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Background: ~ Generating radiologic findings from chest radiographs is pivotal in medical image analysis. The emergence of OpenAT’s
generative pretrained transformer, GPT-4 with vision (GPT-4V), has opened new perspectives on the potential for automated image-
text pair generation. However, the application of GPT-4V to real-world chest radiography is yet to be thoroughly examined.

Purpose: To investigate the capability of GPT-4V to generate radiologic findings from real-world chest radiographs.

Materials and Methods: In this retrospective study, 100 chest radiographs with free-text radiology reports were annotated by a cohort

of radiologists, two attending physicians and three residents, to establish a reference standard. Of 100 chest radiographs, 50 were
randomly selected from the National Institutes of Health (NIH) chest radiographic data set, and 50 were randomly selected from the
Medical Imaging and Data Resource Center (MIDRC). The performance of GPT-4V at detecting imaging findings from each chest
radiograph was assessed in the zero-shot setting (where it operates without prior examples) and few-shot setting (where it operates with
two examples). Its outcomes were compared with the reference standard with regards to clinical conditions and their corresponding

codes in the International Statistical Classification of Di

Tenth Revisi

(ICD-10), including the anatomic location (hereafter,

laterality).

Resvlts:  In the zero-shot setting, in the task of detecting ICD-10 codes alone, GPT-4V attained an average positive predictive value
(PPV) of 12.3%, average true-positive rate (TPR) of 5.8%, and average F1 score of 7.3% on the NIH data set, and an average PPV
of 25.0%, average TPR of 16.8%, and average F1 score of 18.2% on the MIDRC data set. When both the ICD-10 codes and their
corresponding laterality were considered, GPT-4V produced an average PPV of 7.8%, average TPR of 3.5%, and average F1 score
of 4.5% on the NIH data set, and an average PPV of 10.9%, average TPR of 4.9%, and average F1 score of 6.4% on the MIDRC
data set. With few-shot learning, GPT-4V showed improved performance on both data sets. When contrasting zero-shot and few-
shot learning, there were improved average TPRs and F1 scores in the few-shot setting, but there was not a substantial increase in the

Condusion: ~ Although GPT-4V has shown promise in understanding natural images, it had limited effectiveness in interpreting

average PPV.

real-world chest radiographs.
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enerating radiologic findings from chest radiographs
Gis pivotal in medical image analysis (1). Recent ad-
vancements in fine-tuned pretrained models have show-
cased their capability to translate image content into text
(2). However, these models are often trained on extensive
nonspecific data sets and may need more domain-specific
tuning for chest radiographs. The emergence of OpenAl’s
generative pretrained transformer, GPT-4 with vision
(GPT-4V) (3), a multimodal large language model (LLM)
with visual recognition, has opened new perspectives on
the potential for automated image-text pair generation in
the medical care domain. Advanced multimodal LLMs,
such as GPT-4V, can understand both text and images.
While several studies have investigated the performance
of GPT-4 in generating radiologic impressions (4) and
summarizing clinical trials (5), the practical application of
multimodal LLMs to the interpretation of real-world chest
radiographs is yet to be thoroughly examined. Motivated

by this knowleclge gap, the aim of this study was to in-
vestigate the capability of GPT-4V to generate radiologic
findings from real-world chest radiographs.

Materials and Methods

Because of the publicly available nature of the data sets
used in this sl‘ucly, the requirement to obtain written in-
formed consent from all patients was waived by the insti-
tutional review board.

Study Design and Data Collection

In this retrospective stucly, a total of 100 chest racliographs
and radiology reports were independently annotated by a
cohort of radiologists that included two attending physi-
cians and three residents to establish a reference standard
(Fig 1). Of 100 chest radiographs, 50 were randomly se-
lected from the National Institutes of Health (NIH) chest

radiographic data set, and their corresponding reports
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Abbreviations

ICD-10 = International Statistical Classification of Diseases, Tenth
Revision; LLM = large language model; MIDRC = Medical Imaging
and Data Resource Center; NIH = National Institutes of Health;
PPV = positive predictive value; TPR = true-positive rate

Summary

This study examined the application of GPT-4 with vision (GPT-4V),
a multimodal large language model with visual recognition, in
detecting radiologic findings from a set of 100 chest radiographs and
suggests that GPT-4V is currently not ready for real-world diagnostic
usage in interpreting chest radiographs.

Key Results

m In this retrospective study, 100 chest radiographs with free-text
radiology reports were annotated by two radiology attending
physicians and three radiology residents to establish a reference
standard; this reference standard was compared with the
performance of GPT-4 with vision (GPT-4V) in generating
imaging findings for 100 randomly selected radiographs from

real-world data sets.

m The effectiveness of GPT-4V in interpreting chest radiographs is
limited.

m When contrasting zero-shot and few-shot learning, there were
improved average true-positive rates and F1 scores with few-shot
learning, but there was not a substantial increase in the average
positive predictive value.

were dictated by one radiology attending physician and three
radiology residents (4). These 50 patients have been previously
reported (5). The prior article dealt with generation of the im-
pression section by using the findings section in the report,
whereas the current article describes the generation of a table of
radiologic findings from the image.

The remaining 50 chest radiographs and de-identified free-
text radiology reports were randomly selected from the Medical
Imaging and Data Resource Center (MIDRC) (4). Each report
included a findings section and an impressions section.

Of 100 chest radiographs and reports, 10 cases were ran-
domly selected (five from the NIH data set and five from the
MIDRC data set), and two of these were randomly selected to
serve as few-shot examples for the GPT-4V model. The remain-
ing 90 cases (45 from each data set) were used to evaluate the
performance of GPT-4V in a zero-shot learning setting, where
it operates without prior examples, and in a few-shot learning
setting, where it operates with two examples. Its outcomes were
then compared with the reference standard as annotated by

A

radiologists with regard to clinical conditions and their corre-
sponding codes in the International Statistical Classification of
Diseases, Tenth Revision (ICD-10), including the anatomic loca-
tion (hereafter, laterality).

GPT-4 with Vision

GPT-4V (accessed October 13, 2023; OpenAl) was used in this
study (3). GPT-4V is a version of GPT-4 that allows users to
instruct the LLM to analyze image inputs.

Experimental Setup

To obtain the reference standard tables, GPT-4 was used to con-
vert each free-text radiology report into a table of radiologic
findings by using a textual prompt (Appendix S1). This table
included the radiologic findings, the corresponding ICD-10
diagnostic codes and their laterality, as well as descriptions of
the ICD-10 codes (Table S1). Subsequently, each report was
independently evaluated by three readers from a cohort of five
board-certified radiologists and residents (H.O., PK., C.C.W¥,,
J.K., G.S.). Two of the readers were 3rd-year radiology residents
and the remaining three were radiology attending physicians,
each with over 15 years of experience. Their radiology subspe-
cialties cover chest, emergency department, bone, neurology,
and body imaging. All readers had access to the image views and
reports but not to additional clinical or patient data. Both data
sets, NIH and MIDRC, were comprehensively reviewed, with
the 50 reports of each data set being examined by three readers
to maintain consistency and objectivity in the evaluation pro-
cess. Findings were only included in the final tables if they were
observed by at least two of the three readers; conversely, findings
were excluded if two or more readers did not identify them. The
majority vote principle was employed to provide a clear consen-
sus for the presence or absence of radiologic findings and lead to
the final reference standard table for each radiograph.

Evaluating Performance in the Zero-Shot Setting

To evaluate the performance of GPT-4V in the zero-shot setting,
the chestradiographs (Fig 2A) were inputinto the GPT-4V model
(accessed October13,2023) (2,3) along with the prompt (Fig2B).
The aim of this step was to generate a radiologic findings table
(Fig 2C) comparable to the reference standard table. The analy-
sis concentrated on aligning positive radiologic finding identi-
fication and laterality between GPT-4V—generated tables and
the consensus reference standard tables. The positive predic-
tive value (PPV), true-positive rate (TPR), and F1 score were
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Figure 1:
Medical Imaging and Data Resource Center, NIH = National Institutes of Health.

Diagram shows the study workflow, including construction of data and application of GPT-4 and GPT-4 with vision (GPT-4V). CXR = chest radiograph, MIDRC =
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A Chest radiograph

Figure 2: An example of GPT-4 with vision (GPT-4V) inputs and
output, including the (A) chest radiograph, (B) prompt provided to

Zhou et al

B Prompt to read a chest radiograph and generate a

table of radiological findings

Examine this image and look for any important clinical findings.

Provide a summary in a table format where the positive clinical conditions
are 1 and the negative clinical conditions are 0. Designate each condition as
left side, right side, or bilateral. Provide an ICD-10 code in a separate column
for positive findings only or N/A if not applicable.

Table columns include: [Exam No., Finding No., Clinical Finding, Left Side,
Right Side, Bilateral, Midline, ICD-10 Code, ICD-10 Description]

Additional instructions:

1. Normal findings should be excluded from each table

2. Group similar findings together where possible for each table
3. Create a table

GPT-4v-generated results

GPT-4V fo create a table of radiologic findings derived from the chest Radiological Finding Location | ICD-10 ICD-10 Description
radiograph, and (€) resultant table of radiographic findings generated Pulmonary Infiltrate Right Side | ROLS Other nonspecific abnormal finding of lung field
by GPT-4V.1CD-10 = International Statistical Classification of Diseases,
Tenth Revision. Pleural Effusion Right Side | J90 Pleural effusion, not elsewhere classified
Consolidation Right Side | J18.9 Pneumonia, unspecified organism
Cardiomegaly Midline 151.7 Cardiomegaly
Medical Devices Present | Bilateral Z96.0 Presence of urogenital implants
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— — —
0. 1
0.2+ 0. 4
0.21 o
> x
a o §,
o 0. A - 0.14
0. 1 w
0.0 1 0.0 1 0.0
NIH MIDRC NIH MIDRC NIH MIDRC
B 0.2 o1
P =046 . 21
0. 04 ] P =042 P =041
J o J
0. 00 - g 010
> x Cg
o o -
o 0. 0+ = L
0.04 0.0 1
0.0 A
0.00 1 0.00 4 0.00
NIH MIDRC NIH MIDRC NIH MIDRC

Figure 3: Bar graphs show the performance of GPT-4 with vision (GPT-4V) in the detection of radiologic findings from chest radiographs in the National Institutes of
Health (NIH) and Medical Imaging and Data Resource Center (MIDRC) data sefs in the zero-shot setting according to (A) the radiologic findings in International Statistical
Classification of Diseases, Tenth Revision (ICD-10) codes only and (B) both the radiologic findings in ICD-10 codes and their corresponding lateralities. Stafistical signifi-
cance was assessed using the two-tailed t test. Error bars indicate the average mean value of the set of numbers with consideration of a confidence level within a normal

distribution. PPV = positive predictive value, TPR = true-positive rate.
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Figure 4: Bar graphs show the performance of GPT-4 with vision (GPT-4V) in the detection of radiologic findings from chest radiographs in the National Insfitutes of

Health (NIH) and Medical Imaging and Data Resource Center (MIDRC) data sets in the few-shot setting according to (A) radiologic findings in Infernational Statistical Clas-
sification of Diseases, Tenth Revision (ICD-10) codes only and (B) both the radiologic findings in ICD-10 codes and their corresponding lateralities. Statistical significance
was assessed using the two-failed test. Error bars indicate the average mean value of the set of numbers with consideration of a confidence level within a normal disfribution.

PPV = positive predictive value, TPR = true-positive rate.

calculated at the report level (see Statistical Analysis). Notably,
the per-report average F1 scores were used in this study as each
case could have multiple diagnoses. These metrics were used to
assess the accuracy of GPT-4V in detecting the ICD-10 codes
and their respective laterality.

Evaluating Performance in the Few-Shot Setting

To evaluate the performance of GPT-4V in the few-shot set-
ting, the input was extended to include two examples of chest
radiographs with their corresponding radiologic findings tables
before the prompt. From the pool of 10 chest radiographs,
two were randomly selected to serve as few-shot examples for
the GPT-4V model. Supplying the model with these examples
helped to provide context, boosting the model's capacity to
generate an accurate radiologic findings table. The same per-
formance metrics (PPV, TPR, F1 score) were used at the report
level to assess the effectiveness of few-shot learning.

Statistical Analysis
When obtaining the final reference standard tables, interrater
agreement was assessed using the Cohen K coefficient (6).

First, GPT-4V was employed to detect radiologic findings
from each chest radiograph and these results were compared
with the predicted findings obtained from the radiologists. To
convey the performance evaluation, the PPV was used to de-
note the proportion of ICD-10 codes correctly predicted by

GPT-4V, while the TPR represented the ratio of true-positive
predictions to the total number of ICD-10 codes identified by
GPT-4V.

PPV, TPR, and F1 score were the metrics used to assess the
petformance of GPT-4V in detecting imaging findings from
each chest radiograph. The F1 score is the harmonic mean of
the PPV and TPR, per the following equation:

PPVx TPR

Fl=2x——

PPV + TPR
These predicted findings were then compared with those ob-
tained from the radiologists.

In the evaluation of detecting ICD-10 codes, a radiologic
finding was considered a true-positive finding if its ICD-10
code aligned with that in the reference standard table. In evalu-
ating both the radiologic findings in ICD-10 codes and their
corresponding lateralities, a radiologic finding was considered
true positive if both its ICD-10 code and laterality matched
those in the reference standard table.

As an example, when evaluating ICD-10 codes alone, there
were two ICD-10 codes correctly predicted by GPT-4V (J90
and J18.9), with five findings predicted by GPT-4V (Fig 2) and
four in the reference standard table (Table S1). Therefore, the
PPV was 0.4 (= 2/[2 + 3]), TPR was 0.5 (= 2/[2 + 2]), and F1

score was 0.44.

radiology.rsna.org = Radiology: Volume 311: Number 2—May 2024
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Figure 5:  Bar graphs show the difference in performance of GPT-4 with vision (GPT-4V) in the detection of radiologic findings from chest radiographs between zero-shot

and few-shot seftings according to (A) radiologic findings in Infernational Statistical Classification of Diseases, Tenth Revision (ICD-10) codes only and (B) both the radio-
logic findings in ICD-10 codes and their corresponding lateralities. Statistical significance was assessed using the two-tailed t test. Error bars indicate the average mean value

of the set of numbers with consideration of a confidence level within a normal distribution. PPV = positive predictive value, TPR = frue-positive rafe.

After obtaining the PPV, TPR, and F1 score for each chest
radiograph, the macro averages were calculated for PPV, TPR,
and F1 score across all 90 chest radiographs.

P = .05 was considered indicative of a statistically signifi-
cant difference. Two-tailed 7 tests were used for calculating the
P values for the performance metrics of GPT-4V in detecting
radiologic findings from chest radiographs, specifically assess-
ing the detection of findings represented by their associated
lateralities and ICD-10 codes in both zero-shot and few-shot
settings (Figs 3-5).

Results

Performance in the Zero-Shot Setting

The performance of the GPT-4V model in the zero-shot setting
varied across the NIH and MIDRC data sets and for different
scenarios (Fig 3). In the task of detecting ICD-10 codes alone,
the model attained an average PPV of 5.53 of 45 radiographs
(12.3%) (SD [0.25], SE [0.04], IQR [0.20]), average TPR of
2.60 of 45 radiographs (5.8%) (SD [0.10], SE [0.02], IQR
[0.10]), and average F1 score of 3.30 of 45 radiographs (7.3%)
(SD [0.13], SE [0.02], IQR [0.14]) on the NIH data set. Con-
versely, on the MIDRC data set, the model managed an average
PPV of 11.25 of 45 radiographs (25.0%) (SD [0.24], SE [0.04],
IQR [0.33]), average TPR of 7.56 of 45 radiographs (16.8%)
(SD [0.20], SE [0.03], IQR [0.25], and average F1 score of

Radiology: Volume 311: Number 2—May 2024 = radiology.rsna.org

Reader Agreement for the NIH and MIDRC Data Sets

Reader NIH « Coefficient MIDRC «x Coefficient
A 0.78 NA
B NA 0.96
C -0.06 0.82
D 0.96 0.99

Note.—Interrater agreement between each reader and the
reference standard table for both the NIH and MIDRC data sets
was assessed with Cohen « statistics. k values were interpreted

as follows: 1, indicates perfect agreement among readers and

the reference standard; 0, indicates that agreement is no better
than chance; and -1, indicates perfect disagreement. MIDRC

= Medical Imaging and Data Resource Center, NA = not
applicable, NIH = National Institutes of Health.

8.20 of 45 radiographs (18.2%) (SD [0.17], SE [0.03], IQR
[0.29]). The notable differences in measurements between the
two data sets were primarily due to the MIDRC data set hav-
ing fewer missing GPT-4V—generated ICD-10 codes than the
NIH data set. On the MIDRC data set, GPT-4V generated 144
radiologic findings, while the reference standard comprised 261
findings. However, on the NIH data set, GPT-4V produced 102
radiologic findings, while the reference standard comprised 220
findings. Nevertheless, when both the ICD-10 codes and their



Evaluating GPT-4V on Detection of Radiologic Findings on Chest Radiographs

corresponding laterality were taken into account, the GPT-4V
model in the zero-shot setting produced an average PPV of 3.5
of 45 radiographs (7.8%) (SD [0.20], SE [0.03], IQR [0.0]),

average TPR of 1.56 of 45 radiographs (3.5%) (SD [0.01], SE
[0.01], IQR [0.0]), and average F1 score of 2.05 of 45 radio-
graphs (4.5%) (SD [0.10], SE [0.02], IQR [0.0]) on the NIH
data set; and an average PPV of 4.92 of 45 radiographs (10.9%)
(SD [0.21], SE [0.03], IQR [0.25]), average TPR of 2.19 of 45
radiographs (4.9%) (SD [0.09], SE [0.01], IQR [0.10]), and av-
erage F1 score of 2.90 of 45 radiographs (6.4%) (SD [0.11], SE
[0.02], IQR [0.15]) on the MIDRC data set.

Performance in the Few-Shot Setting
With few-shot learning, GPT-4V showed improved perfor-
mance on both the NIH and MIDRC data sets (Fig 4). When
the model was provided with two illustrative chest radiographs
and their corresponding radiologic findings tables, there was a
marked improvement on the NIH data set, with the average
PPV increasing to 5.72 of 45 radiographs (12.7%) (SD [0.19],
E [0.03], IQR [0.25]). The average TPR also enhanced to
4 69 of 45 radiographs (10.4%) (SD [0.17], SE [0.03], IQR
[0.22]), while the average F1 score reached 5.03 of 45 radio-
graphs (11.1%) (SD [0.17], SE [0.03], IQR [0.22]). On the
MIDRC data set, the average PPV improved to 16.15 of 45
radiographs (35.9%) (SD [0.23], SE [0.03], IQR [0.50]), the
average TPR improved to 16.68 of 45 radiographs (37.1%)
(SD [0.23], SE [0.03], IQR [0.50]), and the average F1 score
improved to 15.47 of 45 radiographs (34.3%) (SD [0.23], SE
[0.03], IQR [0.50]). When tasked with detecting both ICD-
10 codes and their corresponding lateralities, the GPT-4V
model demonstrated improved efficacy. On the NIH data set,
it displayed an average PPV of 1.62 of 45 radiographs (3.5%)
(SD [0.10], SE [0.01], IQR [0.0] ) average TPR of 1.14 of 45
radiographs (2.5%) (SD [0.07], SE [0.01], IQR [0.0]), and
average F1 score of 1.30 of 45 radiographs (2.8%) (SD [0.08],
SE [0.01], IQR [0.0]). On the MIDRC data set, GPT-4V
achieved an average PPV of 8.96 of 45 radiographs (19.9%)
(SD [0.22], SE [0.03], IQR [0.33]), average TPR of 9.14 of
45 radiographs (20.3%) (SD [0.25], SE [0.04], IQR [0.33])
and average F1 score of 8.53 of 45 radiographs (19.0%) (SD
[0.21], SE [0.03], IQR [0.31]).

When contrasting zero-shot and few-shot learning ap-
proaches on both data sets (Fig 5), there were improved aver-
age TPR and F1 scores with few-shot learning in both scenarios
(ICD-10 codes only and ICD-10 codes with lateralities).
Nonetheless, there was not a substantial increase in the aver-
age PPV, suggesting that while few-shot learning may enhance
the model's capacity to detect findings, it does not noticeably
enhance the precision of the predictions.

Interrater Agreement

The study compared each reader’s outcomes to the reference
standard to evaluate their interpretations (Table). On the NIH
data set, the interrater agreement was 0.78 for reader A, -0.06
for reader C, and 0.96 for reader D. On the MIDRC data set,
the interrater agreement was 0.96 for reader B, 0.82 for reader

C, and 0.99 for reader D.

Discussion

The emergence of multimodal large language models (LLMs)
that can understand both text and images, such as OpenAl’s
GPT-4V (3), shows potential for automated image-text pair
generation. However, applying these models to real-world data
is yet to be thoroughly examined. This study assessed the feasi-
bility of using GPT-4V to detect radiologic findings from chest
radiographs in both zero-shot and few-shot learning contexts.
The results (average PPV, 5.53 of 45 radiographs [12.3%]; av-
erage TPR, 2.60 of 45 radiographs [5.8%]) demonstrated that
radiologic findings tables generated by GPT-4V still need fur-
ther preparation for use in clinical practice. We acknowledge a
limitation in employing GPT-4 for converting radiologic reports
into a structured table, where inaccuracies in the International
Statistical Classification of Diseases, Tenth Revision (ICD-10) code
assignments and distinguishing between radiologic findings and
conclusions may impact the reliability and interpretability of
the data. A notable limitation of the GPT-4V output was its
failure to detect several clinical conditions based on correspond-
ing ICD-10 codes. Overall, the top three findings that GPT-
4V could not detect were “endotracheal tube,” “central venous
catheter,” and “degenerative changes of osseous structures.” Con-
versely, GPT-4V most accurately detected findings such as “chest
drain,” “air-space disease,” and “lung opacity.”

Although GPT-4V has shown promise in understanding
real-world images (7), its effectiveness in interpreting real-world
chest radiographs was limited.

Our study had limitations. First, few-shot learning may be
more prone to generating ICD-10 codes already in the provided
examples, potentially reducing the diversity of ICD-10 codes
generated. Second, we were unable to access other multimodal
LLMs that support image inputs; consequently, we lacked com-
parative data with respect to the results of GPT-4V. Finally, due
to the limited size of the data set and relatively low level of in-
terrater agreement among the radiologists, analysis by GPT-4V
may have been challenging.

In conclusion, GPT-4V has shown promise in understand-
ing natural images but had limited effectiveness in interpreting
real-world chest radiographs. Our results highlight the need
for additional comprehensive development and assessment
prior to incorporating the GPT-4V model into clinical practice
routines. Task-specific, fine-tuned, multimodal large language
models or foundation models are urgently needed for this pur-
pose, although it is not necessarily the best solution. To yield
robust and generalizable results, we plan to explore larger and
more diverse data sets using real-world data in future studies.
This will involve including multiple modalities, such as CT
and MRI of the brain, to conduct a more thorough evaluation
of the performance of GPT-4V.
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