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Abstract 

The development of autonomous vehicles has become one of the greatest re-

search endeavors in recent years. These vehicles rely on many complex sys-

tems working in tandem to make decisions. For practical use and safety rea-

sons, these systems must not only be accurate, but also quickly detect changes 

in the surrounding environment. In autonomous vehicle research, the envi-

ronment perception system is one of the key components of development. En-

vironment perception systems allow the vehicle to understand its surround-

ings. This is done by using cameras, light detection and ranging (LiDAR), with 

other sensor systems and modalities. Deep learning computer vision algo-

rithms have been shown to be the strongest tool for translating camera data 

into accurate and safe traversability decisions regarding the environment sur-

rounding a vehicle. In order for a vehicle to safely traverse an area in real time, 

these computer vision algorithms must be accurate and have low latency. 

While much research has studied autonomous driving for traversing well-

structured urban environments, limited research exists evaluating perception 

system improvements in off-road settings. This research aims to investigate 

the adaptability of several existing deep-learning architectures for semantic seg-

mentation in off-road environments. Previous studies of two Convolutional 

Neural Network (CNN) architectures are included for comparison with new 

evaluation of Vision Transformer (ViT) architectures for semantic segmenta-

tion. Our results demonstrate viability of ViT architectures for off-road percep-

tion systems, having a strong segmentation accuracy, lower inference speed and 

memory footprint compared to previous results with CNN architectures. 
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1. Introduction 

Off-road autonomous vehicles, or Unmanned Ground Vehicles (UGVs), are im-

portant research efforts in academia and industry. UGVs are typically deployed in 

challenging terrain and atypical conditions not pre-built for driving. For example, 

small UGVs are often deployed for terrain exploration or monitoring [1]. Larger 

UGVs have many uses in military surveillance and defense [2]. These unmanned 

vehicles use many systems in tandem to make traversal decisions, one of the most 

crucial being the perception system [3]. 

Perception systems are classified into two main subsystems: the Position Esti-

mation System and the Environment Perception System [4]. Position Estimation 

Systems typically use satellite GPS or Inertial Measurement Units (IMUs) to esti-

mate the position of the vehicle [4]. Environment Perception Systems acquire 

knowledge by scanning the surrounding terrain to detect changes in driving con-

ditions, using various sensors to gather information [4]. Sensor examples include 

Radio Detection and Ranging (RADAR), Light Detection and Ranging (LiDAR), 

and various types of cameras [4]. Since RADAR does not support simultaneous 

detection of multiple objects and LiDAR is used for point-cloud distance data [5]. 

The cameras used are an important sensor modality that provides fine-grain en-

vironmental knowledge for perception systems. 

Typically multiple types of camera data—including truecolor red-green-blue 

(RGB) images, Forward Looking Infrared (FLIR) thermal, multispectral and ste-

reo, are used in an environment perception system. This work focuses on extrac-

tion of meaningful insights from RGB image data, also known as Computer Vi-

sion [3]. In environment perception, object detection and semantic segmentation 

are the two most common computer vision tasks with RGB images. Object detec-

tion classifies objects in images and marks their location, typically using a bound-

ing box [6]. Semantic segmentation classifies every pixel in an image, providing 

more fine-grained detail of an image’s scene than object detection but at a higher 

computational cost [7]. Since autonomous vehicles require details of their sur-

roundings for safe and accurate decision-making, semantic segmentation is a cru-

cial element of environment perception systems. 

Methods used for semantic segmentation take on numerous forms. In recent 

years, multi-layered neural networks (deep learning) have shown stronger results 

in semantic segmentation and other computer vision tasks compared to tradi-

tional rule-based algorithms. The use of deep learning has generated much re-

search in the creation of new semantic segmentation neural network designs, or 

“architectures”. The design of an architecture determines how the neural network 

represents patterns in data or “learns” information. Convolutional neural network 

(CNN) architectures have traditionally been the state of the art for semantic seg-

mentation [8]-[11]. Vision Transformer (ViT) architectures have recently shown 

comparable, and in some cases superior, results against CNN architectures in se-

mantic segmentation and other computer vision tasks [12] [13]. 

Semantic segmentation architectures, in autonomy or otherwise, are typically 
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evaluated by their ability to segment scenes in well-structured environments; most 

benchmark datasets contain images from urban areas [14] [15]. For autonomous 

urban travel, cars, street signs, and roads with distinct lines and intersections give 

perception systems visual cues for path planning [14]. However, far less research 

has evaluated semantic segmentation architectures in off-road or unstructured 

settings. Modeling off-road environments common for UGV deployment, e.g., 

forests, country roads, deserts, is difficult with meshing between naturally present 

objects and generally noisy terrain. These environments are rarely studied with 

recently developed deep learning architectures, observed from: 1) the scarcity of 

quality, labeled image datasets created in off-road environments [16]; 2) the ab-

sence of studies using semantic segmentation architectures with available off-road 

datasets [3]. 

In addition, the real-world deployment of deep learning architectures intro-

duces other constraints. Typically UGVs are deployed with limited computational 

resources. Therefore, semantic segmentation architectures that use large amounts 

of calculations and time to produce insights about a surrounding environment are 

undesirable. It is crucial that the architectures deployed in perception systems not 

only be accurate, but be able to compute segmentation predictions (“inference”) 

quickly on devices with limited computational resources (typically “edge” de-

vices). 

This work evaluates the viability of multiple deep learning architectures for use 

in off-road UGVs, where accuracy must be high and inference speed fast. State-

of-the-art architectures are evaluated on the basis of their ability to both accurately 

segment off-road data and inference quickly. Specifically, results from two differ-

ent CNN architectures—DeepLabV3+ [17] and Swiftnet [18], are compared with 

results from two different ViT architectures—EfficientViT [19] and Segformer 

[20], on off-road data. 

This paper contributes the following to the literature: 

• Performance evaluation of state-of-the-art ViT architectures in off-road envi-

ronments; 

• Analysis of ViT vs. CNN architectures for determining traversable terrain 

through semantic segmentation; 

• Inference speed analysis of ViT vs. CNN architectures for real-time use. 

2. Background and Related Works 

When evaluating segmentation architectures, there is a trade-off between accu-

racy and inference speed [21]-[23]. Typically, more accurate architectures take 

longer to inference. Conversely, architectures with higher inference speeds nor-

mally suffer from accuracy loss. 

Finding a balance between accuracy and inference speed is important in off-

road autonomous driving for several reasons: 1) Safety: For the vehicle to make 

decisions that alleviate damage to itself or any cargo, it must have an accurate 

representation surrounding environments to determine traversable terrain. 2) 
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Latency Expectations: Deployment of these vehicles for missions requires real-

time decision-making. Perception systems must be able to determine changes in 

an environment multiple times a second. 3) Constrained Resources: UGVs are 

typically deployed using edge devices for perception system computation. Ensur-

ing the perception system efficiently segments RGB camera data on devices with 

limited computational resources (small GPUs and low memory) is crucial for de-

ployment. 

This section details deep learning architectures explored in off-road settings, 

the image datasets used to evaulate them. 

2.1. Deep Learning Architectures for Semantic Segmentation 

To effectively segment RGB off-road camera data, a variety of deep learning ar-

chitectures were utilized. The architectures used in this work fall broadly into two 

categories: Convolutional Neural Networks and Vision Transformers. 

Convolutional neural networks (CNNs) use kernels, also known as filters, to 

extract spatial features from images [9]. Kernels are typically represented by a 

small square grid, where each grid element contains a numerical value. This grid 

transforms images by transforming an input image into a new representation, 

where each new pixel value is a weighted sum of all pixels in the grid’s window. 

The weights of neighboring pixels that contribute to a new pixel’s sum, the ker-

nel’s values, are learned through the training process and updated to recognize 

patterns in images that pertain to specific classes in the input data. The combina-

tion of these convolutional layers creates deep neural networks that have proven 

to work well for computer vision tasks [9] [24] [25]. 

Transformer architectures [26], originally designed for natural language pro-

cessing, use self-attention as a means to represent complex patterns in sequences. 

Self-attention uses attention “heads” to extract information from a sequence of 

data. Each head transforms individual parts of an input sequence into representa-

tions of “Queries”, questions about the data, “Keys”, answers to these queries, and 

“Values”, which determine how data should be transformed based on matching 

queries and keys. Each head transforms input sequence data into queries, keys, 

and values using weights learned through training. Based on the relationship be-

tween queries, keys, and values in each head, “attention maps” are created, high-

lighting complex relationships in the input data, such as semantic meaning or re-

lationships to other data points. Each head creates distinct queries, keys, and val-

ues; resulting attention map data from multiple heads are combined to aggregate 

information. The Vision Transformer architecture (ViT) modified the idea to 

work with computer vision tasks [13]. New semantic segmentation architectures 

based on the ideas of the ViT typically have two things in common. First, most 

multi-scale architectures process input images at multiple scales to combine fine 

and coarse features [12]. Second, they use attention to create a global receptive 

field, meaning relationships between patterns everywhere in the image are con-

sidered [12]. 



M. H. Faykus III et al. 

 

 

DOI: 10.4236/jcc.2024.129011 192 Journal of Computer and Communications 

 

CNN-based architectures are limited by the spatial window size of their kernels; 

using attention allows ViT models to find unique relationships that are not limited 

by such spatial constraints. However, it is well studied that the transformer model 

is hindered by high computational costs, memory footprint, and a need for large 

amounts of training data to perform well [27]. Another noted downside is the 

quadratic computational complexity of typical attention functions, meaning the 

cost to compute predictions typically grows quadratically with respect to the input 

data size. This computational cost is incredibly cumbersome when using trans-

formers for real-time applications in autonomous vehicles that use high-resolu-

tion images for perception. Several efforts have been made to reduce the memory 

and computational cost of ViT models. Some of these methods include creating 

hybrid architectures that combine CNN and ViT architectures which use efficient 

attention operations [19], or using machine learning to compress data for more 

efficient processing [20]. 

2.2. Previous CNN Studies 

The DeepLabV3+ CNN architecture shown, in Figure 1, was investigated for im-

age segmentation with the Rellis-3D dataset on a previous study [28]. DeeplabV3+ 

has four primary components: Atrous convolution, Atrous spatial pyramid pool-

ing, and an encoder-decoder structure [17]. An atrous convolution is dilated with 

holes in the filter weights, allowing for denser feature maps. Atrous spatial pyra-

mid pooling replaces general pooling and introduces global access pooling for a 

global context. The encoder-decoder structure utilizes a backbone (ResNet in this 

study) to extract meaningful features in the data. 

In [30], the SwiftNet multi-scale architecture [18] was explored with Rellis-3D. 

Swiftnet also uses an encoder-decoder structure as shown in Figure 2. The  
 

 

Figure 1. DeeplabV3+ Architecture [29]. 
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Figure 2. SwiftNet multi-scale architecture [18]. 

 

encoder blocks (EB) are comprised of ResNet-18 layers [11]. The features are ex-

tracted at three scales (full, 1/2, and 1/4 resolution) using different branches. The 

decoder consists of a ladder-style structure with two inputs: the low-resolution 

feature maps from the preceding upsampling module (UP), and the high-resolu-

tion feature maps from the encoder blocks. The feature maps are combined with 

summation before passage to the decoder. All upsampling is done with bilinear 

interpolation. 

2.3. Efficient Vision Transformer Architectures 

As previously discussed when comparing CNNs and ViTs, the biggest hindrance 

of the ViT is the memory consumption and computational cost self-attention [27]. 

Efforts to use hierarchical pyramidal fusions, convolutional layers, and self-super-

vised Vision Transformers have been made to reduce computational complexity 

and memory footprint [12]. In this study, two recently developed architectures, 

Segformer and EfficientViT, are investigated because of their cited efficient use 

for semantic segmentation. 

2.3.1. Segformer 

The Segformer architecture was created for semantic segmentation with a light-

weight multi-layer perceptron (MLP) decoder and multi-scale attention [20]. The 

architecture uses attention at large and small scales of the input image data to 

capture fine-grained and coarse feature maps. Segformer uses projection to shorten 

input sequences into a smaller representation, making attention slightly more 
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efficient, although it is still quadratically complex. As shown in Figure 3, attention 

feature maps are created at the 1/4, 1/8, 1/16, and 1/32 scale of the original input 

image. These feature maps are merged and upsampled using nearest-neighbor in-

terpolation and then passed to the decoder. The decoder uses an MLP to output a 

1/4 scale prediction segmentation. For this study, we used bicubic interpolation 

to upsample the final prediction segmentation back to full scale. 
 

 

Figure 3. Segformer architecture [20]. 

2.3.2. EfficientViT 

EfficientViT is a hybrid CNN-ViT architecture for low-latency computer vision 

in real-world systems. EfficientViT follows the typical encoder-decoder structure 

for segmentation neural networks. The encoder is pre-trained on the ImageNet 

dataset [31] for classification. The encoder backbone comprises an input stem 

and four stages that contribute to the produced feature maps. The full architecture 

is shown in Figure 4. The input stem is a simple convolutional layer followed by 

a depth-wise separable convolution layer. The first two stages consist of multiple 

mobile inverted bottleneck convolutional layers. Stages 3 and 4 consist of the 

same convolutional layers as Stages 1 and 2, followed by the EffcientViT module: 

a ReLU Linear Attention module with convolutions to aggregate nearby tokens. 

Using ReLU as a function in attention calculation, in place of the traditional 

softmax function [13], allows for hardware efficiency, but is weaker for discover-

ing patterns [19]. When input data is passed through the backbone, the outputs 

of stages 2, 3, and 4 are saved, forming a pyramid of feature maps. Bicubic up-

sampling is then used to match their spatial and channel size, followed by a fusion of  
 

 

Figure 4. EfficientViT Architecture [19]. 
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the data by addition. The head design is simple, using a few MBConv layers to 

decode the feature maps. 

The linear attention backbone, the EfficientViT module, is shown in Figure 5. 

The learned query (Q), key (K), and value (V) matrices are fed into three channels 

before concatenation. The first layer only uses the ReLU linear attention function. 

The second and third layers additionally pass the resulting tokens through depth-

wise separable convolution layers, with kernel sizes 3 × 3 and 5 × 5, respectively, 

to aggregate nearby information. The tokens are then passed through a 1 × 1 

group convolution, aggregating channels into groups for efficient computation. 

This hierarchy creates three different scales of representation in the tokens. After 

passing through the Multi-Scale Linear Attention module, the data is passed 

through a simple feed-forward network with a depth-wise separable convolution 

layer to project the data further. This addition helps compensate for the weakness 

of ReLU as an attention function. 
 

 

Figure 5. EfficientViT Module [19]. 

2.4. Datasets 

To evaluate the segmentation ability of a deep learning architecture in an off-road 

setting, it must be trained on a large-scale dataset with labeled images of off-road 

environments. The datasets used in this study are the Rellis-3D dataset [32] and 

the CAVS Traversability (CaT) dataset [33]. These specific datasets were chosen 

because they contain 1) thousands of labeled images in various off-road environ-

ments; 2) images in the datasets are high-resolution. A large number of images 

gives architectures wider range of scenes to learn from and be evaluated on. The 

high resolution of the images allows architectures to make detailed predictions 

about the surrounding scenes, a necessary trait for real-world use. These two fac-

tors are rare to find in off-road datasets [16], making them the best choices for 

study in an off-road setting. 

2.4.1. Rellis-3D Dataset 

Rellis-3D is an off-road dataset created to fill the lack of multi-modal datasets for 

off-road environments. This off-road dataset challenges state-of-the-art deep 

learning architectures designed to segment urban data. It provides a full sensor 



M. H. Faykus III et al. 

 

 

DOI: 10.4236/jcc.2024.129011 196 Journal of Computer and Communications 

 

stack that includes RGB camera images, LiDAR point clouds, stereo images, high-

precision GPS measurements, and IMU data. This multimodal data aims to en-

hance autonomous off-road navigation with a comprehensive ontology of object 

and terrain classes. 

The Rellis-3D image collection contains 6234 labeled RGB images of size 1200 

× 1920 [32]. Figure 6 shows the ontology of the Rellis-3D dataset. Twenty class 

labels consist of two main subgroups: 1) traversable areas such as dirt, grass, as-

phalt; 2) obstacles—bushes, trees, objects, and poles. Since there are very few dirt 

labels, as seen in the dataset’s label distribution in Figure 7, this label is excluded 

from the study. 
 

 

Figure 6. Rellis-3D image example and ontology [32]. 

 

 

Figure 7. Rellis-3D data distribution. 

2.4.2. CaT: CAVS Traversability Dataset 

The Center for Advanced Vehicular Systems (CAVS) Traversability dataset (CaT) 

was created to explore off-road terrain in environments containing obstacles, 

ditches, and hidden objects [33]. The dataset includes 3624 labeled RGB images of 

varying high-definition sizes. The terrain in the images is segmented to show the 

traversing ability of three different-sized vehicles: a sedan, a pickup, and a sizeable 

off-road vehicle. A sedan is considered the vehicle with the least traversability and 
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the off-road vehicle the most. Figure 8 shows example images and annotations 

from the dataset. As shown in Figure 9, the CaT dataset has a class distribution 

with 25.29% of the pixels representing the driving capabilities of a sedan, 14.69% 

for a pickup, and 15.17% for an off-road vehicle. The last 44.86% are background 

pixels or untraversable terrain. 
 

 

Figure 8. CaT Image Examples and Corresponding Traversability Labels [33]. 

 

 

Figure 9. CaT data distribution. 

3. Methods 

To determine if ViTs improve a UGV perception system, two different ViT archi-

tectures for semantic segmentation are evaluated on the Rellis-3D off-road da-

taset. ViT architectures are evaluated based on their accuracy, ability to identify 

traversable terrain and inference speed. Additionally, the inference memory usage 

and architecture memory size for each architecture are compared. The model must 

be suited for real-time use and is further explored on the CaT dataset. Results for 

the ViT architectures are compared to previous studies of CNN-based architectures 
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on the Rellis-3D dataset [28] [30]. All hardware and software used for testing are 

listed in the Appendix. 

3.1. Model Training 

The Segformer and EfficientViT architectures are implemented in Python using 

PyTorch. To update the weights of the neural networks in both architectures, the 

AdamW optimization algorithm is used with default parameter values for the 

weight decay, epsilon, and beta parameters [34]. Both models were trained until 

convergence. Other specific hyperparameters for each architecture are docu-

mented in their respective papers and detailed below [19] [20]. 

3.1.1. Segformer Training Parameters 

To train the Segformer architecture, an initial learning rate of 0.00006 is used with 

a polynomial learning rate scheduler, as documented in the original paper [20]. 

Random flipping and random cropping were used for pre-processing the images 

as documented in the original paper [20]. 

3.1.2. EfficientViT Training Parameters 

For the EfficientViT architecture, training began with an initial 20 epochs of 

warm-up training. In the warm-up epochs, the learning rate gradually increased 

from 0.0 to the base learning rate of 0.001. The learning rate was adjusted through-

out the training based on a cosine learning rate scheduler [35]. Random flipping, 

random cropping, hue changing, and random erasing of image data were used for 

pre-processing [36]. 

3.2. Evaluation Metrics 

The CNN and ViT architectures were evaluated based on their ability to recognize 

and generalize patterns in an off-road setting (segmentation accuracy) and their 

ability to do so efficiently (inference speed and memory usage). 

Segmentation Accuracy 

The primary accuracy measurement in segmentation is intersection over union 

(IoU), shown in Equation (1). The intersection and union are based on the true 

positive (TP), false positive (FP), and false negative (FN) predictions of each class. 

The mean IoU (mIoU), is an average of all the individual class IoU scores (see 

Equation (2)). For exploring Rellis-3D, the architectures are trained on 70% of the 

dataset (4364 images) and evaluated on 30% of the image data (1870 images), 

which is the same as previous studies. For exploring CaT, 70% of the dataset (2356 

images) was used for training, and 30% (1088 images) was used for testing. 

 
class class

class

class class

Prediction GroundTruth TP
IoU

Prediction GroundTruth TP FP FN
= =

+ +



 (1) 

 
class

classes

IoU
IoU

n
= ∑  (2) 



M. H. Faykus III et al. 

 

 

DOI: 10.4236/jcc.2024.129011 199 Journal of Computer and Communications 

 

3.3. Inference Speed and Memory Usage 

The timing approach for evaluating inference speeds and memory consumption 

is detailed in Listing 1. The architectures were timed on 200 iterations of predict-

ing segmented images on Rellis-3D resolution data (1200 × 1920), and the average 

results were reported. Since perception systems must transfer knowledge to the 

CPU for decision-making, the inference speed calculations included the time to 

transfer the predictions back to the CPU. 
 

 

Listing 1. Inference Speed and Memory Data Collection in PyTorch. 

4. Results and Discussion 

This section presents new results for inference speed and memory consumption, 

as well as mIoU on the Rellis-3D dataset. Additionally, the number of parameters 

and size in memory of each architecture are detailed. We then measure the infer-

ence time of the most accurate architectures on a Jetson Xavier AGX edge device 

to ensure real-time viability. Further, using the architecture deemed most suited 

for accurate and fast inference, the CaT dataset was explored. We compare CaT 

results against the benchmark IoU scores outlined in the CaT dataset paper [33]. 

4.1. Rellis-3D Accuracy 

First, the CNN and ViT architectures are evaluated on the Rellis-3D dataset and 

compared for accuracy in the off-road setting. The class and mIoU results are 

shown in Table 1. 
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Table 1. Class and Mean IoU Accuracy (%) on Rellis-3D. 

Class DeeplabV3+ [28] Swiftnet [30] EfficientViT Segformer 

grass 72.70 91.83 92.07 85.65 

tree 83.45 90.04 90.06 82.05 

pole 7.57 42.15 40.53 14.48 

water 53.35 81.48 79.22 50.63 

sky 95.84 97.54 97.57 96.28 

vehicle 26.96 67.30 65.34 31.02 

object 24.89 72.73 68.44 13.32 

asphalt 60.95 86.08 85.34 58.40 

building 10.49 65.08 59.46 9.49 

log 25.97 61.79 56.90 36.12 

person 66.46 92.52 90.78 71.23 

fence 15.79 65.61 58.31 18.88 

bush 70.95 85.09 85.55 73.18 

concrete 80.23 91.24 90.96 84.83 

barrier 65.57 87.63 86.19 68.37 

puddle 59.27 80.96 80.69 67.08 

mud 29.51 65.46 66.09 45.37 

rubble 36.43 77.87 74.96 49.88 

mIoU 49.24 77.9 76.03 53.13 

 

EfficientViT and Swiftnet were the strongest performing architectures with 

76.03% and 77.9% mIoU, respectively. The class IoUs for these architectures show 

that each is well generalized to large terrain patterns and small obstacles/objects. 

Results from the previous study show that DeepLabV3+ could generalize to the 

large terrain patterns—e.g., tree, grass, sky, bush and concrete, while it struggled 

to generalize to the smaller objects/obstacles. Similarly, while struggling with the 

smaller objects, Segformer generalizes well for significant patterns in the dataset—

e.g., grass, bush, concrete, sky, and trees. Both architectures seem to be affected 

by the class imbalance challenge common in off-road datasets, with sky, grass, 

tree, and bush being the most over-represented classes in the Rellis-3D dataset, as 

previously shown in Figure 7. Prediction segmentation results with the ViT ar-

chitectures compared to the ground truth segmentation are shown in Figure 10. 

The traversable tracks of Figure 10(d) show a mixture of classes, highlighting Seg-

former’s inaccuracy on small patterns. As seen in Figure 10(c), EfficientViT 

smoothly identifies traversability patterns in the off-road environment, barely de-

viating from the ground truth segmentation in Figure 10(b). 
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Figure 10. Rellis3D Example Image and ViT Predictions. (a) RGB Image; (b) Ground Truth Segmentation; (c) EfficientViT Pre-

dicted Segmentation; (d) Segformer Predicted Segmentation. 

4.2. Rellis-3D Inference Speed and Memory Usage 

Based on the accuracy results, Swiftnet and the ViT architectures have results 

promising for real-world use. To determine the viability of each architecture for 

implementation on an edge device, a baseline comparison of inference speed, in-

ference memory usage, parameters, and architecture size, these architectures are 

studied using a large GPU. 
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4.2.1. Large GPU Study 

All inference results presented in Table 2 were measured using an NVIDIA V100 

GPU (specifications shown in Appendix Table A1). 
 

Table 2. Architecture Inference Speed and Memory Usage on Rellis-3D. 

Architecture Inference Speed Parameters 
Architecture 

Size 

Inference 

Memory Usage 

EfficientViT 11.53 ms 0.7 M 2.76 MB 392 MB 

Swiftnet 23.32 ms 12 M 46.14 MB 746 MB 

Segformer 87.86 ms 3.7 M 14.22 MB 2571 MB 

 

EfficientViT outperformed the other state-of-the-art architectures in terms of 

inference speed. It is about twice as fast as the CNN-based Swiftnet on a V100 

while using fewer parameters and half as much memory for inference as Swiftnet. 

Segformer suffers from a slower inference speed and a significant increase in 

memory consumption for inference, likely due to the inefficient attention func-

tionality, a notable downside of self-attention with high-resolution images. 

4.2.2. Edge Device Study 

Based on the results from the large GPU study, Swiftnet and EfficientViT are via-

ble for edge device use given their fast inference speed and low memory usage. 

Only the Swiftnet and EfficientViT architectures were translated to run on the 

smaller edge device since the results of Table 2 show that the Segformer inference 

time was significantly slower than the other two architectures, even with a pow-

erful GPU like a V100. To verify that Swiftnet and EfficientViT maintain their 

inference speed in a real-time setting, the architectures were tested on a NVIDIA 

Jetson Xavier AGX edge device (specifications shown in Appendix Table A2). Af-

ter testing these two architectures on the Xavier with the same method from Al-

gorithm 1, the NVIDIA TensorRT engine [37] was used to optimize the architec-

tures for inference on the Xavier. EfficientViT strongly outperforms Swiftnet re-

garding inference speed on the edge device as shown in Table 3. Without Ten-

sorRT, it is more than 3× faster; with TensorRT, it is about 4× faster. Based on 

these results, EfficientViT has the traits most desirable for real-world perfor-

mance: strong segmentation accuracy substainally faster inference speed than the 

other architectures studied. 

4.3. CaT Dataset Results 

Since the results form Rellis-3D show EfficientViT is the most viable architecture 
 

Table 3. Inference speed on jetson xavier AGX edge device. 

Architecture No Optimization TensorRT Optimized 

EfficientViT 114 ms 83 ms 

Swiftnet 388 ms 321 ms 
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Table 4. IoU (%) results on CaT compared to state of the art benchmark [33]. 

Classes 

Architectures 
Sedan Pickup Off-Road mIoU 

PSPNet w/ResNet-18 90.44 66.62 79.71 78.92 

PSPNet w/ResNet-34 91.21 68.64 80.52 80.12 

PSPNet w/ResNet-50 90.70 67.40 80.00 79.36 

PSPNet w/ResNet-101 91.64 69.08 81.00 80.57 

EfficientViT 98.22 92.01 93.09 94.44 

 

for real-world use, with high inference speed and accuracy, we compare it to cur-

rent results with the CaT dataset to further test the ability of the architecture to 

determine traversable terrain in a different off-road setting. The results for train-

ing EfficientViT on the CaT dataset are shown in Table 4. When comparing these 

results to the state-of-the-art CaT Benchmark, EfficientViT detects the three types 

of traversable terrain in the off-road environment more accurately. Comparing 

our results to the state-of-the-art benchmark from the CaT dataset [33], these re-

sults achieved a mIoU score of 94.44% a significant increase in mIoU 13.87% over 

the CaT benchmark of 80.57%. Individually, these results show an improved IoU 

score for sedan traversability by 6.57%, pickup by 22.93% and off-road by 12.09%. 

Traversability accuracy with both CaT and Rellis-3D coupled with high inference 

speed results prove EfficientViT is extremely viable for real-world use in deter-

mining traversable terrain in a perception system. 

5. Conclusion 

Using a state-of-the-art ViT architecture, EfficientViT, we were able to demon-

strate the viability of a ViT architecture for us in an off-road perception system. 

Compared to previous results with a CNN architecture, Swiftnet, EfficientViT 

maintained a strong accuracy in off-road environments while having a much 

faster inference speed. EfficientViT has 1.9% mIoU reduction on the Rellis3D da-

taset compared to Swiftnet, while being 2× as fast as the Swiftnet for inference on 

a large GPU, and up to 4× as fast on an edge device with TensorRT optimization. 

Additionally, EfficientViT uses half as much memory for inference as Swiftnet and 

has a 20× smaller model size—two traits extremely desirable in real-world systems 

with limited memory capacity. The use of hardware efficient attention and effi-

cient convolution operations makes this architecture extremely fast, while main-

taining a strong accuracy with few parameters. These results make EfficientViT a 

viable option for real-time use in UGV perception systems. 

EfficientViT also demonstrated new state-of-the-art results on the CaT dataset 

with 94.44% mIoU on traversable terrain. These results further demonstrate the 

ability of the EfficientViT architecture to determine traversable terrain for a UGV, 

maintaining high accuracy, fast inference, and low memory usage. 

To add to current developments toward integrating higher levels of autonomy 
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into UGVs, this research provides insights into new methods for improving off-

road perception systems. Use of new semantic segmentation architectures that 

maintain accuracy, with a lower memory footprint and higher inference speed, 

will alleviate latency and memory bottlenecks within the perception system, al-

lowing vehicles to make safe decisions in real-time. 

Future Work 

Perception systems may deploy a variety of sensors including RADAR, LiDAR, 

FLIR, multispectral and stereo images. Combinations and fusions of these sensor 

modalities can lead to a richer understanding of the surrounding environment, 

for example providing depth/distances for contextual information. In future work, 

the use and adaptation of ViT architectures with these additional sensor modali-

ties for enriched perception will be explored. 

With power and physical space restrictions common on autonomous vehicles, 

data transfer can be utilized to send perception data to external devices for in-

creased computation demands. Offloading data for processing can introduce new 

challenges where restricted bandwidth of the transfer requires data manipulation 

to maintain high processing speeds and reduce latency. 
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Appendix 

Table A1. V100 inference testing specifications. 

GPU Name NVIDIA Tesla V100 

Power Cap 250 W 

CUDA Cores 5120 

GPU Memory 16 GB (GPU dedicated) 

CUDA Version 12.4 

Python Version 3.11.4 

PyTorch Version 2.1.0 

Torchvision Version 0.16.0 

 

Table A2. Jetson Xavier testing specifications. 

Device Name Jetson Xavier AGX 

Power Cap 15 W 

CUDA Cores 512 

GPU Memory 32 GB (shared) 

CUDA Version 11.8 

Python Version 3.8.0 

PyTorch Version 2.0.0 

Torchvision Version 0.15.0 
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