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Calibration System and Algorithm Design for a Soft
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Abstract—Micro scanning mirrors (MSMs) extend the range
and field of view of LiDARs, medical imaging devices, and laser
projectors. However, a new class of soft-hinged MSMs contains
out-of-plane translation in addition to the 2 ◦-of-freedom rotations,
which presents a cabliration challenge. We report a new calibra-
tion system and algorithm design to address the challenge. In the
calibration system, a new low-cost calibration rig design employs
a minimal 2-laser beam approach. The new new algorithm builds
on the reflection principle and an optimization approach to pre-
cisely measure MSM poses. To establish the mapping between Hall
sensor readings and MSM poses, we propose a self-synchronizing
periodicity-based model fitting calibration approach. We achieve
an MSM poses estimation accuracy of 0.020◦ with a standard
deviation of 0.011◦.

Index Terms—Calibration and Identification.

I. INTRODUCTION

M ICRO scanning mirrors (MSMs) are important compo-
nent of active sensing, and they can extend the range and

field of view (FoV) of LiDARs [1], medical imaging devices [2],
and laser projectors [3]. Although existing research has explored
techniques for calibrating MSMs with pure 2 degrees of free-
dom (DoF) in rotation, a full 3-DoF MSM motion model with
additional translation pointing out of the mirror plane has not
been well studied [4], [5], [6], [7], [8]. In fact, the additional
translation cannot be ignored in soft-hinged MSMs which are
built upon hinges made of soft material instead of rigid revolute
joints. Simultaneously measuring the 2-DoF rotation and 1-DoF
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Fig. 1. (a) Schematics of the MSM (best viewed in color), components of
the fast axis, slow axis and out-of-plane translation are colored in red, blue
and green, respectively. (b) Incident beam estimation setup. (c) Mirror pose
estimation setup.

translation of MSMs remains challenging because 1) the three
types of motion’s influence on reflection are coupled and cannot
be recovered separately by observing a single reflected point,
and 2) the small mirror surface area and large dynamic scanning
range of MSMs make recovering 3-DoF motions from direct
observations of the mirror plane impractical.

To address the challenge, we present a new calibration system
and the corresponding algorithm design for the dynamic 3-DoF
MSM system, which consists of a soft-hinged MSM with a
triaxial Hall effect feedback sensor (Fig. 1(a)) [9], [10]. Our
contributions are threefold. First, we design a low-cost minimal
2-laser beam approach to reduce hardware cost (Fig. 1(b) and
(c)). With the help of two planar calibration boards, the design
can accurately estimate the 3-DoF MSM pose without using
linear stages for precise optical alignments. Second, we derive
calibration algorithms that are based on a factor graph opti-
mization framework that incorporates the reflection principle
and conduct error analysis on the method. Third, we develop a
self-synchronizing calibration scheme to establish the nonlinear
mapping between Hall sensor readings and MSM poses. We have
developed and implemented the entire system and algorithms.
The results show that we can achieve an MSM pose estimation
accuracy of 0.020◦ with a standard deviation of 0.011◦.
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II. RELATED WORKS

Calibration is essential in the development and maintenance
of a robotic system [11], [12]. Mechanism calibration and sen-
sor calibration are two common types. The calibration of the
robot mechanism focuses on estimating the kinematic or inertial
parameters of the robot from actuator input and sensor mea-
surements [13], [14]. Sensor calibration focuses on estimating
the sensing model parameters from sensor measurements. Our
MSM calibration is a combination of a mechanism calibration
between the 3-DoF MSM poses and camera measurements and
a sensor calibration between MSM poses and the triaxial Hall
effect sensor measurements.

The mechanism calibration of MSM poses is related to ma-
nipulator calibration [15] and hand-eye calibration as the mirror
plane can be seen as an end-effector. While common practices
of attaching markers to the end-effector for pose estimation are
applicable for regular-sized static mirrors [16], [17], they are not
suitable for MSM due to its small size and dynamic scanning
nature, attaching markers on the MSM will result in a change
of scanning dynamics and deviated scanning poses. Similarly,
the estimation methods that utilize real-virtual point constraints
for regular-sized static mirrors proposed in [18], [19], [20], [21]
are impractical because the requirement of observing the points
on objects and their virtual counterparts in mirror cannot be
satisfied during fast MSM scanning. To measure MSM poses
while accommodating the small size and dynamic scanning
constraints, stroboscopic interferometer and position-sensitive
detector (PSD) based methods have been investigated in the
existing literature. The stroboscopic interferometer incorporates
a periodically pulsed light source to illuminate the MSM at a
specific scanning phase and estimates 3-DoF MSM poses from
the interferometric images [8], [22]. The stroboscopic interfer-
ometer setup proposed by Rembe et al. has been shown to be
capable of measuring dynamic MSM with up toμm out-of-plane
translation and ±12◦ rotations [22]. Although a stroboscopic
interferometer provides superior measurement accuracy, its lim-
ited measurement range and costly complicated setup obstruct
its applications. PSD-based methods estimate 2-DoF MSM ro-
tations by tracking a reflection point of an incident laser beam
on the PSD [23], [24]. Recent research focuses on improving the
accuracy and range of measurements. In [25], Yoo et al. proposed
a PSD-based MSM test bench with 0.026◦ accuracy in the 15◦

MSM scanning range. Baier et al. incorporated a PSD camera
with a ray-trace shifting technique into their MSM test bench and
achieved a measurement uncertainty of less than 1% in the 47◦

MSM scanning range [26]. These existing PSD based methods
assume a precise alignment of the incident laser beam and the
rotation center of the MSM due to their limitation in differenti-
ating MSM translational motion with rotational motion, which
impacts their accuracy when MSM out-of-plane translation is
non-negligible or the incident beam fails to align with the mirror
rotation center. Inspired by these existing works, our MSM
mechanism calibration measures dynamic 3-DoF MSM poses by
tracking the reflection of multiple incident laser beams generated
by a strobe light with a camera.

Time offset estimation is required when the temporal mis-
alignment in calibration measurements is not negligible, which
is common when sensors have different clocks and sampling
rates [27]. In [28], [29], the time offset is estimated by align-
ing the rotational changes measured by the sensors. Xia et al.
show the independent estimations of time offset and the linear
relationship between the motion of the MSM and the acoustic

feedback in [24]. A joint estimate of the time offset and other
intrinsic and extrinsic parameters is preferred when the sensors
do not have common measurements or follow a simple linear
relationship [30], [31], [32]. Building on existing methods, we
propose an MSM calibration approach that jointly estimates time
offset and model parameters to incorporate the nonlinear rela-
tionship between MSM motion and Hall effect sensor feedback.

III. CALIBRATION SYSTEM DESIGN

The MSM mechanism is reviewed before we elaborate the
calibration procedure and the design of the rig.

A. MSM Mechanism Review

Fig. 1(a) illustrates the mechanical structure of our 2-axis
MSM that is detailed in our previous work [9], [10]. Each mirror
axis has a pair of soft hinges which form a gimbal structure to
support the inner and the middle mirror frames. When currents
flow through actuation coils of each axis, a magnetic force is
generated and applied to the corresponding actuation magnets to
rotate the mirror frame around the hinge pair. A sensing magnet
is mounted on the back of the mirror plate. Therefore, the MSM
motion changes the sensing magnet’s magnetic field, which is
perceived by a Hall effect sensor mounted on the fixed base plate.

The mirror scanning motion is actuated by applying sine
wave-shaped alternating currents to the coils. For each scan-
ning axis, the maximum scanning angle is achieved when the
frequency of the input sine wave signal matches the resonance
frequency of the MSM mechanism, which is the resonant scan-
ning mode of the mirror. The mirror motion has 3 DoFs which
include two rotational motions (one is fast and the other is slow)
and out-of-plane translation because the soft hinges are made
of polymeric materials. Before detailing the MSM calibration
principle, we introduce common notations as follows.

B. Nomenclature

All 3D coordinate systems or frames are right handed and
Euclidean unless specified. P2 and P3 are 2D and 3D projective
coordinate systems, respectively. S2 is the unit 2-sphere in the
3D Euclidean coordinate system, TvS

2 is the tangent space at
the point v ∈ S2. [·]× demotes skew-symmetric matrix.

{0} represents the MSM home frame, which is a fixed 3D
system defined by the MSM home position. Its origin is at
the MSM rotation center. Its Z-axis is parallel to the MSM
normal vector. Its X-axis is parallel to the mirror fast axis.

{W} is a fixed 3D frame defined by a fixed world plane πW. Its
origin is in the upper left corner of the checkerboard pattern in
πW. Its Z-axis is perpendicular toπW and points inward. Its X-
axis is parallel to the horizontal direction of the checkerboard
pattern.

x̃ is a point in the image, x̃ ∈ R2. Its homogeneous counterpart
is x = [x̃T1]T ∈ P2.

X̃ is a point in the 3D Euclidean space, X̃ ∈ R3. Its homogeneous
counterpart is X = [X̃T1]T ∈ P3.

π is a plane. π = [nTd]T, n ∈ S2 is its unit length normal vector
and d is its distance to the origin.

L is a 3D line. L = [[v]×m], v ∈ S2 is its unit length direc-
tion vector and m ∈ TvS

2 is its moment vector at Plücker
coordinate [33], [34].
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Fig. 2. Mirror pose estimation principle (best viewed in color): (a) Mirror
normal nM is estimated from light-path plane normal vectors nL1 and nL2, θ is
the spanning angle between them. (b) A point XM1 on mirror plane is estimated
from the real-virtual points X1 and X′

1.

B is a triaxial Hall effect sensor measurement vector of the
magnetic field, B = [bxbybz]

T ∈ R3.

We use the left superscript to denote the coordinate system of
an object; W X̃ is a point in the coordinate system{W}. Variables
without a specified coordinate are defaulted to {W}.

C. Calibration Principle

Recall that an MSM has a compact size and driving frequency-
dependent working range; we cannot directly attach markers to
it. Instead, we estimate MSM poses during resonant scanning
by observing the reflected pulse laser dot positions on a world
plane πW. Let us explain the working principle.

Fig. 2(a) shows that the incident laser beamL1 and its reflected
laser dot X1 on πW define a light-path plane πL1, which is
perpendicular to the mirror plane πM. Therefore, its normal
vector nL1 must also be perpendicular to the mirror normal
nM, this forms a single DoF constraint. By including another
incident laser beam, we can obtain the new normal vector nL2
of its light-path plane in a similar way. We maintain nL2 ∦ nL1
when choosing the second incident laser beam. Therefore, the
normal vector of the two DoF mirror plane nM can be derived as
follows, nM = nL1 × nL2, where ‘×’ means cross product. The
spanning angle θ between nL1 and nL2 is a control variable, and
we will discuss its effect on the uncertainty of the estimation in
Section VI-B1.

Once the 2-DoF mirror plane normal is determined, the last
DoF of the MSM pose can be determined by identifying any
point on the mirror plane. Here, we identify the middle pointXM1
between the reflected laser dotX1 and its reflection pointX′

1. We
know the line X1X′

1 ‖ nM. Therefore, the line X1X′
1 is uniquely

defined because we know X1 and nM. As shown in Fig. 2(b),
the intersection of the line X1X′

1 and the incident beam line
L1 is X′

1. With nM and XM1 = 1
2 (X1 +X′

1), the mirror plane
πM is uniquely determined. In summary, with two incident laser
beams L1 ∦ L2 and their corresponding observation points X1

and X2, the mirror plane πM is uniquely defined.

D. Calibration Rig Design and Procedure

To obtain two pairs of non-parallel laser beams and their
reflected laser dots, we employ a beam splitter to generate two
laser beams from a pulse laser source and a camera to observe
the reflected laser dots positions. This leads to a two-step process
described by Fig. 1(b) and (c).

The first step is to obtain the 3D line parameters of the incident
beams. Fig. 1(b) shows the setup where a fixed camera observes

the sliding plane πS and the fixed world plane πW. The camera is
placed with a good view of the sliding planes. The corresponding
camera coordinate system is defined as C1. The MSM is not
mounted in this step to allow the two incident beams to project
points directly onto πS. We track their projected laser dots on
a sliding plane, since laser beams are not directly visible in the
camera image. When we move πS closer to the laser source,
the positions of the laser points on πS change with motion. The
sliding plane coordinate system {Sl}with its l-th pose is defined
with respect to its checkerboard, similar to how {W} is defined.
To reconstruct the incident beams, from image Il we extract the
laser points xi,l of the i-th incident beam and the checkerboard
corner points xs,l and xw,l, where s and w are index variables
for the s-th and the w-th corner points on the sliding plane and
world plane, respectively.

At the end of the step, before the movable part of the MSM
(i.e. the top frame of the mirror in Fig. 1(a)) is assembled, we
also collect background magnetic field measurements Bb which
include periodic background noises generated by actuator coils.
We use function generators to drive the actuation coils with the
sine wave signals that excite resonance mirror scanning, and
record background measurementsBb from the Hall effect sensor.
We will show how to use Bb to cancel background noise later in
the letter. After this step, the MSM is fully assembled to measure
the actual magnetic field Ba during mirror scanning.

Fig. 1(c) shows the second step in estimating the mirror pose,
where the camera aims at πW and the MSM is mounted to reflect
incident beams to project points onto πW. The camera pose is
adjusted to have a good view of πW with its camera coordinate
system defined as C2. Note that incident beams maintain the
same configuration as in the last step.

The synchronized pulse laser and the mirror scanning signals
create a pair of dotted scanning patterns from the two incident
beams. The k-th image Ik captures the checkerboard corner
points xw,k on πW and the reflected laser points xi,j of the
incident beam i-th triggered at time tj .

In image processing, we apply color thresholding to extract
laser dots from images. For each laser dot, the mean position of
extracted pixels is used to represent its 2D position in image.
By the central limit theorem, the i-th laser dot position xi

follows a Gaussian distribution N(0,Σxi), where Σxi =
ΣPi
N is

the covariance matrix of xi, ΣPi is the covariance matrix of the
2D pixel positions, and N is the number of extracted pixels.

E. Signal Synchronization and Sparse Signal Triggering

To capture dynamic mirror motion and reduce motion blur
caused by mirror scanning, we use a pulsed laser with a 15 ns
pulse width as our strobe light source, which also frees the
camera from triggering or synchronizing. To establish the cor-
respondence between laser dot positions, mirror driving signals,
and Hall sensor readings, we use a function generator (FG) to
provide 4 synchronized signals (Fig. 3(a)) that include a pulse
signal to trigger the laser source, two sine wave driving signals
to activate coils in the MSM, and a clock signal to align with Hall
effect sensor interrupt signals generated by the microcontroller
unit (MCU).

Because cluttered laser dots in an image may lead to incorrect
dot center estimation, we generate the laser trigger signals ac-
cording to the mirror motion, which makes the laser dots sparsely
spaced. Since the rotation angle is nearly linear to the driving
current of the mirror, we can match the trigger signal with the
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Fig. 3. (a) One cycle of the 4 signals generated. (b) Expected scanning pattern
where the orange line is the ideal laser dot trajectory and green dots are the
locations illuminated by the laser pulses. (c) Observed dot pattern in the image.

Fig. 4. Calibration block diagram.

driving sine waves to ensure the sparsity of the laser dots. Fig. 3
illustrates an example where the two sine-wave signals drive the
corresponding mirror axis. To avoid cluttering, the laser pulse
is triggered when both sine waves have a positive gradient and
their vertical distance in signal space (Fig. 3(b)) is constant.

IV. PROBLEM FORMULATION

We have the following assumptions:

a.1 The camera is pre-calibrated which means known intrinsic
parameters with lens distortion removed.

a.2 The MSM scanning pattern is repeatable given the same
input current sequence.

Mirror calibration is a two-step process. The first step is a
mirror pose estimation problem.

Definition 1 (Mirror Pose Estimation): Given the observation
points of the two incident laser beams xi,l and their reflected
laser points xi,j in their respective image coordinates and
checkerboard points xs,l, xw,l and xw,k in the image, estimate
the mirror planes 0π̃Mj.

The second step is to model and calibrate the mapping be-
tween Hall sensor readings and mirror poses.

Definition 2 (Hall Sensor Calibration): Given a sequence of
mirror planes 0π̃Mj , sequence of background magnetic field
measurements Bb and actual measurements Ba from the Hall
sensor, estimate the time offset δt and the parameters of the
model f : R3 → R3 that maps Hall sensor readings to mirror
poses.

V. CALIBRATION ALGORITHM

The calibration pipeline is shown in Fig. 4. We start with
mirror pose estimation.

A. Mirror Pose Estimation

For simplicity, we omit the index subscript j for the variables
associated with time tj before Section V-A3. In other words, the
points xi,j and Xi,j , the lines Li,j and the planes πMj will be

noted as xi, Xi, Li, and πM, respectively, in Sections V-A1 and
V-A2.

1) Estimate 3D Point/Line: Because the mirror pose is es-
timated from points in camera image, let us first introduce
the camera projection model and then explain how to obtain
the transformation between the camera coordinate systems and
{W} and {S} defined by the planes πW and πS.

According to [35], a 3D point X in world coordinate {W}
and its counterpart x in camera image satisfies

x = λK[Rt]X. (1)

Here λ is a scaling factor,K is the intrinsic matrix of the camera,
R and t are rotation and translation components of the transfor-

mation matrix C
WT =

[
R t

0 1

]
, which transform from coordi-

nate of the world plane {W} to coordinate of the camera {C}.
C
WT is estimated by solving the perspective n-point problem
(PnP) [36] with K from camera calibration and checkerboard
points.

In the setup shown in Fig. 1(b), the transformations C1

W T and
C1

Sl
T between the camera coordinate system {C1}, {W} and

{Sl} are obtained from the checkerboard corner points xs,l,
xw,l and their corresponding 3D planar checkerboard corner
points by solving the PnP problem. Similarly, for the camera
coordinate system {C2} in the second step (Fig. 1(c)), C2

W T
is solved with PnP using checkerboard corner points xw,k and
their 3D counterparts. Because the grid size of the checkerboard
pattern is known, the true scale is recovered in the process.

3D point Xi on the world plane can be derived from its image
counterpart xi with the transformation matrix C2

W T estimated
from PnP, as X̃i = RT( 1

λ
K−1xi − t), here R and t are com-

ponents from C2

W T and λ = [RTK−1]3
[RTt]3

xi, where [·]3 denotes the
third row of a vector or matrix.

The points in the sliding plane πS share the same derivation
as the points in πW. Therefore, we can obtain the observation
points of all incident laser beams SlXi,l from xi,l. We transform
the points in {Sl} to {W} as Xi,l =

W
C1

TC1

Sl
TSlXi,l, where the

transformation matrix W
C1

T and C1

Sl
T is obtained by solving the

PnP problem.
We represent a 3D line with Pl ü cker coordinates. The incident

laser beam Li = [[vi]×mi] is formed by the direction vector
vi and the moment vector mi. The direction vector vi can
be estimated from the points in the incident laser beam by the
principal component analysis (PCA) as (x̃Li − X̄Li)

T = USVT,
where x̃Li =

[
. . . X̃i,l . . .

]
are the laser dots observed in the

sliding plane as shown in Fig. 1(b), X̄Li is the mean of the row of
x̃Li. The first principal component of V is the direction vector
vi of Li. The moment vector mi is given by mi = vi × X̄Li
following the conventions of [33].

Any pointXi,l onLi satisfies vi × X̃i,l +mi = 0 andXLi =
[x̃T

Li 1]
T, a line constrain can be formulated as

LiXLi = 0. (2)

For any point Xi not on Li, the normal vector of the light path
plane they form is given by nLi = vi × (X̃i − X̄Li) = LiXi.

2) Estimate Mirror Pose in {W}: As discussed in
Section III-C, mirror planeπM is calculated from incident beams
Li and their reflected laser dots Xi.
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Fig. 5. Factor graph illustration of the MLE problem.

The mirror plane πM is perpendicular to the light path planes
πLi means that the mirror normal nM and the normal light path
planes nLi are also perpendicular. Therefore, nM can be solved
from NT

LnM = 0, where NL =
[
. . . nLi . . .

]
contains all

the normals in the light-path plane.
As shown in Fig. 2(b), for a reflected laser dot Xi, its virtual

counterpart X′
i lies on the extension of the incident beam Li.

X′
i can be derived from the reflection transformation as X̃′

i =

X̃i − 2(nT
MX̃i − dM)nM [18]. Therefore a reflection constrain

can be formulated as

LiHXi = 0 (3)

where H =

[
I− 2nMnT

M −2dMnM

0 1

]
is the reflection trans-

formation matrix.
To obtain the optimal mirror estimation results from the initial

solutions solved using (1), (2) and (3), we formulate a Maximum
Likelihood Estimation (MLE) problem that jointly refines the
parameters from measurements in camera images.

During optimization, the variables are represented in their
minimum parameterization to improve computation efficiency.
With the logarithmic maps LogR : SO(3) → R3 and Logq :

S3 → R3 defined in [37], the transformation matrix T is
represented as T̃ = [LogR(R)T tT]T ∈ R6, the plane π is
represented as to π̃ = Logq(

π
‖π‖ ) ∈ R3, the 3D line L is

mapped to L̃ = [LogR(RL)
T m]T ∈ R4, where m = ‖m‖ and

RL =
[
v m

m v × m
m

]
. The minimum parameterized vari-

ables are aggregated as X = [PT LT TT]T to be optimized

in MLE, where P =
[
. . . π̃T

Mj . . .
]T

are all the mirror

planes, L =
[
. . . L̃T

i . . .
]T

are all the laser beams, and T =[
C1

W T̃T C2

W T̃T . . . C1

Sl
T̃T . . .

]T
are all the transformations

between camera, the world plane and the sliding plane.
The cost function of the MLE problem is formulated as the

reprojection errors of images points, and it has three compo-
nents, their detailed derivations are included in [38]. The first
component CP (green edges in Fig. 5) is from the checkerboard
corner points observed in the calibration process (Fig. 1(b) and
(c)). CP (X) is defined as

CP (X) =
∑

‖x− fP (T̃,X)‖2Σ (4)

where fP is the PnP constraint derived from (1). Here
(x, T̃,X) ∈ {(xw,l,

C1

W T̃,Xc), (xw,k,
C2

W T̃,Xc), (xw,l,
C1

Sl
T̃,

Xc)}. Xc is the known 3D checkerboard points on the sliding
plane and world plane predefined by the checkerboard pattern.
‖ · ‖Σ denotes the Mahalanobis distance. The second cost
function component CL (blue edges in Fig. 5) is from the laser
beam observation points shown in Fig. 1(b), CL(X) is defined

as

CL(X) =
∑
i,l

∥∥∥xi,l − fL

(
C1

Sl
T̃, L̃i,

Sl

W T̃
)∥∥∥2

Σ
(5)

where fL is the line constraint derived from (1) and (2) as the
camera image projection of the intersecting point between laser
beam L and sliding plane πSl. The third component of the cost
function CR (red edges in Fig. 5) is from the reflected laser dots
shown in Fig. 1(c). CR(X) is defined as

CR(X) =
∑
i,j

∥∥∥xi,j − fR

(
C2

W T̃, L̃i, π̃Mj

)∥∥∥2
Σ

(6)

where fR is the reflection constraint derived from (1) and (3) as
the camera image projection of the intersecting point between
laser beam L and reflected world plane πW with the reflection
relationship defined by mirror plane πMj.

The MLE of X is solved by minimizing

min
X∗

CP (X∗) + CL(X∗) + CR(X∗) (7)

using the Levenberg–Marquardt (LM) algorithm. And the un-
certainty of X∗ is given by

ΣX=

⎛
⎝∑

w,l

JT
w,lΣ

−1Jw,l+
∑
w,k

JT
w,kΣ

−1Jw,k+
∑
s,l

JT
s,lΣ

−1Js,l

+
∑
i,l

JT
i,lΣ

−1Ji,l +
∑
i,j

JT
i,jΣ

−1Ji,j

⎞
⎠

−1

(8)

where

⎡
⎢⎢⎢⎢⎢⎣

Jw,l

Jw,k

Js,l
Ji,l
Ji,j

⎤
⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂fP (
C1
W T̃∗,Xc)

∂X
∂fP (

C2
W T̃∗,Xc)

∂X
∂fP (

C1
Sl

T̃∗,Xc)

∂X
∂fL(

C1
Sl

T̃∗,L̃∗
i,

Sl
W T̃∗)

∂X
∂fR(

C2
W T̃∗,L̃∗

i,π̃
∗
Mj)

∂X

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

are the Jacobians.
To validate the parameters estimated from MLE, we use

the Euclidean distance between the reflected laser dot obser-
vations xm,j in testing set and the predicted projection of
the reflected laser dot as our evaluation metric. Because the
data used for parameter estimation are not overlapped with
the testing data, we note the index variables m �= i ∀m, i. Let
pm,j = [(T∗)T, (π̃∗

Mj)
T,xT

m]T be the parameters we use for the
prediction, where xm = [. . . xT

m,l . . .]
T. The prediction error is

δm,j = ‖xm,j − fpred(pm,j)‖2 (9)

where ‖ · ‖2 is the L2 norm, fpred is the projection prediction
function derived from (1), (2) and (3). Under the Gaussian noise
assumption, the variance of the prediction error is

σ2
m,j = JxΣxJ

T
x + JpΣpJ

T
p (10)

where Jx =
∂δm,j

∂xm,j
and Jp =

∂δm,j

∂pm,j
. Σp =

[
ΣTπ

Σxm

]
,

where ΣTπ is a submatrix of ΣX derived in 8 and Σxm =
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Fig. 6. Angle measurements and Hall sensor readings in signal space (a) and
(b) and temporal space (c)–(f). (a), (c), and (e) are mirror poses while (b), (d),
and (f) are magnetic field readings with background removed. Time is coded in
color. Red ‘X’ shows one corresponding point across the two signals in different
domains.

diag(. . . ,Σx, . . .) is a block diagonal matrix with all the co-
variance matrix of xm,l.

3) Estimate {0}: Frame transformation from {W} and {0}
is to be estimated from the transient mirror poses πMj. This is
a necessary step because we need to extract the mirror poses in
{0} before we can map them to the Hall sensor readings.

By definition, the X-axis of the mirror coordinate system is
parallel to the mirror fast axis, which is perpendicular to all
mirror normals during 1D fast axis scanning, this means that we
can estimate its directional vector eF from NT

FeF = 0 where
NF =

[
. . . nMf . . .

]
contains all the mirror normals during

1D fast axis scanning. The Z axis of the mirror coordinate system
is parallel to the normal vector of the neutral mirror position
nM0. Therefore, the rotation matrix from {0} to {W} is W

0 R =[
eF nM0 × eF nM0

]
.

The frame {0}’s origin XO is defined as the center of mirror
rotation; in other words, it is the point that shares all mirror
planes. Therefore, XO satisfies

ΠT
MXO = 0 (11)

where ΠM =
[
. . . πMj . . .

]
contains all the mirror poses.

We can now derive the transformation matrix from {W}
to {0} as 0

WT =
[
W
0 RT −W

0 RTXO

0 1

]
. Mirror planes in {0} is

0πMj =
W
0 TTπMj which contains two angles of rotation and

one out-of-plane translation that can be mapped to Hall sensor
readings in the next step.

B. Hall Sensor Calibration

In Hall sensor data processing, we first linearly interpolate
actual and background readings Ba and Bb as BA(t) and BB(t)
to allow time offset estimation in model calibration [31]. Then
subtract the background signal from the actual signal to ob-
tain the foreground signal as B(t) = BA(t)− BB(t) [39]. With
background interference removed, let us model and establish
the mapping between the magnetic field readings and mirror
poses. The experiment setup that generates these readings will
be explained in the next section. The angle measurements and
Hall sensor readings are shown in Fig. 6. There is a clear
correlation between the angle measurements and the Hall sensor
readings. Because the sensing magnet is mounted on the back

Fig. 7. Photograph of the experiment setup.

of mirror plate, its motion direction is always opposite to the
mirror movement. This reversed motion is reflected in Fig. 6(a)
and (d), a point (marked with red ‘X’) in the top left corner of
(a) corresponds to the bottom right corner of (b). Translating the
correspondence in signal space to temporal space show the time
offset between the two signals, the time offset can be observed
by comparing Fig. 6(b) and (c) to Fig. 6(e) and (f).

Based on the a near linear relationship and periodicity of the
angle measurements and Hall sensor readings, we compare a
linear model to a sine wave model in the mapping between the
two types of signal.

A linear model maps a linear combination of the Hall sensor
readings to the mirror plane as

fL(A,Bj) = A
[
BT

j 1
]T

(12)

here A is a 3-by-4 matrix of model parameters, and Bj = B(tj).
Similarly, a sine wave model can be modeled as

fS(A,Bj) = A
[
sin(Φ(Bj))

T 1
]T

(13)

here A is also a 3-by-4 matrix of model parameters. Phase
mapping function Φ(Bj) = 2πfB−1(Bj), where f is a 3-by-1
vector of the foreground Hall effect sensor signal frequencies
obtained from the data, B−1 is the inverse function of the Hall
sensor reading interpolation that maps the readings back to time.
We can now simultaneously estimate the time offset δt that
associates the two data sequences and the parameters of each
model f ∈ {fL, fS} from

min
A,δt

∑
j

‖f(A,B(tj + δt))− 0π̃Mj‖2. (14)

VI. EXPERIMENTS

A. Experiment Setup

The experiment setup is shown in Fig. 7. Checkerboard pat-
terns have a cell size of 10.0 mm×10.0 mm. We employ two
function generators (Keysight 33520B) to output driving and
triggering signals. The pulse width of our laser source (Crysta-
laser QL532-1W0) is 15 ns. The sampling rate of our triaxial
Hall effect sensor (Melexis MLX90393) is 1 kHz, and the MCU
(STM NUCLEO-F439ZI) produces an interrupt signal when it
receives a Hall sensor reading. We employ an industry-grade
10 mega-pixel CMOS camera (DS-CFMT1000-H) to capture
images, and the camera intrinsic parameters have been calibrated
using OpenCV.
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TABLE I
MIRROR POSE ESTIMATION RESULT

B. Experimental Results

1) Mirror Pose Estimation Result: We collected six datasets
to validate the mirror pose estimation method in Section V-A.
The six datasets are combinations of two different MSM scan-
ning patterns and three laser beam setups with different incident
angles. We compare the estimation results from our proposed 3
DoF mirror estimation method and a baseline method employed
in [26] that assumes pure MSM rotational motion and precise
alignment between the MSM center of rotation and the incident
laser beams.

We generate three laser beams using the beam splitter and a
static mirror. We employ two beams to estimate mirror poses
while validating the estimation with the third beam. The choice
of the two beams causes different angles between the two in-
cident beams and leads to different spanning angles θ between
the light path plane normals (shown in Fig. 2(a)). θ changes
during MSM scanning and as it approaches 90◦ it reduces the
uncertainty of mirror pose estimation; therefore, we use it as a
control variable to validate our results, a larger average spanning
angle θ̄ should lead to a smaller prediction error.

Because the ground truth measurements of the 3 DoF mirror
poses are not available, we validate the estimated mirror poses
by comparing the projections of the reflected beam on the world
plane predicted by the estimations with the actual observations.
The difference between the predictions and observations is
calculated using (9) and converted from pixel space to angular
space. We use the root-mean-squared angular errors δ̄ to measure
the accuracy of our calibration.

As shown in Table I, the maximum prediction error of the
proposed model is 0.042◦ in the six datasets, and the minimum is
0.020◦. The proposed 3-DoF mirror estimation model performs
better than the baseline model in all six datasets.

The proposed model also shows a consistent error level
when choosing the same spanning-angle laser between the two
incident beams used in calibration. As shown in Table I, for
the Pattern-A-3 and Pattern-B-6 datasets, when the averaged
spanning angles θ̄ between normals are greater than 45◦, the
prediction errors are the smallest between the datasets. This is
expected because a larger angle between the light-path plane
normals leads to a smaller uncertainty range of the mirror plane
estimations; hence the higher accuracy improves. The detailed
error analysis results are included on page 4 of the multimedia
attachment file.

2) Hall Sensor Calibration Result: We have collected a
dataset with 195 mirror pose measurements and 130 k actual
Hall sensor readings and 65 k background Hall sensor readings.
The dataset is randomly divided into a training set and a testing
set with a ratio of 4:1. Both the linear model and the sine wave
model have been fitted into the training set by solving (14) for the
two candidate models in (12) and (13). Each estimated model is
then used to predict the mirror planes with Hall sensor readings

TABLE II
HALL SENSOR CALIBRATION RESULT

in the testing set, and the errors between the predictions and
measurements are used for comparison. We repeat this process
50 times and compare the root mean squared error of each
model. To maintain independence of the training and testing
process, Hall effect sensor readings are interpolated separately
on the training and testing sets. In the dataset, the range of mirror
scanning angles is 4.37◦ and 17.17◦ for the fast and slow axes,
respectively. The range of out-of-plane translation is 1.04 mm.

The root-mean-squared test errors of the two models on the
50 random trails are shown in Table II. The sine wave model
performs better than the linear model, which is not surprising
because the sine wave model captures the inherent periodicity
property better than the linear model. It is also expected to be
more robust to the baseline shift caused by external magnetic
interference.

VII. CONCLUSIONS AND FUTURE WORK

We reported on our design of a calibration rig and algorithms
for MSM with triaxial Hall sensors. To reduce cost and ad-
dress the unique challenges brought by MSMs, we employed
a 2-laser beam approach assisted by two checkerboards. We
extracted laser dot patterns and modeled their reflection prop-
erty to propose an indirect mirror pose estimation method. We
also proposed a self-synchronizing optimization approach that
exploits the signal periodicity to map mirror poses to Hall sensor
readings. We constructed the calibration rig and implemented
algorithms. Our experimental results validated our design with
satisfactory results. In the future, we will further explore opti-
mal calibration setup (e.g. incident beam number and spanning
angles) and calibrate MSMs with different sensory feedback
methods. New results will be reported in future publications.
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