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Variation in slip behaviour along 
megathrusts controlled by multiple  
physical properties
 

Dan Bassett    1  , Donna J. Shillington    2, Laura M. Wallace3,4,5 & Julie L. Elliott    6

Megathrusts, faults at the plate interface in subduction zones, exhibit 
substantial spatiotemporal variability in their slip behaviour. Many previous 
attempts to discern the physical controls on their slip behaviour have focused 
on individual variables, often associated with the physical properties of either 
the subducting plate (for example, its age and roughness) or the overriding 
plate (for example, its thickness and rigidity). Such studies, which are often 
location-specific or focused on single variables, have fuelled contrasting 
views on the relative importance of various physical properties on megathrust 
slip behaviour. Here we synthesize observations of the Alaska, Hikurangi and 
Nankai subduction zones to ascertain the main causes of the well-documented 
changes in interseismic coupling and earthquake behaviour along their 
megathrusts. In all three cases, along-trench changes in the distribution of 
rigid crustal rocks in the forearc, the geometry of the subducting slab and the 
upper-plate stress state drive considerable variability in the downdip width 
of the seismogenic zone. The subducting plate is systematically rougher 
in creeping regions, with fault-zone heterogeneity promoting a mixture of 
moderate to large earthquakes, near-trench seismicity and slow-slip events. 
Smoother subducting plate segments (with thicker sediment cover) are 
more strongly correlated with deep interseismic coupling and great (>Mw 8) 
earthquakes. In the three regions considered, there is no one dominant 
variable. Rather, we conclude that several physical properties affecting the 
dimensions and heterogeneity of megathrusts collectively explain observed 
along-trench transitions in slip behaviour at these subduction zones, and 
potentially at many other subduction zones worldwide.

Resolving the physical processes that lead to great (moment magnitude 
> (Mw) 8) subduction earthquakes is a societally important issue with 
substantial scientific challenges. The long recurrence intervals of the 
largest earthquakes and the specific environmental conditions required 
to preserve geological evidence for past earthquakes mean that the 
absence of great earthquakes in historical or palaeoseismic records is 
not a reliable indicator that they cannot occur in a particular region1. 
Geodetic measurements of surface deformation can provide a view 

of contemporary interseismic strain accumulation on megathrusts. 
However, offshore constraints on crustal deformation are absent in 
most subduction zones, and it is possible that temporal variations in 
interseismic coupling occur throughout the earthquake cycle2. Conse-
quently, the most informative approaches involve the joint interpreta-
tion of geodetic data with palaeoseismic and historical constraints, 
within a data-rich environment where known physical characteristics 
of subduction zones can be related to fault-slip behaviour3,4.
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occurrence and interseismic coupling across each of these regions 
and discuss the interplay between these variables.

Along-strike variations in slip behaviour
Along New Zealand’s Hikurangi margin, the megathrust undergoes 
an abrupt transition from deep (~30 km) interseismic coupling and 
deep (25–40 km), long-duration (1–2 year), slow-slip events (SSEs) 
in the south, to low interseismic coupling and shallow (<15 km), 
short-duration (several weeks) SSEs along the central and northern 
segments (Fig. 1a)18–21. While no historic great (≥Mw 8.0) earthquakes 
have occurred along the Hikurangi margin, coastal deformation and 
tsunami deposits identify 10 possible subduction earthquakes over 
7,000 years, with the deeply locked southern Hikurangi margin ruptur-
ing in >Mw 8.0 earthquakes every 335–655 years and at least 4 events 
rupturing the southern and central segments22,23. Two Mw ~7 tsunami 
earthquakes ruptured the shallow, mostly creeping sections of the 
northern Hikurangi margin in 194724.

A strikingly similar transition in slip behaviour to that in Hikurangi 
occurs between Shikoku and Kyushu in southwestern Japan (Fig. 1b). 
The Nankai megathrust beneath Shikoku and the Kii Peninsula is char-
acterized by deep interseismic coupling25–28 (analogous to southern 

Many of the conceptual frameworks and theories proposed to 
account for spatial changes in slip behaviour involve physical prop-
erties of the subduction zone and are commonly attributed to either 
the subducting or overriding plates. Sediments, basement topog-
raphy, plate age and fluids carried into the subduction zone by the  
subducting plate are proposed to control plate boundary frictional 
properties, temperature, slab geometry, fault-zone structure and 
heterogeneity, and the abundance and distribution of fluids (for 
example, refs. 3–12). The rigidity, thickness, stress state and perme-
ability of the overriding plate are proposed to influence the distribu-
tion of fluids, the ability of the surrounding crust to accrue elastic 
strain between earthquakes and earthquake dynamics when this 
strain is released9,13–17.

Subduction zones with well-documented along-strike variations 
in earthquake behaviour are ultimately the best locales to isolate the 
physical parameters that vary in concert with slip behaviour. In this 
Review, we present a comparison of three subduction zones with the 
largest well-documented along-strike changes in coupling and earth-
quake behaviour: the Hikurangi, Alaska and Nankai subduction zones. 
We exploit these along-strike variations in slip behaviour to illumi-
nate common properties that can explain subduction earthquake 
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Fig. 1 | Spatial variability in slip behaviour. Maps show the degree of 
interseismic coupling and the distribution of large earthquakes (red ellipses), 
tremor (white dots) and slow-slip events (grey contours). a, Hikurangi margin 
showing sharp transitions in the strength of interseismic coupling and the 
cumulative distribution (2002–2014) of SSEs19,24,112–114. b, Nankai Trough showing 
spatial variability in the up- and downdip extent of interseismic coupling, 
earthquakes29–31,37,38 and the sharp transition from deep interseismic coupling 
to creep between Shikoku and Kyushu27. Contours show cumulative slow slip 

(1994–2022)28,39,40. White dots and polygons mark shallow tremor and very-low-
frequency earthquakes associated with shallow SSEs35,40,89,90. c, Alaska showing 
the gradual increase in the width and landward extent of the locked seismogenic 
zone41–49,53–57. Grey ellipses represent individual SSEs45,46,48. Note: differences 
in near-trench coupling are not well constrained and reflect the contrasting 
availability of seafloor geodetic data (no data in Alaska and Hikurangi) and 
different assumptions made in the geodetic data inversions for coupling.

http://www.nature.com/naturegeoscience


Nature Geoscience | Volume 18 | January 2025 | 20–31 22

Review article https://doi.org/10.1038/s41561-024-01617-9

Hikurangi) and produced great earthquakes in 1944 (MW 8.1) and 1946 
(MW 8.6)29–31. This region of deep interseismic coupling is flanked updip 
and downdip by SSEs, including an ~600 km long, 25–40 km deep band 
of episodic tremor and slip (ETS) located downdip of the seismogenic 
zone32–36. By contrast, the megathrust offshore Kyushu is dominated 
by interseismic creep25,27 (analogous to north Hikurangi), typically 
producing moderate- to large-magnitude earthquakes such as in 1968 
(MW 7.5)37 and 1996/1997 (MW 6–7)38, with no historical record of M 8 
earthquakes. Beneath Kyushu, the ETS band observed elsewhere along 
Nankai Trough is not observed, and tremor and low-frequency earth-
quakes occur predominantly offshore between ~20 km depth and the 
trench28,39,40.

Along the Alaska subduction zone, the area of the megathrust 
characterized by high interseismic coupling and the area and magni-
tude of historic megathrust earthquakes decrease westward along the 
margin41–43. In the northeast, the 1964 M 9.2 Alaska earthquake ruptured 
~800 km along strike, and the factor-of-two reduction in the landward 
extent of co-seismic slip between Prince William Sound (300 km) and 
Kodiak Island (150 km) is consistent with the spatial distribution of 
high interseismic coupling and the location of SSEs and non-volcanic 
tremor downdip of the seismogenic zone (Fig. 1c)44–52. High interseismic 
coupling persists between the Kodiak and Semidi Islands, coincid-
ing with the 1938 M 8.3 earthquake asperity53,54. Southwest across 
the Semidi and Shumagin segments, further reductions in both the 
strength and downdip width of plate coupling are consistent with the 
downdip extent of co-seismic slip in the 2021 M 8.2 Chignik and 2020 
M 7.8 Shumagin earthquakes43,55,56. Although limited geodetic data 
suggest creep predominates within the Unimak segment (Fig. 1c), this 
region produced a tsunami earthquake (Mw 8.6) in 1946, generating the 
largest tsunami recorded along the Alaska trench57.

Subduction inputs, fault-zone heterogeneity and 
fluids
The roughness and stratigraphic cover of the incoming plate are key 
properties impacting the structure, mechanics and composition of 
the outer forearc, the thickness and roughness of the megathrust fault 
and the distribution of lithologies and fluids along it3–6,58. Residual 
bathymetric maps of seafloor topography (Fig. 2) and seismic images 
of subseafloor structure (Fig. 3) show all three regions exhibit a general 
transition from a smoother, more thickly sedimented and homoge-
neous incoming plate in regions of high interseismic coupling and 
large earthquakes to a rougher, more heterogeneous plate in creeping 
regions. These differences reflect variability in topographic rough-
ness on the incoming plate from seamount subduction and bending 
faulting3,6,59 and the thickness of sediment entering the trench, which 
can blanket this topography, thereby promoting homogeneity60–62.

Seismic reflection images traversing the deeply coupled south 
Hikurangi margin and the Semidi segment in Alaska reveal thick 
sequences of subducting sediment (Fig. 3b–d). These sequences 
blanket small-scale roughness and allow the megathrust to localize 
along a discrete stratigraphic interval, providing a smooth and litho-
logically homogeneous megathrust at depth60–62. Adjacent regions of 
lower coupling along the Shumagin segment in Alaska and the central 
and northern Hikurangi margin are characterized by lower ratios of 
subducting sediment thickness to plate roughness (Fig. 3a–c). This 
results in a rougher and more structurally complex fault zone local-
ized along the compositionally heterogeneous top of the subducting 
crust at depth6,62,63. At Nankai, the incoming plate is roughest within 
the central province of Shikoku Basin, due to a relict spreading centre 
and the Kinan seamount chain, and in western Nankai Trough where the 
remnant Kyushu–Palau ridge subducts beneath Kyushu (Fig. 2c)64–66. 
Although the bathymetric expression of the Kyushu–Palau Ridge is 
~80 km wide, seismic reflection data reveal subsurface roughness 
extending ~60 km farther beneath Shikoku Basin (Fig. 3e). Extrapo-
lating the extent of the Kyushu–Palau roughness beneath the forearc 

(dashed red line in Fig. 2b) coincides with an abrupt reduction in top-
ographic gradient across the outer forearc and the region of weak 
interseismic coupling, shallow SSEs and tremor offshore Kyushu26,40,66. 
These observations suggest incoming plate roughness may contribute 
to reductions in interseismic coupling in all three subduction zones.

The subducting plate delivers fluids into the subduction zone in 
the pores of crust and overlying sediments5,67,68 and as hydrous min-
erals in the oceanic crust and mantle69,70. These fluids can promote 
SSEs and creep through development of elevated pore-fluid pres-
sure4 and modify the frictional behaviour of the oceanic crust and 
mantle71. Where a relatively thick sediment section subducts in Nankai 
and Alaska, the shallowest part of the megathrust is characterized by 
elevated pore-fluid pressures61,72,73 and at Nankai experiences shallow 
SSEs35. Dewatering, compaction and metamorphism of these sedi-
ments may promote formation of a coherent asperity at depth74. In the 
creeping portions of the Alaska, Nankai and Hikurangi subduction 
zones, extensive upper-crustal hydration is observed66,67,75,76, with 
irregularly distributed sediments with inferred high pore-fluid pres-
sure also observed in Hikurangi75,77,78. Elevated pore-fluid pressures 
may promote creep through reduction of effective normal stress on 
the megathrust and, at greater depth, may lead to zones of friction 
associated with deep ETS13,79.

A more thickly sedimented and homogeneous plate boundary is 
thought to produce a uniform distribution of stressing rate accumula-
tion on a locked megathrust, thereby promoting interseismic coupling 
and stress accumulation for centuries, larger rupture patches and 
larger earthquakes3,80. Structurally complex faults, lithological hetero-
geneity and mixed mechanical and frictional properties, by contrast, 
may promote a greater mix of slow and fast earthquake phenomena 
and shallow SSEs and/or creep6,62,81,82. We note that near-trench tsu-
namigenic earthquakes in Hikurangi24 and Alaska54,60 both occurred 
near large subducting topographic relief60,83. This may reflect mixed 
mechanical properties resulting in rate-weakening asperities emerging 
at shallower depth. The corollary is rough incoming plates may result 
in smaller and more isolated asperities, which may contribute to the 
mixture of SSEs and moderate to large (M 6–7) earthquakes observed 
at typical seismogenic zone depths (~10–30 km).

Upper-plate structure, rigidity and stress state
The crustal-scale architecture, rigidity and stress state of the over-
thrusting plate impacts a range of processes governing fault-zone drain-
age and the distribution of fluids along/above the megathrust5,84, the 
distribution and rigidity of materials capable of accumulating elastic 
strain16,85 and the position of frictional transitions or segment bounda-
ries that potentially limit the dimensions of the seismogenic zone15. All 
three regions exhibit along-strike transitions in upper-plate structure 
and stress state, which appear related to transitions in megathrust 
slip behaviour.

In southwestern Japan, high-resolution two-dimensional and 
three-dimensional seismic velocity models reveal sharp contrasts in 
upper-plate structure between the lithified and consolidated rocks of 
the inner forearc86,87 and the younger, actively deforming and accreted 
material within the accretionary prism. The location of this dynamic 
backstop is well correlated with a profound change in the morphol-
ogy of the forearc wedge (Fig. 2b) and varies markedly in position 
along Nankai Trough, occurring ~50 km from the trench offshore and 
northeast of Kii Peninsula, but 95–115 km from the trench offshore Cape 
Muroto and Kyushu (Fig. 4b)86,88. Intriguingly, the backstop appears to 
separate contrasting domains of shallow megathrust slip behaviour. 
Large earthquakes are focused downdip of the backstop86, with slow 
earthquake phenomena accommodating strain updip of the backstop, 
beneath the outer forearc35,40,89,90.

A similar observation is made along the Alaska Peninsula. Changes 
in forearc morphology and velocity are associated with the crustal 
backstop60,61 and terrane boundaries within the inner forearc91,92. The 
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updip extent of recent earthquakes rupturing the Shumagin (2020) and 
Semidi (2021) segments appear to coincide with the continental shelf 
break and terrane boundaries in the inner forearc (Fig. 2c)55,56. Recent 
results documenting aseismic after-slip suggest rate-strengthening 
friction updip of the 2021 M 8.2 Chignik earthquake93. The rupture 
area of the giant 1964 (Mw 9.2) earthquake is less well determined but 
also occurs predominantly downdip of the continental shelf break, 
with near-trench rupture proposed only offshore Kodiak Island and 
the Kenai Peninsula47. Near-trench slip in this location may be due to 
the narrow width (~30 km) of the outer wedge94, or elevated incoming 
plate roughness with both the Kodiak–Bowie seamount chain and 
Patton Murray Ridge coinciding with regions of shallow megathrust 
rupture (Fig. 2c54).

The Hikurangi margin is similar to Alaska, exhibiting along-strike 
changes in the width of the frontal accretionary wedge and the distribu-
tion of geological basement terranes within the inner forearc. The crus-
tal backstop (dashed yellow line in Fig. 4a) is located within 30 km of 
the deformation front at the deeply locked Southern Hikurangi margin, 
increasing to ~100 km along the (mostly creeping) central and northern 
segments95. These differences in geological architecture may contrib-
ute to observations of higher wave speeds, lower attenuation and lower 
resistivity in the upper plate overlying the southern Hikurangi margin, 
relative to the upper plate farther north95–98. Geological architecture 
may also impact megathrust slip behaviour, with tsunami earthquakes 

located where the accretionary wedge is particularly narrow along 
the north Hikurangi margin and the downdip extent of shallow SSEs 
broadly correlated with the offshore extent of the Torlesse backstop95. 
Although the absence of great earthquakes in the historical record at 
Hikurangi make upper-plate links uncertain, these observations may 
reflect similar relationships to Nankai and Alaska and suggest that 
upper-plate rigidity potentially impacts the distribution of shallow 
conditional stability along the Hikurangi margin.

One key observation in both Nankai and Hikurangi is that reduc-
tions in the depth and degree of interseismic coupling occur con-
currently with a shift from long-term upper-plate transpression to 
upper-plate extension14. An upper-plate extensional stress state will 
increase vertical structural permeability, potentially decreasing fluid 
pressures within the upper plate. The rapid increases in stress with 
depth expected in environments with lower fluid pressure may result in 
a shallower frictional-to-viscous transition within the upper plate and 
along the megathrust14,99. The opposite is true for an upper plate under 
long-term transpression, where horizontal hydrofractures occur, 
fluids are more easily trapped and near-lithostatic fluid pressures pro-
duce a more gradual increase in stress with depth, potentially enabling 
a deeper brittle-to-viscous transition (and thus, deeper megathrust 
coupling and seismogenesis). Such changes in structural permeability 
may contribute to the along-strike changes in seismic and electrical 
properties discussed in the preceding paragraph97,98. Upper-plate 
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stress state is less well resolved along the Alaska Peninsula, but seismic 
imaging of active normal faults suggests that upper-plate extension 
associated with the onset of Aleutian strain partitioning may be pre-
sent in the transitional/creeping Unimak and Shumagin segments63,100. 
It should be noted the influence of fluid pressure described in the 
preceding sentences on the depth to the brittle/ductile transition 
associates high fluid pressure with a more gradual increase in stress 
with depth, and a greater depth to the frictional-to-viscous transition. 
This contrasts with the role that high fluid pressures can play in pro-
moting aseismic creep through the reduction in effective normal stress 
on the megathrust (as described in: Subduction inputs, fault-zone 
heterogeneity and fluids).

Slab geometry and the downdip width of the 
seismogenic zone
In all three regions, spatial variability in the geometry of the subduct-
ing slab is a major factor driving along-strike differences in the down-
dip width of the seismogenic zone. Figure 4 shows the position of the 
downdip limit of the seismogenic zone (dashed red line), as estimated 
from the downdip extent of high interseismic coupling and co-seismic 
slip in large earthquakes.

Along the Alaska/Aleutian trench, the eastward decrease in slab 
dip results in the downdip width of the seismogenic zone in the Semidi 
segment being 50% narrower than it is farther east beneath Anchorage 
and Prince William Sound (Fig. 4c)47,101. This is highly analogous to Nan-
kai Trough, where the complex geometry of the subducting Philippine 
Sea plate also results in seismogenic zone widths varying by a factor 
of two along strike88(Fig. 4b). However, across the locked–unlocked 
transitions at Hikurangi and Nankai, reductions in interseismic cou-
pling depth are sharper than the gradual steepening of the subducting 
slab102. In these regions, shallowing of deep SSEs, concomitant with 
the upper-plate stress state flipping from transpression to extension, 
suggest weaker coupling, and a narrower seismogenic zone may also 
reflect a reduction in the depth of the brittle–ductile transition14,99. 
Spatial variability in slab geometry in Alaska, Hikurangi and Nankai 
Trough is caused predominantly by differences in the crustal thickness 
and/or age of the incoming plate103–105, but has also been shown to be 
locally impacted by upper-plate structure at Kii Peninsula, southwest-
ern Japan106.

Collectively, spatial variability in the position of the crustal back-
stop, slab geometry and upper-plate stress state combine to produce 
large changes in the downdip width of the seismogenic zone (Figs. 4 and 5).  
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In Nankai, the seismogenic zone narrows from 120 km in Shikoku to 
<60 km offshore Kyushu (Fig. 4b). An even larger contrast occurs along 
the Alaska–Aleutian trench, where the seismogenic zone progressively 
narrows from ~300 km beneath Prince William Sound to <100 km 
beneath the Shumagin Islands (Fig. 4c). In both regions, the downdip 
width of the seismogenic zone is broadly correlated with the strength 
of interseismic coupling and the magnitude of historical megathrust 
earthquakes (Fig. 5). In Alaska and Nankai, the width of the seismogenic 
zone also appears correlated with maximum co-seismic slip in historical 
megathrust earthquakes (dashed blue line in Fig. 5c–e). In Hikurangi, 
gradual south-to-north steepening of the subducting slab, the occur-
rence of deep SSEs at shallower depth and the landward migration of 
the crustal backstop appears to reduce the downdip separation of 
regions of shallow and deep SSEs from ~100 km across the southern 
Hikurangi margin to ~40 km at Cape Turnagain (Fig. 4a). This narrow-
ing coincides with reductions in the strength of interseismic coupling, 
and inferences of a narrow corridor of coupling are consistent with 
observations of contractional strain and large (≥Mw 7) earthquakes in 
1904, 1958 and 199321,107.

Common physical controls on transitions in slip 
behaviour
Figure 6 shows a cartoon illustrating the common variables that vary 
in concert with major along-strike changes in megathrust slip behav-
iour at Hikurangi, Nankai and Alaska. We suggest that these variables 

(related to both the subducting and overriding plates) are not neces-
sarily independent of one another and that they can feed back on each 
other to influence conditions within the fault zone and subsequent 
megathrust slip behaviour.

The downdip width of the seismogenic zone (and the width over 
which interseismic coupling occurs) is strongly influenced by the 
geometry of the subducting slab, upper-plate stress state and the 
geological architecture (inner-forearc rigidity and backstop position) 
of the overthrusting plate. Wide zones of coupling in eastern Alaska, 
southern Hikurangi and Shikoku are promoted by the shallow dip of the 
subducting slab (Fig. 4). In adjacent regions characterized by narrower 
zones of coupling and/or creep, trenchward migration of the downdip 
limit of the seismogenic zone appears to be driven by increasing slab 
dip and/or a transition from transpression to extension in the upper 
plate, which can reduce the width of the seismogenic zone by reduc-
ing the depth of the brittle–ductile transition14,99. At the updip limit of 
the seismogenic zone, the shallow transition from unstable to stable/
conditionally stable slip appears to be influenced by margin-normal 
transitions in upper-plate rigidity. In Alaska, a relationship is observed 
between the updip extent of recent earthquakes and transitions in the 
geological terranes within the forearc crust92. Nankai shows a relation-
ship between the updip extent of earthquakes and a boundary between 
the forearc crust and accretionary wedge86,88, which may also be true in 
Alaska and Hikurangi61,84 but is unclear due to uncertainties in the updip 
extent of past earthquake ruptures. A narrower outer wedge promotes 
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wide zones of coupling by placing rigid upper-plate materials nearer 
the deformation front, which may also increase the likelihood of near 
or trench-breaching rupture94.

Within the downdip confines of the seismogenic zone, the size, 
distribution and frictional characteristics of asperities are strongly 
controlled by incoming plate roughness and the thickness and fric-
tional properties of subducting sediment. Large asperities are pro-
moted by smoother incoming plates and/or regions where sediments 
are sufficiently thick to insulate the megathrust from oceanic plate 
roughness. Rough incoming plates, by contrast, produce structurally 
and lithologically heterogeneous fault zones, with the greater mix of 
material properties in both the subducting and overthrusting plate 
leading to smaller, disconnected asperities and a mixture of both 
moderate to large earthquakes (~Mw 6.0–7.5), SSEs and creep at typical 
seismogenic zone depths3,6,62,81,82. Large subducting relief also imparts 
substantial heterogeneity in upper-plate properties as the upper plate 
deforms, fractures and collapses to accommodate the geometrical 
incompatibility of subducting topographic relief3,67,78,108. The downdip 
extent of upper-plate damage may impact shallow transitions in slip 
behaviour at non-accreting margins. Collectively, the heterogeneous 
incoming plate, fault zone and overthrusting-plate structure produced 
by rough incoming plates may promote the tendency for moderate to 
large near-trench earthquakes, but may also limit the capacity of such 
margins to undergo sustained, high interseismic coupling over a large 
area and produce great or giant earthquakes (although such events and 
rupture of multiple asperities cannot be ruled out).

This interpretation attributes spatial variability in interseis-
mic coupling at Nankai, Hikurangi and Alaska to (1) slab geometry, 
upper-plate structure and stress state impacting the first-order down-
dip dimensions of the zone of frictional coupling and (2) megath-
rust heterogeneity impacting size, stressing rate and proportion of 

rate-weakening asperities within this zone. It is possible that asperi-
ties in creeping regions may be just as strong in a frictional sense, and 
have a higher stressing rate than those in adjacent locked regions. 
These asperities thereby retain the possibility of producing large 
earthquakes109,110, and it is their smaller dimensions relative to the 
flexural rigidity of the overthrusting plate or the greater proportion 
of creep in surrounding areas that gives the overall impression of 
weaker coupling.

In summary, we identify a range of common subduction zone 
physical properties that vary in tandem with observed changes in slip 
behaviour on the Alaska, Hikurangi and Nankai megathrusts, indicat-
ing that there is no single dominant variable that controls the spatial 
variation in slip behaviour. Instead, we suggest that it is the collective, 
integrated impact of a range of factors that best explains the spatial 
changes in slip behaviour along these megathrusts. Although we expect 
that multiple interacting processes also determine the distribution of 
megathrust earthquakes at most subduction zones, some may be ade-
quately explained by a single variable. Others may require an entirely 
different mix of properties and processes, and we acknowledge there 
are a range of factors that almost certainly impact megathrust slip 
behaviour that are not discussed here, either because we do not have 
the requisite data or because they are not observed to vary substan-
tially across the transitions in slip behaviour we have considered. For 
example, temperature may ultimately modulate the downdip limit of 
the seismogenic zone in the deeply locked parts of southwest Japan10,11, 
Hikurangi99 and Alaska111, but slab geometry and upper-plate stress 
state are the key factors driving spatial variability in where thermally 
modulated crystal plasticity sets in. Recognition of the complexity 
of interacting processes at the plate interface in subduction zones 
underscores the importance of not immediately ascribing a single 
variable to an entire system, but instead considering and assessing 
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how various properties (and the interplay between them) coalesce to 
influence conditions around the megathrust and its slip behaviour.
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