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Abstract—Seismocardiogram (SCG) signals can play a crucial
role in remote cardiac monitoring, capturing important events
such as aortic valve opening (AO) and mitral valve closure
(MC). However, existing SCG methods for detecting AO and MC
typically rely on electrocardiogram (ECG) data. In this study,
we propose an innovative approach to identify AO and MC
events in SCG signals without the need for ECG information.
Our method utilized a template bank, which consists of signal
templates extracted from SCG waveforms of 5 healthy subjects.
These templates represent characteristic features of a heart cycle.
When analyzing new, unseen SCG signals from another group
of 6 healthy subjects, we employ these templates to accurately
detect cardiac cycles and subsequently pinpoint AO and MC
events. Our results demonstrate the effectiveness of the proposed
template bank approach in achieving ECG-independent AO and
MC detection, laying the groundwork for more convenient remote
cardiovascular assessment.

Index Terms—Seismocardiography, aortic valve opening, mi-
tral valve closure, template matching, ECG-independent cardiac
monitoring.

I. INTRODUCTION

Cardiovascular diseases (CVDs) continue to be a ma-
jor health threat worldwide, affecting millions and straining
healthcare systems. In the United States alone, a quarter of the
population falls victim to CVDs each year, highlighting the
urgent need for better prevention and management methods
[1], [2]. Early detection of cardiac issues is paramount for
improving patient outcomes. Seismocardiography (SCG) is a
non-invasive means of cardiac monitoring, capturing subtle
vibrations generated by the mechanical activity of the beating
heart [3]-[7]. Unlike electrocardiography (ECG) which relies
on electrical signals, SCG focuses on the mechanical aspects
of cardiac function and can be integrated into wearable devices
[8] to provide complementary information to other common
cardiac assessment modalities. The SCG signals can be used
to determine key events, including aortic valve opening (AO)
and mitral valve closure (MC) [9], [10]. AO corresponds to the
moment when the aortic valve opens during systole, allowing
blood to flow from the left ventricle into the aorta, while, MC
marks the closure of the mitral valve at the end of diastole,
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preventing backflow of blood into the left atrium. These events
are crucial for understanding cardiac dynamics and diagnosing
some cardiovascular conditions [11].

While the combination of ECG and SCG signals provides
precise timing information for AO and MC, relying solely
on one of these modalities can lead to the development of
more convenient and compact cardiac monitoring methods.
Previous studies have explored ECG-free heartbeat detection
in SCG signals using template matching [12]-[14], but these
approaches often rely on templates derived from the same
SCG signals being analyzed. Our research aims to bridge this
gap by developing an ECG-independent algorithm for AO and
MC detection using SCG signals only, without relying on
the templates derived from the same signals under analysis.
We leverage a template bank, a collection of signal segments
extracted from SCG recordings of a group of subjects, and
utilize it to detect heartbeats in the SCG signals of a new group
of subjects. These templates represent characteristic features
of the heart cycle, allowing us to detect heartbeats even in the
absence of ECG information. The idea is to create a collection
of optimal templates that can be used to search for heart cycles
in new SCG signals through template matching.

Our proposed method identifies the optimal template from
the template bank for a given SCG signal, and then, detects
the heart cycles based on this template via template matching.
Template matching involves locating occurrences of a specific
template within a larger signal. The primary aim is to pinpoint
regions in the signal that closely resemble the template. This
process entails searching for particular features or segments
within a new signal to determine if any similarities or identical
matches exist. Typically, this similarity assessment is quanti-
fied by evaluating normalized cross-correlation values across
the signal. In the subsequent sections, we provide details of
the methodology, template creation, and assessment of the
effectiveness of the proposed method.

II. MATERIALS AND METHODS

A. Participants

The research study received approval from the Institutional
Review Board (IRB) at Mississippi State University. Data were
collected from a group of 11 human subjects, comprising 7
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Fig. 1. Data acquisition setup. The sensors include (a) a single-lead ECG,
(b) three tri-axial accelerometers, and (c) an electronic stethoscope.
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males and 4 females (age: 23.00 & 4.60 years, BMI: 24.30 +
4.37 kg/m?). All participants reported no history of CVDs.

B. Experimental Setup

Subjects were instructed to lay in a supine position for
sensor placement and data acquisition. Three tri-axial ac-
celerometers (356A32, PCB Piezotronics, Depew, NY) were
attached using double-sided tape to the manubrium, left sternal
border near the fourth costal notch, and xiphoid process (Fig.
1). We refer to these locations as “top”, “middle”, and “bot-
tom” for simplicity throughout the paper. These accelerometer
outputs were amplified with a gain factor of 100 using a
signal conditioner (model 482C, PCB Piezotronics, Depew,
NY). Single-lead ECG signals were recorded, placing the
electrodes on the participant following Einthoven’s triangle
configuration, under the left and right clavicle and on the
right lower abdomen. Additionally, an electronic stethoscope
(Thinklabs One, Thinklabs, Centennial, CO) was placed on
the fourth left intercostal space, just to the right of the middle
accelerometer. Participants were then instructed to remain still
and breathe naturally throughout the data acquisition process.
We monitored the signals in real time and ensured good signal
quality before starting the recording. The data acquisition
session began with a tap on the stethoscope and ended after
approximately 2 minutes with another tap. All signals were
recorded at a sampling frequency of 5000 Hz. In this study,
the stethoscope served solely to identify the beginning and end
of each measurement session through the tap sounds (Fig. 2).

C. Signal Preprocesssing

MATLAB (R2022a, The MathWorks, Inc., Natick, MA) was
used for data analysis. The electronic stethoscope output was
used to identify the start and end points of the session. The
stethoscope taps caused significant spikes in the signal (Fig.
2) which were used to trim the ECG and SCG signals. Digital
filters were used to eliminate noise from both the ECG and
SCG signals. For the ECG signals, we applied a bandpass filter
with cutoff frequencies of 0.5 and 40 Hz, targeting the typical
range of heart electrical activity. For all SCG signals, we used a
1-30 Hz bandpass filter. These cutoff frequencies for the SCG
signals were chosen to eliminate the low-frequency respiration
movement while preserving the dominant frequencies of the
heart vibrations.
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Fig. 2. The spikes at the beginning and end of a raw PCG signal corresponding
to the taps that were used to indicate the measurement session.
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Fig. 3. The SCG templates were created using a systolic window from
the ECG Q wave to the T peak, representing the time for both ventricular
depolarization and repolarization.

D. Identifying Heartbeats Using Template Matching

Our primary goal is to detect AO and MC events in the SCG
signal without relying on ECG data. To achieve this goal, we
first leverage a template bank to identify the cardiac cycles on
the SCG signal ECG-independently.

1) Template Bank Creation: To create a template, we define
a systolic window using the ECG Q wave and T peak on
the SCG signals (Fig. 3). Our template bank includes one
template from each of subjects 7 to 11 (S07-S11, consisting
of 2 female subjects) for every measurement location, i.e., the
top, middle, and bottom sensor locations in Fig. 1. This is done
because SCG signals vary not only between individuals but
also across chest locations. To account for different heart rates,
we augment the templates by “squeezing” and “stretching”
them. A subject with a lower heart rate would have a more
stretched systolic phase while one with a higher heart rate
would have a more squeezed heartbeat. Therefore, the template
bank is augmented by resampling each template to a minimum
of 900 and a maximum of 2000 sample points, with intervals
of 20 points (Fig. 4) resulting in a total of 855 templates in
the template bank. This approach ensures that our template
bank represents heartbeats at various heart rates (~45-10 bpm
assuming that QT interval is 30% of a cardiac cycle).

2) Optimal Template Selection: The goal is to find the
most suitable template in the template bank for detecting the
SCG heartbeats. The pseudocode for this process is shown in
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Fig. 4. Example of template augmentation. The original template is resampled
at 900:20:2000 sample points. Templates resampled at 900, 1450, and 2000

sample points are shown here.



Algorithm 1. The algorithm begins by estimating the mini-
mum number of heartbeats expected in the signal, assuming
a minimum heart rate of 40 bpm. Subsequently, it iterates
through each template in the bank, calculating the normalized
cross-correlation (NCC) score between the template and the
SCG signal. The maximum NCC score is then identified. If
the maximum score exceeds the current best-performing score
and the number of detected peaks meets the minimum required
heartbeats, the best-performing score is updated. Finally, after
all iterations, the algorithm returns the template that achieved
the highest performance. Given the total number of templates
in the bank, it is computationally expensive to use the entire
2-minute SCG data for each subject to find the best template.
To address this, we only utilize the first 10 seconds of a
given SCG signal to identify the optimal template from the
template bank using the aforementioned algorithm. Once the
best template is identified, it will be used to detect SCG
heartbeats over the entire 2-minute SCG signal.

3) Heartbeat Detection: The NCC between the best tem-
plate and the SCG signal was calculated by sliding the
template along the entire signal. The underlying assumption is
that the template exhibits quasi-periodicity within the signal,
with peaks corresponding to the heartbeats. By analyzing the
NCC, we identify the highest peaks, pinpointing the locations
of maximum similarity with the template. These identified
locations correspond to the heartbeats in the signal. To detect
these peaks, we utilized the “findpeaks” function in MATLAB,
specifying a minimum peak height of maximum NCC score
minus 0.25 and a minimum peak distance of half of the
sampling frequency. The choice of subtracting 0.25 from the
maximum NCC score was based on empirical tuning to ensure
robustness against noise and signal variations.

Algorithm 1 Find Best Template from Template Bank

1: function FINDBESTTEMPLATE(newSCG, template Bank, fs)
2: Calculate the length of newSCG in seconds:

time_length < length(newSCQG)/fs
3: Minimum heart rate (bpm) to consider: min_hb < 40
4: Minimum heartbeats in the signal:

min_n_hb < round(time_length x min_hb/60)
5: Initialize bestScore <+ —oo
6: Initialize bestTemplate < | |
7.
8

for i = 1 to length(template Bank) do
: Read template: ¢ < template Bank]i]
9: Calculate NCC: score + ncc(template, newSCG)

10: Find max Score: maxzScore < max(score)
11: Define a threshold: & < maxScore — 0.25
12: Find peaks:

locks « findpeaks(score, MinPeakHeight = k,
MinPeakDistance = fs/2)

13: if maxScore > bestScore and
length(locks) > min_n_hb then

14: Update: bestScore <— maxScore

15: Update: bestTemplate < template

16: end if

17: end for

18: return bestTemplate

19: end function

4) AO and MC Events Detection: We used a similar tech-
nique described in [9] by defining a search window starting
from the beginning of each detected cardiac cycle to identify
AO and MC. Typically, within this window, AO corresponds
to the second prominent peak, while MC is the peak im-
mediately preceding the AO. We evaluated the performance
of our algorithm for AO and MC detection on the SCG
signals recorded from the middle location. To do this, we
compared the algorithm’s output with manually determined
indices of AO and MC points. These points were selected by
a researcher blind to the algorithm’s results. The researcher re-
ceived training based on relevant SCG literature and manually
identified the AO and MC points on the SCG signals for each
subject using ECG information. To manage data collection, we
developed a MATLAB code to store the time indices of these
fiducial points upon the researcher’s selection. We then calcu-
late the precision = TP/(TP+FP), recall = TP/(TP+FN), and
Fl-score = 2x(PrecisionxRecall)/(Precision+Recall), where,
TP is the number of true positives, i.e., correctly detected
AO and MC points. FP stands for false positives, indicating
points identified by the algorithm that were not present in the
manually labeled AO and MC points. Finally, FN refers to the
false negatives, representing manually annotated AO and MC
events that the algorithm missed.

III. RESULTS AND DISCUSSION
A. SCG Heartbeat Detection

Fig. 5 shows an example of detected heartbeats for subject
2 (S02) using the proposed approach. S02 is a new subject and
the template bank does not include any templates created from
the SCG signals of this subject. The algorithm had a similar
performance on other subjects. These results indicate that our
approach allows accurate detection of cardiac cycles without
relying on simultaneous ECG signals.

B. AO and MC Detection Performance Evaluation

To evaluate the performance of our AO and MC detection
algorithm, we calculated precision, recall, and F1-score. Pre-
cision reflects the proportion of correctly detected AO and
MC points out of all detected points. Recall indicates the
proportion of correctly detected AO and MC points out of all
manually selected AO and MC points. Finally, the F1-score
provides a harmonic mean of precision and recall, offering a
balanced view of detection performance.

ECG
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Fig. 5. Heartbeats detected by the proposed algorithm for a new subject
(S02). The bank does not include any templates from this subject.



TABLE I
PERFORMANCE OF THE PROPOSED ECG-INDEPENDENT ALGORITHM IN
DETECTING THE AO AND MC POINTS.

Precision (%) Recall (%) F1 Score (%)

Subjects
AO MC AO MC AO MC
S01 100.00 99.62 100.00 99.61 100.00 99.42
I S02 98.75 9875 91.86 91.86 95.18 95.18
g 8 S03 9524 9429 86.96 86.09 9091 89.57
é —‘; S04 100.00 99.34 9441 93.79 97.12 96.18
v S05 97.26 9794 92.81 9346 9498 95.98
S06 86.11 83.33 25.62 2479 3949 3793
S07 99.31 100.00 99.31 100.00 99.31 100.00
2 M S08 94.89 94.89 9420 9420 94.54 94.54
g- s S09 97.14 97.14 90.07 90.07 93.47 9347
S m S10 99.42 9942 9942 9942 9942 99.42
S11 99.05 100.00 81.25 82.03 89.27 90.52

The results are summarized in Table I. The table includes
precision, recall, and F1 scores for both unseen subjects (SO1-
S06) and subjects used in the design of the template bank
(S07-S11). Subjects within the template bank achieved an
average precision of 97.96% and 98.29% for AO and MC
detection, respectively. The average recall for these subjects
was 92.85% and 93.14% for AO and MC, respectively. The
average F1-score, which provides a balanced view of precision
and recall was 95.20% for AO and 95.59% for MC. These
figures demonstrate that our algorithm successfully detects
SCG heartbeats in a 2-minute SCG signal for each subject,
relying solely on a template bank containing just one template
from that specific SCG signal.

For the unseen subjects, i.e., those subjects that no templates
were created from their SCG signals and were not included in
the template bank, the average precision was slightly lower at
96.23% and 95.55% for AO and MC detection, respectively.
The average recall was also slightly lower at 81.94% and
81.60% for AO and MC, respectively. Finally, the average F1-
scores for unseen subjects were 86.28% and 85.71% for AO
and MC, respectively. S06 exhibited a lower precision, recall,
and Fl1-score than other unseen subjects due to the best tem-
plate failing to match the signal’s systolic cycles accurately,
resulting in some diastolic parts of the signal being mistakenly
detected. This issue arises from person-to-person variability
in the SCG signal. When evaluating the performance of the
AO and MC detection algorithm on all subjects, the average
precision was 97.02% and 96.79%, the average recall was
86.90% and 86.85%, and the average Fl-score was 90.34%
and 90.20% for AO and MC detection, respectively. These
results suggest that our ECG-free method effectively detected
SCG heartbeats and consequently identified important cardiac
valve events including the timing of AO and MC.

C. Future Directions

Future work will focus on refining the criteria for selecting
the best template from the template bank. This involves
developing advanced algorithms to evaluate template simi-

larity more effectively and incorporating machine learning
techniques to improve the accuracy and reliability of AO
and MC detection. Additionally, we plan to explore adaptive
template matching methods that can dynamically adjust to
individual variations in heart rate and signal morphology.
These enhancements aim to further improve the proposed
ECG-independent approach in real-world settings.

IV. CONCLUSION

We presented an ECG-independent method for detecting
AO and MC using SCG. By creating a template bank from
systolic SCG templates collected from a group of five healthy
subjects, we identified heartbeats using template matching
without relying on ECG data. The template bank was made to
account for the variability in SCG signals due to both inter-
and intra-subject differences as well as heart rate variations.
Our approach establishes a foundation for creating a versatile
template bank capable of detecting cardiac cycles in new SCG
signals, enabling accurate AO and MC detection even in the
absence of ECG data.
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