,

𝑓 (𝐱) = 𝑓 (𝑥1,… , 𝑥𝑛) =
2𝑛+1
∑

𝑞=1
𝛷𝑞

( 𝑛
∑

𝑝=1
𝜙𝑞,𝑝(𝑥𝑝)

)

. (1)

Here, 𝜙𝑞,𝑝 ∶ [0, 1] → R are univariate functions, while 𝛷𝑞 ∶ R → R composes these univariate functions to reconstruct 𝑓 (𝐱). The
implementation in this work defines 𝛷𝑞 as trainable weights to sum the univariate basis functions. Once these basis functions are
chosen, Eq. (1) exactly describes a 2-layer KAN with a hidden layer width of 2𝑛 + 1 (the upper bound of the outer summation in
Eq. (1)) and an output dimension of 1. The KAT is extended to a general KAN structure with 𝐿 layers of arbitrary width by exploiting
the hierarchical structure of Eq. (1) [26].

𝐲 = KAN(𝐱) =
(

𝛷𝐿−1◦𝛷𝐿−2◦⋯◦𝛷1◦𝛷0
)

(𝐱) . (2)

𝛷𝑙 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜙𝑙,1,1(⋅) 𝜙𝑙,1,2(⋅) ⋯ 𝜙𝑙,1,𝑛𝑙 (⋅)
𝜙𝑙,2,1(⋅) 𝜙𝑙,2,2(⋅) ⋯ 𝜙𝑙,2,𝑛𝑙 (⋅)

⋮ ⋮ ⋮
𝜙𝑙,𝑛𝑙+1 ,1(⋅) 𝜙𝑙,𝑛𝑙+1 ,2(⋅) ⋯ 𝜙𝑙,𝑛𝑙+1 ,𝑛𝑙 (⋅)

⎞

⎟

⎟

⎟

⎟

⎠

, (3)

where 𝜙 is the activation function, 𝑙 is the index of a layer, and 𝑛𝑙 and 𝑛𝑙+1 denote the numbers of nodes in the 𝑙th and (𝑙 + 1)th
layers, respectively. While Liu et al. [26] originally proposed a B-spline for the gridded basis functions that comprise the various
activations 𝜙, this study adopts the more computationally efficient Gaussian radial basis functions (RBFs) 𝜓 as proposed by Li [31],
such that

𝜙𝑙,𝛼,𝛽 (x) =
𝑁
∑

𝑖=1
𝑤𝜓𝑙,𝛼,𝛽,𝑖 ⋅ 𝜓

(

||x − 𝑐𝑖||
)

+𝑤𝑏𝑙,𝛼,𝛽 ⋅ 𝑏 (x) , (4)

𝜓(𝑟) = exp(− 𝑟2

2ℎ2
), (5)

where 𝑁 is the number of gridpoints, 𝑤𝜓𝑙,𝛼,𝛽,𝑖 and 𝑤
𝑏
𝑙,𝛼,𝛽 are the trainable weights for the RBF function 𝜓(𝑟) and the base activation

function 𝑏(x), respectively (superscripts indicating which function the weights apply to), the subscripts [𝛼, 𝛽] indicate the index of
the matrix in Eq. (3) within a KAN layer 𝑙 that these weights apply to, 𝑐 is the center of the 𝑖th RBF function, 𝑟 is the distance
𝑖
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of x from the center, and ℎ is a spreading parameter defined as the gridpoint spacing. The inputs to each layer are normalized to
be on the [−1, 1] gridded RBF domain as in [32], which avoids the costly alternative technique of [26] that requires periodically
re-gridding the RBF networks in each layer to match the input domain. In addition to fully gridded RBF basis functions, the inputs
and outputs of each layer are also directly connected with Swish residual activation functions such that 𝑏(x) = x ⋅ sigmoid(x) [33].

Eq. (4) therefore defines two input pathways for each layer: the gridded RBF pathway (first term), and the direct (non-gridded)
esidual activation pathway (second term). The RBF function connects each input node with each output node using a number of
asis functions equal to the size of the grid. The number of parameters required for the RBF pathway of a single layer is therefore
qual to the product of the input dimension, output dimension, and grid size (following as well from 𝑤𝜓𝑙,𝛼,𝛽,𝑖, where for a single layer𝜓
𝑙 the remaining three indices cover the input, output, and grid indices). Similarly, the residual activation pathway, which directly
onnects inputs to outputs without a grid, simply requires parameters equal to the product of the input and output dimensions
likewise see 𝑤𝑏𝑙,𝛼,𝛽 , which includes the input and output indices 𝛼 and 𝛽 but not the grid index 𝑖). For example, in a 2-layer KAN
ith a 2D input, 1D output, 10D hidden layer, and 5-point grid, the numbers of parameters are 2 × 5 × 10 + 2 × 10 for the input
hidden layer, and 10 × 5 × 1 + 10 × 1 for the hidden → output layer, respectively, resulting in 180 parameters in total.
Expanded mathematical formulations for KANs with multivariate outputs become increasingly bulky and cumbersome, and are

vailable in the extensive [26]. For convenience, we use the notation [𝑛𝑙 , 𝑛𝑙+1, 𝑁] to represent an 𝑙th KAN layer for the remainder of
his work, where 𝑛𝑙 is the input dimension, 𝑛𝑙+1 is the output dimension, and 𝑁 is the grid size. For example, a 2-input and 1-output
AN with a 10-node hidden layer and a 5-point grid is represented as ‘‘[2, 10, 5], [10, 1, 5]’’ for the connections between the input
nd hidden layer, and the hidden and output layer, respectively.

.2. KAN-ordinary differential equations

A dynamical system is generally expressed by an ODE system such that

𝑑𝐮
𝑑𝑡

= 𝐠 (𝐮, 𝑡) , (6)

where 𝐮 ∈ R𝑛 is a vector of the state variables and 𝐠 is the system equation. Chen et al. [7] previously proposed neural ordinary
ifferential equations with the help of the universal approximation theorem (UAT) and the adjoint sensitivity method to construct
a model NN such that NN ≈ 𝐠. We similarly adopt the recently developed KAN as an approximator for a dynamical system by
leveraging the benefits of the Kolmogorov–Arnold representation theorem (KAT). The proposed KAN-ODEs can be expressed as

𝑑𝐮
𝑑𝑡

= KAN (𝐮 (𝑡) ,𝜽) , (7)

where 𝜽 is the collection of all trainable weights in the KAN. Here, the input and output dimensions of the KAN are fixed as the
dimension of the state variables 𝐮, and it is used as a gradient getter. Eq. (7) can be solved using a traditional ODE solver from an
initial time 𝑡0 to a desired time 𝑡 such that

𝐮(𝑡) = 𝐮0 + ∫

𝑡

𝑡0
KAN (𝐮 (𝜏) ,𝜽) 𝑑𝜏, (8)

where 𝐮0 is the initial condition at 𝑡0.
To train the KAN model, we define the loss function as the mean squared error

 (𝜽) = MSE
(

𝐮KAN (𝑡,𝜽) ,𝐮obs (𝑡)
)

= 1
𝑁

𝑁
∑

𝑖=1
||𝐮KAN

(

𝑡𝑖,𝜽
)

− 𝐮obs
(

𝑡𝑖
)

||

2, (9)

where 𝐮KAN is the prediction, 𝐮obs is the observation, and 𝑁 is the total number of time steps. To optimize , we require
gradients with respect to 𝜽. Generally, two options are available: the forward sensitivity method [8,34] and the adjoint sensitivity
method [7,35]. In this paper, the adjoint sensitivity method is adopted to efficiently handle a potentially large Kolmogorov–Arnold
network [7,8,35] thanks to its more advantageous scaling with model size. By introducing an adjoint state variable 𝝎, the augmented
system equation can be derived, which allows for gradient backpropagation through the ODE integrators.

𝑑
𝑑𝑡

⎡

⎢

⎢

⎣

𝐳
𝝎
𝜕
𝜕𝜽

⎤

⎥

⎥

⎦

= −
[

1 𝝎𝑇 𝝎𝑇
]

⎡

⎢

⎢

⎣

𝐠 𝜕𝐠
𝜕𝐳

𝜕𝐠
𝜕𝜽

0 0 0
0 0 0

⎤

⎥

⎥

⎦

, (10)

here 𝐳(𝑡) = 𝐮(−𝑡), 𝐠 = KAN, and 𝑇 denotes the transpose. Detailed derivations of the adjoint equations (Eq. (10)) can be found
n [7,36–38]. After Eq. (10) is computed, 𝜽 is updated using a gradient descent method. A schematic depicting the overall training
ycle is provided in Fig. 2. This study implements KAN-ODEs in the Julia scientific machine learning ecosystem including packages
uch as DifferentialEquations.jl [39], Lux.jl [40], KomolgorovArnold.jl [32], and Zygote.jl. Unless otherwise specified, we employed
he ODE integrator of Tsit5 (Tsitouras 5/4 Runge–Kutta method [41]) and the optimizer of ADAM [42]. The KANs used in this

ork were constructed with RBF basis functions and Swish residual activation functions.
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Fig. 2. Schematic depicting the overall training cycle of a KAN-ODE system. The loop in green leverages a KAN as a temporal gradient getter for the state
vector to solve the ODE forward. Once a solution is generated, the blue loop computes the gradient of the loss function via the adjoint method to update the
KAN activation functions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

3. Experiments

We present five inference examples in this work to demonstrate the broad capability of KAN-ODEs, grouped into three
subsections. We first validated our methodology and compared its performance against the standard MLP-based Neural ODEs in
Section 3.1, where the dynamics of the Lotka–Volterra predator–prey model were inferred. There we also comprehensively explored
the neural scaling benefits of KAN-ODEs, as well as the efficient representations that can be inferred via sparsification and pruning.
Then, we tackled a one-dimensional PDE in Section 3.2, using KAN-ODEs to infer a symbolic source term in a wave propagation
simulation. This example demonstrates the flexibility of KAN-ODEs to be used as submodels in higher complexity simulations, as well
as their capability to directly extract symbolic models from data. Finally, we demonstrated the scalability and inference power of
KAN-ODEs as standalone models in Section 3.3 by inferring complete data-driven solutions to PDEs using limited samples. Examples
there include shock wave formation governed by the Burgers’ equation and quantum wave function evolution governed by the
Schrödinger equation, with an additional phase separation case using the Allen–Cahn equation provided in Appendix C.

3.1. KAN-ODEs vs. Neural ODEs: Extensive comparison via Lotka–Volterra equations

In this section, we targeted the Lotka–Volterra predator–prey model shown in Eq. (11). We replicated the simulation parameters
used in the Neural ODE study of [9]. Namely, we used 𝛼 = 1.5, 𝛽 = 1, 𝛾 = 1, and 𝛿 = 3 with an initial condition of 𝐮0 = [𝑥0, 𝑦0] = [1, 1]
and a time span of 𝑡 ∈ [0, 14] s. The temporal grid used for data generation, training, and loss evaluation had a spacing of 0.1 s. The
Tsit5 ODE integrator was used to solve the governing equations for the true ODE trajectory (i.e. the ‘‘ground truth’’ data used to
train and validate the KAN-ODEs). The first 3.5 s of this ground truth trajectory was used to train the KAN-ODEs (Fig. 3(A)) via
Eqs. (9) and (10), while the remainder of the time history (3.5 s to 14 s) was withheld to validate the ability of the KAN-ODEs to
forecast the states at unseen times. While the training data is reported at 0.1 s increments, the Tsit5 adaptive solver used with
the KAN-ODEs requires much finer fidelity in its gradient accuracy. We tested KAN-ODEs with the various architectures shown in
Table 1. The inputs to each KAN layer in this example were normalized to be on the [−1, 1] range required by the RBF networks
via the hyperbolic tangent function, as in [32].

𝑑𝑥
𝑑𝑡

= 𝛼𝑥 − 𝛽𝑥𝑦,

𝑑𝑦
𝑑𝑡

= 𝛾𝑥𝑦 − 𝛿𝑦.
(11)

Loss profiles from training a 240-parameter KAN-ODE system of shape [2, 10, 5], [10, 2, 5] as a representative case are shown
in Fig. 3(B1). Strong convergence is observed at or even before 104 epochs into training, while convergence into the 10−7 range of
MSE loss occurs toward 105 epochs. The prediction of the coverged KAN-ODEs is shown in Fig. 3(A), where the excellent agreement
in the testing window (𝑡 ∈ [3.5, 14]) is nearly indistinguishable from the agreement in the training window (𝑡 ∈ [0, 3.5]). We remark
again that the trained KAN-ODEs are reconstructing both the seen training data (i.e. the ground truth ODE solution from 0 s to 3.5
s) and unseen testing data (3.5 s to 14 s) given only the initial condition (𝐮0 = [1, 1]), and can deliver output values on any temporal
grid, thanks to its coupling to an ODE solver.
5 
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Fig. 3. Comparison between KAN-ODEs and Neural ODEs for Lotka–Volterra predator–prey model. (A) Synthetic data (training and testing) and reconstruction
via KAN-ODEs. (B) Loss profile during training for (B1) KAN-ODEs and (B2) MLP-based Neural ODEs of comparable sizes (240 and 252, respectively). (C)
Comparison of error between converged KAN-ODEs and Neural ODEs using different model sizes, and two MLP depths (𝑑 = 2 and 𝑑 = 3). Neural scaling rates
of 𝑁−2 and 𝑁−4 plotted for comparison, as per the theory in [26].

To contextualize these results, benchmark tests were performed to compare the KAN-ODEs with standard, MLP-based Neural
ODEs. We draw comparisons in terms of accuracy, convergence speeds, and neural scaling in Section 3.1.1; and interpretability and
generalization in Section 3.1.2. In Section 3.1.2, we additionally discuss the impacts of sparsified and symbolic KAN-ODEs.

3.1.1. Benchmark tests and neural scaling behavior
The MLP size and training procedure were taken from the Neural ODE work of [9] to avoid biasing the results in favor of the

KAN-ODEs. Namely, an MLP with a single hidden layer comprising 50 nodes and the hyperbolic tangent activation function replaced
the KAN in Eq. (7). This MLP contained 252 trainable parameters (refer to the bold architecture in Table 1), which is comparable
(and in fact slightly larger) than the 240 used in the reported KAN-ODEs, facilitating fair comparison. Other relevant training details
such as the train/test time windows, temporal grid, Lotka–Volterra equation parameters, and ODE solver remained identical to the
KAN-ODEs example, which itself was modeled as directly as possible after the Neural ODE efforts of [9].

In this one-to-one comparison using a data generation and training regime borrowed from a well-cited Neural ODE work, our
proposed KAN-ODEs beat the performance of the Neural ODEs in all key metrics. Inspection of the loss profiles of Fig. 3(B1–B2) shows
that the KAN-ODEs converged to a substantially smaller training loss of 8.3 × 10−7 over 105 epochs compared to the similarly-sized
Neural ODEs, which reached only 3 × 10−5 in the same number of epochs. Both loss profiles exhibit significant oscillatory behavior
while still successfully training, which we theorize may be due to the data-lean, large-batch regime studied here (i.e. a single dataset,
all time steps of which are optimized in one batch). These oscillations, which do not appear to affect the final result, are smaller
in the training cycle of the KAN-ODEs than in that of the Neural ODEs. The KAN-ODEs qualitatively appear to overfit more than
the Neural ODEs, especially in the later epochs, by inspection of the difference between training and testing losses. Quantitatively,
however, they still beat the Neural ODEs in accuracy to the unseen testing data, indicating an objective improvement in performance
when switching from the Neural ODEs to the KAN-ODEs. Even in the last 10% of the training cycle (epochs 90, 000–100, 000), where
the KAN-ODEs experienced a notable difference between training and testing losses, they still achieved an average testing loss of
6.8×10−3, with a minimum value in that range of 1.9×10−5. The Neural ODEs in this same range averaged a much larger 1.4×10−2,
with a minimum value of 5.4 × 10−5. If training for the KAN-ODEs was stopped early at 2 × 104 epochs when the testing error
just began to creep upward, these statistics would tend even more strongly in their favor. At this early stopping point, little to no
indication of overfitting is observed when comparing its own training and testing losses, and all loss metrics still outperform those
of the Neural ODEs (even when the latter are trained to the full 1 × 105 epochs). The KAN-ODEs-based solution of Fig. 3(A) can
6 
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Table 1
Lotka–Volterra tests with Neural ODEs and KAN-ODEs of varying size. Bold entries are studied further in Fig. 3.

Depth Layer width Grid size Activation function No. Params Train loss

Neural ODE (MLP) 2 10 N/a tanh 52 4.7 × 10−4

2 50 N/a tanh 252 𝟒.𝟏 × 𝟏𝟎−𝟓

2 100 N/a tanh 502 1.6 × 10−5

3 3 N/a tanh 29 2.0 × 10−4

3 5 N/a tanh 57 2.6 × 10−4

3 8 N/a tanh 114 4.6 × 10−5

3 10 N/a tanh 162 3.7 × 10−5

3 20 N/a tanh 522 3.0 × 10−5

KAN-ODE 2 4 3 learned 64 1.4 × 10−4

2 4 4 learned 80 5.2 × 10−5

2 4 5 learned 96 1.2 × 10−4

2 6 4 learned 120 1.9 × 10−5

2 6 5 learned 144 1.6 × 10−5

2 10 5 learned 240 𝟖.𝟑 × 𝟏𝟎−𝟕

2 20 5 learned 480 6.6 × 10−7

2 40 5 learned 960 6.1 × 10−7

additionally be generated at arbitrary time steps (e.g. 0.01 s rather than 0.1 s) with no detectable change to the testing results,
indicating no overfitting to the specific training timesteps used here.

In terms of computational cost, we found that the KAN-ODEs iterated relatively slowly but actually converged 3–4x faster than
he Neural ODEs. On a single CPU core, the 240-parameter KAN-ODE system took around 19 min per 104 epochs, compared to the
252-parameter Neural ODE system which took closer to 7 min per 104 epochs. However, the KAN-ODEs reached 2.6 × 10−5 training
loss in just 104 epochs, already beating the best-performing, 105 epoch Neural ODEs result of 3.0 × 10−5 training loss. Thus, while
the KAN-ODEs iterated 2.5 to 3x slower than the Neural ODEs, they were able to reach the same predictive performance with 10x
fewer epochs, resulting in an overall effective 3–4x speedup over the Neural ODEs.

Up to this point, comparisons have been drawn exclusively between a single Neural ODE architecture and a single KAN-ODE
architecture. Here, we discuss the effects of varied network architectures on the performance of KAN-ODEs and Neural ODEs, the
results of which demonstrate a key scaling improvement of KAN-ODEs. Liu et al. [26] proposed that, thanks to the third-order
splines used in the Kolmogorov–Arnold representations, KANs benefit from fourth-order neural scaling, or a quartic decrease in loss
with respect to the KAN size (parameterized here as the number of trainable parameters). MLPs, on the other hand, often saturate
quickly and can struggle to reach even first-order convergence [26,43]. We investigated this phenomenon here by varying the layer
width and grid size of KAN-ODEs, and by varying the layer width and depth of MLP-based Neural ODEs. Fig. 3(C) shows that, even
with the modified RBF basis function, we appear to capture the 𝑁−4 B-spline KAN scaling rate with the KAN-ODEs, while the two
depths of MLP appear to be converging at a rate slower than 𝑁−2. With just the 240 KAN parameters studied in Fig. 3(A) and
(B1) we were able to run the fourth-order convergence of the KAN-ODEs to saturation (larger KANs see no substantial additional
performance gain), while MLP-based Neural ODEs would theoretically require upwards of thousands or even tens of thousands of
parameters to reach similar performance, if they did not plateau earlier. The specific model sizes used in this convergence test are
shown in Table 1, where the models used for Fig. 3(A) and (B1-B2) are in bold. To summarize, we found here that KAN-ODEs beat
Neural ODEs in terms of data-fitting performance and computational efficiency in a systematic study of a broad range of network
architectures and sizes.

3.1.2. Interpretation and generalization of KAN-ODEs with varying sizes
In this section we implemented sparsification, pruning, and symbolic regression to demonstrate a framework for developing

interpretable KAN-ODE solvers. We additionally heuristically explored the generalizability of the various MLP and KAN-based
models, where we found that KAN-ODEs have strong generalization potential even with limited training data. In addition to the
252-parameter Neural ODE and 240-parameter KAN-ODE systems (trained in Section 3.1.1) as reference cases, three models were
studied: sparse KAN-ODEs trained via parameter regularization and pruning, symbolic KAN-ODEs developed via symbolic regression
on each univariate activation of the sparse KAN-ODEs, and a symbolic representation for the entire model via symbolic regression
on the global input–output pairs of the sparse KAN-ODEs.

Sparsification, as proposed in [26] and discussed in [44], constitutes an additional term in the loss function to penalize non-zero
trainable parameters, driving a given model toward sparser representations with fewer large activations. Here we use the simple L1
norm,

 (𝜽) = MSE
(

𝐮KAN (𝑡,𝜽) ,𝐮obs (𝑡)
)

+ 𝛾𝑠𝑝|𝜽|1. (12)

This is identical to Eq. (9), with the inclusion of the L1 penalty term with 𝛾𝑠𝑝 as a hyperparameter, which drives unnecessary
activations toward zero. The logical next step is to reduce the size and complexity of the now-sparse KAN-ODEs by eliminating any
trivial nodes via pruning. To do so, we compare the training inputs and outputs of each node against a pruning parameter, 𝛾𝑝𝑟. Any
ode where the magnitude of at least one input or output exceeds 𝛾𝑝𝑟 is kept in the KAN-ODEs, while those with all inputs and

outputs smaller than 𝛾𝑝𝑟 are pruned. We began with a [2, 10, 5], [10, 2, 5] structure for a KAN (referred to henceforth as the dense
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Fig. 4. Sparsification, pruning, symbolic regression, and generalization results for Lotka–Volterra dynamics. (A) Sparse KAN with 72 parameters ([2, 3, 5], [3,
2, 5]), pruned from an initial 240 parameters ([2, 10, 5], [10, 2, 5]). (B) Symbolic KAN derived from (A), where each of the twelve activations is replaced
by a univariate symbolic expression. (C) Generalization error when extrapolating outside of the yellow (𝑥, 𝑦) points explored in the training data. Each column
represents a different gradient getter and has one row each for 𝑑𝑥∕𝑑𝑡 and 𝑑𝑦∕𝑑𝑡. Generalization is seen to improve when moving from MLP gradients to
increasingly sparse KANs, and finally to symbolic representations fitted to KANs. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

KAN), based on observation from Fig. 3(C) of this architecture’s optimal performance. To sparsify the KAN-ODEs, we included the
regularization term of Eq. (12) with 𝛾𝑠𝑝 = 5 ⋅ 10−4 in the training process. To prune, we trained these KAN-ODEs to convergence,
then eliminated nodes that did not satisfy 𝛾𝑝𝑟 = 10−2 before training the remaining KAN-ODEs to convergence once again. Fig. 4(A)
shows the sparse KAN-ODEs with a final pruned size of [2, 3, 5], [3, 2, 5] trained using this procedure. Note that the darkness of
the activation function curves is determined by the ratio of the outputs to the inputs (larger outputs have thicker lines).

Next, the symbolic KAN-ODEs took the sparse KAN-ODEs and fit symbolic expressions to each of their twelve univariate activation
functions using the SymbolicRegression.jl package [45] with the four fundamental binary operators [+,−,×, ∕]. Detailed results for
each of these regressions is available in Appendix A. Here, we plot the twelve symbolic activations for visualization in Fig. 4(B).
To summarize, we first sparsified a 240-parameter, 10-node KAN into a 72-parameter, 3-node KAN. Then, we replaced these 72
parameters with just twelve univariate activation functions, a handful of which in the first layer are simple linear functions of
the form 𝑦 = 𝑚𝑥 + 𝑏. In terms of interpretability, we moved from a black box MLP-based Neural ODE to a visualizable yet bulky
KAN, then to a visualizable and compact KAN, and finally to a straightforward collection of symbolic relationships that capture the
Lotka–Volterra dynamics well. None of these steps required knowledge of the system outside of the provided training data.

Finally, we ran the entire Sparse KAN through SymbolicRegression.jl (rather than each activation separately) and found the
following relationships which comprise the KAN representation,

𝑑𝑥
𝑑𝑡

= 1.495𝑥 − 0.986𝑥𝑦,

𝑑𝑦
𝑑𝑡

= 0.970𝑥𝑦 − 2.929𝑦,
(13)

which correspond nearly identically to our model parameters of 1.5, 1, 1, and 3. This near-perfect result is effectively the pinnacle of
interpretability and accuracy, though we believe is not a realistic option for most systems of larger-scale merit. Complete symbolic
regression on an entire learned model or dataset is often not feasible, especially for complex models with higher dimensional
inputs and outputs than are studied in this relatively straightforward ODE system [26]. Even when numerically manageable, clean
8 
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convergence to compact functional forms is not guaranteed. On the other hand, a symbolic KAN like that shown in Fig. 4(B) requires
symbolic regression only on a series of straightforward univariate activations and retains entirely interpretable intermediate steps.
We present this global symbolic representation result as an interesting aside and a benchmark for comparison, but propose that
sparse KAN-ODEs and symbolic KAN-ODEs are the most likely to have broader applicability in more realistic systems depending on
the desired degree of interpretability and accuracy.

We move next to a discussion of the generalizability of KAN-ODEs. To conform to prior studies and faciliate fair comparison
gainst MLP-based Neural ODEs, all models used previously in this Lotka–Volterra section were trained on data generated from a
ingle initial condition, as was done in the Neural ODE study of [9]. There exist many other potential (𝑥, 𝑦) combinations, however,
nd here we heuristically tested these trained models on their ability to generalize to completely unseen conditions.
The gradient error landscapes of the five models studied here (MLP-NODEs, Dense KAN-ODEs, Sparse KAN-ODEs, Symbolic

AN-ODEs, and symbolic representation of KAN-ODEs) are shown from left to right, respectively, in Fig. 4(C), where the top row is
he 𝑑𝑥∕𝑑𝑡 error and the bottom row is the 𝑑𝑦∕𝑑𝑡 error. The results from the MLP-NODEs in the first column show near-zero error in
he immediate vicinity of the training data, as expected from the performance metrics of Fig. 3. However, they also show significant
radient error in almost all (𝑥, 𝑦) ranges not directly on or immediately near the training data points, revealing the expected weak
eneralizability of the standard Neural ODEs due to the fact that training data is limited to the marked points only.
The gradient error landscape of the dense KAN-ODEs beats the MLP in generalizability, with much smaller gradient error values

hroughout the domain and especially inside of the yellow training points where not only is the overall error substantially reduced,
ut we begin to additionally observe the formation of thin bands of near-perfect reconstruction away from the data points. This result
s rather interesting, as it was originally proposed in [26] that KANs beat MLPs in generalization thanks to their smaller number
f parameters, but we observe here a substantial improvement with similarly sized models. In any case, these results suggest the
otential of KAN-ODEs in the development of powerful models from limited data. In a brief aside, we also remark on the current
esult’s support of our previous argument (in Section 3.1.1) that the fully-trained dense KAN-ODEs do not overfit to the training
ata points, given their near-perfect interpolation between these points along the training profile. This result is unsurprising given
he adaptive time stepping of the Tsit5 solver, but is nonetheless a strong result, especially when combined with the additional
isible improvement in generalization outside of the training profile. If overfitting becomes substantial in larger-scale KAN-ODE
pplications, there are a handful of general neural network techniques and Neural-ODE adapted techniques that can be adapted to
ddress this [46–48] including early stopping and network reduction (as proposed here) as well as data expansion, noise injection,
nd dropout.
The gradient error landscape of the sparse KAN-ODEs shows improvements over the landscape of the dense KAN-ODEs. Inside

he yellow data points, we see further formation of near-perfect gradient reconstruction bands, surrounded by relatively low error
egions. Results toward the edges of the landscape are mixed: the 𝑑𝑥∕𝑑𝑡 reconstruction captures the top left of the (𝑥, 𝑦) domain with
xcellent accuracy but suffers from a large error in the upper right portion of the domain, while the 𝑑𝑦∕𝑑𝑡 reconstruction performs
ell toward low 𝑦 values, but suffers at high 𝑦 values. On the whole, we remark an overall improvement in generalization with a
early 4x reduction in KAN size, indicating the utility of sparse KAN-ODEs not just for compact and interpretable models, but also
or improved generalization and extrapolation capabilities thanks to their smaller size. This result corroborates similar observations
rom [26] of the increase in generalizability with decreased KAN parameter counts.
The Symbolic KAN-ODEs see remarkable improvement in the 𝑑𝑥∕𝑑𝑡 generalization, with the low-error area being pushed out

ignificantly toward high 𝑥 and 𝑦 values, further growth of the white bands of near-zero error throughout the domain, and a
eneral lightening of the plot indicating better extrapolation and generalization. The 𝑑𝑦∕𝑑𝑡 reconstruction sees modest improvement,
specially inside the circle of data points. We propose that this generalization improvement occurs due again to the more compact
orms present in the symbolic KAN-ODEs when compared to even the sparse KAN-ODEs, and the extrapolation benefits that come
ith smaller system representations [26]. In the significantly out-of-training regions of 𝑑𝑥∕𝑑𝑡 where the symbolic KAN-ODEs succeed
nd the gridded basis functions of the dense KAN-ODEs and Sparse KAN-ODEs fail, we suggest that the input samples may be exiting
he trained region of the RBF basis functions yet remaining within the useful range of the expressions used in the symbolic KAN-ODEs.
The symbolic representation of the entire KAN obviously generalizes with near-perfect accuracy thanks to its discovery of the

xact underlying model form (with near-perfect parameters). This result is plotted in the final column of Fig. 4(C) for reference,
ut we again emphasize that the other three KAN models are more reasonable choices for realistic applications: Dense KAN-ODEs
ucceeded with remarkably low training and testing error, sparse KAN-ODEs retained much of this low error while appearing to
mprove generalizability thanks to their smaller size, and Symbolic KAN-ODEs were substantially more interpretable and human-
eadable while also appearing to improve generalizability thanks to their smaller size and replacement of limited-scope basis
unctions with standard symbolic functions.
In this Lotka–Volterra example, we systematically and comprehensively explored the use of KAN-ODEs in a straightforward ODE

ystem and benchmarked their performance against comparable MLP-based Neural ODEs in terms of accuracy, speed, model size,
onvergence rate, interpretability, and generalization. We found that KAN-ODEs are an extremely efficient method to represent the
redator–prey dynamics of this example, and beat Neural ODEs in all relevant quantitative metrics. We additionally explored the
nterpretability of KAN-ODEs via symbolic regression of each activation function, and then heuristically evaluated a series of MLP
nd KAN-based ODE approaches in terms of generalizability to unknown data, where we again found KAN-ODEs superior. In the

ext sections, we present larger-scale examples to showcase the flexibility and inference capabilities of KAN-ODEs.
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Fig. 5. Fisher–KPP equation: (A) Solution field 𝑢(𝑥, 𝑡) of the ground truth. (B) Solution field 𝑢(𝑥, 𝑡) of the prediction with a learned KAN-ODE model. (C) Loss
function. (D) Learned hidden physics of the reaction source term in the Fisher–KPP equation and its symbolic form.

3.2. Modeling hidden physics in PDEs: Fisher–KPP PDE

In this section, we introduce the capability of KAN-ODEs to learn the hidden physics in PDEs. Key features demonstrated here are
the flexibility of KAN-ODEs to be paired with higher-complexity solvers on arbitrary temporal grids, and the capability of KAN-ODEs
to directly extract hidden symbolic functional relationships from training data. We demonstrate this using the Fisher–KPP equation
representing a reaction–diffusion system,

𝜕𝑢
𝜕𝑡

= 𝐷 𝜕2𝑢
𝜕𝑥2

+ 𝑟𝑢(1 − 𝑢), (14)

where 𝐷 is the diffusion coefficient and 𝑟 is the local growth rate. We assume that the reaction term 𝑟𝑢(1 − 𝑢) is unknown and to be
modeled with a KAN.

Training data was synthesized by solving Eq. (14) in the domain of 𝑥 ∈ [0, 1], 𝑡 ∈ [0, 5], given the model parameters 𝐷 = 0.2 and
𝑟 = 1.0. The initial condition and boundary conditions were

𝑢(𝑥, 0) = 1
2

[

tanh
(𝑥 − 0.4

0.02

)

− tanh
(𝑥 − 0.6

0.02

)]

, (15)

𝑢(0, 𝑡) = 𝑢(1, 𝑡), (16)
𝜕𝑢
𝜕𝑥

(0, 𝑡) = 𝜕𝑢
𝜕𝑥

(1, 𝑡) .

Note that this problem setup was adopted from [9]. The spatial grid was discretized with 𝛥𝑥 = 0.04, and the equation was solved
with a time step of 𝛥𝑡 = 0.5 using the ODE integrator of Tsit5 (Tsitouras 5/4 Runge–Kutta method [41]). The obtained solution
field 𝑢(𝑥, 𝑡) is shown in Fig. 5(A) and used as training data.

To model the unknown reaction source term in Eq. (14), we formulated the KAN-ODE such that

𝜕𝑢
𝜕𝑡

= 𝐷 𝜕2𝑢
𝜕𝑥2

+ KAN (𝑢,𝜽) . (17)

To utilize backpropagation with the adjoint sensitivity method, Eq. (17) was discretized using a central difference scheme and
converted to an ODE system using the Method of Lines. The KAN was constructed with a single layer comprising a single node,
[1,1,10].

The prediction with a learned model is illustrated in Fig. 5(B), showing accurate reconstruction of the solution field 𝑢(𝑥, 𝑡) after
as few as 5000 updates (Fig. 5(C)) and demonstrating that a single learned activation function comprised of ten gridded basis
functions ([1,1,10]) is sufficient to represent the reaction source term (see Appendix B for a detailed discussion of accuracy with
varying KAN-ODE architectures). This resultant activation function is shown in Fig. 5(D). We further propose expressing this single
activation function symbolically, as was introduced in [26] as a feature of KAN layers. Symbolic regression on this single KAN-ODE
activation using SymbolicRegression.jl [45] given the candidate symbolic expressions of [+,−,×, ∕, sin, cos, exp] returned the following
expression,

KAN (𝑢) = 0.995311𝑢(1.002448 − 𝑢). (18)

Given its single-layer, single-node construction, this symbolic expression is the KAN-ODE’s approximation of the true reaction source
term in Eq. (14). Knowing 𝑟 = 1.0, we see that the KAN-ODE’s derived expression is remarkably close to the original formulation.
Thus, the KAN-ODE was not only capable of learning the dynamics of physics hidden within a PDE submodel from measurable
quantities, but also of returning an accurate and human-interpretable symbolic function that mimics the true governing law with
excellent accuracy.
10 
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Fig. 6. Burgers’ equation: (A) Solution fields 𝑢(𝑥, 𝑡) for the ground truth, prediction with the initialized model, and prediction with the trained model. The black
dashed lines in the solution field of the ground truth subplot indicate the training data. (B) Loss function. (C) Training data and inferred solution profiles at
times 𝑡 = 0.1, 0.3, 0.5, 0.7, and 0.9 s. (D) Unseen ground truth data and inferred solution profiles at selected times 𝑡 = 0.2, 0.4, 0.6, 0.8, and 1.0 s.

3.3. Data-driven solutions of PDEs

3.3.1. Burgers’ equation
Our third example explores the use of KAN-ODEs to infer the unknown hidden states 𝑢 (𝑥, 𝑡) of a PDE system, effectively represent-

ing all of its spatiotemporal dynamics. Here we considered the Burgers’ convection–diffusion equation as an
example.

𝑑𝑢
𝑑𝑡

+ 𝑢 𝑑𝑢
𝑑𝑥

= 0.01
𝜋

𝑑2𝑢
𝑑𝑥2

. (19)

The computational domain was defined as 𝑥 ∈ [−1.0, 1.0] and 𝑡 ∈ [0.0, 1.0].
In order to prepare training data, Eq. (19) was discretized using a central difference scheme with 𝛥𝑥 = 0.05 such that

𝐮 (𝑡) =
[

𝑢
(

𝑥0, 𝑡
)

, 𝑢
(

𝑥1, 𝑡
)

,… , 𝑢
(

𝑥𝑁 , 𝑡
)]

. The initial and boundary conditions were defined as

𝑢 (𝑥, 0) = − sin(𝜋𝑥), (20)

𝑢 (−1, 𝑡) = 0, (21)
𝑢 (1, 𝑡) = 0.

Then, the discretized governing equation was solved using these initial and boundary conditions with a time step of 𝛥𝑡 = 0.01
using the ODE integrator of Tsit5 (Tsitouras 5/4 Runge–Kutta method [41]). The resultant solution field is illustrated in Fig. 6(A).
The solution profiles at the selected times (𝑡 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}) were collected as training data, with an emphasis here
on a sparse training dataset that tests the extrapolation capability of the KAN-ODEs. To learn the latent solution, we modeled the
KAN-ODEs such that

𝜕𝐮 (𝑡)
𝜕𝑡

= KAN(𝐮 (𝑡) ,𝜽). (22)

In this formulation, the KAN works as a non-linear operator for the partial differential equation (PDE) solution. The KAN-ODEs were
constructed with 2 layers: [51, 10, 5], [10, 51, 5]. Ten nodes in the intermediate layer were used to preserve the high-dimensional
information. Note that the number of input and output dimensions of the KAN was determined by the number of discretized state
variables in 𝐮. The KAN parameters were updated with a learning rate of 0.01 using the ADAM optimizer.

After 20,000 training epochs (Fig. 6(B)), the KAN-ODEs can be seen in Fig. 6(A) to predict the temporal evolution of the PDE
well despite only receiving five training snapshots. These snapshots and their accurate KAN-ODE dynamical representations are
shown in Fig. 6(C), where strong agreement is seen at all spatial locations, even those near the shock wave where the training
data spatial sampling is very sparse (in addition to sparse temporal sampling). More importantly, the trained KAN-ODEs are able
to extrapolate effectively to infer the solution fields at the unseen testing times in Fig. 6(D), once again with strong performance
11 
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Fig. 7. Schrödinger equation: (A) Observed data 𝑢(𝑥, 𝑡) = Re(𝑢) + 𝑖Im(𝑢) at the selected times of 𝑡 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, and 1.5 s as training data.
Blue circles denote Re(𝑢) and red circles denote Im(𝑢). (B) Reconstructed 𝑢(𝑥, 𝑡). (C) Ground truth 𝑢(𝑥, 𝑡). Note that Re(𝑢) and Im(𝑢) denote the real and imaginary
parts of 𝑢, respectively. Also, |𝑢| =

√

Re(𝑢)2 + Im(𝑢)2. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

at the shock. As a whole, this case demonstrates the ability of KAN-ODEs to leverage their temporal grid agnosticism to accurately
predict a system’s behavior at unseen times, and to extrapolate significant meaning from spatially and temporally sparse datasets.
An in-depth discussion of the model accuracy and KAN architecture can be found in Appendix B.

3.3.2. Schrödinger equation
The last example demonstrates surrogate modeling with KAN-ODEs in a more involved dynamical system with complex-valued

states. The Schrödinger equation is a classical field equation used in quantum mechanics.

𝑖 𝜕𝑢
𝜕𝑡

+ 1
2
𝜕2𝑢
𝜕𝑥2

+ |𝑢|2𝑢 = 0, (23)

where 𝑢 ∈ C1. The time and spatial domains were set to 𝑡 ∈ [0, 𝜋∕2] and 𝑥 ∈ [−5, 5]. The initial condition and boundary conditions
were defined as following in Eqs. (24)–(25). Then, the governing equations were solved with a time step of 𝛥𝑡 = 0.01 and grid size
of 𝛥𝑥 = 0.05 using the stiff ODE integrator of Rodas5 (A 5th order A-stable stiffly stable Rosenbrock method with a stiff-aware 4th
order interpolant [39,49]). Note that the problem settings used in this example were identical to those in [6].

𝑢 (𝑥, 0) = sech (𝑥) , (24)

𝑢 (−5, 𝑡) = 𝑢 (5, 𝑡) , (25)
𝜕𝑢
𝜕𝑥

(−5, 𝑡) = 𝜕𝑢
𝜕𝑥

(5, 𝑡) .

The KAN-ODEs as a surrogate model (Eq. (22)) were constructed with 2 layers: [402, 10, 10], [10, 402, 10]. The input dimension
was doubled from the dimension of the discretized 𝑢 (201 to 402) to account for both the real and imaginary values of 𝑢.

We once again gave the KAN-ODEs training data at just eight selected times in Fig. 7(A), and yet the trained KAN-ODEs
successfully reconstruct the complete spatiotemporal profile of the wave field 𝑢(𝑥, 𝑡) (Fig. 7(B)), which agrees with the ground truth
𝑢(𝑥, 𝑡) (Fig. 7(C)) at all times. We find this result remarkable, especially as the KAN-ODEs had zero knowledge of the underlying
physics and instead were forced to infer the complete solution to the nonlinear and complex dynamics present in this system from
eight samples only.

In this section, we demonstrated the robustness of KAN-ODEs by learning shock formation behavior and complex-valued wave
propagation in data-lean frameworks and without prior knowledge of the system dynamics. In both cases the KAN-ODEs were able
to match the training data and generalize well in the significant windows between training data slices, showing promise as a novel
data-driven dynamical system modeling approach. With these PDE examples, we showed that KAN-ODEs can retrieve not only
temporal dynamics but also spatial information without special treatment in the KAN architecture.
12 
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4. Conclusions

This work proposed the use of Kolmogorov–Arnold networks as gradient-getters in the Neural ODE framework. This novel
ombination of data-driven techniques advances our capabilities in the field of scientific machine learning to efficiently infer
nterpretable and modular dynamical system models from various sources of data. The replacement of MLPs with KANs in this
ramework preserves the black-box style approach with zero prior knowledge of the dynamical system physics needed for training.
owever, it opens the door to significant interpretability of the learned model (‘‘opening’’ the black box) via activation function
isualization and symbolic regression. Quantitatively, the KAN-ODE framework was also shown to outperform similar MLP-based
eural ODEs in a wide array of metrics including training accuracy, testing accuracy, convergence speed, neural scaling rate, and
eneralizability. The strong neural scaling offered by the Kolmogorov–Arnold representation held when applied as a KAN-ODE with
BF basis functions, allowing for significantly better training and testing performance in a fraction of the computational time and
ith a significantly smaller network size. We additionally demonstrated the capability of KAN-ODEs to extrapolate information
rom sparse or limited temporal data to the rest of a solution domain even in stiff and complex-valued nonlinear PDEs, and to
earn symbolic expressions for PDE source terms with high accuracy via optional postprocessing. In addition to improvements over
LP-based Neural ODEs, KAN-ODEs offer an alternative to SINDy, PINN, and similar interpretable machine learning techniques
n their flexibility and generality - no prior knowledge or assumptions are needed about the governing laws or candidate function
pace to train the KAN-ODE system effectively, although such information can be added if desired as shown here in the source term
egression of the Fisher–KPP PDE and the symbolic KAN leveraged for Lotka–Volterra dynamics. KAN-ODEs are a compact, efficient,
lexible, and interpretable approach for data-driven modeling of dynamical systems that show significant promise for use in the field
f scientific machine learning.

RediT authorship contribution statement

Benjamin C. Koenig: Writing – original draft, Software, Methodology, Investigation. Suyong Kim: Writing – original draft,
Software, Methodology, Investigation, Conceptualization. Sili Deng: Writing – review & editing, Resources, Funding acquisition.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The KAN-ODE codes used to generate the results presented in this work are publicly available at https://github.com/DENG-
IT/KAN-ODEs.

cknowledgments

This work is supported by the National Science Foundation (NSF) under Grant No. CBET-2143625. BCK is partially supported
y the NSF Graduate Research Fellowship under Grant No. 1745302.

ppendix A. Sparse regression on Lotka–Volterra KAN-ODEs

Symbolic functions corresponding to the Symbolic KAN-ODEs plotted in Fig. 4(B) are provided in Table A.1. See Fig. 4(B) for a
isual representation of the twelve activations and of the hidden layer nodes 𝑛1 through 𝑛3. The selection of candidate functions was
carried out to balance accuracy with sparsity. For example, a linear term suffices to capture the linear behavior of 𝑙1 connecting 𝑥
and 𝑛1, while 𝑙2 connecting 𝑥 and 𝑛2 requires an additional 1∕𝑥 term due to its strong nonlinear behavior. Similarly, the relatively
complex 𝑙11 connecting 𝑛3 to 𝑑𝑥∕𝑑𝑡 uses a linear term in addition to a polynomial division term. All activations were derived
independently of each other, based on the immediately relevant univariate input/output pairs.

Appendix B. Varying KAN-ODE Architectures for Fisher–KPP and Burgers’ equations

Additional tests were performed to provide KAN-ODE performance metrics for varying KAN architectures in the Fisher–KPP
quation and Burgers’ equation examples. Table B.1 shows the test matrix with different sizes of KANs. For the Fisher–KPP equation, a
elatively small KAN with very few parameters was used to model the hidden physics in the interpretable form (i.e. replacing only
he source term). Larger KANs with more parameters (thanks to the larger input/output dimension) were constructed for the Burgers’
quation to build a surrogate model that predicted the entire solution field. Fig. B.1 illustrates the training losses with respect to the
umber of parameters in these two examples. We surprisingly found in both cases that small architectures of KANs, i.e. those with
ero to one hidden node and three to five grid points, can successfully learn these dynamical systems with a training loss smaller
han 10−6. Furthermore, in most cases, KAN-ODEs have a scaling rate of loss  ∝ 𝑁−4, where 𝑁 is the total number of parameters
in the KAN. This result empirically supports the validity of the scaling law in the original KAN [26], as well as results seen in the
Lotka–Volterra example shown in Fig. 3(C).
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Table A.1
Symbolic KAN activations for Lotka–Volterra dynamics. The first layer takes the inputs 𝑥 and
𝑦 while the second layer takes the inputs 𝑛1, 𝑛2, and 𝑛3. Note that 𝑛𝑖(𝑥, 𝑦) = 𝑛𝑖(𝑥) + 𝑛𝑖(𝑦) and
𝑑𝑥∕𝑑𝑡(𝑛1 , 𝑛2 , 𝑛3) = 𝑑𝑥∕𝑑𝑡(𝑛1) + 𝑑𝑥∕𝑑𝑡(𝑛2) + 𝑑𝑥∕𝑑𝑡(𝑛3) by definition in the KAN.
Layer Activation Symbolic expression

1 𝑛1 (𝑥) 0.545𝑥 − 0.204

𝑛2 (𝑥) −0.277𝑥 + 0.425 + 0.794
𝑥

𝑛3 (𝑥) 0.334𝑥 − 0.635

𝑛1 (𝑦) −0.605𝑦 + 0.220 − 0.120
𝑦

𝑛2 (𝑦) −0.506𝑦 + 1.864 − 0.108
𝑦

𝑛3 (𝑦) −0.780𝑦 − 0.102

2 𝑑𝑥
𝑑𝑡

(

𝑛1
)

0.090𝑛31 + 0.520𝑛21 + 0.890𝑛1 − 0.411

𝑑𝑦
𝑑𝑡

(

𝑛1
)

0.168𝑛31 − 0.887𝑛21 + 2.242𝑛1 + 0.748

𝑑𝑥
𝑑𝑡

(

𝑛2
)

−𝑛22 + 4.990𝑛2 +
0.439𝑛2

𝑛22 + 0.0695
− 1.652

𝑑𝑦
𝑑𝑡

(

𝑛2
)

−𝑛2 +
−3.201𝑛2

𝑛22 + 0.719𝑛2 + 0.675

𝑑𝑥
𝑑𝑡

(

𝑛3
)

0.684𝑛3 +
2.929𝑛3

𝑛23 + 1.307𝑛3 + 1.41
− 0.490

𝑑𝑦
𝑑𝑡

(

𝑛3
)

−
1.281𝑛3
𝑛23 + 0.800

+ 0.353

Table B.1
KAN-ODE architectures tested for performance evaluation with the Fisher–KPP equation and the Burgers’ equation.

Depth Layer width Grid size No. Params

Fisher–KPP equation 1 1 [2, 3, 5, 10, 20] [3, 4, 6, 11, 21]
2 3 [2, 3, 5, 10] [18, 24, 36, 66]

Burgers’ equation 2 1 [2, 3, 5, 10] [246, 328, 492, 902]
2 3 [2, 3, 5, 10] [738, 984, 1476, 2706]
2 5 [2, 3, 5, 10] [1230, 1640, 2460, 4510]
2 10 [2, 3, 5, 10] [2460, 3280, 4920, 9020]
2 20 [2, 3, 5, 10] [4920, 6560, 9840, 18040]

Fig. B.1. Performance test with different KAN-ODE architectures: Training loss as a function of the total number of parameters. (A) Fisher–KPP equation. (B)
Burgers’ equation. Loss scaling of  ∝ 𝑁−4, where 𝑁 is the total number of parameters in the KAN, is also illustrated as a reference line.

ppendix C. Additional example with the Allen–Cahn equation

In this appendix, we investigated the Allen–Cahn equation which describes phase separation in multi-component alloy systems.
he Allen–Cahn equation was used as another canonical example to demonstrate two KAN-ODE tasks: modeling hidden physics and
econstructing complete solution fields. The Allen–Cahn equation is expressed by Eq. (C.1).

𝜕𝑢 = 0.0001 𝜕
2𝑢 + 5𝑢 − 5𝑢3. (C.1)
𝜕𝑡 𝜕𝑥2
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Fig. C.1. Allen–Cahn equation: (A) Solution field 𝑢(𝑥, 𝑡) of the ground truth. (B) Solution field 𝑢(𝑥, 𝑡) of the prediction with a trained KAN-ODE model. (C) Loss
function evolution. (D) Learned hidden physics of the reaction source term in the Allen–Cahn equation, and its symbolic expression.

Table C.1
Seven candidate symbolic expressions of the reaction source term in the Allen–Cahn equation (Eq. (C.1)). The
complexities of the symbolic equations and the corresponding losses are also tabulated.
Complexity Loss Equation

1 9.1219 × 10−1 𝑢
3 6.5775 × 10−1 1.8526𝑢
5 6.5775 × 10−1 𝑢∕0.5398 + 8.3105 × 10−4

7 4.2106 × 10−1 (2.4821 − 𝑢2)𝑢
9 1.1523 × 10−5 (5.0015 − 5.0021𝑢2)𝑢
11 1.0832 × 10−5 5.0021(0.9999 − 𝑢2)𝑢
13 1.0493 × 10−5 5.0021𝑢(0.9999 − 𝑢(𝑢 + 3.7283 × 10−4))

The computational domain was defined as 𝑥 ∈ [−1, 1] and 𝑡 ∈ [0, 1]. The initial and boundary conditions were set as Eqs. (C.2)–(C.3).

𝑢 (𝑥, 0) = 𝑥2 cos (𝜋𝑥) , (C.2)

𝑢 (−1, 𝑡) = 𝑢 (1, 𝑡) , (C.3)
𝜕𝑢
𝜕𝑥

(−1, 𝑡) = 𝜕𝑢
𝜕𝑥

(1, 𝑡) .

Eq. (C.1) was discretized with 𝛥𝑥 = 0.05 using a central difference scheme. Then, the discretized PDE was solved by the Tsit5
ODE integrator.

C.1. Modeling hidden physics in PDEs

To model the unknown source term in Eq. (C.1), we formulated the KAN-ODE such that

𝜕𝑢
𝜕𝑡

= 0.0001 𝜕
2𝑢
𝜕𝑥2

+ KAN (𝑢,𝜽) . (C.4)

Similarly to the Fisher–KPP example, Eq. (C.4) was discretized using a central difference scheme and converted to an ODE system
using the Method of Lines. We constructed the KAN model with a single layer comprising a single node, [1,1,10], thereby encoding
just one activation function.

The KAN-ODE model was trained on the data shown in Fig. C.1(A). In this example, we applied an early stop when the error
reached 10−7. The prediction with the learned model is illustrated in Fig. C.1(B), showing accurate reconstruction of the solution
field 𝑢(𝑥, 𝑡) after ∼65,000 updates (Fig. C.1(C)). This resultant single activation function is shown in Fig. C.1(D). For the modeled
activation function, a symbolic expression was derived, using the SymbolicRegression.jl package [45]. Given the candidate symbolic
expressions of [+,−,×, ∕], it returned the expressions tabulated in Table C.1. Among them, the following was the simplest expression
of the low-loss group (i.e. the group of expressions that jumped from 10−1 to 10−5 loss),

KAN (𝑢) = (5.0015 − 5.0021𝑢2)𝑢. (C.5)

Eq. (C.5) is remarkably close to the exact source term of 5𝑢 − 5𝑢3. Note that all the symbolic expressions with errors on the order
of 10−5 in Table C.1 have an identical form with slightly different coefficients. This example provides another demonstration of
accurate and human-interpretable modeling of hidden physics from measurable quantities via KAN-ODEs.

C.2. Data-driven solutions of PDEs

We further demonstrate KAN-ODEs as surrogate models using the Allen–Cahn equation by replacing the entire right-hand side
of Eq. (C.1) with a KAN. To mimic sparse data measurements, only five profiles at the selected times 𝑡 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}
15 
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Fig. C.2. Allen–Cahn equation: Demonstration of KAN-ODEs as a surrogate model. (A) Ground truth 𝑢(𝑥, 𝑡). The dashed lines indicate the training data at 𝑡 =
0.1, 0.3, 0.5, 0.7, 0.9. (B) MSE loss during training. (C) Reconstructed 𝑢(𝑥, 𝑡) by the trained KAN-ODEs. (D) The error between the reconstructed 𝑢KAN(𝑥, 𝑡) and
the ground truth 𝑢true(𝑥, 𝑡).

were collected from the ground truth simulation and used as training data (Fig. C.2(A)), while testing involved reconstruction of
the entire time history. The KAN-ODEs as a surrogate model were constructed using 2 layers with 10 hidden nodes ([41,10,10],
[10,41,10]). Eq. (22) was trained to learn the dynamics of the phase transition as shown in the loss plot (Fig. C.2(B)). The resulting
field reconstruction of 𝑢(𝑥, 𝑡) is illustrated in Fig. C.2(C), which qualitatively matches well with the ground truth. The spatio-temporal
error between the prediction via KAN-ODEs and the ground truth (𝑢KAN(𝑥, 𝑡)−𝑢true(𝑥, 𝑡)) in Fig. C.2(D) depicts near-zero error at and
surrounding each training time slice, and small but noticeable error in the large windows between time steps, especially near the
end of the simulation time. For example, the error is not appreciable at time 𝑡 = 0.1, but begins to grow before shrinking back to
near-zero by 𝑡 = 0.3 when the second observation takes place. While the errors introduced here are fairly minor, this result implies
that the KAN-ODEs need more training data in order to extrapolate quantitatively well to times significantly outside of their training
data window, like 𝑡 = 1.5 s or 𝑡 = 2.0 s. Within the 1 s range considered here, however, these results highlight the strong capability
of KAN-ODEs to accurately model and reconstruct physical phenomena between training samples with very sparse measurements
and without any prior physical knowledge included.
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