2024 IEEE International Conference on Big Data (BigData) | 979-8-3503-6248-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/BigData62323.2024.10825078

2024 TEEE International Conference on Big Data (Big Data)

Evaluating Lossy and Lossless Compression for
DICOM Medical Files

Yizhe Yang
Clemson University
Clemson, South Carolina, USA
yizhey @g.clemson.edu

Abstract—Digital Imaging and Communications in Medicine
(DICOM) is a widely used standard for handling, storing, and
sharing medical images. However, the large file sizes associated
with DICOM data pose challenges for storage and data transfer.
Data reduction helps mitigate these challenges by reducing the
size of the data while maintaining its integrity. This paper exam-
ines various compression methods to reduce the size of DICOM
files. We evaluate 5 lossless and 4 lossy compressors on DICOM
data. This study aims to compare and evaluate the performance of
these compressors. By analyzing each compressor’s compression
efficiency and produced image fidelity, this research seeks to
determine the most effective compression strategy. Results show
SZ3 is able to achieve 183.74x with error bound le™’ and
ZFP received compression bandwidth 303.82 MB/s while error
bound is le™".

Index Terms—DICOM, Medical Data, Lossy Compression,
Lossless Compression, Data Visualization

I. INTRODUCTION

DICOM (Digital Imaging and Communications in
Medicine) files serve as data containers for medical images.
Specifically, image files that are generally referred to as
“DICOM format files” or simply “DICOM files” and are
represented as “.dcm.” [1]. What sets DICOM apart from
other image formats is its ability to store not only images,
but at the same time related metadata. This includes detailed
patient data, study descriptions, and image acquisition
parameters [2].

Medical imaging techniques generate data crucial for patient
diagnosis and treatment planning, with the high level of
intricacy in these images contributing to the substantial sizes
of DICOM files.

Healthcare facilities globally face substantial challenges due
to the rapid increase in medical imaging data. Healthcare
providers face the need for substantial storage capacity and
bandwidth to handle the vast amounts of data generated
by high-resolution imaging modalities such as MRI and
CT scans. However, many hospitals and clinics, particularly
those in resource-limited settings, struggle to keep up with
this data explosion. Our research aims to address these
challenges by introducing an efficient compression technique
specifically designed for DICOM images. By employing
lossless compression on metadata and utilizing controlled
lossy compression on image data, we enable significant
reductions in file sizes without sacrificing crucial information
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or perceptible image quality. Implementing our compression
algorithms in real-world healthcare systems can lead to more
efficient data management, cost savings, and improved patient
outcomes by enabling quicker and more reliable access to
medical imaging data. Figure 1 shows the initial packets of
a DICOM file form the “header”, which includes patient
demographics, acquisition parameters, image dimensions, and
other information needed to display the image. This header is
encoded with the pixel intensity data. The header is decoded
and associated with the correct study and patient.

With the increasing amount of medical imaging data, costs

Preamble (128 bytes)

Prefix - ‘D’,'I','C’,'M’

Header:

Data Set

- Group 1 (0002)
- Element 1 (0002,0000)
- Element 2 (0002,0001)
- Element 3...etc.

- Group 2 (0008)

- Group 3...etc.

Image Pixel Intensity Data:
10011010011001011010100
01011010100100110100110
10100110010110101001001
10011010011001011010100
01011010100100110100111
10100110010110101001.......

Fig. 1: DICOM File Structure

associated with storage and transmission have also risen. For
example, in 2013, transferring an uncompressed CT study of
1,542 images (around 930.17 MB) over a 12 Mbps connection
requires approximately 10 minutes, resulting in increased
electricity consumption and higher operational costs [3].
Employing both lossy and lossless compression algorithms
help address these challenges by reducing file sizes, lowering
storage demands, and decreasing data transfer times, which
in turn reduces energy usage and improves the efficiency
of medical workflows. [4] To address this challenge, our
study explores the use of 4 lossy compression algorithms
and 5 lossless compression algorithms applied to a dataset
consisting of 2,635 DICOM files. Of these DICOM files,
there are 3 different styles of a DICOM file.
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This paper uses DICOM medical data to determine which
compressor and error bounds are most effective for
accurately compressing the data. By evaluating different
data compression methods, we analyze both lossless and
lossy compression methods for DICOM medical data. The
contributions of this paper are as follows:

o A comparative analysis of 5 lossless and 4 lossy advanced
compressors to compress DICOM medical images.

o For lossless methods, ZLIB provides the best compres-
sion ratio of 18.27x times, and LZ4 offers the best
compression bandwidth of 1265.47 MB/s.

o Among lossy methods, SZ provides the best compression
ratio of 5530.82x times on Difusion data set with
le~?, and ZFP delivers the highest overall compression
bandwidth of 303.82 MB/s.

II. BACKGROUND

A. Data Sets
In our study, we used real-world DICOM
files. They contain 3 different data sets (CE

(Contrast-Ehanced, Perfusion (ep2dperf)and
Diffusion (ep2ddifMDDWIPAT)).

e CE (Contrast-Enhanced): CE images emphasize
vascular structures and tissues by using a contrast agent
that enhances differences in signal intensity.

e Diffusion (ep2ddifMDDWIPAT): Diffusion imag-
ing captures the movement of water molecules within
tissues, which is sensitive to cellular density and structure.
(5]

e Perfusion (ep2dperf): Perfusion imaging mea-
sures blood flow, providing quantitative data that is cru-
cial for assessing tissue viability. [6]

The differences between them stem from the varying ways
in which they capture and represent medical data. This also
leads to dissimilar results after compression with different
compressors and different error bounds.

Medical imaging data stored in the DICOM format often
consist of multi-dimensional arrays, with slices from modal-
ities like CT and MRI scans commonly having dimensions
of 512x512 pixels. These datasets can be substantial in
size—sometimes reaching multiple gigabytes per study—due
to the requirement for high-resolution images necessary for
precise diagnosis [7]. In 2013, the global volume of healthcare
data was approximately 153 exabytes (1 exabyte = 1 billion
gigabytes), which surged to an estimated 2,314 exabytes by
2020 [8].

B. Lossless Compressors

We used 5 lossless compressors in this paper: BLOSCLZ
[9], LZ4 [10], LZ4HC [10], Zstandard [11] and ZLIB [12].
Currently, it is common practice to use lossless compressors
on patient DICOM files. This is because there is no risk of
any important data being lost, and it is still better than not
compressing the files at all. Thus, we also include 5 popular
lossless compressors for our lossy compressors to compare
against.
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1) BLOSCLZ: BLOSCLZ [9] is a meta-compressor made
to compress binary data. Similar to other compressors,
it works by first breaking data down into individual
blocks. Then, since it is a meta-compressor, it then
selects from a variety of compressors a compressor
for a specific block. It also has access to different
methods to preprocess a block, allowing it to compress
even better. Blosc utilizes multi-threading an efficient
memory access, which is ideal for situations where a lot
of data must be compressed quickly.

LZ4: 1.Z4 [10] is an LZ77-type compressor also focused
on fast compress / decompress times. It separates blocks
of data to be compressed into blocks. Each block is a
sequence that starts with a token.

LZAHC: LZ4HC [13] was also used, which optimizes
for higher compression than the normal LZ4, but at the
cost of relatively lower speeds.

Zstandard: Zstandard [11] is a compressor that builds a
dictionary tailored to whatever data it needs to compress.
It then splits the data into frames. Whenever a new frame
is to be compressed, it references the dictionary, and
creates prediction algorithm for the frame. It then uses
Huffman encoding on the frames.

ZLIB: ZLIB [12] uses deflation, which is a compressed
stream of data blocks. Each block starts with a short
header, and then either the raw data, a static Huffman
compressed section, or a dynamic Huffman compressed
section

2)

3)

4)

5)

C. Lossy Compressors

Lossless compressors compress data without ever losing any
data points, such that the decompressed data is indistinguish-
able from the original. However, you quickly hit a limit as to
how much compressed using only lossless methods. Therefore,
lossy compression is commonly used in situations where a
higher compression ratio is needed. Lossy compression refers
to the irreversible loss of some data during the compression
process, and its main purpose is to significantly reduce file size
while maintaining a level of quality suitable for the intended
purpose. We evaluated 4 lossy compressors: JPEG [], SZ [14],
SZ3 [15] and ZFP [16].

1) JPEG: Joint Photographic Experts Group [17] (JPEG)
compression is a common method for reducing image
file sizes, especially for photos, by discarding some
image data, which slightly lowers quality but saves
space. Developed in 1992, JPEG uses a process that
breaks images into 8x8 pixel blocks, applies a mathemat-
ical transformation, and then compresses the data. This
”lossy” compression allows adjustable quality levels:
more compression means smaller files with more quality
loss, while less compression preserves more detail. It’s
best for photos rather than sharp images like logos and
is widely used with ‘.jpg or ‘jpeg* file extensions.

SZ: SZ [14] is floating point data compressor which
has four main steps. Firstly, it divides the data to be
compressed into blocks of data. For each of these blocks,

2)
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a separate prediction function is generated. Secondly,
SZ quantizes with whichever error bound was specified.
Thirdly, the quantization index is encoded via Huffman
encoding. Finally, it is losslessly compressed further
improving the CR. [18]

SZ3: SZ3 [15] SZ3 uses a modular approach to com-
pressing the data, where the process has 5 distinct
modules: preprocessing, prediction, quantization, encod-
ing, and lossless compression. Preprocessing starts by
shaping the data to where it is more easily compressed.
The second module is prediction. SZ3 uses a Lorenzo
predictor, a regression based predictor, to perform pre-
diction for each data point based on the neighboring data
points. Thirdly, the error produced by the predictor is
quantized. Fourthly, the quantized error data is encoded,
shrinking their size. Fifthly, the now encoded data is
losslessly compressed, shrinking the size once more.
ZFP: ZFP [16], another floating point data compressor
for 3D data, has 5 main steps. Before it starts, carves 4
x 4 x 4 blocks out of the data. These blocks are then
individually compressed. The first step to compress a
block is to align all of the data points in a block to
a common exponent. Secondly, it converts the floating
point data into fixed point data. Thirdly, it applies a
transform to the data in the block to decorrelate the
values from each other. Fourthly, it orders the transform
coefficients by expected magnitude. Fifthly, it encodes
the coefficients.

3)

4)

III. METHODS AND ANALYSIS

In this paper, DICOM medical image compression is evalu-
ated on the extent of data reduction and its bandwidth, i.e., the
speed of compressing and decompressing the data. The quality
of the compressed image, as measured by the peak signal-to-
noise ratio, is also evaluated. There are 3 different types in
our data set: CE, Diffusion, and Perfusion, and each
have their own purpose in the medical field.

To assess the effectiveness of a current image compression
algorithm on DICOM files, we used JPEG compression. Since
JPEG compression is typically applied to standard image
formats, we first converted the DICOM files to JPEG format.
This conversion enabled the application of JPEG compression
directly. We selected a quality setting of 50 to balance file size
reduction with image quality, as this level is commonly used to
achieve significant compression while maintaining acceptable
visual fidelity [19].

We apply lossless compression techniques specifically to the
DICOM metadata. This approach ensures that all critical
patient information and imaging parameters remain entirely
intact and unaltered throughout the compression and de-
compression processes. This not only maintains compliance
with medical data standards but also enhances interoperability
between different healthcare information systems.

To apply lossy compression to the DICOM files, we first nor-
malized the pixel values, originally stored as 16-bit unsigned
integers (uint16), to a 0 to 1 range using the float32 data type.
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This normalization facilitates the compression process by al-
lowing algorithms to operate more effectively on floating-point
data. After decompression, we converted the pixel values back
to uint16 to restore them to their original format. This ensures
compatibility with standard DICOM viewers and preserves the
high dynamic range necessary for accurate medical diagnosis.
The compressors employed in our compression framework
exhibit linear time complexity with respect to the size of the
input data. This linearity implies that the computational time
required for compression and decompression scales propor-
tionally with the amount of data processed. Such efficiency is
crucial when dealing with large-scale medical images, where
computational resources and time are often constrained. Lin-
ear time algorithms enable real-time processing capabilities,
making our solution practical for clinical settings where swift
access to imaging data is essential for patient care.

Given that each compression algorithm inherently balances
image quality and compression efficiency in distinct ways, we
adopted a systematic approach to identify optimal performance
thresholds. By testing error bounds from le™ to le™?!, we
sought to reveal the conditions under which each algorithm
could best fulfill its intended purpose, ultimately guiding
a balanced selection that maximizes both data fidelity and
compression efficacy.

For each compressed file, metrics were also recorded: com-
pression ratio achieved, time spent compressing, and other
relevant metrics (such as compression and decompression
bandwidth). Each compressed file was then decompressed.
We performed a quality assessment on these decompressed
files to compare against the original DICOM file. One way
was by calculating the peak signal-to-noise ratio (PSNR). The
higher the PSNR, the compressed image’s quality is closer
to the original image. We also visually compared the post-
decompressed DICOM images to original DICOM files to
ensure our compression did not significantly alter the images.

A. Evaluation Metrics

In order to find which compressor produces the best data
reduction, the compression ratio (CR) metric is used. The
compression ratio is a measure of the effectiveness of a
data compression algorithm. It is defined as the ratio of
the original data size to the compressed data size. A higher
compression ratio indicates that the data has been reduced
more significantly.

UncompressedSize

CompressionRatio =

CompressedSize M

The transfer time of DICOM files is a critical factor
in medical imaging workflows.When compared to lossy
methods, lossless compression algorithms generally result
in lower compression ratios despite their ability to preserve
all original data without any degradation. This results in
larger file sizes, which can lead to longer transmission times
over networks. However, lossless compression is essential in
scenarios where maintaining data integrity is paramount, as
it ensures that no information is lost or altered during the
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compression process.

The term Compression Bandwidth (cBW) refers to the rate
at which an algorithm compresses uncompressed data. A
higher cBW indicates a faster compression process, which
is advantageous in time-sensitive environments. Balancing
compression speed (cBW), compression ratio, and data
integrity is crucial when selecting an appropriate compression
method for DICOM files.

Uncompressed Size

cBW = 2

Compression Time

Decompression bandwidth (ABW) is the speed at which the
compressed data is decompressed back to its original form.
This timing does not include loading data.

Uncompressed Size

dBW = 3)

Decompression Time
Lossy compression achieves a much higher CR compared to
lossless compression. However, to obtain this high CR, the
quality of the lossy compressed DICOM files may degrade.
Comparing the resulting image quality with that of lossless
compression; this metric is referred to as accuracy and mea-
sured by PSNR.

Peak Signal-to-Noise Ratio (PSNR) is a metric used to
measure the quality of a reconstructed image compared to
its original version. This is the traditional method to measure
quality after a compression has taken place. PSNR is expressed
in decibels (dB) and is calculated using the Mean Squared
Error (MSE) between the original and compressed images. A
higher PSNR value typically indicates better image quality.
PSNR is used to evaluate lossy compression algorithms. Typi-
cally, a PSNR value of above 40 dB is acceptable for medical
images [20]. However, different use cases will require different
DICOM precisions. Since lossless compressors do not distort
the original data, as they don’t add noise in the compression
process, it is not necessary to measure them in this way.

MAX?

MSE ) @

PSNR = 10 - logy, (
In this case, MAX is the maximum possible pixel value of the
image (e.g., 255 for an 8-bit image). The Mean Squared Error
(MSE) is the Mean Squared Error between the original and
compressed images. MSE is defined as:

= 1, 5) — K (i)

=0

| M1
MSE = —— 5
MN ; )
Where I(i,j) is the pixel value of the original image at
position (%, ), K(i,7) is the pixel value of the compressed
image at position (7,5), M and N are the dimensions of the
image.
PSNR provides insight into the extent of changes in pixel
values, which is particularly important for the accuracy and
reliability of DICOM-format medical images.
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(a) Original DICOM Image of (b) Lossy Compressed Perfusion
Perfusion Visualization with le-5 by SZ.

(c) Original DICOM Image of CE (d) Converted DICOM JPEG Im-
age

Fig. 2: Example DICOM Images with Various Standards

B. Visualization

Figure 2a shows an original DICOM image with
Perfusion. Figure 2b displays the image after being pro-
cessed with SZ lossy compression; the differences between the
original and compressed images are substantial, even with an
acceptable error bound. Figure 2c is an example of an original
DICOM file of CE. Converting DICOM files into jpg files
results in images similar to Figure 2d.

IV. RESULTS
A. Software Environment

Testing was performed on the Palmetto Cluster 2 at Clemson
University. The node requested for the experiment contains
2x 20-core Intel(R) Xeon(R) Gold 6258R CPUs with a clock
frequency of 2.70GHz and 384 GB of RAM. All of these
experiments were ran single-threaded. Using multi-threading
and more gpus may receive better results. The compressors
and environment softwares are shown in table I.

B. JEPG Compression

DICOM files differ from standard image formats by con-
taining patient metadata and the capability to store multiple
images within a single file. [22] To apply JPEG compression,
we first extracted individual images from the DICOM files
and converted them to JPEG format. The table below presents
the median compression metrics for JPEG compression across
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TABLE I: Software and Libraries Used in the Experiment

Software/Library | Version
LibPressio [21] 0.99.2
GCC 12.1.0
Python 39.2
ZLIB 1.2.13
ZFP 1.0.0
SZ-master 3.2
SZ3 3.1.7
BLOSC 1.11.2
LZ4 432
ZSTD 1,52
Python 3.11

different DICOM categories: This approach revealed two sig-

Categories CR cBW | dBW
CE 5871 | 10.10 | 3.81

Perfusion 24.27 0.82 0.82

Diffusion | 72.55 | 21.77 | 5.66

TABLE II: Median Compression Metrics for JPEG Compres-
sion by DICOM Category

nificant limitations: a low compression ratio and substantial
data loss. These findings emphasized the shortcomings of
the standard JPEG compression technique for DICOM files
and underscored the need to explore alternative compression
methods that can achieve higher compression ratios while
retaining essential diagnostic information.

C. Lossless Compression

All the lossless compressors were configured to compress at
their highest capability. Figure 3 compares the CRs achieved
by the same set of algorithms under varying bound constraints.

ZLIB achieved the highest max compression ratio across
most categories (such as 18.17x for CE), indicating its
strength in reducing file sizes the most. However, its lower
bandwidth suggests it is slower than alternatives like LZ4. The
different categories of DICOM files in lossless compression
CE, Perfusion and Diffusion have little effect on the
overall trend of CR. In analyzing the lossless compression
results, ZSTD also has results competitive with ZLIB across all
categories. Specifically, ZLIB achieves the highest maximum
CR of 18.17x in the CE category, while ZSTD consistently
shows strong performance across all categories with a notable
median CR of 4.97x in the Diffusion category. This indi-
cates that both compressors effectively reduce file size, making
them suitable for applications where maximizing compression
is crucial.

Conversely, compressors like LZ4 and BLOSCLZ demon-
strate significantly higher bandwidth capabilities in some
categories, which can translate into faster compression and
decompression speeds. For instance, LZ4 achieves a maximum
decompression bandwidth of 3768.40 MB/s in the CE category.

Figure 4 and 5 shows the compression and decompression

bandwidth for various lossless algorithms (ZSTD, BLOSCLZ,
LZ4, LZ4HC, ZLIB).
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Category vs. Compression Ratio Across Compressors

10
zstd
8 blosc
N 124
6 S lz4hc
~— — 2lib
a e S

CR

CE Perfusion Diffusion
Fig. 3: Categories vs Compression Ratio with Different Loss-

less Compressors.

LZ4 is the fastest in terms of compression bandwidth,
which makes it the first choice for applications that require
fast compression. It achieves 883.04 MB/s on CE. With LZ4
and BLOSC having high bandwidth for compression and
decompression, these compressors are suited for scenarios
where speed is more critical than achieving the maximum
compression ratio. This makes them ideal for applications
requiring rapid access to data, such as real-time diagnostic
imaging. Compressors with high compression bandwidth (e.g.,
LZA for the CE category and BLOSC for Perfusion) can
accelerate the processing time required to store and retrieve
images. For systems with limited computational resources,
compressors that balance compression ratio and bandwidth,
like ZSTD, help manage large datasets without heavily taxing
the system.

Error Bounds vs. Compressed Bandwidth Across Compressors

800

v 2zstd
o 600 blosc
E 1z4
2 400 Iz4hc
%200 2o
V] —_— I — —_— —
CE Perfusion Diffusion

Fig. 4: Compression Bandwidth with Different Lossless Com-
pressors.

Category vs. Decompressed Bandwidth Across Compressors
4000

3500
£ s 2zstd
s 2500 :JZI:S(
e Iz4hc
= | zlib
T 1000

500 -

CE Perfusion Diffusion

Fig. 5: Decompression Bandwidth with Different Lossless
Compressors.

The ZSTD compressor demonstrates a well-rounded per-
formance, balancing a moderate to high CR with competitive
bandwidth across various categories. For instance, in the CE
category, ZSTD achieves a maximum CR of 16.65x while
maintaining a cBW of 71.43 MB/s and a dBW of 1,720.09
MB/s. This indicates ZSTD would suit an environment re-
quiring efficient data reduction without sacrificing speed.

In the Perfusion and Diffusion categories, ZSTD
also exhibits notable performance, with a CR of 4.07x and
6.07x, respectively. Its maximum cBW in Perfusion is
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42.11 MB/s, and in Diffusion, it’s 46.93 MB/s, providing
a consistent transfer speed that outperforms other compressors
in terms of dBW. These results highlight ZSTD’s versatility for
diverse medical imaging scenarios, as it offers both substantial
compression and fast data handling capabilities, which are
essential for managing large DICOM files efficiently.

D. Lossy Compression

Each lossy compressor is evaluated within a set error bound.
The error bound is used to set the accuracy of the data so that
its effect on the CR, cBW, dBW and PSNR is analyzed. The
error bound varies between 1le~Y and le™ 1.

Figure 6 compares the CR for different compressors —
SZ, SZ3, and ZFP—across various error bounds, on our 3
different types of DICOM images - CE, Perfusion and
Diffusion.

Figure 6 shows the CR for each of the three floating point
compressors. All three categories have similar CR across the
different error bounds. This indicates that the maximum CR
was already met without having to sacrifice data by increasing
the error bounds.

SZ3 received the highest median CR of 3439x on the

Perfusion type DICOM file with the error bound of le~>,
which is 1.5x higher than SZ. On the Diffusion dataset,
SZ3 achieves an median CR of 42.02x and a maximum CR of
183.74x at the highest error bound of 1e~7. In comparison, SZ
achieves an median CR of 2062 x with a maximum of 5530 x
at the error bound 1e~?, while ZFP, which has the lowest CR
among the three, achieves a median CR of 236.54x and a
maximum of 249.6x.
For CE, SZ3 has 169.39x CR which is 1.3 times more
than SZ, and 8.79 times higher than ZFP. This shows that
classes of DICOM images respond differently to the dif-
ferent error bounds of compression. For example, the CR
of Diffusion increases significantly with increasing error
bounds. Perfusion and CE maintain consistently lower CR
even as the error bounds increase.

Error Bounds vs. Compression Ratio Across Compressors
compressor
103 —— sz3
sz
— zfp
E— category
— CE
= Perfusion
e 1 Diffusion
le-9 le-8 le-7 le-6 le-5 le-4 le-3 le-2 le-1
Bound

Fig. 6: Error Bounds vs Compression Ratio with Different
Lossy Compressors.

Figure 7 evaluates the PSNR as a function of error bound
for the same compressors. The PSNR of all the compressors
typically decrease as the error margin increases. This suggests
that as tolerable error increases, the image quality also de-
creases.

ZFP compresses without any data distortion in the error
bounds of 1e=% to 1e=2 . It also has a relatively stable PSNR
around 67 in other error bounds, especially in some categories,
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suggesting that it may be less sensitive to variations in error
ranges than SZ3 and SZ, and that ZFP are achieved. CE
shows higher PSNR at low error bounds, but PSNR decreases
significantly as the error bounds increase, especially for SZ3
and SZ. And Diffusion show more stable PSNR values
across different error bounds, particularly when using ZFP
compression.

Error Bounds vs. PSNR Across Compressors

120
100

compressor
— B
sz
zfp
category
— CE
—————— Perfusion
Diffusion

PSNR
[ )
o o

le-9 le-8 le-7 le-6 le-5 le-4 le-3 le-2 le-1
Bound

Fig. 7: Error Bounds vs PSNR with Different Lossy Compres-

SOrs.

Figure 8 and 9 presents the compression and decompression
bandwidth for lossy compression algorithms, which is essential
for evaluating their efficiency and suitability for handling large
medical imaging datasets.

For cBW, ZFP consistently shows the highest median
encoding bandwidth 270.86 MB/s across all error bounds,
which means it is the most efficient in terms of compression
bandwidth. The CE and Perfusion are similar, but slightly
lower median encoding performance than Diffusion. SZ3
has higher compression bandwidth than SZ across all error
bounds and different categories on DICOM files. SZ3 recieved
49.73 MB/s especially on Perfusion which is 12x faster
than SZ.

Error Bounds vs. Compressed Bandwidth Across Compressors

250 compressor
- sz3
%200 =
o
=150 zfp
E category
2 100 — CE
Y 50 — —— Perfusion

0 [ Diffusion
le-9 1le-8 1le-7 1le-6 1le-5 1le-4 1le-3 1le-2 1le-1

Bound

Fig. 8: Lossy Compressors Compression Bandwidth.

For dBW, the decompression bandwidth fluctuates very little
as the error bounds increase, especially for ZFP, which shows
that ZFP maintains a stable compression speed regardless
of the error bounds. ZFP consistently shows the highest
decompression bandwidth of 150 MB/s across all error bounds.
ZFP’s compression bandwidth and decompression bandwidth
are higher compared to the other two compressors, indicating
ZFP has the fastest files transfer speed. Higher bandwidth
values reflect a greater data processing rate, meaning ZFP
can compress and decompress data more quickly, facilitating
faster file transfer [23]. In all, ZFP has the fastest DICOM file
transfer speeds.
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1E7rgor Bounds vs. Decompressed Bandwidth Across Compressors
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Fig. 9: Lossy Compressors Decompression Bandwidth.

V. CONCLUSION

As technological innovations progress, the size of DICOM

files continues to increase as they have greater fidelity. This
requires finding an optimal balance between compression
ratio and visual quality using existing compressors. This
paper focuses on demonstrating the maximum achievable
compression ratio with lossy compression while maintaining
acceptable visualization, and analyzing the results of some
lossless compressors on DICOM files. Lossless compression
continues to be an important method of compressing DICOM
files while preserving high data integrity. Unlike lossy com-
pression, which sacrifices some data for a higher compression
rate, lossless compression ensures that the original image is
perfectly reconstructed. Therefore, while this paper focuses
on lossy compression, lossless compression methods are still
indispensable in situations where no data loss in acceptable.
The analysis reveals that for lossy compression of DICOM
files, ZFP excels in terms of speed, making it the optimal
choice for scenarios requiring rapid compression and decom-
pression. When the primary objective is file size reduction,
SZ3 outperforms other methods by achieving higher CR. For
PSNR, which measures image quality retention, ZFP provides
the best results, indicating its ability to preserve image fidelity
despite a lower CR.
For lossless compression, LZ4 is the fastest compressor. When
maximizing size reduction, ZSTD and ZLIB emerge as the
best performers. This combination of results offers valuable
insights for selecting the most suitable compression method
based on the specific requirements of speed, storage efficiency,
and image quality preservation.
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