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Abstract

Objectives: The predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional
scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narra-
tives and images.

Materials and Methods: In this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality
prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) Il, (2) common
thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4)
chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset.

Results: Our model achieves an average C-index of 0.7829 (95% Cl, 0.7620-0.8038), surpassing the baseline using only SAPS-I| features, which
had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels
(2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement).

Discussion and Conclusion: The deep learning model demonstrated superior performance to traditional machine learning methods under the
same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning
models to enhance the accuracy of ICU mortality prediction.

Lay Summary

In this study, we introduced a deep learning model that harnesses radiology reports and medical images to enhance mortality prediction in inten-
sive care units (ICUs). Accurate prediction of outcomes, particularly mortality, is crucial for effective ICU management. While various predictive
scoring systems exist for ICUs, they predominantly rely on structured clinical data from electronic health records, potentially missing valuable
insights from narratives and images. Our approach involves constructing a deep learning-based survival prediction model using multimodal data
to forecast ICU mortality. We evaluated the model using the Medical Information Mart for Intensive Care |V dataset. The results demonstrated
that our proposed method achieved a higher C-index than traditional machine learning approaches under the same feature fusion setting. This
underscores the potential of utilizing multimodal data to enhance model performance in predicting ICU mortality.

Key words: mortality prediction; deep learning; multimodal fusion.

Introduction

Predictive ICU scoring systems are essential for measuring
disease severity and predicting patient outcomes, especially
mortality, in the intensive care unit (ICU).! These systems,
such as the Acute Physiology and Chronic Health Evalua-
tion,” Simplified Acute Physiology Score (SAPS) II,> and Mor-
tality Probability Model,* rely mainly on structured clinical
data, including demographics, vital signs, and lab tests
recorded in electronic health records (EHRs).

Recent advances in machine learning have shown promise
in improving ICU mortality prediction.”® However, most
studies have focused on structured data, potentially overlook-
ing critical information in narratives and images.”'”

To overcome this issue, many studies focus on mining
unstructured clinical notes for patient mortality predic-
tion.'""!¥ However, most of these works were not compared
with the current scoring system, making it challenging to
compare these models fairly.

Moreover, the practice of modern medicine usually relies
on multimodal information. Consequently, many feature
fusion strategies were proposed to enhance the performance
of prediction algorithms, such as early fusion, late fusion,
and joint fusion.'* Early fusion combines multimodal fea-
tures into a single vector by concatenating or averaging.'>~!”
Late fusion combines the predictions of multiple models to
make the final decision.’®2° Joint fusion combines the
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features from the intermediate layer of the neural network
with the features of other modalities. The loss during training
will propagate back to the feature extraction neural network,
thereby creating a better feature representation through train-
ing iterations.'**'">% Despite these encouraging findings, we
note that most competitive approaches studied the classifica-
tion tasks. Thus, the integration of text and images in the sur-
vival analysis framework remains an important yet, to date,
insufficiently studied problem.

Our study aims to address these limitations by incorporat-
ing natural language processing (NLP) and medical image
analysis to extract hidden features from radiology reports
and chest X-rays, which may not be captured in the struc-
tured EHR.>* We investigate deep learning models for supe-
rior ICU mortality prediction compared to traditional
machine learning models.”® Specifically, we first build the
clinical prediction models to predict ICU mortality using the
SAPS-II risk factors such as demographics, vital signs, and
lab tests. These measurements were obtained in the first 24
hours of ICU admission. We then enrich the model with mul-
timodal features extracted from radiology reports and chest
X-rays. The radiology imaging and reading were studied in
the first 24 hours. We hypothesize that integrating free
texts and images with clinical measurements will improve
prediction accuracy. Experiments on the MIMIC-IV dataset*®
demonstrate that our multimodal models significantly out-
perform unimodal models.

Our framework offers several important strengths: it effec-
tively fuses multimodal data for ICU mortality prediction,
outperforms existing clinical standards (SAPS-II), and is pub-
licly available for reproduction by others.

Materials and methods
Dataset

We used the Medical Information Mart for Intensive Care IV
(MIMIC-1V) dataset to evaluate the proposed model.*® Medi-
cal Information Mart for Intensive Care IV was a deidentified
clinical database composed of 382 278 patients admitted to
the ICUs at Beth Israel Deaconess Medical Center. Of those,
we excluded patients who had no chest x-ray (CXR) studies
before the measurements were completed and resulted in the
SAPS-IT score. Therefore, a total of 9928 patients were
included in this study (Figure 1). Out of these patients, 2213
patients (22%) were deceased in the ICU. Table S1 lists the
information on the ICU admission group studied in this
work. Details of the SAPS-II can be found in Table S2.

Task

We first formulated the survival analysis task, which pre-
dicted a patient’s survival probability in the ICU as a function
of their features. We had »n patients (x;,y;,6;). Each patient
record consisted of d potential covariants x; € R, and the
time T; when the death occurred or the time C; of censoring.
Since death and censoring were mutually exclusive, we use
the indicator §; € {0,1} and the observed survival time y;,
defined as below:

T, if 5;=1
yi =min(T;, C;) =
C if 6,=0
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Figure 1. Creation of the dataset.

The goal was to estimate the survival probability S;(¢) =
Pri(T >1) of a patient who was not dead beyond time .

In this study, we used one of the most popular survival
analysis models, the Cox model,”” where the survival func-
tion was assumed to be

Si(t|x1') _ SO (t)ev/(Xx)

In this model, So(¢) was the baseline survival function that
describes the risk for individuals with x; = 0, and w(x;) =
x; was the relative risk based on the covariants. Note that
So(¢) was shared by all patients at time ¢. It was not associ-
ated with any individual covariants. The effect of the covari-
ate values x; on the survival function was to raise it to a
power given by the relative risk.

In the Cox model, w(x;) had the form of a linear function,
but we also extended it to a nonlinear risk function of a neu-
ral network, called the DeepSurv-based model. The
DeepSurv-based model had 3 steps: feature extraction, multi-
modal feature fusion, and survival analysis. The main differ-
ence between our model and the DeepSurv model*® was that
our deep network performs multimodal feature fusion. When
only a single modality was input, our model was equivalent
to the DeepSurv model. The details of the neural network via
feature fusion are described in the next section.

Neural network via feature fusion

The practices of physicians relied heavily on the synthesis of
data from multiple sources. This includes, but was not limited
to, structured laboratory data, unstructured text data, and
imaging pixel data. Therefore, automated predictive models
that successfully utilize multimodal data may lead to better
performance.

In this paper, we expanded w(x;) by introducing a deep
neural network with the fusion features from multiple
sources: SAPS-II risk factors xgps, text features Xiex, and
imaging features Ximg, as shown in Figure 2. The extracted
text features Xy and image features xjn; were passed to
2 separate multilayer perceptron (MLP) modules where
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Figure 2. Multimodal feature fusion network.

the output dimensions are equal. We then used the 2 hidden
features by elementwise averaging. Finally, we concatenated
It £O Xgaps-

X = Avg(DNNimg (ximg)7 DNNrext (xtexr)) 2 Xsaps

Regarding fusion strategy, our approach was similar to
“early fusion,” which refers to combining features from mul-
tiple input modalities into one feature vector before feeding it
into the survival model."* The difference was that our loss
was propagated back to the DNNs during training, thus cre-
ating better feature selections for each training iteration. In
addition, our approach was not “joint fusion” because the
parameters of the features were not updated during the train-
ing iteration.

Feature extraction

Our feature extraction includes 3 components: SAPS-II score
and risk factors extraction, text feature extraction, and image
feature extraction.

SAPS-II score and risk factors

Simplified Acute Physiology Score-II was designed to measure
the disease severity of patients aged 18 or more admitted to
ICU.> Twenty-four hours after admission to the ICU, the
measurements were completed, and the result was an integer
point score between 0 and 163. The score was calculated
from 15 routine physiological measurements, including infor-
mation about previous health status and some information
obtained at admission. These measurements were: age, heart
rate, blood pressure, temperature, PaO,/FiO,, blood urea
nitrogen, urine output, sodium, potassium, bicarbonate, bilir-
ubin, white blood count, Glasgow Coma Scale, chronic dis-
ease, and admission type.

Text features
In this work, we investigate 3 sets of text features.

Survival
model

Common thorax diseases from radiology reports

The first set of features consisted of 13 predefined diseases
commonly found in radiology reports (atelectasis, cardiome-
galy, consolidation, edema, enlarged cardiomediastinum,
fracture, lung lesion, lung opacity, pleural effusion, pleural
other, pneumonia, pneumothorax, support devices) and nor-
mal,>*=*! as shown in Figure 2. These labels were extracted
from radiology reports using NegBio®* and could be obtained
from the MIMIC-CXR website (https://physionet.org/con-
tent/mimic-cxr-jpg/2.0.0/).

Transformer-based features

The second set of features were text embeddings extracted by
the bidirectional encoder representations from transformers
(BERT) model, which benefited from pretraining on large-
scale biomedical and clinical text corpora. Clinical texts were
challenging to use in survival analysis due to their unstruc-
tured nature. The predefined lung disease labels may not cap-
ture all relevant textual information, as they were limited in
scope. In this work, we utilized BERT-based hidden layer rep-
resentations as text features. For a given input report that
contains m tokens, the BERT model produced a d-dimension
embedding vector for each token, resulting in an m X d repre-
sentation vector of the report in the latent space. We then
applied average pooling over the token embeddings from the
last layer of the BERT model to obtain an aggregate latent
representation of the report.

Graph convolutional neural network-based features

We built a graph convolutional network (GCN) to model the
inner correlations among radiology concepts. The graph was
manually defined by domain experts (Figure 1 in Irvin et
al®°). Disease findings were defined as nodes and correlated
findings were connected to influence each other during graph
propagation. We took the 72 x d hidden representation vec-
tors from the last layer of the BERT model. To initialize
GCN node features, we applied a 1-dimension convolution
over the text features with the kernel size k& and the number
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of output channels equal to the number of graph nodes. In
this way, the graph nodes were initialized by aggregating the
hidden features of all the tokens in the report.

The GCN updated its node representations by message
passing. We first calculated A=D"12AD/2 in a prepro-
cessing step. A = A + Iy was the adjacency matrix with
added self-connections, where A was the graph adjacency
matrix, Iy was the N-dimension identity matrix, D =
diag ), A;j was the diagonal node degree matrix. Then, based
on the study of Kipf and Welling,?’ the graph convolution
could be expressed as follows:

H' = ReLu(AH W + °)
Z= softmalX(A\H1 W4+ bh)

where H' are the states in the /th layer, with H initialized
using the aggregate report text hidden features, and W is a
trainable layer-specific weights matrix.

Image features

For image feature extraction, we used ChexNet, a DenseNet-
121 model pretrained on the CheXpert dataset.>3*35 For
each input image, we extracted the image features of dimen-
sion dime from the global average pooling layer of DenseNet-
121.2.4 Study population and patient selection.

Evaluation metrics

To assess the accuracy of our models, we used the C-index,
defined as follows:

> [T >2T;) - I(R; <R))

S Zi,/I(TiZTf)'df 7
1 if c is true {1 if T; exist

b

where I(c) = {

0 otherwise 0 otherwise

j€{1,2, ...,N}, and j>i. N is the number of samples. Intui-
tively, the C-index measures the extent to which the model
can assign logical risk scores. An individual with a shorter
time-to-event T should have a higher risk score R than those
with a longer time-to-event. C-index assigned a random
model of 0.5 and a perfect model of 1.

Implementation and experimental settings

We performed a grid search to find the optimal hyperpara-
meters based on the metrics and used them for all configura-
tions. The MLP layer for SAPS-II risk factors took an input
of 15 dimensions and fully connected to 15 output dimen-
sions. The MLP layer for label features fully connected the
14-dimension inputs to the 14-dimension outputs. The MLP
layer for report text features fully connected the 768-dimen-
sion inputs to the 32-dimension outputs, and the MLP layer
for chest X-ray image features fully connected the 1024-
dimension inputs to the 32-dimension outputs.

We used 200 bootstrap samples to obtain a distribution of
the C-index and report the 95% CI. For each bootstrap
experiment, we sampled 7 patients with replacements from
the whole set of # patients. We then split the sampled set into
training (70%), validation (10%), and test (20%) sets. We
iterate the training process for 250 epochs with batch size 72
and early stop if the validation loss does not decrease. The
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dropout rate was 0.5. The learning rate was 0.001 with an
Adam optimizer.>®

We obtained the SAPS-II scores using the scripts in the
MIMIC-IV repository (https://github.com/MIT-LCP/mimic-iv).
The text embeddings are extracted using BlueBERT,?” which
was pretrained on the PubMed abstracts and MIMIC-III notes.
We used pycox (https://github.com/havakv/pycox), scikit-sur-
vival,>® and PyTorch to implement the framework. Intel Core
19-9960X 16 cores processor and NVIDIA Quadro RTX 5000
GPU were used in this work. The SAPS-II score was commonly
used in ICU mortality prediction and could be directly obtained
from the MIMIC-IV website for the MIMIC-IV dataset.

Results
Comparison of ICU scoring models and our models
with 4 different feature settings

We first compare the baseline ICU scoring model and our
models with 4 different feature settings. The SAPS-II score is
an integer point score between 0 and 163 directly obtained
from the MIMIC-IV website. The SAPS-II risk factors model
is trained using the 15 routine physiological measurements.
The SAPS-II risk factors + GCN features model is enriched
with the GCN-based features. The SAPS-II risk factors +
Image features model is enriched with chest X-ray image fea-
tures. The multimodal features model is trained using SAPS-II
risk factors, text features, and chest X-ray image features
using early average fusion.

Table 1 shows that the ICU scoring model achieves an
average C-index of 0.7470 (95% CI, 0.7263-0.7676). The
mean C-index of our model with SAPS-II risk factors achieves
0.7545 (0.7240-0.7849), which brings 0.75% improvements
to the ICU scoring baseline model. When combining the
SAPS-II risk factors with GCN-based text features and image
features, the models obtain the average C-index of 0.7720
(0.7517-0.7923) and 0.7752 (0.7518-0.7985), respectively,
yielding increases of 2.50% and 2.82%. Using the multimo-
dal features, the performance of the model can further be
boosted. We obtain the average C-index of 0.7829 (0.7620-
0.8038), resulting in an improvement of 3.60% over the ICU
scoring model. Using early average fusion, we also train the
multimodal features model with SAPS-II risk factors com-
bined with GCN features and chest X-ray image features.
The average C-index is 0.7805 (0.7570-0.8040), which is
slightly lower than the proposed multimodal features model.

Figure 3 shows more details on bootstrapping. The violin
shape reflects the distribution of the C-index: the thicker, the
higher the frequency. We find that the average C-index asso-
ciated with the multimodal features model is statistically
higher than the other 4 settings.

Table 1. C-index comparison of the models using different sets of
features.

Model C-index (95 % CI)

SAPS-II scores (ICU scoring baseline)
SAPS-II risk factors

SAPS-II risk factors + GCN features
SAPS-II risk factors + Image features
Multimodal features

0.7470 (0.7263-0.7676)
0.7545 (0.7240-0.7849)
0.7720 (0.7517-0.7923)
0.7752 (0.7518-0.7985)
0.7829 (0.7620-0.8038)

Abbreviations: GCN, graph convolutional network; ICU, intensive care
unit; SAPS-II, Simplified Acute Physiology Score II.
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Figure 3. C-index comparisons of the models using different sets of features. **P < .01.

kel 3 SAPS-II Risk Factors
0.9 I 1
= Multimodal
T —
0.8
X
[
T
£
(&)
0.7+
0.6 T 1
Normal Abnormal

Figure 4. The C-index results of the models trained on the entire dataset
and tested on normal patients or patients with chest X-ray abnormalities.
P < .001.

Figure 4 shows the C-index results of our SAPS-II risk fac-
tors and multimodal features models, marked in red and
blue, respectively. Both are trained on the entire dataset and
tested on patients with normal or abnormal chest X-rays.
Our multimodal features model outperforms the SAPS-II risk
factors model, and our model can more accurately predict
normal subjects. Figure 5 further breaks chest X-ray abnor-
malities into 13 predefined thorax diseases.

Comparison of different types of text features

We compare the results of our model using different types of
text features. Simplified Acute Physiology Score-II risk factors
+ labels, SAPS-II risk factors + transformer features, and
SAPS-II risk factors + GCN features. They are trained using
15 routine physiological measurements combined with 14
thorax disease labels, transformer-based features, and GCN-
based features, respectively. Table 2 lists the results of our
model using these 3 feature settings. The mean C-indexes for
these 3 settings are 0.7669 (0.7456-0.7882), 0.7714 (0.7488-
0.7941), and 0.7720 (0.7517-0.7923), respectively. Models
with transformer or GCN features outperform models that

only use labels. However, there is no significant difference
between the transformer and GCN features. These findings
are important as they demonstrate that incorporating
advanced feature extraction methods, such as transformer and
GCN, can improve model performance compared to tradi-
tional labels alone. Moreover, the lack of a significant differ-
ence between transformer and GCN features suggests that
both methods are equally viable for enhancing predictive accu-
racy in this context. This study adds to the growing body of
evidence supporting the integration of advanced feature
extraction techniques in predictive modeling, providing a basis
for further exploration and optimization in future research.

Contribution of thorax diseases in survival analysis

Next, we analyze the multivariate association of chest X-ray
abnormalities to ICU mortality based on Cox Proportion
Hazards (CoxPH model) (Table 3). The P-values of these 4
findings, enlarged cardiomediastinum, fracture, pneumonia,
and pneumothorax, are greater than .05, indicating no statis-
tically significant difference. In other words, these findings do
not contribute to mortality prediction. It highlights the
importance of using a comprehensive set of clinical and
radiological features in predictive modeling. While individual
chest X-ray abnormalities may not be significant predictors,
their inclusion in a broader context of physiological measure-
ments and other clinical data can enhance the overall predic-
tive accuracy. Our findings contribute to the ongoing
discussion in the literature about the relative importance of
various features in ICU mortality prediction and suggest ave-
nues for future research to explore combinations of features
that may yield more significant predictive power.

Comparison of linear and deep survival models

We then compare the performances of the linear machine
learning and deep learning models: CoxPH** and DeepSurv-
based model. Table 4 shows the results for both models with
2 feature settings. The average C-indexes of the CoxPH
model with SAPS-II risk factors and SAPS-II risk factors +
labels are 0.7510 (0.7300-0.7720) and 0.7617 (0.7414-
0.7819), respectively, in comparison with 0.7545 (0.7240-
0.7849) and 0.7669 (0.7456-0.7882) obtained by our
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Figure 5. The C-index results of the models trained on the entire dataset and tested on the patients with different chest X-ray abnormalities. ***P < .001.

Table 2. The C-index results of the models using different types of text
features.

Table 4. The C-index results of the linear machine learning models and
the deep learning models trained and tested on the entire dataset.

Model C-index (95 % CI)

SAPS-II risk factors + labels
SAPS-II risk factors + transformer features
SAPS-II risk factors + GCN features

0.7669 (0.7456-0.7882)
0.7714 (0.7488-0.7941)
0.7720 (0.7517-0.7923)

Abbreviations: GCN, graph convolutional network; SAPS-II, Simplified
Acute Physiology Score II.

Table 3. Multivariate associations of chest X-ray abnormalities to ICU
mortality.

Abnormality Hazard ratio 95% CI P
Atelectasis 0.84 0.75-0.94 a
Cardiomegaly 0.85 0.76-0.96 a
Consolidation 1.33 1.14-1.55 P
Edema 1.23 1.10-1.38 °
Enlarged cardiomediastinum 0.91 0.75-1.12 .37
Fracture 0.96 0.72-1.28 77
Lung lesion 1.37 1.13-1.67 a
Lung opacity 1.29 1.17-142  °
Pleural effusion 1.13 1.02-1.26 N
Pleural other 0.64 0.41-1.00 N
Pneumonia 1.07 0.93-1.23 .34
Pneumothorax 1.10 0.86-1.41 45
Support devices 1.27 1.16-1.39  °

Abbreviation: ICU, intensive care unit.
2 P <.01.
b P < .001.
¢ P <.05.

DeepSurv-based model. The results demonstrate that deep
learning models outperform CoxPH on high-dimensional fea-
tures. The P-value for the CoxPH and DeepSurv-based model
using SAPS-II is .01, and the P-value is 1.08e-6 when using
SAPS-II + labels.

These findings are significant as they highlight the advan-
tages of deep learning models in handling high-dimensional

Model C-index (95 % CI)
SAPS-II risk factors CoxPH 0.7510 (0.7300-0.7720)
DeepSurv-based 0.7545 (0.7240-0.7849)
SAPS-II risk CoxPH 0.7617 (0.7414-0.7819)
factors + labels DeepSurv-based 0.7669 (0.7456-0.7882)

Performance metrics across various models on the test set. Bold values
indicate the best-performing metric for each category.
Abbreviation: SAPS-II, Simplified Acute Physiology Score II.

data. They offer superior predictive performance compared
to traditional linear models like CoxPH. The significant
P-values indicate that the differences in performance are stat-
istically meaningful, underscoring the robustness of the
DeepSurv-based model.

Error analysis

Error analysis (ie, examining the reasons behind inaccurate
predictions) revealed that the multimodal accounted for
fewer errors. Table S3 demonstrates one example case of ICU
mortality. According to physiological measurements, SAPS-II
graded patient #1 with a score of 38 and patient #2 with 36.
However, patient #1 was decreased at hour 198, but patient
#2 was deceased at hour 75. Hence, the SAPS-1I incorrectly
assigned the score. However, our multimodal approach cor-
rectly assigned a higher survival probability to patient #1
(0.9903) than to patient #2 (0.9562). In one bootstrap sam-
ple, we observed a total of 40 529 such errors (patient #1 has
a normal chest X-ray, and SAPS-II gives wrong predictions,
but our multimodal method gives correct predictions) with
1802 distinct patients, out of which 527 patients have normal
chest X-rays and 1275 patients have abnormal chest X-rays.
Figure 6 shows the distribution of thorax diseases among
1275 patients. It shows that lung opacity (38.98%) contrib-
utes most to the ICU mortality prediction.
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Figure 6. Distributions of thorax diseases among patients where our multimodal model made more accurate predictions than SAPS-II. Abbreviation:

SAPS-II, Simplified Acute Physiology Score II.

Discussion

Our study demonstrates the potential of integrating multimo-
dal data, including structured clinical data, radiology reports,
and chest X-ray images, into deep learning models to improve
ICU mortality prediction. By enriching traditional ICU scor-
ing systems with additional textual and imaging features, we
observed a significant improvement in predictive accuracy.
Specifically, our multimodal features model achieved an aver-
age C-index of 0.7829, outperforming the baseline SAPS-II
scoring model.

A key finding in our study is the benefit of incorporating
advanced feature extraction methods, such as BERT-based
text representations and GCN-based features, into the predic-
tion model. These techniques enabled our model to capture
more nuanced information from unstructured radiology
reports, contributing to the overall improvement in perform-
ance. We also demonstrated the efficacy of early average
fusion, showing that multimodal feature integration can yield
better predictive accuracy than unimodal models.

Our results also highlight the limitations of relying solely
on traditional ICU scoring systems. While the SAPS-II score
provides a solid baseline, excluding unstructured data, such
as radiology reports and images, limits its predictive power.
Adding these features allows for a more comprehensive
assessment of patient risk, as demonstrated by the superior
performance of our multimodal model.

There are several limitations to this work. First, we use a
fusion strategy similar to “early fusion” to fuse the text and
image features extracted by BlueBERT and ChexNet, respec-
tively, but their parameters are not updated during the train-
ing iterations. In the future, we plan to use joint fusion to
propagate the loss back to the feature extraction modules

during training, which may improve the representation learn-
ing performance. Second, a knowledge graph is a popular
tool for representing background knowledge, which can
improve several aspects of the model. We will explore other
domain knowledge and try different ways of incorporating
the knowledge graph into ICU mortality prediction. Third,
the longitudinal EHR data contain information regarding the
disease progressions that may help ICU mortality prediction
but are not utilized in this work. In the future, we can employ
the longitudinal EHR to assist in predicting ICU mortality.
To account for long and irregular intervals between consecu-
tive longitudinal multimodal data points, we suggest modify-
ing traditional positional encoding to embed visit times
directly into high-dimensional representations.*” This adap-
tation allows us to incorporate information about visit times
by performing an elementwise addition of time step embed-
dings to the embeddings of multimodal data. Fourth, there is
a risk of selection bias in this study. For instance, our analysis
only included patients with imaging studies after ICU admis-
sion. For example, imaging studies are usually performed to
confirm central line placement when a patient is sicker. This
selection could lead to a sample not representative of the ICU
population. However, selection bias is a common problem in
machine learning,*” statistics,*' and epidemiology*?; as a
result, several techniques have been developed to correct it.
In the future, we will investigate these techniques. Fifth,
machine learning models are vulnerable to adversarial
attacks.*® For example, images can be attacked by adding a
small perturbation to the original images. Texts can be
attacked by adding a small number of words. These attacks
are imperceptible to humans but mislead a model into pro-
ducing incorrect outputs. Like selection bias, adversarial
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attack is a common problem in the medical domain, where
accurate diagnostic results are paramount.** Previous studies
suggest that if a model could eliminate noises in their learned
feature representations, they would be more robust against
adversarial perturbations.*> We will study these techniques
to improve the robustness of the model in the future. To
enhance trustworthy artificial intelligence (AI) development
on ICU mortality prediction, we can also incorporate inter-
pretability into our framework.*® Sixth, as large language
models (LLMs) have shown their power in NLP, LLMs can
be considered for text feature extraction in the future.

While our work only scratches the surface of multimodal
fusion for survival analysis, we hope it will shed light on the
future directions for ICU mortality prediction.
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