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Abstract
Objectives: The predictive intensive care unit (ICU) scoring system is crucial for predicting patient outcomes, particularly mortality. Traditional 
scoring systems rely mainly on structured clinical data from electronic health records, which can overlook important clinical information in narra
tives and images.
Materials and Methods: In this work, we build a deep learning-based survival prediction model that utilizes multimodality data for ICU mortality 
prediction. Four sets of features are investigated: (1) physiological measurements of Simplified Acute Physiology Score (SAPS) II, (2) common 
thorax diseases predefined by radiologists, (3) bidirectional encoder representations from transformers-based text representations, and (4) 
chest X-ray image features. The model was evaluated using the Medical Information Mart for Intensive Care IV dataset.
Results: Our model achieves an average C-index of 0.7829 (95% CI, 0.7620-0.8038), surpassing the baseline using only SAPS-II features, which 
had a C-index of 0.7470 (95% CI: 0.7263-0.7676). Ablation studies further demonstrate the contributions of incorporating predefined labels 
(2.00% improvement), text features (2.44% improvement), and image features (2.82% improvement).
Discussion and Conclusion: The deep learning model demonstrated superior performance to traditional machine learning methods under the 
same feature fusion setting for ICU mortality prediction. This study highlights the potential of integrating multimodal data into deep learning 
models to enhance the accuracy of ICU mortality prediction.

Lay Summary
In this study, we introduced a deep learning model that harnesses radiology reports and medical images to enhance mortality prediction in inten
sive care units (ICUs). Accurate prediction of outcomes, particularly mortality, is crucial for effective ICU management. While various predictive 
scoring systems exist for ICUs, they predominantly rely on structured clinical data from electronic health records, potentially missing valuable 
insights from narratives and images. Our approach involves constructing a deep learning-based survival prediction model using multimodal data 
to forecast ICU mortality. We evaluated the model using the Medical Information Mart for Intensive Care IV dataset. The results demonstrated 
that our proposed method achieved a higher C-index than traditional machine learning approaches under the same feature fusion setting. This 
underscores the potential of utilizing multimodal data to enhance model performance in predicting ICU mortality.
Key words: mortality prediction; deep learning; multimodal fusion. 

Introduction
Predictive ICU scoring systems are essential for measuring 
disease severity and predicting patient outcomes, especially 
mortality, in the intensive care unit (ICU).1 These systems, 
such as the Acute Physiology and Chronic Health Evalua
tion,2 Simplified Acute Physiology Score (SAPS) II,3 and Mor
tality Probability Model,4 rely mainly on structured clinical 
data, including demographics, vital signs, and lab tests 
recorded in electronic health records (EHRs).

Recent advances in machine learning have shown promise 
in improving ICU mortality prediction.5–8 However, most 
studies have focused on structured data, potentially overlook
ing critical information in narratives and images.9,10

To overcome this issue, many studies focus on mining 
unstructured clinical notes for patient mortality predic
tion.11–13 However, most of these works were not compared 
with the current scoring system, making it challenging to 
compare these models fairly.

Moreover, the practice of modern medicine usually relies 
on multimodal information. Consequently, many feature 
fusion strategies were proposed to enhance the performance 
of prediction algorithms, such as early fusion, late fusion, 
and joint fusion.14 Early fusion combines multimodal fea
tures into a single vector by concatenating or averaging.15–17

Late fusion combines the predictions of multiple models to 
make the final decision.18–20 Joint fusion combines the 
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features from the intermediate layer of the neural network 
with the features of other modalities. The loss during training 
will propagate back to the feature extraction neural network, 
thereby creating a better feature representation through train
ing iterations.14,21–23 Despite these encouraging findings, we 
note that most competitive approaches studied the classifica
tion tasks. Thus, the integration of text and images in the sur
vival analysis framework remains an important yet, to date, 
insufficiently studied problem.

Our study aims to address these limitations by incorporat
ing natural language processing (NLP) and medical image 
analysis to extract hidden features from radiology reports 
and chest X-rays, which may not be captured in the struc
tured EHR.24 We investigate deep learning models for supe
rior ICU mortality prediction compared to traditional 
machine learning models.25 Specifically, we first build the 
clinical prediction models to predict ICU mortality using the 
SAPS-II risk factors such as demographics, vital signs, and 
lab tests. These measurements were obtained in the first 24 
hours of ICU admission. We then enrich the model with mul
timodal features extracted from radiology reports and chest 
X-rays. The radiology imaging and reading were studied in 
the first 24 hours. We hypothesize that integrating free 
texts and images with clinical measurements will improve 
prediction accuracy. Experiments on the MIMIC-IV dataset26

demonstrate that our multimodal models significantly out
perform unimodal models.

Our framework offers several important strengths: it effec
tively fuses multimodal data for ICU mortality prediction, 
outperforms existing clinical standards (SAPS-II), and is pub
licly available for reproduction by others.

Materials and methods
Dataset
We used the Medical Information Mart for Intensive Care IV 
(MIMIC-IV) dataset to evaluate the proposed model.26 Medi
cal Information Mart for Intensive Care IV was a deidentified 
clinical database composed of 382 278 patients admitted to 
the ICUs at Beth Israel Deaconess Medical Center. Of those, 
we excluded patients who had no chest x-ray (CXR) studies 
before the measurements were completed and resulted in the 
SAPS-II score. Therefore, a total of 9928 patients were 
included in this study (Figure 1). Out of these patients, 2213 
patients (22%) were deceased in the ICU. Table S1 lists the 
information on the ICU admission group studied in this 
work. Details of the SAPS-II can be found in Table S2.

Task
We first formulated the survival analysis task, which pre
dicted a patient’s survival probability in the ICU as a function 
of their features. We had n patients ðxi;yi;δiÞ. Each patient 
record consisted of d potential covariants xi 2 Rd, and the 
time Ti when the death occurred or the time Ci of censoring. 
Since death and censoring were mutually exclusive, we use 
the indicator δi 2 f0;1g and the observed survival time yi, 
defined as below: 

yi ¼ minðTi;CiÞ ¼
Ti if δi¼ 1

Ci if δi¼ 0

(

The goal was to estimate the survival probability SiðtÞ ¼
PriðT> tÞ of a patient who was not dead beyond time t.

In this study, we used one of the most popular survival 
analysis models, the Cox model,27 where the survival func
tion was assumed to be 

SiðtjxiÞ ¼ S0
�
tÞe

ψðxiÞ

In this model, S0ðtÞ was the baseline survival function that 
describes the risk for individuals with xi ¼ 0, and ψðxiÞ ¼

xiβ was the relative risk based on the covariants. Note that 
S0ðtÞ was shared by all patients at time t. It was not associ
ated with any individual covariants. The effect of the covari
ate values xi on the survival function was to raise it to a 
power given by the relative risk.

In the Cox model, ψðxiÞ had the form of a linear function, 
but we also extended it to a nonlinear risk function of a neu
ral network, called the DeepSurv-based model. The 
DeepSurv-based model had 3 steps: feature extraction, multi
modal feature fusion, and survival analysis. The main differ
ence between our model and the DeepSurv model28 was that 
our deep network performs multimodal feature fusion. When 
only a single modality was input, our model was equivalent 
to the DeepSurv model. The details of the neural network via 
feature fusion are described in the next section.

Neural network via feature fusion
The practices of physicians relied heavily on the synthesis of 
data from multiple sources. This includes, but was not limited 
to, structured laboratory data, unstructured text data, and 
imaging pixel data. Therefore, automated predictive models 
that successfully utilize multimodal data may lead to better 
performance.

In this paper, we expanded ψðxiÞ by introducing a deep 
neural network with the fusion features from multiple 
sources: SAPS-II risk factors xsaps, text features xtext, and 
imaging features ximg, as shown in Figure 2. The extracted 
text features xtext and image features ximg were passed to 
2 separate multilayer perceptron (MLP) modules where 

Patients assessed for
eligibility 

(n = 382 278)

Patients included in
this study
(n = 9928)

Desceased
(n = 2213)

Survived
(n = 7715)

Excluded patients:
with no CXRstudies
before the
measurementshave
been completed and
resultedin the SAPS-
II score 
(n = 372 350)

Figure 1. Creation of the dataset.
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the output dimensions are equal. We then used the 2 hidden 
features by elementwise averaging. Finally, we concatenated 
it to xsaps. 

xi ¼ AvgðDNNimgðximgÞ;DNNtextðxtextÞÞ� xsaps 

Regarding fusion strategy, our approach was similar to 
“early fusion,” which refers to combining features from mul
tiple input modalities into one feature vector before feeding it 
into the survival model.14 The difference was that our loss 
was propagated back to the DNNs during training, thus cre
ating better feature selections for each training iteration. In 
addition, our approach was not “joint fusion” because the 
parameters of the features were not updated during the train
ing iteration.

Feature extraction
Our feature extraction includes 3 components: SAPS-II score 
and risk factors extraction, text feature extraction, and image 
feature extraction.

SAPS-II score and risk factors
Simplified Acute Physiology Score-II was designed to measure 
the disease severity of patients aged 18 or more admitted to 
ICU.3 Twenty-four hours after admission to the ICU, the 
measurements were completed, and the result was an integer 
point score between 0 and 163. The score was calculated 
from 15 routine physiological measurements, including infor
mation about previous health status and some information 
obtained at admission. These measurements were: age, heart 
rate, blood pressure, temperature, PaO2/FiO2, blood urea 
nitrogen, urine output, sodium, potassium, bicarbonate, bilir
ubin, white blood count, Glasgow Coma Scale, chronic dis
ease, and admission type.

Text features
In this work, we investigate 3 sets of text features.

Common thorax diseases from radiology reports
The first set of features consisted of 13 predefined diseases 
commonly found in radiology reports (atelectasis, cardiome
galy, consolidation, edema, enlarged cardiomediastinum, 
fracture, lung lesion, lung opacity, pleural effusion, pleural 
other, pneumonia, pneumothorax, support devices) and nor
mal,29–31 as shown in Figure 2. These labels were extracted 
from radiology reports using NegBio32 and could be obtained 
from the MIMIC-CXR website (https://physionet.org/con
tent/mimic-cxr-jpg/2.0.0/).

Transformer-based features
The second set of features were text embeddings extracted by 
the bidirectional encoder representations from transformers 
(BERT) model, which benefited from pretraining on large- 
scale biomedical and clinical text corpora. Clinical texts were 
challenging to use in survival analysis due to their unstruc
tured nature. The predefined lung disease labels may not cap
ture all relevant textual information, as they were limited in 
scope. In this work, we utilized BERT-based hidden layer rep
resentations as text features. For a given input report that 
contains m tokens, the BERT model produced a d-dimension 
embedding vector for each token, resulting in an m × d repre
sentation vector of the report in the latent space. We then 
applied average pooling over the token embeddings from the 
last layer of the BERT model to obtain an aggregate latent 
representation of the report.

Graph convolutional neural network-based features
We built a graph convolutional network (GCN) to model the 
inner correlations among radiology concepts. The graph was 
manually defined by domain experts (Figure 1 in Irvin et 
al30). Disease findings were defined as nodes and correlated 
findings were connected to influence each other during graph 
propagation. We took the m × d hidden representation vec
tors from the last layer of the BERT model. To initialize 
GCN node features, we applied a 1-dimension convolution 
over the text features with the kernel size k and the number 

Clinical variables

MLP

Reports

BERT MLP
/GCN

CNN MLP

MLP Survival
model

Input Data

Unimodal
Representation

Extraction Multimodal Representation Fusion
Survival
Analysis

Chest X-ray
Images

Figure 2. Multimodal feature fusion network.
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of output channels equal to the number of graph nodes. In 
this way, the graph nodes were initialized by aggregating the 
hidden features of all the tokens in the report.

The GCN updated its node representations by message 
passing. We first calculated bA ¼D� 1=2 ~AD� 1=2 in a prepro
cessing step. ~A ¼ A þ IN was the adjacency matrix with 
added self-connections, where A was the graph adjacency 
matrix, IN was the N-dimension identity matrix, D ¼
diag

P
j Aij was the diagonal node degree matrix. Then, based 

on the study of Kipf and Welling,33 the graph convolution 
could be expressed as follows: 

H1 ¼ ReLuðbAH0W0þ b0Þ

Z ¼ softmaxðbAH1W1þ b1Þ

where Hl are the states in the lth layer, with H0 initialized 
using the aggregate report text hidden features, and Wl is a 
trainable layer-specific weights matrix.

Image features
For image feature extraction, we used ChexNet, a DenseNet- 
121 model pretrained on the CheXpert dataset.30,34,35 For 
each input image, we extracted the image features of dimen
sion dimg from the global average pooling layer of DenseNet- 
121.2.4 Study population and patient selection.

Evaluation metrics
To assess the accuracy of our models, we used the C-index, 
defined as follows: 

Ls ¼

P
i;j IðTi ≥ TjÞ � IðRi ≤ RjÞ
P

i;j IðTi ≥ TjÞ � dj
;

where IðcÞ ¼
1 if c is true

0 otherwise

(

, dj ¼
1 if Tj exist

0 otherwise

(

,    

j 2 f1;2; . . .;Ng, and j> i. N is the number of samples. Intui
tively, the C-index measures the extent to which the model 
can assign logical risk scores. An individual with a shorter 
time-to-event T should have a higher risk score R than those 
with a longer time-to-event. C-index assigned a random 
model of 0.5 and a perfect model of 1.

Implementation and experimental settings
We performed a grid search to find the optimal hyperpara
meters based on the metrics and used them for all configura
tions. The MLP layer for SAPS-II risk factors took an input 
of 15 dimensions and fully connected to 15 output dimen
sions. The MLP layer for label features fully connected the 
14-dimension inputs to the 14-dimension outputs. The MLP 
layer for report text features fully connected the 768-dimen
sion inputs to the 32-dimension outputs, and the MLP layer 
for chest X-ray image features fully connected the 1024- 
dimension inputs to the 32-dimension outputs.

We used 200 bootstrap samples to obtain a distribution of 
the C-index and report the 95% CI. For each bootstrap 
experiment, we sampled n patients with replacements from 
the whole set of n patients. We then split the sampled set into 
training (70%), validation (10%), and test (20%) sets. We 
iterate the training process for 250 epochs with batch size 72 
and early stop if the validation loss does not decrease. The 

dropout rate was 0.5. The learning rate was 0.001 with an 
Adam optimizer.36

We obtained the SAPS-II scores using the scripts in the 
MIMIC-IV repository (https://github.com/MIT-LCP/mimic-iv). 
The text embeddings are extracted using BlueBERT,37 which 
was pretrained on the PubMed abstracts and MIMIC-III notes. 
We used pycox (https://github.com/havakv/pycox), scikit-sur
vival,38 and PyTorch to implement the framework. Intel Core 
i9-9960X 16 cores processor and NVIDIA Quadro RTX 5000 
GPU were used in this work. The SAPS-II score was commonly 
used in ICU mortality prediction and could be directly obtained 
from the MIMIC-IV website for the MIMIC-IV dataset.

Results
Comparison of ICU scoring models and our models 
with 4 different feature settings
We first compare the baseline ICU scoring model and our 
models with 4 different feature settings. The SAPS-II score is 
an integer point score between 0 and 163 directly obtained 
from the MIMIC-IV website. The SAPS-II risk factors model 
is trained using the 15 routine physiological measurements. 
The SAPS-II risk factors þ GCN features model is enriched 
with the GCN-based features. The SAPS-II risk factors þ
Image features model is enriched with chest X-ray image fea
tures. The multimodal features model is trained using SAPS-II 
risk factors, text features, and chest X-ray image features 
using early average fusion.

Table 1 shows that the ICU scoring model achieves an 
average C-index of 0.7470 (95% CI, 0.7263-0.7676). The 
mean C-index of our model with SAPS-II risk factors achieves 
0.7545 (0.7240-0.7849), which brings 0.75% improvements 
to the ICU scoring baseline model. When combining the 
SAPS-II risk factors with GCN-based text features and image 
features, the models obtain the average C-index of 0.7720 
(0.7517-0.7923) and 0.7752 (0.7518-0.7985), respectively, 
yielding increases of 2.50% and 2.82%. Using the multimo
dal features, the performance of the model can further be 
boosted. We obtain the average C-index of 0.7829 (0.7620- 
0.8038), resulting in an improvement of 3.60% over the ICU 
scoring model. Using early average fusion, we also train the 
multimodal features model with SAPS-II risk factors com
bined with GCN features and chest X-ray image features. 
The average C-index is 0.7805 (0.7570-0.8040), which is 
slightly lower than the proposed multimodal features model.

Figure 3 shows more details on bootstrapping. The violin 
shape reflects the distribution of the C-index: the thicker, the 
higher the frequency. We find that the average C-index asso
ciated with the multimodal features model is statistically 
higher than the other 4 settings.

Table 1. C-index comparison of the models using different sets of 
features.

Model C-index (95% CI)

SAPS-II scores (ICU scoring baseline) 0.7470 (0.7263-0.7676)
SAPS-II risk factors 0.7545 (0.7240-0.7849)
SAPS-II risk factors þ GCN features 0.7720 (0.7517-0.7923)
SAPS-II risk factors þ Image features 0.7752 (0.7518-0.7985)
Multimodal features 0.7829 (0.7620-0.8038)

Abbreviations: GCN, graph convolutional network; ICU, intensive care 
unit; SAPS-II, Simplified Acute Physiology Score II.
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Figure 4 shows the C-index results of our SAPS-II risk fac
tors and multimodal features models, marked in red and 
blue, respectively. Both are trained on the entire dataset and 
tested on patients with normal or abnormal chest X-rays. 
Our multimodal features model outperforms the SAPS-II risk 
factors model, and our model can more accurately predict 
normal subjects. Figure 5 further breaks chest X-ray abnor
malities into 13 predefined thorax diseases.

Comparison of different types of text features
We compare the results of our model using different types of 
text features. Simplified Acute Physiology Score-II risk factors 
þ labels, SAPS-II risk factors þ transformer features, and 
SAPS-II risk factors þ GCN features. They are trained using 
15 routine physiological measurements combined with 14 
thorax disease labels, transformer-based features, and GCN- 
based features, respectively. Table 2 lists the results of our 
model using these 3 feature settings. The mean C-indexes for 
these 3 settings are 0.7669 (0.7456-0.7882), 0.7714 (0.7488- 
0.7941), and 0.7720 (0.7517-0.7923), respectively. Models 
with transformer or GCN features outperform models that 

only use labels. However, there is no significant difference 
between the transformer and GCN features. These findings 
are important as they demonstrate that incorporating 
advanced feature extraction methods, such as transformer and 
GCN, can improve model performance compared to tradi
tional labels alone. Moreover, the lack of a significant differ
ence between transformer and GCN features suggests that 
both methods are equally viable for enhancing predictive accu
racy in this context. This study adds to the growing body of 
evidence supporting the integration of advanced feature 
extraction techniques in predictive modeling, providing a basis 
for further exploration and optimization in future research.

Contribution of thorax diseases in survival analysis
Next, we analyze the multivariate association of chest X-ray 
abnormalities to ICU mortality based on Cox Proportion 
Hazards (CoxPH model) (Table 3). The P-values of these 4 
findings, enlarged cardiomediastinum, fracture, pneumonia, 
and pneumothorax, are greater than .05, indicating no statis
tically significant difference. In other words, these findings do 
not contribute to mortality prediction. It highlights the 
importance of using a comprehensive set of clinical and 
radiological features in predictive modeling. While individual 
chest X-ray abnormalities may not be significant predictors, 
their inclusion in a broader context of physiological measure
ments and other clinical data can enhance the overall predic
tive accuracy. Our findings contribute to the ongoing 
discussion in the literature about the relative importance of 
various features in ICU mortality prediction and suggest ave
nues for future research to explore combinations of features 
that may yield more significant predictive power.

Comparison of linear and deep survival models
We then compare the performances of the linear machine 
learning and deep learning models: CoxPH38 and DeepSurv- 
based model. Table 4 shows the results for both models with 
2 feature settings. The average C-indexes of the CoxPH 
model with SAPS-II risk factors and SAPS-II risk factors þ
labels are 0.7510 (0.7300-0.7720) and 0.7617 (0.7414- 
0.7819), respectively, in comparison with 0.7545 (0.7240- 
0.7849) and 0.7669 (0.7456-0.7882) obtained by our 
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  Factors + GCN

  SAPS-II Risk
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Figure 3. C-index comparisons of the models using different sets of features. ��P < .01. 
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Figure 4. The C-index results of the models trained on the entire dataset 
and tested on normal patients or patients with chest X-ray abnormalities. 
���P < .001.
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DeepSurv-based model. The results demonstrate that deep 
learning models outperform CoxPH on high-dimensional fea
tures. The P-value for the CoxPH and DeepSurv-based model 
using SAPS-II is .01, and the P-value is 1.08e-6 when using 
SAPS-II þ labels.

These findings are significant as they highlight the advan
tages of deep learning models in handling high-dimensional 

data. They offer superior predictive performance compared 
to traditional linear models like CoxPH. The significant 
P-values indicate that the differences in performance are stat
istically meaningful, underscoring the robustness of the 
DeepSurv-based model.

Error analysis
Error analysis (ie, examining the reasons behind inaccurate 
predictions) revealed that the multimodal accounted for 
fewer errors. Table S3 demonstrates one example case of ICU 
mortality. According to physiological measurements, SAPS-II 
graded patient #1 with a score of 38 and patient #2 with 36. 
However, patient #1 was decreased at hour 198, but patient 
#2 was deceased at hour 75. Hence, the SAPS-II incorrectly 
assigned the score. However, our multimodal approach cor
rectly assigned a higher survival probability to patient #1 
(0.9903) than to patient #2 (0.9562). In one bootstrap sam
ple, we observed a total of 40 529 such errors (patient #1 has 
a normal chest X-ray, and SAPS-II gives wrong predictions, 
but our multimodal method gives correct predictions) with 
1802 distinct patients, out of which 527 patients have normal 
chest X-rays and 1275 patients have abnormal chest X-rays.  
Figure 6 shows the distribution of thorax diseases among 
1275 patients. It shows that lung opacity (38.98%) contrib
utes most to the ICU mortality prediction.
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Figure 5. The C-index results of the models trained on the entire dataset and tested on the patients with different chest X-ray abnormalities. ���P < .001.

Table 2. The C-index results of the models using different types of text 
features.

Model C-index (95% CI)

SAPS-II risk factors þ labels 0.7669 (0.7456-0.7882)
SAPS-II risk factors þ transformer features 0.7714 (0.7488-0.7941)
SAPS-II risk factors þ GCN features 0.7720 (0.7517-0.7923)

Abbreviations: GCN, graph convolutional network; SAPS-II, Simplified 
Acute Physiology Score II.

Table 3. Multivariate associations of chest X-ray abnormalities to ICU 
mortality.

Abnormality Hazard ratio 95% CI P

Atelectasis 0.84 0.75-0.94 a

Cardiomegaly 0.85 0.76-0.96 a

Consolidation 1.33 1.14-1.55 b

Edema 1.23 1.10-1.38 b

Enlarged cardiomediastinum 0.91 0.75-1.12 .37
Fracture 0.96 0.72-1.28 .77
Lung lesion 1.37 1.13-1.67 a

Lung opacity 1.29 1.17-1.42 b

Pleural effusion 1.13 1.02-1.26 c

Pleural other 0.64 0.41-1.00 c

Pneumonia 1.07 0.93-1.23 .34
Pneumothorax 1.10 0.86-1.41 .45
Support devices 1.27 1.16-1.39 b

Abbreviation: ICU, intensive care unit.
a P ≤ .01.
b P < .001.
c P ≤ .05.

Table 4. The C-index results of the linear machine learning models and 
the deep learning models trained and tested on the entire dataset.

Model C-index (95% CI)

SAPS-II risk factors CoxPH 0.7510 (0.7300-0.7720)
DeepSurv-based 0.7545 (0.7240-0.7849)

SAPS-II risk  
factors þ labels

CoxPH 0.7617 (0.7414-0.7819)
DeepSurv-based 0.7669 (0.7456-0.7882)

Performance metrics across various models on the test set. Bold values 
indicate the best-performing metric for each category.
Abbreviation: SAPS-II, Simplified Acute Physiology Score II.
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Discussion
Our study demonstrates the potential of integrating multimo
dal data, including structured clinical data, radiology reports, 
and chest X-ray images, into deep learning models to improve 
ICU mortality prediction. By enriching traditional ICU scor
ing systems with additional textual and imaging features, we 
observed a significant improvement in predictive accuracy. 
Specifically, our multimodal features model achieved an aver
age C-index of 0.7829, outperforming the baseline SAPS-II 
scoring model.

A key finding in our study is the benefit of incorporating 
advanced feature extraction methods, such as BERT-based 
text representations and GCN-based features, into the predic
tion model. These techniques enabled our model to capture 
more nuanced information from unstructured radiology 
reports, contributing to the overall improvement in perform
ance. We also demonstrated the efficacy of early average 
fusion, showing that multimodal feature integration can yield 
better predictive accuracy than unimodal models.

Our results also highlight the limitations of relying solely 
on traditional ICU scoring systems. While the SAPS-II score 
provides a solid baseline, excluding unstructured data, such 
as radiology reports and images, limits its predictive power. 
Adding these features allows for a more comprehensive 
assessment of patient risk, as demonstrated by the superior 
performance of our multimodal model.

There are several limitations to this work. First, we use a 
fusion strategy similar to “early fusion” to fuse the text and 
image features extracted by BlueBERT and ChexNet, respec
tively, but their parameters are not updated during the train
ing iterations. In the future, we plan to use joint fusion to 
propagate the loss back to the feature extraction modules 

during training, which may improve the representation learn
ing performance. Second, a knowledge graph is a popular 
tool for representing background knowledge, which can 
improve several aspects of the model. We will explore other 
domain knowledge and try different ways of incorporating 
the knowledge graph into ICU mortality prediction. Third, 
the longitudinal EHR data contain information regarding the 
disease progressions that may help ICU mortality prediction 
but are not utilized in this work. In the future, we can employ 
the longitudinal EHR to assist in predicting ICU mortality. 
To account for long and irregular intervals between consecu
tive longitudinal multimodal data points, we suggest modify
ing traditional positional encoding to embed visit times 
directly into high-dimensional representations.39 This adap
tation allows us to incorporate information about visit times 
by performing an elementwise addition of time step embed
dings to the embeddings of multimodal data. Fourth, there is 
a risk of selection bias in this study. For instance, our analysis 
only included patients with imaging studies after ICU admis
sion. For example, imaging studies are usually performed to 
confirm central line placement when a patient is sicker. This 
selection could lead to a sample not representative of the ICU 
population. However, selection bias is a common problem in 
machine learning,40 statistics,41 and epidemiology42; as a 
result, several techniques have been developed to correct it. 
In the future, we will investigate these techniques. Fifth, 
machine learning models are vulnerable to adversarial 
attacks.43 For example, images can be attacked by adding a 
small perturbation to the original images. Texts can be 
attacked by adding a small number of words. These attacks 
are imperceptible to humans but mislead a model into pro
ducing incorrect outputs. Like selection bias, adversarial 
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Figure 6. Distributions of thorax diseases among patients where our multimodal model made more accurate predictions than SAPS-II. Abbreviation: 
SAPS-II, Simplified Acute Physiology Score II.
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attack is a common problem in the medical domain, where 
accurate diagnostic results are paramount.44 Previous studies 
suggest that if a model could eliminate noises in their learned 
feature representations, they would be more robust against 
adversarial perturbations.45 We will study these techniques 
to improve the robustness of the model in the future. To 
enhance trustworthy artificial intelligence (AI) development 
on ICU mortality prediction, we can also incorporate inter
pretability into our framework.46 Sixth, as large language 
models (LLMs) have shown their power in NLP, LLMs can 
be considered for text feature extraction in the future.

While our work only scratches the surface of multimodal 
fusion for survival analysis, we hope it will shed light on the 
future directions for ICU mortality prediction.
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