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In brief

By integrating spatial transcriptomics
and single-cell genomics technologies,
we constructed a comprehensive single-
cell atlas of gene expression and
chromatin accessibility of the crop
species Glycine max (soybean).
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e Identification of cell-type-specific ACRs and transcription
factor binding motifs
e Exploration of gene regulatory networks related to symbiotic
nitrogen fixation
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embryonic fate determination
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SUMMARY

Cis-regulatory elements (CREs) precisely control spatiotemporal gene expression in cells. Using a spatially
resolved single-cell atlas of gene expression with chromatin accessibility across ten soybean tissues, we
identified 103 distinct cell types and 303,199 accessible chromatin regions (ACRs). Nearly 40% of the
ACRs showed cell-type-specific patterns and were enriched for transcription factor (TF) motifs defining
diverse cell identities. We identified de novo enriched TF motifs and explored the conservation of gene reg-
ulatory networks underpinning legume symbiotic nitrogen fixation. With comprehensive developmental tra-
jectories for endosperm and embryo, we uncovered the functional transition of the three sub-cell types of
endosperm, identified 13 sucrose transporters sharing the DNA binding with one finger 11 (DOF11) motif
that were co-upregulated in late peripheral endosperm, and identified key embryo cell-type specification reg-
ulators during embryogenesis, including a homeobox TF that promotes cotyledon parenchyma identity. This
resource provides a valuable foundation for analyzing gene regulatory programs in soybean cell types across

tissues and life stages.

INTRODUCTION

Plants are composed of cells derived from various tissues and
cellular identities, each containing the same genome but exhib-
iting highly divergent gene expression that enables specialized
functions. One key driver of transcriptional variation is the differ-
ential usage of cis-regulatory elements (CREs), non-coding loci
in the genome that mediate gene expression in a spatiotemporal
manner.' Spatiotemporal gene expression is controlled by inter-
actions between specific binding motif sequences and cognate
transcription factors (TFs), along with cofactors assembled at
CRESs.? Most TFs bind to CREs in nucleosome-depleted acces-
sible chromatin regions (ACRs).> Consequently, distinct TF
expression and chromatin accessibility patterns establish the
gene expression programs of specific cell types. Thus, detailed
maps of CRE accessibility and gene expression in diverse cell
types are essential for understanding how different cells use
the genome, facilitate our functional understanding of the
genome, and enable the exploration of gene regulatory
networks.

Advancements in single-cell genomics, such as single-nu-
cleus RNA sequencing (snRNA-seq) and single-cell sequencing
of assays for transposase-accessible chromatin (SCATAC-seq),
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enable the profiling of transcriptomes and chromatin accessi-
bility from complex tissues at single-cell resolution.* ® Extensive
single-cell genomic datasets have been generated by large pro-
jects in mammals, such as the Human Cell Atlas and the Mouse
Cell Atlas.” " In plants, single-cell research has mostly been
focused on transcriptomes, often limited to selected organs, tis-
sues, and cell types.'""" To date, only three atlas-scale single-
cell transcriptomes or chromatin accessibility maps have been
reported in Arabidopsis thaliana, Oryza sativa (rice), and Zea
mays (maize), each limited to a single modality.'®2° However,
although extremely valuable, these resources are limited by
challenges inherent in single-cell genomic technologies, where
cells are extracted from their origin in a complex tissue, poten-
tially losing critical biological information and increasing the dif-
ficulty of accurate cell-type annotation."

Cell-type annotation is fundamental for elucidating cell popu-
lation heterogeneity and is typically determined through cell-type
markers specifically expressed in one or a few cell types.'>?" For
many non-model species, there are usually insufficient validated
marker genes, and cell-type annotation often relies on the
expression patterns of the putative orthologs in model plants,
mostly Arabidopsis.'*'® However, annotation based on the pu-
tative ortholog gene expression can be problematic due to
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Figure 1. Profiling single-nuclei transcriptomes and chromatin accessibility in soybean
(A) Overview of tissue types and experimental design. Seed stages include globular stage (GS), heart stage (HS), cotyledon stage (CS), early maturation stage

(EMS), and middle maturation stage (MMS).
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(B and C) Two-dimensional embeddings using uniform manifold approximation and projection (UMAP) depicting similarity among nuclei based on gene
expression (B) and gene chromatin accessibility (C). 2,000 nuclei were randomly selected from each tissue and colored by tissue type.

(legend continued on next page)
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gene loss, gene duplication, or gene functional diversification
following whole-genome duplications. Recently, spatial tran-
scriptomics has provided the opportunity to investigate gene
expression profiles within the spatial context of cells, success-
fully assisting cell-type annotations in animals and plants without
needing a priori cell-type markers.??* To date, no comprehen-
sive cell-type-level atlas has been completed for any plant,
which spans gene expression, ACRs, and spatially resolved
cell-type annotations.

Here, we describe a spatially resolved, multimodal single-cell
atlas for the crop species Glycine max (soybean), which experi-
enced genome duplications approximately 59 and 13 million
years ago, resulting in a highly duplicated genome with nearly
75% of its genes present in multiple copies.>®> We measured
chromatin accessibility and gene expression in 316,358 nuclei
across ten soybean tissues, which identified and characterized
303,199 ACRs in 103 distinct cell types. We found that nearly
40% of ACRs showed cell-type-specific patterns and were en-
riched for TF binding motifs controlling cell-type specification
and maintenance. Focusing on a specific feature of soybean
biology, the infected cells that make up the developing nodules,
we identified the non-cell autonomous activity of NIN-LIKE
PROTEIN 7 (NLP7) and the conservation of a NIN gene regulatory
network for legume symbiotic nitrogen fixation. Three sub-cell
types of endosperm were characterized in detail, revealing a
group of 13 sucrose transporters, including two SUGARS WILL
EVENTUALLY BE EXPORTED TRANSPORTERs (SWEETSs):
GmMSWEET15a and GmSWEET10a, which were co-upregulated
in late peripheral endosperm, both sharing the DNA binding with
one finger 11 (DOF11) binding motif. We also constructed
comprehensive developmental trajectories across embryogen-
esis and early maturation and identified key embryo cell-
type specification regulators during embryogenesis. Finally, we
created an interactive web atlas to disseminate these resources,
which we named the soybean multi-omic atlas (https://soybean-
atlas.com/).

RESULTS

Assembly of a single-cell accessible chromatin

and expression atlas in soybean

To generate a comprehensive, accessible chromatin and tran-
scriptome atlas across soybean cell types, we collected samples
from ten tissues at different stages of the soybean life cycle.
These tissues included leaf, hypocotyl, root, nodule, young
pod, and five stages of developing seeds: globular stage (GS),
heart stage (HS), cotyledon stage (CS), early maturation stage
(EMS), and middle maturation stage (MMS; STAR Methods).
For each tissue, we conducted scATAC-seq and snRNA-seq
with at least two biological replicates, using optimized soybean
nuclei isolation methods (Figure 1A; STAR Methods). After
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filtering low-quality nuclei and doublets, we obtained high-qual-
ity accessible chromatin profiles for ten tissues, totaling 200,732
nuclei with a median of 17,755 Tn5 transposase (Tn5) integra-
tions per nucleus, and transcriptome profiles for seven tissues,
totaling 115,626 nuclei with a median of 2,474 unique molecular
identifiers (UMIs) and 1,986 genes detected per nucleus
(Figures S1A-S1H; Table S1). Initial clustering of 2,000 random
nuclei from each tissue revealed similar cluster structures in
both scATAC-seq and scRNA-seq, with seed tissue nuclei
clearly separated from non-seed tissues (Figures 1B and 1C).
To further explore cell-type heterogeneity in soybean tissues,
we used the Seurat®® and Socrates'® workflows for independent
analysis of each tissue. We identified 147 and 97 scATAC-seq
and snRNA-seq clusters, respectively, with consistent nuclei
proportions in each cluster across replicates (Figures S1l and
S1J; Table S1). The scATAC-seq yielded a higher number of
clusters compared with scRNA-seq, likely because it captures
a broader spectrum of regulatory features, such as chromatin
accessibility and potential cell states, enabling finer distinctions
between cell populations. These results indicate that our dataset
is of high quality and effectively captures the diversity of cell
types and states in soybean (Table S1).

To annotate cell clusters, we collected a set of marker genes
from the literature spanning multiple species, including soybean,
Arabidopsis, and maize, and matched them to expected soy-
bean cell types. Cell types were assigned based on a manual re-
view of marker gene performance and evaluation of enriched
biological processes (STAR Methods, Table S2). For example,
in CS seeds, we identified 17 clusters in scATAC-seq and 18
clusters in snRNA-seq, with high concordance between the
two replicates (Figures S1K and S1L). By comparing the sin-
gle-cell data with previously published laser-capture microdis-
section RNA-seq datasets,””*® we identified the three main re-
gions of soybean seeds: seed coat, endosperm, and embryo,
as well as specific cell types, such as the seed coat endothelium
and seed coat inner integument (Figures STM and S1N). Addi-
tional cell types were annotated based on representative
marker genes (Figures 1D and 1E). For instance, the plasma
membrane sugar transporter GmSWEET15, which mediates su-
crose export from the endosperm to the embryo®® and has paral-
ogous genes from a whole-genome duplication, GmSWEET15a
and GmSWEET15b, showed enriched expression and chromatin
accessibility in the endosperm. This was accompanied by neigh-
boring ACRs with high sequence similarity (86.95% identical
matches) between the two genes, suggesting conservation of
CREs responsible for the endosperm-specific expression of
these genes (Figures 1F-1l). After comprehensive annotation
and subsequent analysis, we identified a total of 103 and 79
cell types in the scATAC-seq and snRNA-seq data, respectively,
with a high correlation between gene accessibility from scATAC-
seq and gene expression from snRNA-seq for the same cell

(D and E) Z score heatmap of gene expression (D) and gene chromatin accessibility (E) for representative marker genes across shared cell types in soybean CS

seeds. SC, seed coat; Emb, embryo.

(F and G) UMAP embeddings overlaid with gene expression (top) or gene accessibility (bottom) (F) and pseudobulk cell-type Tn5 integration site coverage

(G) around the endoderm marker gene GmSWEET15a.
(H and ) Similar to (F and G), but for the paralog gene GmSWEET15b.
See also Figures S1, S2, and S3 and Tables S1 and S2.
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types (Figures S2 and S3; Tables S1 and S2). Notably, dividing
cells were absent across all scATAC-seq datasets but were
clearly annotated in most snRNA-seq datasets (Figures S2M-
S2P; Table S1). This aligns with previous reports indicating that
cell cycle gene-related heterogeneity is more easily detected
at the transcriptional level than through chromatin accessibility
in humans.*°

Validation of cell-type identity with spatial
transcriptomics

The limited availability of experimentally validated marker genes
for cell-type annotation in scATAC-seq and scRNA-seq datasets
is acommon challenge, particularly in non-model species, as ho-
mology-based marker identification is problematic due to gene
loss, duplication, or neofunctionalization. To validate the cell-
type annotations for the single-cell datasets, we conducted
spatial RNA-seq (spRNA-seq) for five tissue types, all at the
same developmental stages as the single-cell datasets (root, hy-
pocotyl, seed at HS, CS, and EMS). Multiple serial tissue sec-
tions were placed on a 10x Genomics Visium spatial slide
(Figures 2A and S4A). In total, we profiled 12,490 high-quality
spatial spots across these tissues. The median gene number
per spot ranged from 453 to 6,262 across all tissue types.

Unsupervised clustering of the expression profiles revealed
that spatial spot clusters showed cell-type-specific spatial local-
ization (Figures 2B and S4B). For example, we identified 13 clus-
tersin the CS seed dataset (Figure 2B). Four of these clusters are
localized in the embryo region, three in the endosperm region,
and six within the seed coat region (Figure 2B). This indicates
high-quality spatial transcriptome data and enables accurate
cell-type annotation based on tissue histology. The Visium
spatial slides are designed with 55-um resolution spots, which
often capture gene expression profiles from multiple cells. To
study the spatial expression profile at single-cell resolution and
validate the snRNA-seq cell-type annotation, we performed de-
convolution analysis using spRNA-seq and snRNA-seq datasets
of the same tissue types. A prediction score of each snRNA-seq
cell was calculated to quantify the certainty of the association
between snRNA-seq cells and their predicted spatial spots.
We observed high prediction scores between similar cell types
that were independently annotated in the two datasets (Figures
2C and S4C), supporting a robust annotation.

Leveraging the spatial transcriptome data, we corroborated
known marker genes selected for the snRNA-seq cell-type
annotation (Figure 2D; Table S2). For example, GmKTi3 (Glyma.
08G341500), GmPLETHORA2 (GmPLT2, Glyma.12G056300),
GmSWEET15a (Glyma05G12200), and GmSWEET10b (Glyma.
08G183500) are known to be exclusively transcribed to the
soybean embryo,*" Arabidopsis root apical meristem (RAM),*?
CS endosperm,”® and seed coat parenchyma,®® respectively.
Our spRNA-seq data showed highly specific expression patterns
consistent with these prior observations, providing a valuable tool
for in situ marker validation.

To identify soybean cell-type-specific markers, we performed
de novo marker identification using the spRNA-seq and snRNA-
seq datasets (Figures 2E and 2F; Table S2). With the de novo
markers from spRNA-seq, we distinguished similar cell types
that are spatially differentiated. For example, we identified three
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subclusters of endosperm cells and annotated them as micro-
pylar, peripheral, and chalazal endosperm based on their locali-
zation in the seed (Figure 2F). The spatial de novo markers from
these cell types showed distinct expression patterns in the
corresponding snRNA-seq and scATAC-seq subclusters. By
integrating the single-cell datasets with spRNA-seq, we not
only validated cell-type annotations but also resolved spatially
differentiated sub-cell types.

Identification and characterization of ACR diversity
across cell types
To identify ACRs across the 103 cell types, we aggregated chro-
matin accessibility profiles from all nuclei within each cell cluster
and applied a peak calling procedure optimized for single-cell
data (STAR Methods). This uncovered 303,199 non-overlapping
ACRs, ranging from 137,046 to 193,792 per tissue (Figure 3A).
Compared with bulk ATAC-seq from leaf at the same stage
(STAR Methods), scATAC-seq identified almost twice as many
ACRs despite having fewer total reads, with many cell-type-spe-
cific ACRs (ctACRs) masked by bulk tissue profiling (Figures 3B
and 3C). Next, we categorized ACRs based on their proximity to
annotated genes: 128,916 (45.52%) overlapped genes (genic
ACRs), 74,655 (24.62%) were within 2 kilobases (kb) of genes
(proximal ACRs), and 99,628 (32.86%) were more than 2 kb
away from genes (distal ACRs). Distal ACRs had significantly
higher cell-type specificity than genic and proximal ACRs, sug-
gesting an important role in establishing cell-type-specific
gene expression patterns (t test, p value < 2.2e—16, Figure S5A).
Furthermore, genetic diversity from the soybean haplotype map
(GmHapMap)** was remarkably reduced, and TF motifs were
enriched at the summit of all three groups of ACRs, supporting
the functionality of the identified ACRs (Figures 3E and S5B).
ACRs can be generally classified as activating or repressive,
either positively or negatively regulating gene expression,
respectively.>® To predict ACR function, we associated ACRs
with putative target genes based on the correlation between
ACR accessibility and nearby gene expression across all cell
types (Figure 3F, STAR Methods). This approach identified
145,638 ACR-gene associations for 137,245 ACRs and 33,068
genes, with an average of four ACRs per gene (Figure 3G;
Table S3). We found that cell-type specificity of gene expression
was positively correlated with the number of associated ACRs,
suggesting that increased regulatory complexity is a generaliz-
able feature of restricted gene expression patterns (Figure 3H).
Next, we categorized ACRs with positive correlations as acti-
vating ACRs and those with negative correlation as repressive
ACRs (Figures 3I, 3L, 3M, S5C, and S5D). Overall, 71.9%
were activating, 24.1% were repressive, and 3.9% had
ambiguous functions with mixed significant positive and nega-
tive correlations with flanking genes (Figure 3J). Activating
ACRs were more likely to act proximally compared with repres-
sive ACRs (Figure 3K). Notably, we identified three known acti-
vating CREs (Figures 3N-3P), including positive regulation of
Glyma.03g229700 in seed tissues,*® ASYMMETRIC LEAVES2-
LIKE 18 (ASL18), a known root nodule symbiosis marker,*’
and a pod shattering-resistance-related gene.*® To evaluate
the effects of whole-genome duplication on ACR activity, we
compared ACR-gene correlations for duplicated regulatory
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Figure 2. A spatially resolved transcriptome facilitates cell-type annotation for soybean seeds
(A) The histological structure of soybean seeds at the CS.
(B) The visualization of spatial spot clusters on the tissue section (left) and on the UMAP plot (right).
(C) Heatmap of the snRNA-seq cell-type prediction scores on the spRNA-seq cell types (left) and the spatial distribution of predicted snRNA-seq cell types on the

tissue section (right).

(D) The validation of known marker genes used in the scRNA-seq data. The gene expression of selected markers was plotted on the UMAP of snRNA-seq data
(top), sSCATAC-seq data (middle), and on the spatial plot of the tissue section (bottom).
(E) Dot plot of the top de novo marker genes identified for each cell type in the spRNA-seq data.
(F) The validation of spatial de novo marker genes in the single-cell data. The gene expression of selected markers was plotted on the spatial plot of the tissue
section (top), the UMAP of snRNA-seq data (middle), and the scATAC-seq data (bottom).
See also Figure S4 and Tables S1 and S2.
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Figure 3. Characterization of ACRs across cell types

(A) Number of ACRs identified in each tissue.

(B) Comparison of the number of ACRs identified using scATAC-seq versus bulk ATAC-seq in leaf tissues.

(C) Distribution of cell-type specificity score for ACRs shared between bulk ATAC and scATAC and those specific to scATAC-seq.

(D) Bimodal distribution of ACR distances to the nearest gene. ACRs are categorized into three groups based on the distance from the summit to the nearest gene:
genic ACRs (overlapping or within 10 bp of genes), proximal ACRs (within 2 kb of genes), and distal ACRs (more than 2 kb away from genes).

(E) Relative SNP density within 500-bp flanking regions of different classes of ACRs and control regions.

(F) Schematic overview of the computational strategy used to predict the activity function of ACRs.

(G) Distribution of genes associated with different numbers of ACRs.

(H) Distribution of expression specificity for genes associated with different numbers of ACRs.

() Density distribution of the overall Spearman’s correlation coefficient between ACRs and flanking genes. The red line indicates the minimum correlation cutoff at
0.25 or —0.25.

(J) Venn diagram analysis of activating and repressing ACRs.

(legend continued on next page)
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regions. We found that most duplicated ACR-gene pairs exhibit
similar correlations between chromatin accessibility and
gene expression (90% coincidence), with most ACR-gene pairs
positively correlated (79% of pairs; Figures S5E-S5G). These re-
sults suggest a high level of functional conservation among
duplicated ACRs. To identify motifs that could act as distal
activators or repressors, we conducted a TF motif enrichment
analysis on the distal activating and repressing ACRs. We found
35 motifs enriched in distal activating ACRs, and six of the top
ten motifs had known transcriptional activator activity, such as
NAC DOMAIN CONTAINING PROTEIN 47 (NAC047)*° and
RESPONSE REGULATOR 22 (RR22)*° (Figure 3Q; Table S3).
Additionally, 26 motifs were enriched in distal repressive ACRs,
primarily type Il MADS-box factors (MCM1, AGAMOUS, DEFI-
CIENS, and SRF) like APETALA3 (AP3)*' and AGAMOUS-LIKE
16 (AGL16),"? known transcriptional repressors involved in floral
organ specification (Figure 3R; Table S3). Type Il classic MADS-
box genes are key developmental regulators in angiosperms and
are well-studied due to their role in floral organ specification.*
We observed distinct MADS gene expression patterns in seed
versus non-seed tissues, consistent with MADS-box genes
regulating reproductive growth by transcriptionally repressing
distal genes. These results provide a foundation for dissecting
gene regulatory programs at cell-type resolution.

Identification and characterization of ctACRs

This single-cell atlas provides an excellent opportunity to char-
acterize the heterogeneous regulatory programs underlying
specialized cell-type functions. To this end, we identified ctACRs
that were significantly more accessible in only one or two cell
types within each tissue (STAR Methods). Approximately
40.23% of the ACRs (122,558 ACRs) were identified as ctACRs
across ten tissues, ranging from 12,711 in root to 37,897 in
young pod (Figure 4A; Table S4). As expected, ctACRs are asso-
ciated with greater gene expression specificity (Figure S5H). We
observed a higher number of ctACRs in seed-related tissues
compared with non-seed tissues, with a higher number of endo-
sperm-specific ACRs in young developing seeds compared with
the other cell types (Figure S5I). Highly dynamic chromatin
accessibility in seed endosperm has also been observed in
rice,”° suggesting that complex regulatory dynamics in endo-
sperm may be conserved in plants. To investigate this further,
we evaluated DNA cytosine methylation across all sequence
contexts.** We found endosperm-specific ACRs were demethy-
lated compared with leaf tissue (Figure S5J), indicating that the
increased number of ACRs in the endosperm corresponds with
genome-wide hypomethylation in the endosperm. Although the
proportion of ACRs located in proximal regions was similar
across ctACRs and non-ctACRs, we observed a higher propor-
tion of distal ACRs among ctACRs (Figure S5K), showcasing the

Cell

importance of distal ACRs in contributing to cell-type-specific
gene regulation. Moreover, we found ctACRs had a lower
density of single-nucleotide polymorphisms compared with
non-ctACRs, implicating positive selection of ctACRs in soybean
breeding (Figure S5L).

Transposable elements (TEs) contribute to cell-type-specific
CREs in both mammals and plants.'®*>**® For example, cell-
type-specific enhancers are often found within long terminal
repeat retrotransposons (LTRs) in maize.'® In soybean, a similar
proportion of ctACRs and non-ctACRs overlapped with TEs
(Figure 4B). However, TE enrichment analysis indicated signifi-
cant enrichment of hAT TIR transposons overlapping ctACRs,
distinct from maize (Figure 4B; Fisher’s exact test, false discov-
ery rate (FDR) < 10e—16). To investigate the role of TEs and
their relationship to ctACRs, we conducted an enrichment anal-
ysis comparing TEs overlapping ctACRs and non-ctACRs for
each cell type. We found significant TE enrichment in nine
cell types largely corresponding to the endosperm across
seed development stages (Fisher’s exact test, FDR < 0.01; Fig-
ure 4C), with 579 (59%) of these endosperm-specific ACRs
present at two or more developmental stages (Figure S5M).
Similar to the methylation pattern observed in all endosperm-
specific ACR, those overlapping hAT TIR transposons were
also demethylated compared with leaf tissue (Figure S5J),
and ctACRs were largely enriched in the 5’ and 3’ regions of
hAT TIR transposons (Figure S5N). Taken together, these
data suggest that demethylation of hAT TIR transposons in
seed endosperm unlocks a major source of regulatory activity
in soybean.

Identification of key TF regulators that define distinct
cell identities
Identifying the TFs involved in establishing and maintaining
diverse cell identities is a central goal in developmental biology.
We leveraged these data to systematically assess which TF mo-
tifs are enriched in ctACRs across tissues, thus identifying key
regulatory networks potentially critical in cell fate specification.
Toward this goal, we identified overrepresented TF motifs
from the JASPAR database”’ in ctACRs relative to non-ctACRs
across cell types within each tissue, revealing both known and
unknown potential regulators (Figures 4D and S50; Table S4).
For example, the HOMEODOMAIN GLABROUS 11 (HDG11)
motif (MA0990.2), an established regulator of epidermal cell,*
is highly accessible in epidermal cells of hypocotyl, root, leaf,
and CS seeds. Similarly, the DOF1.6 motif (MA1275.1) is en-
riched in procambium-related cells across all tissues (Figure S5P;
Table S4), whereas the known endosperm-specific transcrip-
tional activator,’® MYB118 (MYELOBLASTOSIS 118), motif is
enriched for cell-type-specific chromatin accessibility in endo-
sperm and is specifically expressed in soybean endosperm cells

(K) Density distribution of the distance between the pair of ACRs and genes for the activating and repressing ACRs. The red line indicates the distal association

cutoff at 2 kb.

(L and M) Heatmap showing chromatin accessibility of activating ACR (L) and the expression of associated genes (M).

(N-P) Pseudobulk cell-type Tn5 integration site coverage patterns around gene bodies (top) and scatter plots of ACR accessibility and gene expression across 66
cell types (bottom) for Glyma.03g229700, GmAS18a (03G161400), and GmSHAT1-5 (16G019400), respectively.

(Q and R) TF motif enrichment of distal activating ACRs (Q) and distal repressing ACRs (R).

See also Figure S5 and Table S3.
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Figure 4. Characterization of cell-type-specific ACRs, motif, and TFs

(A) Number of ctACRs identified in each tissue.

(B) Proportion of ACRs that overlap with TEs and TE enrichment in all ctACRs.

(C) TE enrichment in ctACRs for each cell type.

(D) Heatmap of TF motif enrichment across 103 cell types.

(E) UMAP embeddings overlaid with gene expression of GmMYB118 (top row) or TF motif deviation score of the MYB118 binding motif (bottom row) across four
developmental stages of seeds.

(F) Image of a root with nodules (left) and an illustration of major cell types and the gene regulatory pathway in infected cells of developing nodules.

(G) UMAP embeddings overlaid with gene expression of GmNLP7a and TF motif deviation score of NLP7 in nodule tissue.

(H-J) Pseudobulk cell-type Tn5 integration site coverage pattern around gene body (top), UMAP embedding overlaid motif deviation score (middle), and gene
expression (bottom) for GmNSP1(H), GmNIN2a (I), and GmNF-YAT1a (J). The dotted arrow indicates the TF motif binding site.

(K and L) UMAP embedding overlaid TF motif deviation score for de novo motifs of STREME-7 and STREME-9.

See also Figure S5 and Table S4.
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across four developmental stages (Figure 4E). Thus, our inte-
grated atlas faithfully recapitulates known regulatory dynamics
underlying diverse cell states.

Adapting these analyses, we aimed to characterize the regula-
tory signatures of developing nodules, where symbiosis between
legumes and soil bacteria fixes nitrogen for both the plant and the
natural or agricultural ecosystem.® Nitrogen fixation occurs in in-
fected cells, a specific cell type that encapsulates the nitrogen-
fixing bacteria (Figure 4F). However, how these cells are altered
in terms of their CRE usage after infection remains underexplored.
We found a series of symbiotic nitrogen fixation genes that
were specifically expressed and accessible in infected cells
(Figures S2C and S2D). We found a total of 73 TF motifs enriched
in infected cells, including the binding motif of NLP7, a known
regulator of root nodule symbiosis®'°® (Figure 4G; Table S4).
Notably, there was a spatial discordance between NLP7’s expres-
sion in epidermis or cortex and the global chromatin of its binding
site in infected cells, suggesting non-cell autonomous activity'®
(Figure 4G). The top two most enriched TF motifs in infected-
cell-specific ACRs were AHL13 (MA2374.1), which regulates jas-
monic acid biosynthesis and signaling,”®> and ANTHOCYANIN-
LESS 2 (MA1375.2), which regulates anthocyanin accumulation
and primary root organization® (Figures S5Q and S5R).

Only seven of the motifs in the JASPAR database®” are from
soybean, with most being from Arabidopsis (580) or other spe-
cies (218), potentially limiting the study of important soybean
TFs. For example, key regulator genes essential for initiating
cortical cell divisions and microbial infection during nodulation,
such as NODULATION SIGNALING PATHWAY 1 (NSP1),%’
NODULE INCEPTION (NIN),*” ASYMMETRIC LEAVES 2-LIKE
18 (ASL18),°” and nuclear factor-YA1 (NF-YA1),°° were highly
expressed in infected cells yet lack representation in the
JASPAR database (Figures 4H-4J). Leveraging the predicted
motifs of these TFs from studies in Medicago truncatula and
Lotus japonicus,®® we found strong TF motif enrichment within
infected cell ACRs, corroborating their conservation in soybean
(Figures 4H-4J; Table S4).

To comprehensively identify potential TF binding motifs in in-
fected cells, we performed de novo motif enrichment in in-
fected-cell-specific ACRs, identifying 10 enriched motif clusters
(Table S4). Interestingly, all four binding motifs of known key reg-
ulators (NLP7, NIN, NSP1, and NF-YA1) matched a de novo motif
(Figure S58). Additional TF motifs matched known motifs in the
JASPAR database, including binding sites for AP2/ERFs, B3
domain-containing TFs, RAV2, basic leucine zipper (bZIP) TFs,
ethylene-responsive (ERF) TFs, and protein BASIC PENTACYS-
TEINE1 (BPC1) TFs (Figure S5T). Notably, among these motifs,
the GCC-box motif is a known pathogenesis-related promoter
element that recruits ERF TFs, including the ethylene response
factor required for nodulation1 (ERN1), which is essential
for infection-thread formation and nodule organogenesis in Med-
icago.>® We also identified two unknown motifs, which are spe-
cifically accessible in the infected cell, including the AACC
TTTCAA motif (STREME-7) and the TCCAATAAGATTAAA motif
(STREME-9) (Figures 4K and 4L), implicating potential regulators
of nodule development and potential targets for soybean
improvement. In summary, integrating TF motif enrichment with
snRNA-seq enabled the identification of known and de novo
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TF binding motifs of key regulators essential for cell-type
specification.

Characterizing three sub-cell types of endosperm
across seed development

The endosperm plays a crucial role in supporting embryo
growth by supplying nutrients and other factors during seed
development.®®® Soybean endosperm is a membrane-like,
semi-transparent tissue between the embryo and seed coat. Pri-
mary endosperm can be divided into three sub-cell types: micro-
pylar, nearest to the young embryo; peripheral, in the center of
the endosperm region; and chalazal, at the opposite end of the
embryonic axis toward the seed coat attachment point (Fig-
ure 5A).°° Although the development of these subregions has
been well-characterized morphologically, little is known about
the molecular processes occurring in these subregions or how
their development is coordinated within the context of seed
maturation.

By integrating snRNA-seq and spRNA-seq, we separated the
three sub-cell types of endosperm (Figure 2B) and gained in-
sights into the cellular processes within each sub-cell type by
identifying significantly overrepresented Gene Ontology (GO)
terms (p value < 0.01, Figure 5A). Overrepresented GO terms
were consistent with the known roles of these endosperm sub-
cell types in seed development. For example, the peripheral
endosperm is enriched in photosynthesis-related pathways,
consistent with the presence of chloroplasts,®®° the chalazal
endosperm is enriched in vascular transport pathways, aligning
with its role in loading maternal resources into developing
seeds,*®®" and the micropylar endosperm is enriched in cutin
biosynthetic process pathways, suggesting involvement in
cuticle synthesis in the nearby embryo epidermis.®®°7:62

To define the molecular signatures of endosperm develop-
ment, we analyzed all endosperm nuclei across four stages
(globular, heart, cotyledon, and early maturation) of seed devel-
opment, integrating scATAC-seq and snRNA-seq modalities
(Figures 5B, 5C, and S6A; STAR Methods). Using de novo
markers from spRNA-seq, we were able to clearly separate
and annotate the three sub-cell types (Figure S6B; Table S1).
Comparing the proportion of nuclei in each stage across sub-
cell types revealed a developmentally associated gain in cell pro-
portion for peripheral and micropylar endosperm but not for
chalazal endosperm (Figures S6C-S6H). This observation is
consistent with the cellularization of peripheral and micropylar
endosperm following nuclei proliferation, whereas the chalazal
endosperm undergoes degradation without a clear cellulariza-
tion process.®®'

To better understand chromatin and gene expression dy-
namics during endosperm development, we performed pseudo-
time analysis for micropylar and peripheral endosperm using
snRNA-seq nuclei as a reference (Figures 5D and 5E). We found
that pseudotime was highly correlated with developmental stag-
ing, consistent with a biologically rooted cell ordering (Figures 5F
and 5G). We then classified genes based on temporal expression
patterns across pseudotime into three groups (early, middle, and
late) for micropylar and peripheral endosperm (Figures 5H and
51; Table S5). Consistent with previous observations, GO enrich-
ment analysis captured nuclei proliferation in the early stage and



Cell ¢ CellPress

GS B c
Cell type Assays
@ Chalazal O scATAC-seq
° +. O Micropylar @ snRNA-seq

B Peripheral

Oz ©

CS

O

Phloem transport EMS

Photosystem | stabilization %L ". %L}
Cutin biosynthetic process % §
umap1 umap1
G
-log10(p-value) T = T S5 Developing seeds
D Micropylar E Peripheral FO Micropylar G Peripheral K z
iy = 8
X g o] Q ; - s
=% £ © 6
B 3 53+ 4
U =T
a8 B o Q- 0 L
i e T T T T e T T T T
GS HS CS EMS GS HS CS EMS L 215
Seed stages Seed stages

-
o
I

Number of AA transporters  Number of Suc transporters Number of PCD genes
o (42
L 1
2 ]

Micropylar Peripheral
I

Peptide metabolic process

Peptide biosynthetic process

DNA replication

DNA-dependent DNA replication M
Vacuolar transport

Vesicle-mediated transport
Photosynthesis light harvesting

Cell wall organization or biogenesis

=]

2

A © F N O
-

-log10(FDR) ==

Late

0
Nhed® \2° 2

Scaled gene expression

I
Micropylar Peripheral

N O P GS [0-3]
s - 'I' HS [0-3]
3 2 Taa I =Xl
o P S o_g cs [0-3]
v PCC @ — | — GmDOF11 expression - A ‘

c i1 2 © —— GmMSWEET10a expression EMS [0-3]
® 05 B o GmSWEET15a expression a ‘ .
S - g —— DOF-MA1278 motif deviation ACR s — — —
S 0 € q MAT278 motif 1 '
° =2 o
3 !—0.5 @ o GS GmSWEET10a (15G049200) [0-5]
2 | U -
o
2 6 o HS [0-5]
® 2o
g o cs [0-5]
o

= il

i T o
-§ ! &35 EMS -3
3 | 5 ————
a0 i T @ MR TE motit —

I — g4 bl Pseudotime oo

Pseudotime i’ GmSWEET15a (05G122200)

Figure 5. Characterizing three endosperm sub-cell types across seed development

(A) Spatial tissue section showing the three sub-cell types (chalazal, peripheral, and micropylar endosperm) (top) and a heatmap of their representative enriched
biological processes (bottom).

(B and C) UMAP embeddings overlaid with cell type (B) or assays (C).

(D and E) UMAP embeddings depicting pseudotime trajectories for micropylar endosperm (D) and peripheral endosperm (E).

(F and G) Comparison of pseudotime and categorical seed stages for micropylar endosperm (F) and peripheral endosperm (G).

(H and I) Heatmap of pseudotime-associated genes (FDR < 0.05) for micropylar endosperm (H) and peripheral endosperm ().

(J) Heatmap of representative enriched biological processes across pseudotime-inferred stages and cell types.

(K=M) Number of programmed cell death genes (K), sucrose transporters (L), and amino acid transporters (M) across pseudotime-inferred stages and cell types.

(legend continued on next page)
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cellularization and functional specification in later stages (Fig-
ure 5J). These results indicate robust developmental trajectories
for micropylar and peripheral endosperm, allowing high-resolu-
tion exploration of the gene regulatory networks underlying cell
identity transitions.

During soybean seed development, endosperm cells undergo
programmed cell death (PCD) and transfer nutrients to support
rapid embryo growth and expansion.®®%*¢* The molecular regu-
lation of endosperm PCD and which nutrient transporters are
involved remains poorly understood. By examining mRNA
expression patterns of PCD-related genes® and sucrose or
amino acid transporter genes®® in developmental trajectories,
we found more PCD-related and nutrient transporter genes ex-
pressed in early and middle stages of micropylar endosperm
than the late stage (Figures 5K-5M; Table S5). The micropylar
endosperm, being closest to the embryo, undergoes PCD and
serves as an important nutrient source during early seed develop-
ment.®® More nutrient transporter genes were expressed in the
peripheral endosperm in the late stage, suggesting their role in
transferring maternal nutrients in later embryo development.

Sucrose is the major photosynthetic product transported into
seeds,®” and sugar transporters essential for embryo develop-
ment have been identified and characterized in different plants.®®
We identified a cluster of 13 sugar transporters highly upregulated
in the late stage of peripheral endosperm development, including
GmSWEET10a and GmSWEET15a, known to control soybean
seed size and oil content.”®>* As these sugar transporters share
similar expression patterns along development, we hypothesized
they might share similar gene regulatory structure. To predict
shared upstream regulators controlling the 13 sucrose trans-
porters, we scanned all TF motifs in their proximal and genic
ACRs and found five motifs from three TF superfamilies shared
by all ACRs (Figures S6I-S6K): DOF family, homeodomain-
leucine zipper (HD-Zip) TFs, and C2H2 zinc-finger TFs, including
INDETERMINATE DOMAIN (IDD) TFs. To determine TF activity
dynamics along the peripheral endosperm trajectory, we imputed
TF motif deviations from scATAC-seq onto snRNA-seq nuclei,
revealing 226 TF motifs with dynamic chromatin accessibility pat-
terns, of which two DOF motifs were highly correlated with the 13
sugar transporter genes (Figures 5N and S61-S6K). We identified
four DOF genes highly expressed in the late stage of peripheral
endosperm, including GmDOF11a (Glyma.08G276300), whose
paralog GmDOF11b (Glyma.13G329000) has been previously
implicated in controlling soybean seed size and oil content.®®
Interestingly, GmSWEET10a and GmSWEET15a were highly ex-
pressed in the late stage, and their ACRs harbored the DOF motif
(MA1278), which became more accessible throughout seed
development (Figures 50 and 5P). Thus, these results implicate
DOF TFs as key upstream regulators of sugar transporters,
including GmSWEET10a and GmSWEET15a, and a central role
in coordinating nutrient transfer to the developing embryo.

Cell

Developmental trajectories defining soybean
embryogenesis

Many important soybean agronomic traits are established during
embryogenesis. However, the regulatory and gene expression
dynamics underlying cellular diversification during embryogen-
esis remain unresolved. Motivated by this question, we isolated
all embryo-related nuclei across the four stages (globular, heart,
cotyledon, and early maturation) of seed development and per-
formed an integration across scATAC-seq and snRNA-seq mo-
dalities (Figures S6L and S6M; Table S1). To improve the resolu-
tion of developmental progression, we inferred the precise
developmental age of each nucleus using a recently described
least absolute shrinkage and selection operator (LASSO) regres-
sion approach (Figure 6A).”° The predicted continuous develop-
mental ages from the full dataset (Pearson’s correlation = 0.93)
and withheld test nuclei (Pearson’s correlation = 0.96) were high-
ly correlated with the known seed stage (Figures 6B and S6N).
We identified 248 genes predictive of developmental age and
uncovered the sequential gene expression dynamics associ-
ated with overall developmental progression regardless of cell
lineage (Figures 6C and 6D), thereby providing a useful bench-
mark for anchoring analyses of cellular diversification during
embryogenesis.

Evaluation of cellular diversity across the four seed stages of
embryogenesis revealed five distinct developmental branches
(Figure 6E). To determine the regulatory and gene expression dy-
namics that make these lineages distinct from others, we con-
structed pseudotime trajectories for each individual branch using
the snRNA-seq nuclei as a reference. Indicating a firm biological
foundation, we observed a strong positive trend between pseu-
dotime scores and inferred developmental age (Figures 6F and
6@). Interestingly, we found a strong negative correlation between
transcriptional complexity and inferred developmental age, a
notable feature of cell differentiation in mammals’® that appears
to be conserved in plants (Figure S60). Hypothesizing that cellular
diversification would be accompanied by the acquisition of
specialized gene expression programs, we identified differentially
expressed genes across pseudotime for each individual branch.
Indeed, visualization of pseudotime-associated genes revealed
distinct transcription signatures hallmarking each lineage (Fig-
ure 6H). Importantly, we found that several well-known marker
genes displayed expected developmental transcription patterns,
including LATE EMBRYOGENESIS ABUNDANT 26 (LEA26) in
cotyledon parenchyma,”’ PROTODERMAL FACTOR 1 (PDF1) in
the protoderm, MONOPTEROS (MP) in provascular, and
PLETHORA2 (PLT2) in shoot/RAM trajectories that collectively
support robust trajectory ordering (Figure 61).”?

Specification of the developing cotyledon parenchyma has
been posited as a key developmental event that determines
nutrient composition of mature seeds (Figure 6E).”® We hypoth-
esized that detailed interrogation of the regulatory dynamics

(N) Correlation heatmap between TF motif deviation scores and pseudotime-associated genes aligned by pseudotime for peripheral endosperm. PCC, Pearson’s

correlation coefficient.

(O) Expression of GmDOF11 (08G276300), DOF-MA1278 motif deviation, and expression of its putative target genes GmSWEET10a and GmSWEET15a. The

DOF-MA1278 motif is shown above.

(P) Pseudobulk cell-type Tn5 integration site coverage around GmSWEET10a and GmSWEET15a across the four seed stages.

See also Figure S6 and Table S5.
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Figure 6. Developmental trajectories defining soybean embryogenesis

(A) lllustration of LASSO models to learn continuous representations of nuclei age.

(B) Comparison of inferred nuclei age and categorical seed stages.

(C) LASSO coefficient ranks of genes toward inferred nuclei ages.

(D) Heatmap of relative gene expression levels ordered by nuclei age.

(E) Schematic of embryogenesis trajectories.

(F) UMAP scatterplots of cell-type annotation (left), inferred nuclei age (middle), and pseudotime (right) for embryonic snRNA-seq nuclei.

(G) Comparison of inferred age and pseudotime scores across all embryonic nuclei.

(H) Heatmap of pseudotime-associated genes (FDR < 0.05) for all five trajectories.

(I) Exemplary gene expression profiles across pseudotime for five marker genes.

(J) Correlation heatmap between TF motif deviation scores and pseudotime-associated genes aligned by cotyledon parenchyma pseudotime.
(K) ATHB-13 gene expression, ATHB-13 motif deviation, ATHB-13 target gene expression, and control gene expression profiles across cotyledon parenchyma
developmental pseudotime. The motif recognized by ATHB-13 is shown above.

See also Figure S6 and Table S1.

between cotyledon and axis parenchyma would be informative ~ S6P and S6S) and identified TF motif deviations and gene
for understanding the divergence of these tissues during expression patterns that were correlated across pseudotime
embryogenesis and uncover ideal targets for soybean improve-  for the cotyledon parenchyma trajectory (Figure 6J). This anal-
ment efforts. To this end, we imputed TF motif deviations from  ysis revealed eight TF modules associated with largely distinct
scATAC-seq onto co-embedded snRNA-seq nuclei (Figures gene sets, representing putative gene regulatory networks
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underlying cotyledon parenchyma development. Next, we spec-
ulated that temporal gene expression divergence between axis
and cotyledon parenchyma could identify genes associated
with lineage bifurcation of parenchyma initials. By comparing
temporal gene expression between axis and cotyledon paren-
chyma, using each branch as a reference (Figure S6R), we found
similar gene expression patterns between axis and cotyledon
parenchyma early in both trajectories. However, we identified a
decrease in temporal gene expression correlations approxi-
mately 60% of the way through both trajectories aligning with vi-
sual differences in branch-specific genes and the onset of paren-
chyma initials bifurcation (Figures S6Q and S6R). Further
dissection of this pseudotime point revealed that a homolog of
ATHB-13 (hereafter referred to as GmATHB13) was the first TF
to be differentially expressed between axis and cotyledon paren-
chyma at parenchyma initials bifurcation. Interestingly, ATHB-13
is an HD-Zip | TF previously associated with cotyledon morpho-
genesis in Arabidopsis,”* and null alleles of ATHB-13 exhibit
increased root length”® which develops from the axis tissue in
soybean seed. Thus, we hypothesized that GmATHB13 acts
as a negative regulator of axis development by promoting coty-
ledon parenchyma identity.

Next, to showcase the power of pseudotime analysis for un-
derstanding cellular differentiation, we aimed to characterize
the targets and dynamics of GmATHB13 across cotyledon pa-
renchyma development. First, we defined the putative targets
of GmATHB13 as the set of expressed genes within the coty-
ledon parenchyma trajectory with nearby ACRs containing the
ATHB13 motif (n = 2,177), as well as a set of cotyledon paren-
chyma expressed control ‘non-target’ genes (n = 2,177) lacking
ATHB13 motifs within nearby ACRs (Figure 6K). Consistent with
the known function of cotyledon parenchyma, expressed genes
with accessible ATHB13 motifs were enriched for GO terms
related to carbohydrate, polysaccharide, glycogen, and energy
reserve metabolic processes. We then evaluated expression
and TF motif deviation dynamics of ATHB13 in unison with the
expression patterns of putative ATHB13 targets and the set of
control genes (Figure 6K). GmATHB13 is initially expressed at
low levels and then reaches a peak immediately after the bifurca-
tion point that is followed by a rapid decrease, indicating that
GmATHB13 expression is tightly correlated with bifurcation of
parenchyma initials in a dose-dependent manner. Global chro-
matin accessibility of the ATHB13 motif increased following the
peak of GmMATHB13 expression, suggesting a genome-wide in-
crease in ATHB13 DNA-binding activity that depends on
GmMATHB13 transcript levels. Finally, putative ATHB13 targets
show higher levels of expression compared with the control set
following bifurcation, implicating GmATHB13 as a transcriptional
activator. Collectively, these data suggest that the expression of
GmATHB13 in parenchyma initials above a dosage threshold re-
sults in the activation of a gene expression program that pro-
motes cotyledon parenchyma identity.

DISCUSSION
In-depth knowledge of cell-type resolved transcriptional regulato-

ry programs is essential for gene function studies and gene regu-
latory network discovery, which are key to both developmental
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biology and crop improvement.”® Here, we constructed a
comprehensive single-cell CRE and gene expression atlas by
integrating single-cell genomic and spatial technology, profiling
316,358 cells across ten primary tissues in soybean. We assessed
the accessibility of approximately 300,000 ACRs across 103 cell
types, measuring the cell-type-specific CRE activity that drives
dynamic gene expression from the soybean genome. This ACR
atlas represents a valuable resource for the soybean community
to understand the molecular patterns underlying cell-type diversi-
fication in soybean. Additionally, this work provides a framework
for constructing cell-type-specific cis-regulatory maps for other
non-model species lacking known functional marker genes.

The cell-type-resolved ACR atlas offers a comprehensive
roadmap for studying gene regulatory dynamics across cell
types and developmental stages, with important implications
for gene expression manipulation during crop improvement, po-
tential cell-type regulator discovery, and synthetic biology appli-
cations. For example, genome editing of CREs allows for the
altered regulation of target genes, leading to phenotypic varia-
tions that are valuable for improving traits related to yield and
plant architecture.””~"® Using data from infected cells in devel-
oping nodules, we identified four TF motifs of known master reg-
ulators of nodulation and discovered two unknown TF motifs
specific to infected cells, which likely play roles in symbiotic ni-
trogen fixation. Furthermore, this atlas provides a rich resource
for identifying cell-type-specific enhancers, which are of signifi-
cant interest in both gene regulation and synthetic biology.®°
Most ctACRs were associated with distal genes, suggesting
that distal chromatin-chromatin interactions may play a role in
mediating spatiotemporal gene expression. This highlights the
potential need of further developing single-cell chromatin inter-
action profiling methods in plants.

Integrating single-cell gene expression with chromatin accessi-
bility data can greatly enhance gene regulatory network inference
at an unprecedented resolution.®’ Our multi-omic atlas demon-
strates several approaches for inferring gene regulatory networks:
A. Recapitulating known networks: we de novo identified four TF
motifs of known master regulators of nodulation and located their
binding sites in the ACRs of their target genes, reflecting similar
regulatory patterns found in Medicago truncatula and Lotus japo-
nicus after decades of research. B. Identifying upstream regula-
tors: we identified 13 sucrose transporters with shared expression
patterns and a common TF binding site for DOF TFs in their candi-
date CREs. This aligns with previous findings where OsDof11 reg-
ulates sugar transporter genes and rice seed size,®’ suggesting
that the DOF-SWEET regulatory axis may be conserved across
monocots and dicots. C. Discovering cell-type regulators:
through pseudotime trajectory analysis, we identified GmATHB-
13 as a potential regulator of the bifurcation between axis and
cotyledon parenchyma lineages, aligning with its known role in
promoting cotyledon morphogenesis and negatively regulating
root development in Arabidopsis. Genes containing accessible
ATHB-13 motifs were enriched in carbohydrate and polysaccha-
ride metabolism, which supports the energy production and stor-
age functions of soybean cotyledon parenchyma cells. Our ana-
lyses are just a starting point, with many other insights to be
discovered from these data by exploring the expression patterns
and regulatory networks of other genes of interest.
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To facilitate future discovery, we constructed a soybean
multi-omic atlas database (https://soybean-atlas.com/), which
includes chromatin accessibility and gene expression data for
all the cell types explored here. For example, by leveraging the
database, we predicted the gene regulatory network for LEAFY
COTYLEDON?1 (LEC1), a key regulator of embryo and endo-
sperm development®® (Figure S7). We identified two ACRs in
the first intron of the LECT paralogs, specifically accessible in
endosperm and embryo cells, along with motifs for GmABI3a
and GmMYB118, which regulate embryo®®®* and endosperm
development,*°® respectively. Thus, we can propose a model
that the intronic ABI3 and MYB118 motifs contribute to the
spatial and temporal regulation of LECT expression during
seed development (Figure S7). The interactive website makes
it easy for researchers to explore gene regulatory networks at
cell-type resolution for various soybean traits.

Additionally, all preprocessed data matrices, including
ctACRs, genes, and TF motifs, are also accessible through The
National Center for Biotechnology Information®® (NCBI GEO:
GSE270392) and SoyBase (https://www.soybase.org/).?® We
anticipate that the real potential of single-cell methods will
extend beyond aiding gene function studies and uncovering reg-
ulatory networks. It will involve combining single-cell gene regu-
latory atlases with machine learning and high-throughput pertur-
bation techniques to achieve a profound and predictive
understanding of gene regulation throughout plant development
that can be used to precisely improve crop performance.

Limitations of the study

Although we profiled single-cell transcriptome and chromatin
accessibility from tissues at the same developmental stage,
these two modalities were assessed separately, meaning they
were not derived from the same individual cells. Instead, we relied
on computational methods to integrate the datasets, which intro-
duces potential limitations due to the inherent complexity and
variability of these techniques. Additionally, we used spatial tran-
scriptomics to validate cell-type identities in the single-cell data-
sets. However, the spatial transcriptomics data have a resolution
of approximately 50 um, which is generally larger than single-cell
resolution. As aresult, the validation is not at the level of individual
cells, necessitating the use of prior marker information from other
species to aid in the annotation. Although we assume that marker
genes are expressed similarly across species, there is a risk of in-
accuracies due to functional diversification over evolutionary
time. These limitations, particularly the reliance on cross-species
markers and the integration of separate modalities, could impact
the precision of our findings. Additionally, inaccuracies in gene
and TE annotations may have impacted our study by misidentify-
ing or omitting key sequence elements, leading to potential mis-
interpretations of the data. However, we anticipate that future ad-
vancements in technology will help overcome these challenges,
improving the accuracy and resolution of such studies.

RESOURCE AVAILABILITY

Lead contact
Further requests and information concerning this study should be addressed
to the lead contact, Robert J. Schmitz (schmitz@uga.edu).
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Materials availability
All the reagents are available on request to the lead contact, Robert J. Schmitz
(schmitz@uga.edu).

Data and code availability

o All datasets generated in this study are available at GEO: GSE270392.
Al original code is deposited at GitHub (https://github.com/
schmitzlab/soybean_atlas, https://doi.org/10.5281/zenodo.12571868).
We created an interactive web soybean multi-omic atlas (https://
soybean-atlas.com/).

o The genotype data for soybean haplotype map were downloaded
from Figshare (https://figshare.com/projects/Soybean_Haplotype_Map_
GmHapMap_A_Universal_Resource_for_Soybean_Translational_and_
Functional_Genomics/56921).

o The laser-capture microdissection RNA-seq datasets were downloaded
from GEO: GSE57349, GSE57350, GSE57606, GSE46906.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Growth conditions

The soybean seeds of the Williams 82 genotype were obtained from the USDA National Plant Germplasm System (https://npgsweb.
ars-grin.gov) and sown in Sungro Horticulture professional growing mix (Sungro Horticulture Canada Ltd.). For libraries derived from
leaf, hypocotyl, nodule, and seed-related tissues, the plants were grown in a greenhouse under a 50/50 mixture of 4100K (Sylvania
Supersaver Cool White Deluxe F34CWX/SS, 34W) and 3000K (GE Ecolux with Starcoat, FA0CX30ECO, 40W) lighting, with a photo-
period of 16 hours of light and 8 hours of dark. The temperature was maintained at approximately 25°C during light hours, with a
relative humidity of approximately 54%.

Soybean leaves
For each sample, approximately 6 leaves with a 1 cm diameter were harvested between 8 and 9 AM, ten days after sowing. Fresh
tissue was used to construct bulk ATAC-seq (2 replicates), scATAC-seq (2 replicates) libraries.

Soybean hypocotyls
For each sample, approximately 4 hypocotyls were harvested between 8 and 9 AM, seven days after sowing. Fresh tissue was used
to construct scATAC-seq (3 replicates) and snRNA-seq (2 replicates) libraries.

Soybean roots

Soybean root samples were obtained as follows: soybean seeds were sterilized with 70% ethanol for 1 minute. After removing the
ethanol solution, the seeds were treated with 10% bleach for 5 minutes, followed by five washes with autoclaved Milli-Q water. The
sterilized seeds were then sown on mesh plates with half-strength MS media (Phytotech Laboratories, catalog: M519) and wrapped
in Millipore tape. Plates were incubated in a Percival growth chamber with a photoperiod of 16 hours of light and 8 hours of
dark. The growth chamber temperature was set to 25°C with a relative humidity of approximately 60%. For each sample, approxi-
mately 5 whole roots were harvested between 8 and 9 AM, seven days after sowing. Fresh tissue was used to construct scATAC-seq
(5 replicates) and snRNA-seq (2 replicates) libraries.

Soybean nodules

Soybean nodules were induced following a previously described soil-free method for producing root nodules in soybean. ' Briefly,
seeds were germinated in sterilized germination paper (Anchor Paper Company, St Paul, MN, USA) wetted with autoclaved water for
10 days. The roots were then infected with Bradyrhizobium japonicum strain USDA110 to produce nodules. Roots with
nodules approximately 1 mm in diameter were collected 15 days post-inoculation (dpi), and root tips were removed (Figure 4F).
The tissue was flash-frozen in liquid nitrogen and stored at -80°C. For each sample, approximately 10 tissues were used for scA-
TAC-seq (3 replicates) and snRNA-seq (2 replicates) preparation.

Soybean pods
For each sample, approximately 20 whole pods, each 5 mm in length, were harvested between 8 and 9 AM in the greenhouse. Fresh
tissue was used to construct scATAC-seq (4 replicates) libraries.

Soybean seeds

Seed stages were determined according to previously described methods and standards.'®" Specifically, seed lengths for the glob-
ular, heart, cotyledon, and early maturation stages were 1.0 mm, 2 mm, 3 mm, and 7 mm, respectively. Seeds at the middle matu-
ration stage weighed about 200-250 mg. Fresh tissue was used to construct scATAC-seq and snRNA-seq libraries for all seed tis-
sues. For scATAC-seq, four biological replicates were performed for globular stage seeds, while two biological replicates were
conducted for the other tissues.

METHOD DETAILS

scATAC-seq library preparation

Nuclei isolation and purification were performed as described previously.® Briefly, the tissue was finely chopped on ice for approx-
imately 2 minutes using 600 pL of pre-chilled Nuclei Isolation Buffer (NIB: 10 mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose,
0.1 mM spermine, 0.5 mM spermidine, 1 mM DTT, 1% BSA, and 0.5% Triton X-100). After chopping, the mixture was passed through
a 40-um cell strainer and centrifuged at 500 rcf for 5 minutes at 4°C. The supernatant was carefully decanted, and the pellet was
reconstituted in 500 uL of NIB wash buffer (10 mM MES-KOH at pH 5.4, 10 mM NaCl, 250 mM sucrose, 0.1 mM spermine,
0.5 mM spermidine, 1 mM DTT, and 1% BSA). The sample was filtered through a 10-um cell strainer and gently layered onto
1 mL of 35% Percoll buffer (35% Percoll mixed with 65% NIB wash buffer) in a 1.5-mL centrifuge tube. The nuclei were centrifuged
at 500 rcf for 10 minutes at 4°C. After centrifugation, the supernatant was carefully removed, and the pellets were resuspended in
10 plL of diluted nuclei buffer (DNB, 10X Genomics Cat# 2000207). Approximately 5 uL of nuclei were diluted tenfold, stained with
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DAPI (Sigma Cat. D9542), and the nuclei quality and density were evaluated using a hemocytometer under a microscope. The original
nuclei were then diluted with DNB buffer to a final concentration of 3,200 nuclei per pL. Finally, 5 uL of nuclei (16,000 nuclei in total)
were used as input for scATAC-seq library preparation.

scATAC-seq libraries were prepared using the Chromium scATAC v1.1 (Next GEM) kit from 10X Genomics (Cat# 1000175),
following the manufacturer’s instructions (10x Genomics, CG000209_Chromium_NextGEM_SingleCell_ATAC_ReagentKits_
v1.1_UserGuide_RevVE). Libraries were sequenced on an lllumina NovaSeq 6000 in dual-index mode with eight and 16 cycles for
i7 and i5 indexes, respectively.

Bulk ATAC-seq library preparation
Nuclei isolation followed the exact procedure used for scATAC-seq, and the library preparation strictly adhered to the protocol
described previously.**

snRNA-seq library preparation

The protocol for nuclei isolation and purification was adapted from a previously described scATAC-seq method. To minimize RNA
degradation and leakage, the tissue was finely chopped on ice for approximately 1 minute using 600 pL of pre-chilled Nuclei Isolation
Buffer containing 0.4 U/uL RNase inhibitor (Roche, Protector RNase Inhibitor, Cat. RNAINH-RO) and a low detergent concentration of
0.1% NP-40. Following chopping, the mixture was passed through a 40-um cell strainer and centrifuged at 500 rcf for 5 minutes at
4°C. The supernatant was carefully decanted, and the pellet was reconstituted in 500 pL of NIB wash buffer (10 mM MES-KOH at pH
5.4, 10 mM NaCl, 250 mM sucrose, 0.5% BSA, and 0.2 U/uL RNase inhibitor). The sample was filtered again through a 10-um cell
strainer and gently layered onto 1 mL of 35% Percoll buffer (prepared by mixing 35% Percoll with 65% NIB wash buffer) in a 1.5-mL
centrifuge tube. The nuclei were centrifuged at 500 rcf for 10 minutes at 4°C. After centrifugation, the supernatant was carefully
removed, and the pellets were resuspended in 50 uL of NIB wash buffer. Approximately 5 pL of nuclei were diluted tenfold and stained
with DAPI (Sigma Cat. D9542). The quality and density of the nuclei were evaluated using a hemocytometer under a microscope. The
original nuclei were further diluted with DNB buffer to achieve a final concentration of 1,000 nuclei per uL. Ultimately, a total of 16,000
nuclei were used as input for snRNA-seq library preparation.

For scRNA-seq library preparation, we employed the Chromium Next GEM Single Cell 3'GEM Kit v3.1 from 10X Genomics (Cat# PN-
1000123), following the manufacturer’s instructions (10xGenomics, CG000315_ChromiumNextGEMSingleCell3-_GeneExpression_
v3.1_Duallndex_RevB). The libraries were subsequently sequenced using the lllumina NovaSeq 6000 in dual-index mode with 10 cy-
cles for the i7 and i5 indices, respectively.

Spatial RNA-seq library preparation

For the spatial RNA-seq experiment, the hypocotyl tissues, the root tissues, and the seed tissues at the heart stage, cotyledon stage,
and early maturation stage, matching the stages of the single-cell datasets, were sampled. The tissues were embedded in the
Optimal Cutting Temperature (OCT) compound, snap-frozen in a cold 2-methylbutane bath merged in liquid nitrogen, and cryosec-
tioned into 12 um thick slices.

We used the Visium Spatial Gene Expression Kit (10X Genomics, USA) to construct the spatial RNA-seq libraries following the man-
ufacturer’s instructions. The tissue sections were mounted onto the spatial slides, fixed by cold methanol, and stained by 0.05% to-
luidine blue. The stained tissue sections were imaged using the BZ-X800 fluorescent microscope (Keyence, Japan). To determine the
optimal tissue permeabilization time, we performed the Tissue Optimization workflow on a series of digestion times for each tissue
type. For the spatial RNA-seq libraries, mRNA was first released according to the optimal permeabilization time, then the spatially
barcoded cDNAs were synthesized on the slides. Finally, cDNA were released from the slide and subjected to amplification and
library construction, following the manufacturer’s specifications

Library preparation of whole genome bisulfite sequencing

Libraries were constructed following the MethylC-seq protocol.'%? In summary, genomic DNA was isolated from the endosperm tis-
sues (early maturation stage) using the DNeasy Plant Mini Kit (Qiagen). The extracted DNA was then subjected to sonication to
generate fragments of approximately 200 bp. End repair was carried out using the End-It DNA End-Repair Kit (Epicentre). The result-
ing end-repaired DNA underwent A-tailing with the Klenow 3'-5' exo— enzyme (New England Biolabs). Methylated adapters
were subsequently ligated to the A-tailed DNA using T4 DNA Ligase (New England Biolabs). Following ligation, the DNA underwent
bisulfite conversion with the EZ DNA Methylation-Gold Kit. Finally, the library was amplified using KAPA HiFi Uracil + Readymix
Polymerase (Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS
scATAC-seq raw reads processing
The raw data processing followed the previously described method.'® In brief, raw BCL files were demultiplexed and converted into

fastq format using the default settings of the 10X Genomics tool cellranger-atac makefastq (v1.2.0). Initial read processing, including
adaptor/quality trimming, mapping, and barcode attachment/correction, was carried out with cellranger-atac count (v1.2.0) using the
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soybean Williams 82 v4 reference genome and the Glycine max organelle genomes (NCBI Reference Sequence: NC_007942.1,
NC_020455.1).103 Properly paired mapped reads with a mapping quality greater than 30 were retained using samtools view
(v1.6; -f3 -q 30),%® while also retaining reads with alternate hit XA tags to avoid biasing downstream analysis due to the whole genome
duplication events during soybean evolution. Duplicate fragments were collapsed on a per-nucleus basis using picardtools (http://
broadinstitute.github.io/picard/) MarkDuplicates (v2.16; BARCODE_TAG=CB REMOVE_DUPLICATES=TRUE). Reads mapping to
mitochondrial and chloroplast genomes were counted for each barcode and then excluded from downstream analysis. Potential ar-
tifacts were removed by excluding alignments coinciding with a blacklist of regions exhibiting Tn5 integration bias from Tn5-treated
genomic DNA (1-kb windows with greater than 4x coverage over the genome-wide median) and potential collapsed sequences in the
reference (1-kb windows with greater than 4x coverage over the genome-wide median using ChiP-seq input). BAM alignments were
then converted to single base-pair Tn5 integration sites in BED format by adjusting coordinates of reads mapping to positive and
negative strands by +4 and -5, respectively, and retaining only distinct Tn5 integration sites for each individual barcode.

The R package Socrates was used for nuclei identification and quality control.'® The BED file containing single base-pair Tn5 inte-
gration sites was imported into Socrates along with the soybean GFF gene annotation (Phytozome, version Gmax_508_Wm82.a4.v1)
and the genome index file. To identify bulk-scale ACRs in Socrates, the callACRs function was employed with the following param-
eters: genome size=8.0e8, shift=-75, extsize=150, and FDR=0.1. This step allowed us to estimate the fraction of Tn5 integration sites
located within ACRs for each nucleus. Metadata for each nucleus were collected using the buildMetaData function, with a TSS (Tran-
scription Start Site) window size of 1 kb (tss.window=1000). Sparse matrices were then generated with the generateMatrix function,
using a window size of 500. High-quality nuclei were identified based on the following criteria: a minimum of 1,000 Tn5 insertion sites
per nucleus, at least 20% of Tn5 insertions within 2 kb of TSSs, and at least 20% of Tn5 insertions within ACRs across all datasets.
Additionally, a maximum of 20% of Tn5 insertions in organelle genomes was allowed.

For each tissue, integrated clustering analysis of all replicates was performed using the R package Socrates.'® For the binary nu-
cleus x window matrix, windows accessible in less than 1% of all nuclei and nuclei with fewer than 100 accessible ACRs were
removed using the function cleanData (min.c=100, min.t=0.01). The filtered nucleus x window matrix was normalized with the
term-frequency inverse-document-frequency (TF-IDF) algorithm with L2 normalization (doL2=T). The dimensionality of the normal-
ized accessibility scores was reduced using the function reduceDims while removing singular values correlated with nuclei read
depth (method="SVD", n.pcs=25, cor.max=0.4). The reduced embedding was visualized as a UMAP embedding using projectUMAP
(k.-near=15). Approximately 5% of potential cell doublets were identified and filtered by performing a modified version of the Socrates
workflow on each library separately with the function detectDoublets and filterDoublets (filterRatio=1.0, removeDoublets=T). To
address batch effects, we used the R package Harmony with non-default parameters (do_pca=F, vars_use=c("batch"), tau=5,
lambda=0.1, nclust=50, max.iter.cluster=100, max.iter.nharmony=50). The dimensionality of the nuclei embedding was further
reduced with Uniform Manifold Approximation Projection (UMAP) via the R implementation of projectUMAP (metric="correlation",
k.near=15). Finally, the nuclei were clustered with the function callClusters (res=0.5, k.near=15, cl.method=3, m.clust=25).

snRNA-seq raw reads processing

STARSolo was used to map the snRNA-seq reads and count the gene features using the soybean genome (William 82 v4).5” We
specified the following parameters in STARSolo to filter the UMI, filter empty cells, and count multi-mapping reads: —soloUMIfiltering
MultiGeneUMI_CR, —soloCellFilter EmptyDrops_CR, —soloMultiMappers PropUnique. This ensures that non-uniquely mapped multi-
gene UMls are distributed uniformly among multi-mapped loci. The filtered expression data was analyzed using the Seurat (v4) R
package.”® Potential low-quality nuclei or empty droplets were filtered. Specifically, cells with gene counts below a threshold calcu-
lated as the median gene count minus two times the median absolute deviation, and cells with UMI counts less than the lower 10%
percentile of total UMI counts, were filtered out. Additionally, cells with organelle gene counts comprising more than 15% of the total
gene count were excluded. Due to substantial contamination from chloroplast-derived reads in leaf and insufficient UMI counts in
pod and MMS seed, these tissues were excluded from further analyses. The preprocessed datasets were normalized using
SCTransform before the RunPCA for principal component analysis (PCA). Subsequently, the doublets were identified by the
DoubletFinder R package, and removed from downstream analysis. We prepared two replicates for each library and integrated
them using the Harmony R package.'%* The integrated dataset was then processed using RunUMAP (reduction = "harmony",
dims = 1:20) for Uniform Manifold Approximation and Projection (UMAP) dimension reduction, FindNeighbors (reduction =
"harmony", dims = 1:30) to obtain the Nearest-neighbor graph, and FindClusters to identify distinct cell populations. Different reso-
lutions were selected to classify cell types in varying tissue types. We used FindSubCluster to identify the sub-clusters according to
the specificity of marker genes.

spRNA-seq reads processing

We used Space Ranger (10X Genomics) to map the spRNA-seq reads to the soybean genome and to count gene expression. The
filtered gene expression matrix was analyzed using the Seurat (v4) R package.”® All the datasets were analyzed using SCTransform
and RunPCA. To remove the batch effect for replicates placed in different spatial capture areas, we used the Harmony R package
to integrate the replicates and analyzed it using RunUMAP (reduction = "harmony", dims = 1:20) and FindNeighbors (reduction =
"harmony", dims = 1:20). We used FindClusters to identify cell clusters and FindSubCluster to identify the subclusters for specific
cell types. Various resolutions were used to identify the cell clusters in distinct types of tissues.
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DNA methylation analysis

WGBS data were analyzed using Methylpy,®® in accordance with the procedure outlined in reference . Initially, reads were trimmed
using Cutadapt v2.8.° The filtered reads were then aligned to the soybean reference genome (Gmax_508_v4.0) with Bowtie 2.2.4,°"
ensuring that only uniquely aligned and non-clonal reads were retained. The non-conversion rate of unmodified cytosines during the
sodium bisulfite treatment was assessed using a chloroplast genome as a control for sequences that are fully unmethylated. Density
plots were generated based on the calculated methylation differences across 50 bp windows, which included at least 20 informative
sequenced cytosines in both samples, along with a minimum of 70% CG, 50% CHG, or 10% CHH methylation in either of the
samples.

Integration of snRNA-seq and spRNA-seq

We applied the ‘anchor’-based integration method from Seurat to integrate the snRNA-seq and spRNA-seq datasets.'°® First, we
used FindTransferAnchors (normalization.method="SCT") to find the anchors between the reference dataset (snRNA-seq) and the
query dataset (spRNA-seq). These anchors were used to calculate the prediction scores of each snRNA-seq cell type for the
spRNA-seq using the TransferData (dims = 1:30).

De novo marker identification

After cell type annotation, we identified the de novo marker genes using the FindAlIMarkers (test.use="wilcox”, logfc.threshold = 1,
only pos=T, min.pct = 0.1) from the Seurat R package. Then we took the top 50 most up-regulated genes and filtered them by
adjusted p-value>0.00001 and log>FC>2 to obtain the significant marker genes.

Cell-type annotation for snRNA-seq

To assign cell types to each cluster, we used a combination of marker gene-based annotation and gene set enrichment analysis.
Initially, we compiled a list of known cell-type-specific marker genes known to localize to discrete cell types or domains expected
in the sampled tissues based on an extensive review of the literature (Table S2). The putative ortholog list for Arabidopsis and soybean
was downloaded from PANTHER (v18.0).'%” We considered the least diverged ortholog (LDO) genes inferred by PANTHER, which are
most likely to retain the greatest functional similarities, as the representative orthologs. Gene expression was calculated using the
UMI counts in the gene body and aggregating all nuclei in a cluster, then the raw counts matrix was normalized with the CPM function
in edgeR. The Z-score was calculated for each marker gene across all cell types using the scale function in R, and key cell types were
assigned based on the most enriched marker genes with the highest Z-score. Ambiguous clusters displaying similar patterns to key
cell types were assigned to the same cell type as the key cell types, reflecting potential variations in cell states within a cell type (Fig-
ure S2). To aid visualization, we smoothed normalized gene accessibility scores by estimating a diffusion nearest neighbor graph.'®

For soybean seed tissue, the cpm normalized matrix was also mapped to the subregion by checking the correlation with the laser
capture microdissection (LCM) RNA-seq dataset (http://seedgenenetwork.net/seeds). With this approach, we could clearly identify
the seed coat, endosperm, and embryo regions, which confirmed our cell type annotation. There were no available markers for seed
coat endothelium and seed coat inner integument, so these two cell types were annotated based on specific high correlations with
the LCM dataset (Figures STM and S1N).

For gene set enrichment analysis, we used the R package fgsea, following a methodology described previously.'®:% Firstly, we
constructed a reference panel by uniformly sampling nuclei from each cluster, with the total number of reference nuclei set to the
average number of nuclei per cluster. Subsequently, we aggregated the UMI counts across nuclei in each cluster for each gene
and identified the differential expression profiles for all genes between each cluster and the reference panel using the R package
edgeR.%* For each cluster, we generated a gene list sorted in decreasing order of the log, fold-change value compared to the refer-
ence panel and utilized this list for gene set enrichment analysis. We excluded GO terms with gene sets comprising less than 10 or
greater than 600 genes from the analysis, and GO terms were considered significantly enriched at an FDR < 0.05 with 10,000 per-
mutations. The cell type annotation was additionally validated by identifying the top enriched GO terms that align with the expected
cell type functions.

Cell-type annotation for scATAC-seq

A similar approach used for snRNA-seq cell type annotation was applied to scATAC-seq with minor optimizations. Specifically, the
gene chromatin accessibility score, rather than gene expression, was calculated using the Tn5 integration number in the gene body, a
500 bp upstream region, and a 100 bp downstream region. The raw counts were then normalized with the cpm function in edgeR. Cell
types were assigned to each cluster following the snRNA-seq annotation process, including evaluating marker gene performance
and GO enrichment profiles.

For tissues with both snRNA-seq and scATAC-seq data, we further confirmed the cell annotations by integrating the two modalities
using the Seurat workflow (v4.0.4).?° Briefly, the gene chromatin accessibility score was normalized and scaled with the functions
NormalizeData and ScaleData. The function FindTransferAnchors was used for canonical correlation analysis (CCA) to compare
the scATAC-seq gene score matrix with the scRNA-seq gene expression matrix and to find mutual nearest neighbors in low-dimen-
sional space. Annotations from the scRNA-seq dataset were then transferred onto the scATAC-seq cells using the TransferData
function, and prediction scores less than 0.5 were filtered out. This approach allowed us to match and validate cell types across
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the two modalities, and we observed a median prediction score of 0.75 across the seven tissues (Figures S10-S1Q). Finally, we
calculated the Pearson correlation coefficient with the top 1,000 variable genes from snRNA-seq, which ranged from 0.4 to 0.7
for the same cell type across the two modalities, similar to observations from other studies (Figures S2M-S2P), 970108

ACR identification

Following cell clustering and annotation, peaks were identified using all Tn5 integration sites for each cluster by running MACS2 with
non-default parameters: —extsize 150 —shift -75 —-nomodel ~keep-dup all.”® To account for potential bias introduced by read depth,
we adjusted the g-value cutoffs based on the total Tn5 integration number in each cell type as follows: for less than 10 million inte-
grations, we used —gvalue 0.1; for 10-25 million, we used 0.05; for 25-50 million, we used 0.025; for 50-100 million, we used 0.01; and
for more than 100 million, we used 0.001. Peaks were then redefined as 500-bp windows centered on the peak coverage summit. To
consolidate information across all clusters, we concatenated all peaks into a unified master list using a custom script.'® The peak
chromatin accessibility score was calculated based on the Tn5 integration count within the peak and then normalized using the
cpm function in edgeR.?* ACRs with less than 4 CPM in all cell types were removed from downstream analysis. We also used the
same method described above to identify the ACRs for bulk ATAC-seq data.

Predicting the functions of ACRs

We hypothesized that the ACRs only control the flanking genes and used a correlation-based approach to predict the function of the
ACRs. Firstly, we created the count matrix of the ACRs and gene expression across 66 main shared cell types between scATAC-seq
and snRNA-seq. The count matrix was then normalized using the cpm function in edgeR and the normalize.quantiles function in pre-
processCore (v1.57.1).°° For each test, we calculated the Spearman correlation between the ACRs accessibility and gene expres-
sion, shuffling the ACRs accessibility and gene expression 1,000 times to obtain a p-value for each correlation. This allowed us to
compute the p-value for each correlation and adjust for multiple hypotheses using the Benjamini-Hochberg procedure (FDR). We
then selected all correlations below -0.25 and above 0.25 with an FDR below 0.05. To simplify the ACRs function, we hypothesized
that one ACR controls one gene. To simplify the characterization of ACR function, we hypothesized that one ACR controls one gene.
For ACRs associated with multiple genes, we filtered the associations based on the following ACR-gene distance criteria: (i) Keep the
association with the highest correlation if all the associations were genic and proximal to the focal gene. (ii) Keep the association with
the highest correlation if all the associations were distal to the focal gene. (iii) If the associations were a mix of distal, genic, or prox-
imal, we retained the distal association with the highest correlation, along with the genic or proximal association. Finally, the ACRs
with all positive correlations with a flanking gene were predicted as activating ACRs, and the ACRs with all negative correlations with
a flanking gene were predicted as repressing ACRs. About 3.9% of ACRs had both negative and positive correlations with a flanking
gene, and these ACRs with ambiguous functions were removed from downstream analysis.

Identification of whole genome duplication ACRs

The whole genome duplication ACRs were identified using established methods.*° Briefly, whole genome duplication genes were
detected through DupGene_finder pipelines.'®® ACRs from duplicated gene pairs were aligned, and if the e-value was less than
0.01, the ACR pair was classified as duplicated ACR pairs.

Identification of intergenic negative control regions

The intergenic negative control regions were constructed following the reported methods.*® Briefly, we first filtered all genome co-
ordinates to retain only uniquely mappable regions, and then subtracted annotated genes and their 2 kb flanking regions, as well as
ACRs apart of gene-ACR pairs identified by our analyses. The negative control regions with the same number and length distribution
of observed ACRs were then generated by the “shuffle” command in BEDTools.*®

Identification of cell-type-specific ACRs

To identify the cell-type-specific ACRs, we first identified the differentially accessible chromatin regions for each cell type in the tis-
sue. Specifically, for each cell type, we constructed a reference panel by uniformly sampling nuclei from other cell types, with the total
number of reference nuclei set to the number of nuclei in the tested cell type. Subsequently, we aggregated the Tn5 integration counts
across nuclei in the cell type for each replicate and identified the differential accessibility profiles for all ACRs between each cell type
and their reference panel using the R package edgeR. High accessible ACRs in a cell type with a fold change > 4 and p-value < 0.05
were aggregated in the tissue. ACRs identified as highly accessible in at most two cell types were retained as cell-type-specific ACRs
in the tissue.

TF Motif deviations score calculation

TF motif deviation scores of specific TF motifs among nuclei were estimated using chromVAR®® with the non-redundant core plant
PWM database from JASPAR2022. The input matrix for chromVAR was filtered to retain ACRs with a minimum of 10 fragments and
cells with at least 100 accessible ACRs. We applied smoothing to the bias-corrected motif deviations for each nucleus, integrating
them into UMAP embedding for visualization, like the method used for visualizing gene body chromatin accessibility.

Cell 188, 550-567.e1-e8, January 23, 2025 e6




¢? CellPress Cell

Motif enrichment

Firstly, TF motif occurrences in all ACRs were identified with fimo from the MEME suite toolset*”°” using position weight matrices (PWM)
from the non-redundant core plant motif database in JASPAR 2024. To test the motif enrichment in the cell-type-specific ACRs, we
compared the motif distribution in the ctACRs and a control set of "constitutive" ACRs, which varied the least and were broadly acces-
sible across cell types (fold change < 2 and p-value > 0.1), using Fisher’s exact test (alternative = 'greater’) for each cell type and motif. To
control for multiple testing, we used the Benjamini-Hochberg method to estimate the FDR, considering tests with FDR < 0.05 as signif-
icantly different between the cell-type-specific ACRs and constitutively accessible regions. To test the motif enrichment in the activating
ACRs and repressing ACRs, we compared the motif distribution in the activating ACRs and repressing ACRs using Fisher’s exact test
(alternative = "greater’) for each motif. Motifs with a p-value less than 0.01 were considered significantly enriched.

De novo TF motif enrichment

To identify potential unknown motifs in the cell-type-specific ACRs, we first created a control set by randomly selecting the same
number of cell-type-specific ACRs from the "constitutive" ACRs described above, ensuring that they had a similar GC content ratio
to the test set. De novo motif searches in cell-type-specific ACRs were performed using XSTREME version 5.5.3 within the MEME
suite package (v5.5.0)''° with the non-default parameter “~maxw 30,” and we provided the known motifs from the non-redundant
core plant motif database in JASPAR 2024 or collected from the literature.

Embryo scATAC-seq and scRNA-seq clustering

To chart the dynamics of chromatin accessibility and transcription during embryogenesis, we first collected all scATAC-seq
and snRNA-seq nuclei with embryo cell type annotations from the four matched seed developmental time points (Globular, Heart,
Cotyledon, and Early Maturation stages), and re-clustered scATAC-seq and snRNA-seq nuclei, independently.

For the snRNA-seq data set, we first partitioned the nuclei x gene matrix corresponding specifically to embryo cell types and
removed genes expressed in less than 0.1% of nuclei. To remove outlier nuclei, we then selected nuclei with at least 100 distinct
expressed genes and less than 10,000 expressed genes. The sparse gene x nuclei matrix was then processed with the R package,
Seurat (v5.0.1) by first log-normalizing counts using NormalizeData with default parameters.''" We scaled the normalized counts with
ScaleData and regressed out effects from variation in the log-scaled UMI counts and percent UMIs mapping to organeller
genes. The scaled matrix was then used to identify variable features via FindVariableFeatures with non-default parameters (selec-
tion.method="mean.var.plot”, dispersion.cutoff=c(0.5, Inf), mean.cutoff=c(0.0125,3)). To reduce the dimensionality of the nuclei x
gene matrix, we ran principal component analysis with RunPCA to identify the top 20 PCs. The reduced embedding was used as
input for UMAP from the uwot R package (min_dist=0.01, n_neighbors=30, metric="cosine”). We then generated a neighborhood
graph with FindNeighbors with non-default parameters (dims=1:20, nn.esp=0, k.param=30, annoy.metric="cosine”, n.trees=100,
prune.SNN=1/30, 12.norm=T). Finally, we identified clusters using the FindClusters function with resolution=1 and the leiden algo-
rithm (algorithm=4). Cluster cell types were derived from the prior annotation strategy and validated using marker gene expression
profiles from the new clustering results (Table S2).

To recluster the scATAC-seq embryo nuclei, we first partitioned the nuclei x ACR matrix specifically for nuclei labeled as embryo
cell types from the prior annotation. All downstream scATAC-seq analyses were conducted inside the Socrates framework unless
otherwise noted. Nuclei with less than 100 distinct accessible chromatin regions were removed and ACRs that were accessible in
less than 1% of nuclei were also excluded using the function cleanData (min.c=100, min.t=0.01). The nuclei x ACR matrix was normal-
ized by TFIDF followed by taking the L2 norm of each nucleus with the function tfidf and non-default parameters (doL2=T). To reduce
the dimensionality of this matrix, we performed Singular Value Decomposition (SVD), taking the top 25 singular values after removing
singular values correlated with per-nucleus read depths greater than 0.5, and L2 normalizing the components via non-default param-
eters of the function reduceDims (n.pcs=25, method="SVD”, cor.max=0.5, scaleVar=T, doL2=T). The reduced matrix was then pro-
jected into two-dimensions with projectUMAP with non-default settings (metric="cosine”, k.near=15). To identify clusters, we gener-
ated a shared neighborhood graph and clustered the data using leiden with the function callClusters with non-default parameters
(res=0.5, k.near=15, cleanCluster=T, cl.method=4, e.thresh=3, m.clust=25, min.reads=5e5) to remove UMAP outliers and clusters
with less than 25 nuclei and a total read depth of 500,000. Cell type annotations for each cluster were determined similarly as for
the snRNA-seq clustering results.

Embryo scATAC-seq and snRNA-seq integration

To determine the best integration strategy for these data, we compared the preservation of local neighborhoods among scATAC-seq
nuclei before and after integration with matched snRNA-seq data sets using Seurat (v4 integration),”® and the NMF and uiNMF work-
flows from the R package, liger.”® Our results indicated that UINMF (accuracy=0.82) and NMF (accuracy=0.78) were the best ap-
proaches for predicting scATAC-seq nuclei cell identity using the snRNA-seq cell identity labels (i.e. agreement between indepen-
dently ascertained scATAC-seq cell type labels and predicted labels based on similarity to snRNA-seq nuclei; Figure SET). Although
UiNMF outperformed the other methods, Seurat v4 integration still provided reasonably reliable cell type predictions (accuracy = 0.7;
Figure S6T). Since uiNMF yielded the highest fraction of shared nearest neighbors between pre- and post-integration across all
scATAC-seq nuclei, we used the uiNMF co-embedding for all downstream analyses. We describe the uiNMF integration procedure
in greater detail below.
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To perform the uiNMF integration, we first partitioned three matrices (nuclei x gene accessibility, nuclei x ACR, and nuclei x gene
expression) to specifically retain embryo nuclei from the scATAC-seq and snRNA-seq clustering results from above. The integration
was performed using the unshared features iNMF workflow from the R package, liger.® Importantly, this approach only uses gene
body chromatin accessibility that exhibits positive correlative structure with gene expression during the non-negative matrix factor-
ization step. The unshared features (ACRs) are only used to capture nuclei-nuclei relationships in the scATAC-seq data to preserve
local neighborhoods in the co-embedding. Thus, repressive ACRs likely have a minimal to non-existent contribution to the co-
embedding. Specifically, we normalized the nuclei x ACR matrix by tfidf (Socrates) followed by the normalize function of liger with
default settings. The normalized nuclei x ACR slot was then rescaled such that the sum of all accessible regions for a given barcode
was 1. Using the Seurat framework, we then identified the top 2,000 most variable features using FindVariableFeatures with non-
default parameters (selection.method="vst”, nfeatures=2000). The normalized nuclei x ACR matrix was scaled using scaleNotCenter
and stored as the set of unshared features for downstream integration.

Focusing on the matrices with the shared feature set (genelDs) between scATAC-seq and snRNA-seq, we selected genes
from each modality within the inner 98% quantile of each distribution and retained the intersected genes. The nuclei x gene
activity and nuclei x gene expression matrices were normalized using the default settings of the normalize function. Variable
genes were selected using selectGenes with var.thresh=0.1, datasets.use="RNA”, unshared=TRUE, unshared.datasets=list(2), un-
shared.thresh=0.2 parameters. The normalized matrices were scaled with scaleNotCenter with default settings. The integration was
performed with the function optimizeALS by setting k=30, use.unshared=TRUE, max_iters=30, and thresh=1e-10. Finally, the inte-
grated embedding was quantile normalized with the function quantile_norm setting the reference data set to the snRNA-seq
modality.

Using the integrated embedding based on the snRNA-seq nuclei as a reference, we then aimed to impute scATAC-seq modalities
on to the snRNA-seq nuclei. To accomplish this, we ran the function imputeKNN from the liger package to impute motif deviation
scores and ACR normalized chromatin accessibility values from the scATAC-seq nuclei onto the snRNA-seq nuclei using default pa-
rameters. This results in estimates of gene expression, chromatin accessibility, and motif deviation scores for an individual snRNA-
seq barcode.

Inferred developmental age of embryo nuclei

The time-series nature of the four seed developmental stages of our data lends itself to precise inference of developmental age using
model-based approaches.’® To simplify interpretation, we focused on the snRNA-seq embryo nuclei across the four developmental
stages. Starting from the raw nuclei x gene counts matrix, we log-transformed counts and scaled the resulting values such that the
sum across all genes was equal to 10,000 for each barcode. We then downsampled each stage to have the same number of nuclei.
Using the R package, caret, we partitioned the downsampled nuclei into training and test sets via the function createDataPartition
with non-default parameters (seed_stage, p=10/11, list=F, times=1). We then trained a linear regression model with a LASSO penalty
and 10-fold cross-validation using the cv.glmnet function from the R package, gimnet, on gene expression profiles for seed stage.
The model was then used to collect gene coefficients and continuous developmental age predictions from the entire data set.

Trajectory analysis
Pseudotime trajectory analysis for each trajectory outlined in Figures 5H, 51, and 6E was performed similar to a previously published
approach.'® Specifically, we ran the function calcPseudo with cell.dist1=0.95 and cell.dist2=0.95 from the github repository (https://
github.com/plantformatics/maize_single_cell_cis_regulatory_atlas), resulting in pseudotime estimates for individual nuclei for a spe-
cific developmental branch. We then identified genes with significant gene expression variation across each trajectory using the func-
tion sigPseudo2 from the same github repo. For visualization, gene expression scores across pseudotime for significantly variable
genes were smoothed using predictions on 500 equally spaced bins from a generalized additive model as previously shown.'®
Toidentify TFs associated with gene expression variation across pseudotime during Cotyledon parenchyma development, we per-
formed a Pearson’s correlation analysis between TF motif deviations and genes with significant pseudotime variance. TF modules
were clustered using k-means, where the final k=8 was selected based on the elbow and silhouette approaches.
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Figure S1. Evaluation and quality control of soybean scATAC-seq and snRNA-seq, related to Figure 1

(A-D) Quality control of scATAC-seq: distribution of Tn5 integration sites per nucleus across ten tissues (A); distributions of the proportion of Tn5 integration sites
within the promoter regions, encompassing the 1-kb flanking regions around gene transcription start sites (TSSs) (B); distributions of the proportion of Tn5
integration sites within peaks per nucleus (C); and Spearman’s correlation coefficient heatmap among all scATAC-seq libraries (D).

(E-H) Quality control of snRNA-seq: distribution of total number of UMI (E); distribution of number of detected genes (F); distribution of the proportion of reads
from organelle (G); and Spearman’s correlation coefficient heatmap among all snRNA-seq libraries (H).

(l) Correlation of cell proportions between the first two replicates across scATAC-seq clusters for all tissues (Pearson’s correlation coefficient: 0.98).

(J) Correlation of cell proportions between the two replicates across snRNA-seq clusters for all tissues (Pearson’s correlation coefficient: 0.96).

(K and L) UMAP embeddings overlaid with cluster id for scATAC-seq (K) and snRNA-seq (L).

(M) Z score heatmap of Spearman’s correlation coefficient across all laser-capture microdissection (LCM) RNA-seq datasets and scATAC-seq clusters.

(N) Z score heatmap of Spearman’s correlation coefficient across LCM RNA-seq datasets and snRNA-seq clusters.

(O) UMAP embeddings for scATAC-seq overlaid predicted cluster ID in snRNA-seq.

(P) UMAP embeddings for snRNA-seq overlaid with raw cluster ID.

(Q) Frequency distribution of max prediction score of snATAC-seq nuclei from the TransferData function in Seurat.
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Figure S2. Marker-based annotation for scATAC-seq and snRNA-seq, related to Figure 1

(A and B) Z score heatmap of gene accessibility (A) and gene expression (B) for representative marker genes across shared cell types in soybean roots.

(C and D) Z score heatmap of gene accessibility (C) and gene expression (D) for representative marker genes across shared cell types in soybean nodules.

(E and F) Z score heatmap of gene accessibility for representative marker genes across cell types in soybean leaves (E) and pods (F).

(G and H) Z score heatmap of gene accessibility (G) and gene expression (H) for representative marker genes across shared cell types in soybean seeds at
globular stage.

(land J) Z score heatmap of gene accessibility (I) and gene expression (J) for representative marker genes across shared cell types in soybean seeds at heart
stage.

(Kand L) Z score heatmap of gene accessibility (K) and gene expression (L) for representative marker genes across shared cell types in soybean seeds at early
maturation stage.

(M-P) The heatmap of Spearman’s correlation coefficient between 1,000 most variable gene accessibility and expression across all cell types in each tissue,
including seeds at globular stage (M), heart stage (N), cotyledon stage (O), and early maturation stage (P).
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Figure S3. Cell-type annotation for nuclei from scATAC-seq and snRNA-seq, related to Figure 1
UMAP projection of nuclei, distinguished by assigned cell-type labels for scATAC-seq (left) shnRNA-seq (right) across ten tissues, including hypocotyls (A), roots
(B), nodules (C), leaves (D), pods (E), seeds at globular stage (F), heart stage (G), cotyledon stage (H), early maturation stage (I), and middle maturation stage (J).
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Figure S4. Spatial transcriptome atlas of soybean, related to Figure 2

(A) The histological structure of soybean tissues used for spRNA-seq.

(B) The visualization of spatial spot clusters on the tissue (left) and on the UMAP pilot (right) for all the tissue types.
(C) Heatmaps of the snRNA-seq cell-type prediction scores on the spRNA-seq cell types for all the tissue types.
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Figure S5. Characterization of ACRs and ctACRs, related to Figures 3 and 4

(A) Distribution of cell-type specificity score across three types of ACRs showing distal ACRs had significantly higher cell-type specificity than genic and proximal
ACRs (t test, p value < 2.2e7"9).

(B) Relative density within 500-bp flanking regions of different classes of ACRs and control regions.

(legend continued on next page)
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(C and D) Heatmap showing chromatin accessibility of repressing ACRs (C) and the expression of associated genes (D).

(E) Comparison of ACR-gene correlations among duplicated regions.

(F) Bar plot of ACR-gene duplicate classifications.

(G) Permutation tests illustrating the null distributions of ACR-gene duplicate classification frequencies (histograms) compared with the observed frequencies
(solid lines).

(H) Distribution of gene expression specificity scores for genes associated with broadly accessible chromatin regions (brACRs) and cell-type-specific ACRs
(ctACRs).

(l) Distribution of number of ctACRs identified in each cell type. Endosperm cell types were highlighted in red.

(J) Frequency distribution of DNA methylation differences across 50-bp windows for (leaf — endosperm) across the genome (black lines), endosperm-specific
ACRs (red lines), and endosperm-specific ACRs overlapping with hAT TEs (gray lines).

(K) Proportion of different groups of ACR in located in genic, proximal, and distal regions.

(L) Relative SNP density within 500-bp flanking regions of different groups of distal ACRs and control regions.

(M) UpSet plot showing the number of endosperm-specific ACRs covering hAT element across five tissues, including pod, globular stage seeds (GS seeds), heart
stage seeds (HS seeds), cotyledon stage seeds (CS seeds), and early maturation stage seeds (EMS seeds).

(N) Average distribution of ctACR (n = 1,998) coverage around hAT elements.

(O) Heatmap showing relative chromatin accessibility of ctACR across 103 cell types.

(P) UMAP embeddings overlaid with motif deviation score of epidermis-specific TF HDG11 (top row) and vasculature-specific TF DOF1.6 (bottom row) across 4
tissues, including hypocotyl, root, leaf, and seeds at CS.

(Q and R) UMAP embeddings overlaid with motif deviation score of motif MA2374.1 (Q) and MA1375.2 (R) in nodule tissue.

(S) The motif sequence alignment of key nodulation-related TF motif (up) and de novo motif (bottom) enriched in infected-cell-specific ACRs.

(T) The motif sequence alignment of known TF motif in JASPAR2024 (up) and de novo motif (bottom) enriched in infected-cell-specific ACRs.



Cell

Resource

:

¢? CellPress

DOF-MA1278.1

(Glyma.076170100:En_chalazal
(Glyma,08G358000:En_chalazal
(Glyma 09G023500:En_chalazal

(Glyma. 11G159100.En_chalazal
(Glyma, 1G159500.En_chalazal
(Glyma, 156220000:En_chalazal
(Glyma. 176233400:En_chalazal
(Glyma. 186297300.En_chalazal
(Glyma, 10G049500.En_chalazal

Micropylar ?

1.0

ortion

DOF-MA1278.1/MA1270.1

Nuctei prop
5 g

0.00] B

&
w\‘” o ,,ow“‘

£

=]
H
Scaled motif deviation
00 02 04 06 08

IrLarildx

0 100 200 300 400 500

Peripheral

(Giyma.04G234200:En_chalazal

Giyma, 106125400 En_chalazal

Giyma, 10G240100/En_chalazal

(Giyma. 18GO63900En_chalazal

Giyma, 18113600 En_chalazal

(Glyma 07197100 En_perpheral
Giyma 036035800 En_micropylr
(Giyma. 10125800:En_chalazal

(Giyma, 13130600 En_micropylr
o_micopylar
(Giyma 07G175700:En_micropylr
Giyma, 126077366 En_micropylr
(Giyma, 136223600 En_micropylar
Giyma. 14G032867:£n_micropylr
(Giyma.14G033000.En_micropyir
(Giyma 206011600 En_micropylar
(Giyma 20G127100:En_micropylr
(Giyma. 206242600:En_micropylr
(Giyma, 146182200.En_chalazal

Giyma, 186063700 En_micropylr
Giyma. 18G164700En_chalazal

Giyma. 14G032800:En_micropylr
(Giyma, 14G032834:En_micropylr
(Giyma 20G248700En_ micropylr
(Giyma. 196026900 En_perpheral
(Giyma 026082900 En_perphoral
Gy mGztoen prpre

(Gyma 1oGoass01.En o peli
(Glyma. 10G297600.En_micropylar

Glyma. 16G026800:En_perioheral
(Glyma. 176049300.En_poriphoral

"_peripheral
Glyma. 136059700:En_perioheral

 Giyma. 12G101600:En_perpheral
 Glyma.02G103200:En_perioheral
Glyma.02G166400.En_poriphoral
Glyma, 026256467 En_micropylar
icropylar

Glyma.076263500.En

Glyma. 08G077200:En_micropylar
 Glyma. 10G004000:En_perioheral
Glyma. 126003100:En_perioheral
Glyma. 126097400.En_micropylar
Glyma, 1362351000 J)anhom/

Gyma 101972001 po Jasrw»ml

L]
|
|
|
|

osasnp)

yamsnp)
2
1
0

=z

Withheld test nuclei (@]

HD-ZIP-MA1375.2. HD-ZIP-MA1375.2

ortion

Nuclei

o prop
g
- =ual
2358
Scaled motif deviation

e G A

A o
o .5 LG

00 02 04 06 08 10

0 100 200 300 400 500
K o0 mar1c02maz348

Chalazal

L SnRNA-seq

5075 [
Not detected in
peripheral endosperm

000 ‘¥§ ||

5
ma\*ﬁ’aw%

SCATAC-seq M

—<

Pearson's
correlation

bl
o

el
™

Inferred developmental time
Lt
S

Expressed genes
per nucleus (log10)
w
@

Lt
o

GS HS CS EMS

e@@@

Seed stage

KNN Impute
SnATAC data on snRNA-seq

~ o o
£ £ 5 £
a = /
s H W H 4
umAP 1 umAP 1 i umAP 1 ~
M Axis parenchyma ¥ Embryo parenchyma.1 W Epidermis initials @SNATAC
M Cotyledon parenchyma M Embryo 2 ®snRNA
Embryo initial cells W Embryo parenchyma.3 W SAM/RAM
M Embryo parenchyma initial cells Epidermis
S Axis Cotyledon
Pearson’s
correlation
-0.43
=
"2 3 4 5 & ®
Inferred developmental time i
£
=

Axis vs. Coty
Pearson’s correlation
—q.S 0.0 0"5 1‘.0

]
g
2
<
SNRNA _ snATAC
nucleu ucleus

_ Axis par.  Coty. par.

g —

g &

By

T

H

g 5

] g

g Iy

1] Z

by o

E

£

3

H

Pseudotime
=T 1

Scaled g or

Divergent pseudotime expressed genes

SomaSag2660.1
%m“

SThs
Eapth

ERPO30
ATaGitzs0

Pseudotime Motif deviation
max
T -05 0 05 1 H
2
UiNMF Seurat v4. Un-integrated Q
Epidermis <
Initials M
Parenchyma
Embryo proper initials
Vasculature
PR &P F
e St »\\ SCIC
@“‘coa\b v\b @
<« e*" S qu@\\ Qwée@ <« Q@QoQ\\?'
d & « o
‘0 RS &
< <& < <&

Figure S6. Analysis of three sub-cell types of endosperm and embryogenesis trajectories, related to Figures 5 and 6

(A) UMAP embeddings of integration of scATAC-seq and snRNA-seq for endosperm cells across 4 developmental stages, including globular stage, heart stage,

cotyledon stage, and early maturation stage.

(legend continued on next page)
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(B) Z score heatmap of gene expression for de novo marker genes for three sub-cell types of endosperm, including micropylar, peripheral, and chalazal
endosperm from spRNA-seq of seeds at the cotyledon stage.

(C and D) UMAP embeddings of micropylar endosperm cells overlaid with four developmental stages (C) and nuclei proportion in four developmental stages
across micropylar clusters (D): seed stages include GS, HS, CS, and EMS.

(E and F) Similar to (C and D), but for the peripheral endosperm.

(G and H) Similar to (C and D), but for the chalazal endosperm.

(I-K) The five motifs that were identified in ACRs of all the 13 SWEET transporter genes (left) and their motif deviation across peripheral endosperm developmental
pseudotime (right).

(L) Cell-type annotation of snRNA-seq and scATAC-seq embryogenic nuclei.

(M) Integration of scATAC-seq and snRNA-seq embryo nuclei via non-negative matrix factorization.

(N) Comparison of inferred nuclei age derived from LASSO predictions across seed developmental stages from withheld test nuclei.

(O) Comparison of inferred nuclei age with the number of expressed genes (log+o).

(P) lllustration of scATAC-seq and snRNA-seq imputation strategy.

(Q) Gene expression dynamics across pseudotime for axis and cotyledon parenchyma trajectories. Red boxes highlight genes with divergent expression
patterns.

(R) Correlation of gene expression profiles between axis and cotyledon parenchyma trajectories. ATHB-13 is highlighted.

(S) TF motif deviation scores across pseudotime for the five embryogenesis branches.

(T) Correspondence between the predicted cell-type label from snRNA-seq integration (columns) and marker-based cell-type label of the scATAC-seq nuclei
(rows).
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Figure S7. Workflow of exploring GmLEC1 genes regulatory network with soybean multi-omic atlas database, related to STAR Methods
(A) Two ACRs were identified in the first intron of the paralogs, which were specifically accessible in endosperm and embryo cells.

(B) These ACRs captured two motifs consistently enriched in endosperm or embryo cells at three stages of developing seeds: the GmABI3-1 (ABA
INSENSITIVE3-1) motif, which controls embryo development and directly binds GmLEC1, and the MYB118 motif, which is specifically expressed in endosperm
and control endosperm maturation in Arabidopsis.

(C) GmABI3-1 and its TF motif were mainly expressed and accessible, respectively, in embryo cells in CS seeds, while GmMYB118-1/2 and their TF motif were
mainly expressed and accessible, respectively, in endosperm.

(D) We can propose a model where the specific use of the intronic MYB118 and ABI3 motifs contributes to the expression pattern of GmLEC1-1/2.
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