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ABSTRACT

Cardiovascular diseases, the leading cause of global mor-
tality, demand refined diagnostic methods. Seismocardiogra-
phy (SCG), a noninvasive method of measuring cardiovascular-
induced vibrations on the chest surface, offers promise in assess-
ing cardiac function. The cardiac wall movements are transmitted
to the organs around the heart and eventually damped onto the
chest surface, where they manifest as visible vibrations. These
chest surface vibrations can be measured using an accelerometer
via SCG. Although SCG signals are widely used in literature, fur-
ther investigations are needed to understand the genesis of their
patterns under different pathophysiological conditions. The goal
of this study is to improve our understanding of the origin of SCG
signals by simulating the transmission of cardiac motion reaching
the chest surface using finite element method, and linking back the
patterns of the simulated SCG signals to specific cardiac events.
The computational domain, extracted from 4D computed tomog-
raphy (CT) images of a healthy subject, comprised the lungs,
ribcage, and chest muscles and fat. Using the Lukas-Kanade
algorithm, the cardiac wall motion was extracted from the 4D CT
scan images and was used as a displacement boundary condi-
tion. The elastic material properties were assigned to the lungs,
muscles, fat, and rib cage. The dorsoventral SCG component
from the finite element modeling was compared with two actual
SCG signals obtained from the literature. The left ventricular
volume was also calculated from the CT scans and was used to
interpret the SCG waveforms. Important cardiac phases were
labeled on the SCG signal extracted from the computationally
modeled acceleration map near the xiphoid. This type of analy-
sis can provide insights into various cardiac parameters and SCG
patterns corresponding to the mitral valve closing, mitral valve
opening, aortic valve opening, and aortic valve closure. These
findings suggested the effectiveness of this modeling approach in
understanding the underlying sources of the SCG waveforms.
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NOMENCLATURE
Equation terms
𝑓 Force [N]
𝑀 Mass matrix [kg]
𝐶 Damping matrix [kg s−1]
𝐾 Stiffness matrix [N m−1]
𝑥 Acceleration [m s−2]
𝑥̇ Velocity [m s−1]
𝑥 Displacement [m]
Medical terms
SCG Seismocardiography
ECG Electrocardiography
FE Finite element
CT Computed tomography
AC Aortic valve closure
AO Aortic valve opening
MC Mitral valve closure
MO Mitral valve opening
CVD Cardiovascular disease
LV Left ventricle

1. INTRODUCTION
The 2013-2018 National Health and Nutrition Examination

Survey and the 2020 U.S. Census project a significant rise in
the prevalence of the cardiovascular diseases (CVDs) from 2025
to 2060. During this period, the combined prevalence of is-
chemic heart disease, heart failure, myocardial infarction, and
stroke combined is expected to increase by 17.4 million cases,
highlighting the critical need for more robust and accurate car-
diac monitoring methods [1–7]. Cardiovascular monitoring can
be performed using both invasive and noninvasive techniques.
Invasive methods typically require clinical settings and are often
expensive. In contrast, noninvasive methods, such as electrocar-
diography (ECG), allow for remote monitoring of cardiovascular
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health outside of clinical environments [8, 9]. While ECG pro-
vides information on the electrical activity of heart [10], seismo-
cardiography (SCG) is another noninvasive method that detects
chest surface vibrations, primarily originating from the heart’s
mechanical functions, including pericardial motion, valve activ-
ity, and alterations in blood momentum [11–15]. SCG can also
be described as the acceleration response to the heartbeat, with
waveforms originating from either the heart or the blood flow
in major arteries [10]. This technique has shown promise for
diagnosing and monitoring various cardiac conditions and offer-
ing complementary information to ECG and other noninvasive
cardiac monitoring methods [11].

The signal obtained from SCG on the chest surface is believed
to originate from the three-dimensional motion of the heart during
the cardiac cycle. The complexity of these heart motions, com-
bined with vibrations generated by blood flow and valve activity,
poses challenges in interpreting SCG patterns and identifying
their vibrational sources [16]. To address this, Crow et al. (1994)
and Giorgis et al. (2008) attempted to correlate specific fiducial
points in the SCG signal with the timing of corresponding cardiac
events observed in medical imaging [17, 18]. In a more recent
study, Mann et al. (2024) investigated how measuring SCG sig-
nals from various chest locations affects the estimation of cardiac
time intervals and other SCG fiducial points [19]. Their find-
ings highlighted the significance of SCG signal variations on the
chest surface and their impact on the interpretation of the SCG
patterns and their underlying physiological sources, such as de-
tecting aortic valve opening based on the SCG signal. In this
context, finite element (FE) modeling offers a valuable approach
for identifying the origins of SCG signals. Patient-specific FE
models, developed using precise input parameters and constraints
obtained from medical imaging and personalized data, can shed
light on SCG patterns and their variations under different patho-
physiological conditions [20].

FE modeling of cardiovascular-generated vibrations can be
conducted using both 2D and 3D representations. While 2D mod-
eling provides a simplified view of cardiac vibration propagation
to the chest, 3D models offer a more detailed and accurate picture
of these vibrations and overall cardiac function. Gamage et al.
(2019)[20] utilized a 2D computational model to simulate SCG
signals, using cardiac wall motion as the inlet boundary condi-
tion. The results indicated that the model could replicate key
features observed in SCG waveforms, offering potential insights
into SCG signal generation, and suggesting future validation and
extensions to 3D modeling using ECG-gated cardiac magnetic
resonance (MR) or computed tomography (CT) scans. In a sub-
sequent study, Gamage [21] developed a 3D model to measure
chest surface vibrations associated with cardiac activity. This
model employed medical imaging reconstruction and FE simu-
lations to investigate the transmission of myocardial motion to
the chest surface, establishing a correlation between heart mus-
cle activity and SCG signals. The study’s findings suggested that
specific cardiac events, such as aortic valve opening (AO) and clo-
sure (AC) and mitral valve opening (MO), could be determined
using the modeled SCG signal. Akhbardeh et al. (2009) [10]
investigated SCG and its relationship with cardiac events using a
FE electromechanical model based on diffusion tensor MR data.

Their FE model of the heart, which considered its mechanical be-
havior throughout the cardiac cycle—including aspects such as
contraction, relaxation, and blood flow dynamics—allowed them
to calculate SCG waveforms and identify key fiducial points. San-
dler et al. (2023) [22] assessed the impact of increased soft tissue
thickness on SCG signals and their relation with cardiac activities
using SCG FE modeling. Gurev et al. (2012) [12] developed a
3D FE electromechanical canine heart model to replicate SCG
signals. Their model successfully reproduced major SCG peaks
and revealed that SCG signals capture the heart’s pressure on the
ribs. Experimental results from human volunteers showed that the
SCG peak aligns with the maximum acceleration of blood in the
aorta, and the first SCG peak after the ECG R-wave corresponds
to AO. Their study showed that SCG peaks related to aortic valve
events and blood acceleration result from ventricular contraction
and changes in ventricle dimensions during blood ejection. Few
studies have developed simplified numerical models for analyz-
ing SCG signals in the presence of CVDs. For instance, Mithani
et al. (2022) [23] created 3D models of infant hearts with sin-
gle ventricle disease and compared the modeled SCG signals
with gold-standard SCG signals acquired by wearable sensors to
enhance understanding of SCG signal characteristics.

This study aims to establish a foundation for advanced,
patient-specific FE analyses of SCG signals. We present an ini-
tial version of our image-based FE pipeline, demonstrated on a
healthy human subject. The methodology employs the Lucas-
Kanade algorithm to extract heart wall motion from 4D CT scan
images (3D geometry + time), which serves as the input displace-
ment for FE simulations. Our 3D computational domain incorpo-
rates key anatomical structures including the lungs, ribcage, chest
muscles, and fat, all precisely segmented from CT images. The
pipeline’s output is a high-resolution, simulated vibration map
of the chest surface. This approach integrates detailed anatom-
ical data with sophisticated computational modeling, potentially
enabling more accurate and personalized interpretations of SCG
signals in clinical settings.

2. MATERIALS AND METHODS
2.1 Cardiac Motion Tracking with Optical Flow

This paper utilized 4D CT scan images of a healthy human
subject from an online dataset to define a realistic computational
domain and capture the cardiac wall motion throughout a cardiac
cycle, which served as the input boundary condition for the com-
putational model. The original 4D CT dataset consisted of 3D
volumes at 10 time points during the cardiac cycle. To achieve a
higher temporal resolution, twelve 3D volumes were interpolated
between each pair of two consecutive time points, resulting in a
sampling frequency of 120 Hz, assuming a cardiac cycle duration
of 1 second.

A custom MATLAB implementation of the Lucas-Kanade
optical flow algorithm [24] was developed to track the time-
resolved displacements of the heart wall throughout a complete
cardiac cycle. The Lucas-Kanade algorithm, introduced in 1981,
is a fast image registration technique based on spatial intensity
gradients, widely used for optical flow estimation and feature
tracking in computer vision tasks. This approach solves optical
flow equations to estimate pixel velocities, enabling the track-
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ing of dynamic cardiac wall displacements in three dimensions.
The resulting data provided displacement information for selected
points along the pericardium, capturing the complex 3D motion
of the heart during its pumping cycle.

Let (𝑥, 𝑦, 𝑧) represent a point within the volumetric domain,
which is a 3D geometry created by merging image slices along
the short axis. Here, x and y correspond to the width and length
of the images, while z represents the direction perpendicular to
the images. If the intensity of a point at coordinates (𝑥, 𝑦, 𝑧) at
a specific time 𝑡 is 𝐼 (𝑥, 𝑦, 𝑧, 𝑡), and if that same point shifts to a
new location (𝑥+𝛿𝑥, 𝑦+𝛿𝑦, 𝑧+𝛿𝑧) over a time interval 𝛿𝑡 (Figure
1), the optical flow method assumes that the intensity remains
constant, as expressed in (1).

𝐼 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) (1)

Applying a first-order Taylor series expansion to the right-
hand side of (1) yields:

𝐼 (𝑥 + 𝛿𝑥, 𝑦 + 𝛿𝑦, 𝑧 + 𝛿𝑧, 𝑡 + 𝛿𝑡) = 𝐼 (𝑥, 𝑦, 𝑧, 𝑡)

+ 𝜕𝐼
𝜕𝑥
𝛿𝑥 + 𝜕𝐼

𝜕𝑦
𝛿𝑦 + 𝜕𝐼

𝜕𝑧
𝛿𝑧

+ 𝜕𝐼
𝜕𝑡
𝛿𝑡 + O(𝛿2) (2)

Substituting (2) into (1) and neglecting higher-order terms
results in:

𝜕𝐼

𝜕𝑥

𝛿𝑥

𝛿𝑡
+ 𝜕𝐼

𝜕𝑦

𝛿𝑦

𝛿𝑡
+ 𝜕𝐼
𝜕𝑧

𝛿𝑧

𝛿𝑡
= −𝜕𝐼

𝜕𝑡
(3)

This equation can be rewritten in a more compact form:

𝐼𝑥𝑉𝑥 + 𝐼𝑦𝑉𝑦 + 𝐼𝑧𝑉𝑧 = −𝐼𝑡 (4)

where 𝐼𝑥 , 𝐼𝑦 , 𝐼𝑧 , and 𝐼𝑡 represent the spatial and temporal partial
derivatives of the intensity at (𝑥, 𝑦, 𝑧), and𝑉𝑥 ,𝑉𝑦 , and𝑉𝑧 represent
the velocity components in the x, y, and z directions, respectively.
The Lucas-Kanade method aims to determine the displacement
vector for each small pixel patch by solving equation (4). This
approach assumes that the motion between consecutive frames
can be approximated by a 3D vector (𝑢, 𝑣, 𝑤) that minimizes the
difference between the observed spatial and temporal gradients.

2.2 Forced Vibration Model of Chest Surface Motion
Forced vibration occurs when a system oscillates under an

external variable force or displacement. In this study, the heart
is considered the primary source of chest surface vibrations. The
cardiac wall motion, driven by the blood-pumping process, in-
duces vibrations in surrounding body organs. The equation of
motion is expressed as:

𝑓 (𝑡) = [𝑀]𝑥 + [𝐶]𝑥̇ + [𝐾]𝑥 (5)

where 𝑓 = 𝐾𝑢 represents the force induced by the externally
imposed displacement on the system. In (5), 𝑓 is the vector of
applied forces, [𝑀] is the mass matrix, [𝐶] is the damping ma-
trix, [𝐾] is the stiffness matrix, 𝑥 is acceleration, 𝑥̇ is velocity,
and 𝑥 is displacement. In time domain analysis, both the stiff-
ness matrix 𝐾 and force vector 𝑓 vary with time, necessitating

(x,y,z)

(x + δx,y + δy,z + δz)

time=t time=t + δt
FIGURE 1: TRANSLATION OF A SAMPLE N × N × N CARDIAC WALL
REGION BETWEEN TWO CONSECUTIVE TIME POINTS.

a time-dependent analysis. The full equations of motion incor-
porate acceleration and velocity terms, each contributing distinct
forms of energy to the system response. The [𝑀]𝑥 term rep-
resents the system’s inertial force, while the [𝐾]𝑥 term depicts
the internal elastic forces, corresponding to kinetic and poten-
tial energy, respectively. For more realistic modeling, stiffness
matrices and force vectors can be nonlinear, more accurately re-
flecting physical phenomena but increasing model complexity.
As a simplification, this system can be modeled as a spring-mass
system with an external displacement. The acceleration can then
be represented as:

𝑥 =
[𝐾]
[𝑀] (𝑥 − 𝑢) (6)

where 𝑢 represents the relative displacement of the heart wall and
𝑥 denotes the displacement of the chest surface. This simplified
model provides a foundation for understanding the relationship
between cardiac motion and chest surface vibrations while main-
taining computational efficiency.

2.3 Computational Domain and FE Model Setup
The computational domain was created by segmenting dif-

ferent organs and tissues from the short-axis CT scan slices. Us-
ing the 3D Slicer image computing platform1, regions of interest
were isolated through a segmentation process that defined thresh-
olds to distinguish between tissues and structures based on their
density levels. The segmented regions included chest muscles,
ribs, cartilage, and lungs (Figure 2a). The software generated
a three-dimensional STL model, representing the surface geom-
etry of the segmented structures (Figure 2b). This model was

1www.slicer.org/
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FIGURE 2: OVERVIEW OF THE COMPUTATIONAL MODEL PREPA-
RATION: (A) 4D CT SCAN IMAGES, (B) STL GEOMETRY EX-
TRACTED FROM CT SCANS, (C) BOUNDARY CONDITIONS, (D)
COMPUTATIONAL MESH GENERATION.

refined and imported into ANSYS Transient Structural2. The
heart’s location in the 3D geometry was represented by a cav-
ity where displacement boundary conditions extracted from the
Lucas-Kanade method were applied. Fixed boundary conditions
were set at both ends of the ribs and the posterior side of the
lungs, adjacent to the spine (Figure 2c). The structural domain
was discretized into tetrahedral mesh elements (Figure 2d), with
varying element sizes to ensure mesh independence. This study
used linear elastic behavior for tissue materials (Table 1) based on
literature values [25–30]. The computational modeling was con-
ducted using the ANSYS Transient Structural analysis module,
which utilizes FE method to calculate chest surface acceleration
within the computational domain. A time step study was con-
ducted, assuming a cycle duration of 1 second and a sampling
frequency of 120 Hz. Simulations employed adaptive step sizes
with maximum and minimum time steps of 0.0083 and 0.001
seconds, respectively.

2.4 SCG Signal Processing and Comparison
By solving the equations of motion, the chest surface acceler-

ation map was calculated at a sampling frequency of 120 Hz. To
compare the modeled SCG signals with the actual SCG signals
acquired by accelerometers, a bandpass filter with cutoff frequen-
cies of 1-30 Hz was employed to remove the low-frequency noise
and the higher-frequency chest vibrations. To mitigate potential
boundary effects due to filtering, a signal representing 16 cardiac
cycles was synthesized by concatenating the original SCG signal.
In this study, the dorsoventral SCG component obtained from FE
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FIGURE 3: EXTRACTING CARDIAC WALL MOTION AS BOUND-
ARY CONDITIONS FROM 4D CT SCANS. CARDIAC WALL CON-
TOURS ARE SHOWN IN YELLOW AND THE RED ARROWS IN-
DICATE THE DISPLACEMENT VECTORS. RESULTS ARE SHOWN
FOR TWO SAMPLE SLICES AT END OF SYSTOLE AND DIASTOLE.

modeling was compared with two actual SCG signals recorded
by an accelerometer. The left ventricular (LV) volume was also
calculated from CT scan images using 3D Slicer software and
compared with the waveforms in the literature (Figure 4, bottom
panel).

3. RESULTS AND DISCUSSION
Using the Lucas-Kanade method, the complex movements of

heart muscles during the cardiac cycle, including rotation, twist-
ing, and longitudinal movement [16], were captured. Capturing
these multidimensional movements was important for properly
modeling the SCG waveforms at the chest surface. Figure 3 de-
picts two tracked contours over the heart wall in the short-axis
view at two different time instants during a cardiac cycle, i.e.,
at the and of systole and diastole. The points that were tracked
by the Lukas-Kanade method are shown in blue color. These
points were carefully selected on the CT images corresponding
to the first time point in the 4D data to delineate the boundary
around the heart wall. The yellow line represents the curve fitted
among these selected points. Red arrows on the contour points
show the displacement vectors at each time instant. The arrows
have been magnified to eight times their original size to provide
a clearer illustration of the displacement vectors. The length and
direction of these arrows suggest the displacement and direction
of the considered point for the next timestep, respectively.

The LV waveform, representing the cardiac cycle, began at
the ECG R peak, corresponding to the beginning of the isovolumic
contraction period. The simulated SCG signal was compared
with those in Taebi et al. (2019) and Inan et al. (2014) studies [11,
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TABLE 1: MATERIAL PROPERTIES OF THE MODELED TISSUES.

Component Young’s modulus Density (kg/m3) [21] Poisson’s ratio [21]

Chest Muscle 2.5 MPa [21, 25] 1000 0.3
Ribcage 12 GPa [21, 26] 2000 0.4
Fat 3.25 kPa [28] 900 0.5
Lung 29 MPa [27, 29] 600 0.45

AC

Timesteps

LV volume, CT scan images

LV volume, Taebi et al. [11]

Time(s)

AO

MC

MO

SC
G
(m
g)

LV volume(ml)

Actual SCG 1, Inan et al. [31]

Simulated SCG signal-FEM

Actual SCG 2, Taebi et al. [11]

FIGURE 4: (TOP) ACTUAL DORSOVENTRAL SCG DATA FROM
[11, 31] VS. SIMULATED SCG USING FE METHOD, AND (BOTTOM)
LEFT VENTRICULAR (LV) VOLUME FROM [11] VS. LV VOLUME EX-
TRACTED FROM THE SUBJECT’S 4D CT SCAN IMAGES IN THE
CURRENT STUDY. THE TIME INSTANTS OF THE OPENING AND
CLOSURE OF THE AORTIC VALVE (AO AND AC) AND MITRAL
VALVE (MO AND MC) ARE SHOWN ON THE SIMULATED SCG SIG-
NAL.

31]. Important cardiac events such as mitral valve closure (MC),
AC, and AO were determined based on the LV waveform. The
simulated SCG signal exhibited features and fiducial points (AO,
AC, and MC) similar to those observed in the SCG waveforms
in prior research [21, 32–34]. Figure 5a compares the simulated
SCG signal using FE modeling in the dorsoventral direction and
Figure 5b the displacement heatmap (normalized between [-1, 1])
of the chest surface generated by employing 100 sensors in the FE
simulation results. Moving the rectangle shows the displacement
of the chest surface for one cardiac cycle. Figure 5c shows the
3D fat layer from which displacement data was extracted. These
findings imply that an FE model could serve as a valuable tool
for simulating the transmission of cardiac mechanical motion to
the chest surface.
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FIGURE 5: DISPLACEMENT HEATMAP COMPARISON WITH THE
SIMULATED SCG IN DORSOVENTRAL DIRECTION (A) CARDIAC
EVENTS ON SCG GRAPH (B) SNAPSHOTS OF THE DISPLACE-
MENT HEATMAP, NORMALIZED BETWEEN [-1, 1], DURING A CAR-
DIAC CYCLE. EACH SQUARE CORRESPONDS TO ONE TIME POINT
DURING THE CARDIAC CYCLE. (C) AN EXAMPLE OF THE DIS-
PLACEMENT HEATMAP. THE COLORBAR IS SHOWN IN MM AND
IS NOT NORMALIZED).

4. LIMITATIONS AND FUTURE WORK
Our current approach presents opportunities for future ex-

pansion, including incorporating right-to-left and head-to-foot
SCG components. A critical aspect in validating the FE models
involves identifying a gold standard signal for comparison with
the modeled SCG signals by FE method. In this study, two actual
SCG signals from the literature were used and compared with the
modeled signals. However, it is well-established that SCG sig-
nals exhibit variability across individuals. Therefore, it is crucial
to validate the FE results by comparing them with SCG signals
obtained from the same participant using gold-standard methods.
This can be achieved by simultaneously acquiring actual SCG
and CT scan images over multiple cardiac cycles, enhancing the
validation of SCG signals from simulations. Additionally, al-
ternative and more realistic material properties and the effects
of boundary conditions on outputs can be investigated. While
this study focused on analyzing the SCG signal in the dorsoven-
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tral direction for one subject, future research aims to increase
the sample size and explore SCG signals in all three directions,
including the head-to-foot and right-to-left directions.

5. CONCLUSION
This study presents a novel pipeline for modeling SCG sig-

nals in the dorsoventral direction using FE analysis. The FE
model utilized heart wall displacements extracted from CT scan
images as boundary conditions. LV volume was determined from
CT scans to interpret SCG data. Key cardiac events, including
the timing of heart valve openings and closures, were derived
from the combination of LV and SCG waveform. These find-
ings demonstrated consistency with previous studies, validating
our methodology. Our results suggest that this personalized FE
modeling approach can significantly enhance our understanding
of SCG signal generation and propagation through the chest wall.
This improved comprehension may lead to more accurate inter-
pretations of SCG data in clinical settings, potentially advancing
non-invasive cardiac monitoring techniques.
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