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Abstract

The development of autonomous vehicles has become one of the greatest re-
search endeavors in recent years. These vehicles rely on many complex sys-
tems working in tandem to make decisions. For practical use and safety rea-
sons, these systems must not only be accurate, but also quickly detect changes
in the surrounding environment. In autonomous vehicle research, the envi-
ronment perception system is one of the key components of development. En-
vironment perception systems allow the vehicle to understand its surround-
ings. This is done by using cameras, light detection and ranging (LiDAR), with
other sensor systems and modalities. Deep learning computer vision algo-
rithms have been shown to be the strongest tool for translating camera data
into accurate and safe traversability decisions regarding the environment sur-
rounding a vehicle. In order for a vehicle to safely traverse an area in real time,
these computer vision algorithms must be accurate and have low latency.
While much research has studied autonomous driving for traversing well-
structured urban environments, limited research exists evaluating perception
system improvements in off-road settings. This research aims to investigate
the adaptability of several existing deep-learning architectures for semantic seg-
mentation in off-road environments. Previous studies of two Convolutional
Neural Network (CNN) architectures are included for comparison with new
evaluation of Vision Transformer (ViT) architectures for semantic segmenta-
tion. Our results demonstrate viability of ViT architectures for off-road percep-
tion systems, having a strong segmentation accuracy, lower inference speed and
memory footprint compared to previous results with CNN architectures.
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1. Introduction

Off-road autonomous vehicles, or Unmanned Ground Vehicles (UGVs), are im-
portant research efforts in academia and industry. UGVs are typically deployed in
challenging terrain and atypical conditions not pre-built for driving. For example,
small UGV are often deployed for terrain exploration or monitoring [1]. Larger
UGVs have many uses in military surveillance and defense [2]. These unmanned
vehicles use many systems in tandem to make traversal decisions, one of the most
crucial being the perception system [3].

Perception systems are classified into two main subsystems: the Position Esti-
mation System and the Environment Perception System [4]. Position Estimation
Systems typically use satellite GPS or Inertial Measurement Units (IMUs) to esti-
mate the position of the vehicle [4]. Environment Perception Systems acquire
knowledge by scanning the surrounding terrain to detect changes in driving con-
ditions, using various sensors to gather information [4]. Sensor examples include
Radio Detection and Ranging (RADAR), Light Detection and Ranging (LiDAR),
and various types of cameras [4]. Since RADAR does not support simultaneous
detection of multiple objects and LiDAR is used for point-cloud distance data [5].
The cameras used are an important sensor modality that provides fine-grain en-
vironmental knowledge for perception systems.

Typically multiple types of camera data—including truecolor red-green-blue
(RGB) images, Forward Looking Infrared (FLIR) thermal, multispectral and ste-
reo, are used in an environment perception system. This work focuses on extrac-
tion of meaningful insights from RGB image data, also known as Computer Vi-
sion [3]. In environment perception, object detection and semantic segmentation
are the two most common computer vision tasks with RGB images. Object detec-
tion classifies objects in images and marks their location, typically using a bound-
ing box [6]. Semantic segmentation classifies every pixel in an image, providing
more fine-grained detail of an image’s scene than object detection but at a higher
computational cost [7]. Since autonomous vehicles require details of their sur-
roundings for safe and accurate decision-making, semantic segmentation is a cru-
cial element of environment perception systems.

Methods used for semantic segmentation take on numerous forms. In recent
years, multi-layered neural networks (deep learning) have shown stronger results
in semantic segmentation and other computer vision tasks compared to tradi-
tional rule-based algorithms. The use of deep learning has generated much re-
search in the creation of new semantic segmentation neural network designs, or
“architectures”. The design of an architecture determines how the neural network
represents patterns in data or “learns” information. Convolutional neural network
(CNN) architectures have traditionally been the state of the art for semantic seg-
mentation [8]-[11]. Vision Transformer (ViT) architectures have recently shown
comparable, and in some cases superior, results against CNN architectures in se-
mantic segmentation and other computer vision tasks [12] [13].

Semantic segmentation architectures, in autonomy or otherwise, are typically
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evaluated by their ability to segment scenes in well-structured environments; most
benchmark datasets contain images from urban areas [14] [15]. For autonomous
urban travel, cars, street signs, and roads with distinct lines and intersections give
perception systems visual cues for path planning [14]. However, far less research
has evaluated semantic segmentation architectures in off-road or unstructured
settings. Modeling off-road environments common for UGV deployment, e.g.,
forests, country roads, deserts, is difficult with meshing between naturally present
objects and generally noisy terrain. These environments are rarely studied with
recently developed deep learning architectures, observed from: 1) the scarcity of
quality, labeled image datasets created in off-road environments [16]; 2) the ab-
sence of studies using semantic segmentation architectures with available off-road
datasets [3].

In addition, the real-world deployment of deep learning architectures intro-
duces other constraints. Typically UGVs are deployed with limited computational
resources. Therefore, semantic segmentation architectures that use large amounts
of calculations and time to produce insights about a surrounding environment are
undesirable. It is crucial that the architectures deployed in perception systems not
only be accurate, but be able to compute segmentation predictions (“inference”)
quickly on devices with limited computational resources (typically “edge” de-
vices).

This work evaluates the viability of multiple deep learning architectures for use
in off-road UGVs, where accuracy must be high and inference speed fast. State-
of-the-art architectures are evaluated on the basis of their ability to both accurately
segment off-road data and inference quickly. Specifically, results from two differ-
ent CNN architectures—DeepLabV3+ [17] and Swiftnet [18], are compared with
results from two different ViT architectures—EfficientViT [19] and Segformer
[20], on off-road data.

This paper contributes the following to the literature:

e Performance evaluation of state-of-the-art ViT architectures in off-road envi-
ronments;

e Analysis of ViT vs. CNN architectures for determining traversable terrain
through semantic segmentation;

e Inference speed analysis of ViT vs. CNN architectures for real-time use.

2. Background and Related Works

When evaluating segmentation architectures, there is a trade-off between accu-
racy and inference speed [21]-[23]. Typically, more accurate architectures take
longer to inference. Conversely, architectures with higher inference speeds nor-
mally suffer from accuracy loss.

Finding a balance between accuracy and inference speed is important in off-
road autonomous driving for several reasons: 1) Safety: For the vehicle to make
decisions that alleviate damage to itself or any cargo, it must have an accurate

representation surrounding environments to determine traversable terrain. 2)
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Latency Expectations: Deployment of these vehicles for missions requires real-
time decision-making. Perception systems must be able to determine changes in
an environment multiple times a second. 3) Constrained Resources: UGVs are
typically deployed using edge devices for perception system computation. Ensur-
ing the perception system efficiently segments RGB camera data on devices with
limited computational resources (small GPUs and low memory) is crucial for de-
ployment.

This section details deep learning architectures explored in off-road settings,

the image datasets used to evaulate them.

2.1. Deep Learning Architectures for Semantic Segmentation

To effectively segment RGB off-road camera data, a variety of deep learning ar-
chitectures were utilized. The architectures used in this work fall broadly into two
categories: Convolutional Neural Networks and Vision Transformers.

Convolutional neural networks (CNNs) use kernels, also known as filters, to
extract spatial features from images [9]. Kernels are typically represented by a
small square grid, where each grid element contains a numerical value. This grid
transforms images by transforming an input image into a new representation,
where each new pixel value is a weighted sum of all pixels in the grid’s window.
The weights of neighboring pixels that contribute to a new pixel’s sum, the ker-
nel’s values, are learned through the training process and updated to recognize
patterns in images that pertain to specific classes in the input data. The combina-
tion of these convolutional layers creates deep neural networks that have proven
to work well for computer vision tasks [9] [24] [25].

Transformer architectures [26], originally designed for natural language pro-
cessing, use self-attention as a means to represent complex patterns in sequences.
Self-attention uses attention “heads” to extract information from a sequence of
data. Each head transforms individual parts of an input sequence into representa-
tions of “Queries”, questions about the data, “Keys”, answers to these queries, and
“Values”, which determine how data should be transformed based on matching
queries and keys. Each head transforms input sequence data into queries, keys,
and values using weights learned through training. Based on the relationship be-
tween queries, keys, and values in each head, “attention maps” are created, high-
lighting complex relationships in the input data, such as semantic meaning or re-
lationships to other data points. Each head creates distinct queries, keys, and val-
ues; resulting attention map data from multiple heads are combined to aggregate
information. The Vision Transformer architecture (ViT) modified the idea to
work with computer vision tasks [13]. New semantic segmentation architectures
based on the ideas of the ViT typically have two things in common. First, most
multi-scale architectures process input images at multiple scales to combine fine
and coarse features [12]. Second, they use attention to create a global receptive
field, meaning relationships between patterns everywhere in the image are con-
sidered [12].
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CNN-based architectures are limited by the spatial window size of their kernels;
using attention allows ViT models to find unique relationships that are not limited
by such spatial constraints. However, it is well studied that the transformer model
is hindered by high computational costs, memory footprint, and a need for large
amounts of training data to perform well [27]. Another noted downside is the
quadratic computational complexity of typical attention functions, meaning the
cost to compute predictions typically grows quadratically with respect to the input
data size. This computational cost is incredibly cumbersome when using trans-
formers for real-time applications in autonomous vehicles that use high-resolu-
tion images for perception. Several efforts have been made to reduce the memory
and computational cost of ViT models. Some of these methods include creating
hybrid architectures that combine CNN and ViT architectures which use efficient
attention operations [19], or using machine learning to compress data for more

efficient processing [20].

2.2. Previous CNN Studies

The DeepLabV3+ CNN architecture shown, in Figure 1, was investigated for im-
age segmentation with the Rellis-3D dataset on a previous study [28]. DeeplabV3+
has four primary components: Atrous convolution, Atrous spatial pyramid pool-
ing, and an encoder-decoder structure [17]. An atrous convolution is dilated with
holes in the filter weights, allowing for denser feature maps. Atrous spatial pyra-
mid pooling replaces general pooling and introduces global access pooling for a
global context. The encoder-decoder structure utilizes a backbone (ResNet in this
study) to extract meaningful features in the data.

In [30], the SwiftNet multi-scale architecture [18] was explored with Rellis-3D.

Swiftnet also uses an encoder-decoder structure as shown in Figure 2. The
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Figure 1. DeeplabV3+ Architecture [29].
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Figure 2. SwiftNet multi-scale architecture [18].

encoder blocks (EB) are comprised of ResNet-18 layers [11]. The features are ex-
tracted at three scales (full, 1/2, and 1/4 resolution) using different branches. The
decoder consists of a ladder-style structure with two inputs: the low-resolution
feature maps from the preceding upsampling module (UP), and the high-resolu-
tion feature maps from the encoder blocks. The feature maps are combined with
summation before passage to the decoder. All upsampling is done with bilinear

interpolation.

2.3. Efficient Vision Transformer Architectures

As previously discussed when comparing CNN’s and ViTs, the biggest hindrance
of the ViT is the memory consumption and computational cost self-attention [27].
Efforts to use hierarchical pyramidal fusions, convolutional layers, and self-super-
vised Vision Transformers have been made to reduce computational complexity
and memory footprint [12]. In this study, two recently developed architectures,
Segformer and EfficientViT, are investigated because of their cited efficient use

for semantic segmentation.

2.3.1. Segformer

The Segformer architecture was created for semantic segmentation with a light-
weight multi-layer perceptron (MLP) decoder and multi-scale attention [20]. The
architecture uses attention at large and small scales of the input image data to
capture fine-grained and coarse feature maps. Segformer uses projection to shorten

input sequences into a smaller representation, making attention slightly more
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Input Stem Stage 1

efficient, although it is still quadratically complex. As shown in Figure 3, attention
feature maps are created at the 1/4, 1/8, 1/16, and 1/32 scale of the original input
image. These feature maps are merged and upsampled using nearest-neighbor in-
terpolation and then passed to the decoder. The decoder uses an MLP to output a
1/4 scale prediction segmentation. For this study, we used bicubic interpolation

to upsample the final prediction segmentation back to full scale.
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Figure 3. Segformer architecture [20].

2.3.2. EfficientViT

EfficientViT is a hybrid CNN-VIiT architecture for low-latency computer vision
in real-world systems. EfficientViT follows the typical encoder-decoder structure
for segmentation neural networks. The encoder is pre-trained on the ImageNet
dataset [31] for classification. The encoder backbone comprises an input stem
and four stages that contribute to the produced feature maps. The full architecture
is shown in Figure 4. The input stem is a simple convolutional layer followed by
a depth-wise separable convolution layer. The first two stages consist of multiple
mobile inverted bottleneck convolutional layers. Stages 3 and 4 consist of the
same convolutional layers as Stages 1 and 2, followed by the EffcientViT module:
a ReLU Linear Attention module with convolutions to aggregate nearby tokens.
Using ReLU as a function in attention calculation, in place of the traditional
softmax function [13], allows for hardware efficiency, but is weaker for discover-
ing patterns [19]. When input data is passed through the backbone, the outputs
of stages 2, 3, and 4 are saved, forming a pyramid of feature maps. Bicubic up-

sampling is then used to match their spatial and channel size, followed by a fusion of
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Figure 4. EfficientViT Architecture [19].
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the data by addition. The head design is simple, using a few MBConv layers to
decode the feature maps.

The linear attention backbone, the EfficientViT module, is shown in Figure 5.
The learned query (Q), key (K), and value (V) matrices are fed into three channels
before concatenation. The first layer only uses the ReLU linear attention function.
The second and third layers additionally pass the resulting tokens through depth-
wise separable convolution layers, with kernel sizes 3 x 3 and 5 x 5, respectively,
to aggregate nearby information. The tokens are then passed through a 1 x 1
group convolution, aggregating channels into groups for efficient computation.
This hierarchy creates three different scales of representation in the tokens. After
passing through the Multi-Scale Linear Attention module, the data is passed
through a simple feed-forward network with a depth-wise separable convolution
layer to project the data further. This addition helps compensate for the weakness

of ReLU as an attention function.

Input
<X0

Linear

DWConv  1x1GConv

Aggregate nearby tokens to get
multi-scale Q/K/V tokens

Figure 5. EfficientViT Module [19].

2.4. Datasets

To evaluate the segmentation ability of a deep learning architecture in an off-road
setting, it must be trained on a large-scale dataset with labeled images of off-road
environments. The datasets used in this study are the Rellis-3D dataset [32] and
the CAVS Traversability (CaT) dataset [33]. These specific datasets were chosen
because they contain 1) thousands of labeled images in various off-road environ-
ments; 2) images in the datasets are high-resolution. A large number of images
gives architectures wider range of scenes to learn from and be evaluated on. The
high resolution of the images allows architectures to make detailed predictions
about the surrounding scenes, a necessary trait for real-world use. These two fac-
tors are rare to find in off-road datasets [16], making them the best choices for

study in an off-road setting.

2.4.1. Rellis-3D Dataset
Rellis-3D is an off-road dataset created to fill the lack of multi-modal datasets for
off-road environments. This off-road dataset challenges state-of-the-art deep

learning architectures designed to segment urban data. It provides a full sensor
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stack that includes RGB camera images, LIDAR point clouds, stereo images, high-
precision GPS measurements, and IMU data. This multimodal data aims to en-
hance autonomous off-road navigation with a comprehensive ontology of object
and terrain classes.

The Rellis-3D image collection contains 6234 labeled RGB images of size 1200
x 1920 [32]. Figure 6 shows the ontology of the Rellis-3D dataset. Twenty class
labels consist of two main subgroups: 1) traversable areas such as dirt, grass, as-
phalt; 2) obstacles—bushes, trees, objects, and poles. Since there are very few dirt
labels, as seen in the dataset’s label distribution in Figure 7, this label is excluded

from the study.
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Figure 6. Rellis-3D image example and ontology [32].
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Figure 7. Rellis-3D data distribution.

2.4.2. CaT: CAVS Traversability Dataset

The Center for Advanced Vehicular Systems (CAVS) Traversability dataset (CaT)
was created to explore off-road terrain in environments containing obstacles,
ditches, and hidden objects [33]. The dataset includes 3624 labeled RGB images of
varying high-definition sizes. The terrain in the images is segmented to show the
traversing ability of three different-sized vehicles: a sedan, a pickup, and a sizeable

off-road vehicle. A sedan is considered the vehicle with the least traversability and
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the off-road vehicle the most. Figure 8 shows example images and annotations
from the dataset. As shown in Figure 9, the CaT dataset has a class distribution
with 25.29% of the pixels representing the driving capabilities of a sedan, 14.69%
for a pickup, and 15.17% for an off-road vehicle. The last 44.86% are background

pixels or untraversable terrain.
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Sedan Pickup Off-road

Figure 8. CaT Image Examples and Corresponding Traversability Labels [33].
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Figure 9. CaT data distribution.

Categories

3. Methods

To determine if ViTs improve a UGV perception system, two different ViT archi-
tectures for semantic segmentation are evaluated on the Rellis-3D off-road da-
taset. ViT architectures are evaluated based on their accuracy, ability to identify
traversable terrain and inference speed. Additionally, the inference memory usage
and architecture memory size for each architecture are compared. The model must
be suited for real-time use and is further explored on the CaT dataset. Results for

the ViT architectures are compared to previous studies of CNN-based architectures
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on the Rellis-3D dataset [28] [30]. All hardware and software used for testing are
listed in the Appendix.

3.1. Model Training

The Segformer and EfficientViT architectures are implemented in Python using
PyTorch. To update the weights of the neural networks in both architectures, the
AdamW optimization algorithm is used with default parameter values for the
weight decay, epsilon, and beta parameters [34]. Both models were trained until
convergence. Other specific hyperparameters for each architecture are docu-

mented in their respective papers and detailed below [19] [20].

3.1.1. Segformer Training Parameters

To train the Segformer architecture, an initial learning rate of 0.00006 is used with
a polynomial learning rate scheduler, as documented in the original paper [20].
Random flipping and random cropping were used for pre-processing the images

as documented in the original paper [20].

3.1.2. EfficientViT Training Parameters

For the EfficientViT architecture, training began with an initial 20 epochs of
warm-up training. In the warm-up epochs, the learning rate gradually increased
from 0.0 to the base learning rate of 0.001. The learning rate was adjusted through-
out the training based on a cosine learning rate scheduler [35]. Random flipping,
random cropping, hue changing, and random erasing of image data were used for

pre-processing [36].

3.2. Evaluation Metrics

The CNN and ViT architectures were evaluated based on their ability to recognize
and generalize patterns in an off-road setting (segmentation accuracy) and their

ability to do so efficiently (inference speed and memory usage).

Segmentation Accuracy

The primary accuracy measurement in segmentation is intersection over union
(IoU), shown in Equation (1). The intersection and union are based on the true
positive (TP), false positive (FP), and false negative (FN) predictions of each class.
The mean IoU (mloU), is an average of all the individual class IoU scores (see
Equation (2)). For exploring Rellis-3D, the architectures are trained on 70% of the
dataset (4364 images) and evaluated on 30% of the image data (1870 images),
which is the same as previous studies. For exploring CaT, 70% of the dataset (2356

images) was used for training, and 30% (1088 images) was used for testing.

IoU Prediction . (1 GroundTruth TP )
0 = =
" Prediction, . UGroundTruth,, . TP +FP+FN
IOU — Z IOUclass (2)
nclasses
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3.3. Inference Speed and Memory Usage

The timing approach for evaluating inference speeds and memory consumption
is detailed in Listing 1. The architectures were timed on 200 iterations of predict-
ing segmented images on Rellis-3D resolution data (1200 x 1920), and the average
results were reported. Since perception systems must transfer knowledge to the
CPU for decision-making, the inference speed calculations included the time to
transfer the predictions back to the CPU.

import torch
from torch.nn import functional as F

n_trials = 200

6 start_event = torch.cuda.Event(enable_timing=True)

7 end_event = torch.cuda.Event(enable_timing=True)

8 model.eval().cuda()

9 torch.cuda.synchronize ()

10 image_data.shape # [1, 3, 1200, 1920] Rellis3D resolution

12 durations = []

13 memory_stats = []

14 with torch.inference_mode():

15 for _ in range(n_trials):

16

17 start_event.record() # start timing

18

19 outputs = model(image_data) # inference

20 _, predictions = torch.max(outputs, 1) # condense class predictions
21 predictions = predictions.byte().cpu() # CPU transfer
22

23 end_event.record () # end timing

24

25 durations.append(start_event.elapsed_time (end_event))
26

27 peak_memory = torch.cuda.max_memory_allocated() # measuring inference memory
28 memory_stats.append(peak_memory)

29

30

31 avg_inf_time = sum(durations) / len(durations)

32 average_memory = sum(memory_stats) / len(memory_stats)

Listing 1. Inference Speed and Memory Data Collection in PyTorch.

4. Results and Discussion

This section presents new results for inference speed and memory consumption,
as well as mIoU on the Rellis-3D dataset. Additionally, the number of parameters
and size in memory of each architecture are detailed. We then measure the infer-
ence time of the most accurate architectures on a Jetson Xavier AGX edge device
to ensure real-time viability. Further, using the architecture deemed most suited
for accurate and fast inference, the CaT dataset was explored. We compare CaT

results against the benchmark IoU scores outlined in the CaT dataset paper [33].

4.1. Rellis-3D Accuracy

First, the CNN and ViT architectures are evaluated on the Rellis-3D dataset and
compared for accuracy in the off-road setting. The class and mIoU results are

shown in Table 1.
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Table 1. Class and Mean IoU Accuracy (%) on Rellis-3D.

Class DeeplabV3+ [28]  Swiftnet [30] EfficientViT Segformer
grass 72.70 91.83 92.07 85.65
tree 83.45 90.04 90.06 82.05
pole 7.57 42.15 40.53 14.48
water 53.35 81.48 79.22 50.63
sky 95.84 97.54 97.57 96.28
vehicle 26.96 67.30 65.34 31.02
object 24.89 72.73 68.44 13.32
asphalt 60.95 86.08 85.34 58.40
building 10.49 65.08 59.46 9.49
log 25.97 61.79 56.90 36.12
person 66.46 92.52 90.78 71.23
fence 15.79 65.61 58.31 18.88
bush 70.95 85.09 85.55 73.18
concrete 80.23 91.24 90.96 84.83
barrier 65.57 87.63 86.19 68.37
puddle 59.27 80.96 80.69 67.08
mud 29.51 65.46 66.09 45.37
rubble 36.43 77.87 74.96 49.88
mloU 49.24 77.9 76.03 53.13

EfficientViT and Swiftnet were the strongest performing architectures with
76.03% and 77.9% mloU, respectively. The class IoUs for these architectures show
that each is well generalized to large terrain patterns and small obstacles/objects.

Results from the previous study show that DeepLabV3+ could generalize to the
large terrain patterns—e.g., tree, grass, sky, bush and concrete, while it struggled
to generalize to the smaller objects/obstacles. Similarly, while struggling with the
smaller objects, Segformer generalizes well for significant patterns in the dataset—
e.g., grass, bush, concrete, sky, and trees. Both architectures seem to be affected
by the class imbalance challenge common in off-road datasets, with sky, grass,
tree, and bush being the most over-represented classes in the Rellis-3D dataset, as
previously shown in Figure 7. Prediction segmentation results with the ViT ar-
chitectures compared to the ground truth segmentation are shown in Figure 10.
The traversable tracks of Figure 10(d) show a mixture of classes, highlighting Seg-
former’s inaccuracy on small patterns. As seen in Figure 10(c), EfficientViT
smoothly identifies traversability patterns in the off-road environment, barely de-

viating from the ground truth segmentation in Figure 10(b).
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Figure 10. Rellis3D Example Image and ViT Predictions. (a) RGB Image; (b) Ground Truth Segmentation; (c) EfficientViT Pre-

dicted Segmentation; (d) Segformer Predicted Segmentation.

4.2. Rellis-3D Inference Speed and Memory Usage

Based on the accuracy results, Swiftnet and the ViT architectures have results

promising for real-world use. To determine the viability of each architecture for

implementation on an edge device, a baseline comparison of inference speed, in-

ference memory usage, parameters, and architecture size, these architectures are

studied using a large GPU.
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4.2.1. Large GPU Study
All inference results presented in Table 2 were measured using an NVIDIA V100
GPU (specifications shown in Appendix Table Al).

Table 2. Architecture Inference Speed and Memory Usage on Rellis-3D.

Architecture Inference Speed  Parameters Archsiit;:ture MeIIIrllf)e:;llljc:age
EfficientViT 11.53 ms 0.7M 2.76 MB 392 MB
Swiftnet 23.32 ms 12M 46.14 MB 746 MB
Segformer 87.86 ms 3.7M 14.22 MB 2571 MB

EfficientViT outperformed the other state-of-the-art architectures in terms of
inference speed. It is about twice as fast as the CNN-based Swiftnet on a V100
while using fewer parameters and half as much memory for inference as Swiftnet.
Segformer suffers from a slower inference speed and a significant increase in
memory consumption for inference, likely due to the inefficient attention func-

tionality, a notable downside of self-attention with high-resolution images.

4.2.2. Edge Device Study

Based on the results from the large GPU study, Swiftnet and EfficientViT are via-
ble for edge device use given their fast inference speed and low memory usage.
Only the Swiftnet and EfficientViT architectures were translated to run on the
smaller edge device since the results of Table 2 show that the Segformer inference
time was significantly slower than the other two architectures, even with a pow-
erful GPU like a V100. To verify that Swiftnet and EfficientViT maintain their
inference speed in a real-time setting, the architectures were tested on a NVIDIA
Jetson Xavier AGX edge device (specifications shown in Appendix Table A2). Af-
ter testing these two architectures on the Xavier with the same method from Al-
gorithm 1, the NVIDIA TensorRT engine [37] was used to optimize the architec-
tures for inference on the Xavier. EfficientViT strongly outperforms Swiftnet re-
garding inference speed on the edge device as shown in Table 3. Without Ten-
sorRT, it is more than 3x faster; with TensorRT, it is about 4x faster. Based on
these results, EfficientViT has the traits most desirable for real-world perfor-
mance: strong segmentation accuracy substainally faster inference speed than the

other architectures studied.

4.3. CaT Dataset Results

Since the results form Rellis-3D show EfficientViT is the most viable architecture

Table 3. Inference speed on jetson xavier AGX edge device.

Architecture No Optimization TensorRT Optimized
EfficientViT 114 ms 83 ms
Swiftnet 388 ms 321 ms
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Table 4. IoU (%) results on CaT compared to state of the art benchmark [33].

Classes

Architectures Sedan Pickup Off-Road mloU
PSPNet w/ResNet-18 90.44 66.62 79.71 78.92
PSPNet w/ResNet-34 91.21 68.64 80.52 80.12
PSPNet w/ResNet-50 90.70 67.40 80.00 79.36
PSPNet w/ResNet-101 91.64 69.08 81.00 80.57
EfficientViT 98.22 92.01 93.09 94.44

for real-world use, with high inference speed and accuracy, we compare it to cur-
rent results with the CaT dataset to further test the ability of the architecture to
determine traversable terrain in a different off-road setting. The results for train-
ing EfficientViT on the CaT dataset are shown in Table 4. When comparing these
results to the state-of-the-art CaT Benchmark, EfficientViT detects the three types
of traversable terrain in the off-road environment more accurately. Comparing
our results to the state-of-the-art benchmark from the CaT dataset [33], these re-
sults achieved a mIoU score of 94.44% a significant increase in mIoU 13.87% over
the CaT benchmark of 80.57%. Individually, these results show an improved IoU
score for sedan traversability by 6.57%, pickup by 22.93% and off-road by 12.09%.
Traversability accuracy with both CaT and Rellis-3D coupled with high inference
speed results prove EfficientViT is extremely viable for real-world use in deter-

mining traversable terrain in a perception system.

5. Conclusion

Using a state-of-the-art ViT architecture, EfficientViT, we were able to demon-
strate the viability of a ViT architecture for us in an off-road perception system.
Compared to previous results with a CNN architecture, Swiftnet, EfficientViT
maintained a strong accuracy in off-road environments while having a much
faster inference speed. EfficientViT has 1.9% mIoU reduction on the Rellis3D da-
taset compared to Swiftnet, while being 2x as fast as the Swiftnet for inference on
alarge GPU, and up to 4x as fast on an edge device with TensorRT optimization.
Additionally, EfficientViT uses half as much memory for inference as Swiftnet and
has a 20x smaller model size—two traits extremely desirable in real-world systems
with limited memory capacity. The use of hardware efficient attention and effi-
cient convolution operations makes this architecture extremely fast, while main-
taining a strong accuracy with few parameters. These results make EfficientViT a
viable option for real-time use in UGV perception systems.

EfficientViT also demonstrated new state-of-the-art results on the CaT dataset
with 94.44% mloU on traversable terrain. These results further demonstrate the
ability of the EfficientViT architecture to determine traversable terrain fora UGV,
maintaining high accuracy, fast inference, and low memory usage.

To add to current developments toward integrating higher levels of autonomy
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into UGV, this research provides insights into new methods for improving off-
road perception systems. Use of new semantic segmentation architectures that
maintain accuracy, with a lower memory footprint and higher inference speed,
will alleviate latency and memory bottlenecks within the perception system, al-

lowing vehicles to make safe decisions in real-time.

Future Work

Perception systems may deploy a variety of sensors including RADAR, LiDAR,
FLIR, multispectral and stereo images. Combinations and fusions of these sensor
modalities can lead to a richer understanding of the surrounding environment,
for example providing depth/distances for contextual information. In future work,
the use and adaptation of ViT architectures with these additional sensor modali-
ties for enriched perception will be explored.

With power and physical space restrictions common on autonomous vehicles,
data transfer can be utilized to send perception data to external devices for in-
creased computation demands. Offloading data for processing can introduce new
challenges where restricted bandwidth of the transfer requires data manipulation

to maintain high processing speeds and reduce latency.
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Appendix

Table Al. V100 inference testing specifications.

GPU Name NVIDIA Tesla V100
Power Cap 250 W
CUDA Cores 5120
GPU Memory 16 GB (GPU dedicated)
CUDA Version 12.4
Python Version 3.11.4
PyTorch Version 2.1.0
Torchvision Version 0.16.0

Table A2. Jetson Xavier testing specifications.

Device Name Jetson Xavier AGX
Power Cap I5W
CUDA Cores 512
GPU Memory 32 GB (shared)
CUDA Version 11.8
Python Version 3.8.0
PyTorch Version 2.0.0
Torchvision Version 0.15.0
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