
A CLUSTER OF RESULTS ON AMPLITUHEDRON TILES

CHAIM EVEN-ZOHAR, TSVIQA LAKREC, MATTEO PARISI, MELISSA SHERMAN-BENNETT,

RAN TESSLER, AND LAUREN WILLIAMS

Abstract. The amplituhedron is a mathematical object which was introduced to provide a geometric

origin of scattering amplitudes in N = 4 super Yang Mills theory. It generalizes cyclic polytopes and

the positive Grassmannian, and has a very rich combinatorics with connections to cluster algebras.

In this article we provide a series of results about tiles and tilings of the m = 4 amplituhedron.

Firstly, we provide a full characterization of facets of BCFW tiles in terms of cluster variables for

Gr4,n. Secondly, we exhibit a tiling of the m = 4 amplituhedron which involves a tile which does

not come from the BCFW recurrence – the spurion tile, which also satisfies all cluster properties.

Finally, strengthening the connection with cluster algebras, we show that each standard BCFW tile

is the positive part of a cluster variety, which allows us to compute the canonical form of each such

tile explicitly in terms of cluster variables for Gr4,n. This paper is a companion to our previous

paper “Cluster algebras and tilings for the m = 4 amplituhedron.”
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1. Introduction

The amplituhedron is a geometric object which was introduced in the context of scattering

amplitudes in N = 4 super Yang Mills theory. In particular, the fact that the BCFW recurrence1

computes scattering amplitudes in N = 4 super Yang Mills theory is a reflection of the geometric

statement (which we proved in [ELP+23]) that each BCFW collection of cells in the positive

Grassmannian gives rise to a tiling of the m = 4 amplituhedron. The m = 4 amplituhedron also

has a close connection to cluster algebras : we proved in [ELP+23] that each BCFW tile satisfies

the cluster adjacency conjecture, that is, its facets are cut out by compatible cluster variables.

1BCFW refers to Britto, Cachazo, Feng, and Witten
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In this paper, which is a companion paper to [ELP+23], we continue our study of the cluster

structure and tilings of the m = 4 amplituhedron. In particular, we provide a full characterization

of the facets of BCFW tiles in terms of cluster variables for Gr4,n. For standard BCFW tiles we

prove our characterization of facets, see Theorem 4.1, extending results of [ELT21]. For general

BCFW cells we state a characterization of facets in Claim 4.25 but omit the proof, which uses the

same ideas as the proof of Theorem 4.1 but is more technical.

While there are many tilings of the amplituhedron which use BCFW tiles, we show that there

are also tilings that involve other tiles. In particular, we exhibit the first known tiling of an

amplituhedron which uses a non-BCFW tile, the spurion tile.

Finally, strengthening the connection with cluster algebras, we show that each standard BCFW

tile is the positive part of a cluster variety, see Theorem 6.7. In Section 7 we then use our description

of BCFW tiles in terms of cluster variables for Gr4,n in order to compute the canonical form of

each such tile. The results of this paper provide computational tools to study BCFW tiles, their

cluster structures, canonical forms and tilings.

The structure of this paper is as follows. In Section 2 and Section 3 we provide background on

the amplituhedron and cluster algebras. In Section 4 we characterize the facets of BCFW tiles in

terms of cluster variables for Gr4,n. In Section 5 we discuss the spurion tiling of the amplituhedron.

In Section 6 we show that each standard BCFW tile can be thought of as the positive part of a

cluster variety. Finally in Section 7 we explain how to compute the canonical form of a BCFW tile

from the cluster variables.
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2. Background: the amplituhedron and BCFW tiles

2.1. The positive Grassmannian. The Grassmannian Grk,n(F) is the space of all k-dimensional

subspaces of an n-dimensional vector space F
n. Let [n] denote {1, . . . , n}, and

([n]
k

)
denote the set

of all k-element subsets of [n]. We can represent a point V ∈ Grk,n(F) as the row-span of a full-rank

k× n matrix C with entries in F. Then for I = {i1 < · · · < ik} ∈
([n]
k

)
, we let ïIðV = ïi1 i2 . . . ikðV

be the k×k minor of C using the columns I. The ïIðV are called the Plücker coordinates of V , and

are independent of the choice of matrix representative C (up to common rescaling). The Plücker
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embedding V 7→ {ïIðV }I∈([n]
k )

embeds Grk,n(F) into projective space2 . If C has columns v1, . . . , vn,

we may also identify ïi1 i2 . . . ikð with vi1 ' vi2 ' · · · ' vik , hence e.g. ïi1 i2 . . . ikð = −ïi2 i1 . . . ikð.

In this paper we will often be working with the real Grassmannian Grk,n = Grk,n(R). We will

also denote by Grk,N the Grassmannians of k-planes in a vector space with basis indexed by a set

N ¢ [n].

Definition 2.1 (Positive Grassmannian). [Lus94, Pos06] We say that V ∈ Grk,n is totally nonnegative

if (up to a global change of sign) ïIðV g 0 for all I ∈
([n]
k

)
. Similarly, V is totally positive if ïIðV > 0

for all I ∈
([n]
k

)
. We let Grg0

k,n and Gr>0
k,n denote the set of totally nonnegative and totally positive

elements of Grk,n, respectively. Grg0

k,n is called the totally nonnegative Grassmannian, or sometimes

just the positive Grassmannian.

If we partition Grg0

k,n into strata based on which Plücker coordinates are strictly positive and

which are 0, we obtain a cell decomposition of Grg0

k,n into positroid cells [Pos06]. Each positroid

cell S gives rise to a matroid M, whose bases are precisely the k-element subsets I such that the

Plücker coordinate ïIð does not vanish on S; M is called a positroid.

One can index positroid cells in Grg0

k,n by (equivalence classes of) plabic graphs [Pos06].

Definition 2.2. Let G be a plabic graph, i.e. a planar bipartite graph3 embedded in a disk, with

black vertices 1, 2, . . . , n on the boundary of the disk. An almost perfect matching M of G is a

collection of edges which covers each internal vertex of G exactly once. The boundary of M , denoted

∂M , is the set of boundary vertices covered by M . The positroid associated to G is the collection

M = M(G) := {∂M : M an almost perfect matching of G}.

For more details about plabic graphs relevant for this paper, see e.g. [ELP+23, Appendix A].

Both Grk,n and Grg0

k,n admit the following set of operations, which will be useful to us.

Definition 2.3 (Operations on the Grassmannian). We define the following maps on Matk,n, which

descends to maps on Grk,n and Grg0

k,n, which we denote in the same way:

• (cyclic shift) We define the cyclic shift as the map cyc : Matk,n → Matk,n which sends v1 7→

(−1)k−1vn and vi 7→ vi−1, 2 f i f n, and in terms of Plücker coordinates: ïIð 7→ ïI − 1ð.

• (reflection) We define reflection as the map refl : Matk,n → Matk,n which sends vi 7→ vn+1−i and

rescales a row by (−1)(
k
2), and in terms of Plücker coordinates: ïIð 7→ ïn+ 1− Ið.

• (zero column) For J ¦ [n], we define the map preJ : Matk,[n]\{i} → Matk,n which adds zero

columns in positions J , and in terms of Plücker coordinates: ïIð 7→ ïIð.

Here, I−1 is obtained from I ∈
([n]
k

)
by subtracting 1 (mod n) from each element of I and n+1−I

is obtained from I by subtracting each element of I from n+ 1.

2.2. The amplituhedron. Building on [AHBC+16a, Hod13], Arkani-Hamed and Trnka [AHT14]

introduced the (tree) amplituhedron, which they defined as the image of the positive Grassmannian

under a positive linear map. Let Mat>0
n,p denote the set of n × p matrices whose maximal minors

are positive.

2We will sometimes abuse notation and identify C with its row-span; we will also drop the subscript V on Plücker
coordinates when it does not cause confusion.
3We will always assume that plabic graphs are reduced [Pos06, Definition 12.5].
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Definition 2.4 (Amplituhedron). Let Z ∈ Mat>0
n,k+m, where k +m f n. The amplituhedron map

Z̃ : Grg0
k,n → Grk,k+m is defined by Z̃(C) := CZ, where C is a k×n matrix representing an element

of Grg0
k,n, and CZ is a k × (k +m) matrix representing an element of Grk,k+m. The amplituhedron

An,k,m(Z) ¢ Grk,k+m is the image Z̃(Grg0
k,n).

In this article we will be concerned with the case where m = 4.

Definition 2.5 (Tiles). Fix k, n,m with k +m f n and choose Z ∈ Mat>0
n,k+m. Given a positroid

cell S of Grg0
k,n, we let Z◦

S := Z̃(S) and ZS := Z̃(S) = Z̃(S). We call ZS and Z◦
S a tile and an open

tile for An,k,m(Z) if dim(S) = km and Z̃ is injective on S.

Definition 2.6 (Tilings). A tiling of An,k,m(Z) is a collection {ZS | S ∈ C} of tiles, such that their

union equals An,k,m(Z) and the open tiles Z◦
S , Z

◦
S′ are pairwise disjoint.

There is a natural notion of facet of a tile, generalizing the notion of facet of a polytope.

Definition 2.7 (Facet of a cell and a tile). Given two positroid cells S′ and S, we say that S′ is

a facet of S if S′ ¢ ∂S and S′ has codimension 1 in S. If S′ is a facet of S and ZS is a tile of

An,k,m(Z), we say that ZS′ is a facet of ZS if ZS′ ¢ ∂ZS and has codimension 1 in ZS .

Definition 2.8 (Twistor coordinates). Fix Z ∈ Mat>0
n,k+m with rows Z1, . . . , Zn ∈ R

k+m. Given

Y ∈ Grk,k+m with rows y1, . . . , yk, and {i1, . . . , im} ¢ [n], we define the twistor coordinate ïïi1i2 · · · imðð

to be the determinant of the matrix with rows y1, . . . , yk, Zi1 , . . . , Zim .

Note that the twistor coordinates are defined only up to a common scalar multiple. An element

of Grk,k+m is uniquely determined by its twistor coordinates [KW19]. Moreover, Grk,k+m can

be embedded into Grm,n so that the twistor coordinate ïïi1 . . . imðð is the pullback of the Plücker

coordinate ïi1, . . . , imð in Grm,n.

Definition 2.9. We refer to a homogeneous polynomial in twistor coordinates as a functionary.

For S ¦ Grg0

k,n, we say a functionary F has a definite sign s ∈ {±1} (or vanishes) on Z◦
S if for all

Z ∈ Mat>0
n,k+4 and for all Y ∈ Z◦

S , F (Y ) has sign s (or 0, respectively). A functionary is irreducible

if it is the pullback of an irreducible function on Grm,n.

We will use functionaries to describe amplituhedron tiles and to connect with cluster algebras.

2.3. BCFW cells and BCFW tiles. In this section we review the operation of BCFW product

used to build BCFW cells, following [ELP+23, Section 5]. We then define BCFW cells and tiles.

Notation 2.10. Choose integers 1 f a < b < c < d < n with a, b and c, d, n consecutive. Let4

NL = {n, 1, 2, . . . , a, b}, NR = {b, . . . , c, d, n} and B = (a, b, c, d, n)5. Also fix k f n and two

nonnegative integers kL f |NL| and kR f |NR| such that kL + kR + 1 = k.

Remark 2.11. While it is convenient to state our results in terms of [n] and Grg0
k,n, our results

hold if we replace [n] by any set of indices N ¢ [n], and replace 1 and n by the smallest and largest

elements of N , respectively.

4Note that we will overload the notation and let n index an element of a vector space basis for different vector spaces;
however, in what follows, the meaning should be clear from context.
5The ‘B’ stands for “butterfly.”
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Definition 2.12 (BCFW product). Let SL ¦ Grg0
kL,NL

, SR ¦ Grg0
kR,NR

be as in Notation 2.10, with

GL, GR the respective plabic graphs, and let B = (a, b, c, d, n) as in Notation 2.10. The BCFW

product of SL and SR is the positroid cell SL ▷◁ SR ¦ Grg0
k,n corresponding to the plabic graph in

the right-hand side of Figure 1.

Figure 1. The BCFW product SL ▷◁ SR of SL and SR in terms of their plabic
graphs. Note that GL and GR are joined along the purple graph associated to
B = (a, b, c, d, n); we call it a ‘butterfly graph’ since it resembles a butterfly.

When it is not clear from the context, we will say ▷◁ is performed ‘with indices B’.

We now introduce the family of BCFW cells to be the set of positroid cells which is closed under

the operations in Definitions 2.3 and 2.12:

Definition 2.13 (BCFW cells). The set of BCFW cells is defined recursively. For k = 0, let the

trivial cell Gr>0
0,n be a BCFW cell. This is represented by a plabic graph with black lollipops at

each of the boundary vertices. If S is a BCFW cell, so is the cell obtained by applying cyc, refl, pre

to S. If SL, SR are BCFW cells, so is their BCFW product SL ▷◁ SR.

Remark 2.14. It follows from the definition that the plabic graph of a BCFW cell is built by glueing

together a collection of (possibly rotated or reflected) ‘butterfly graphs.’ We could therefore refer

to the plabic graph of a BCFW cell as a kaleidoscope6.

The standard BCFW cells, which we define below, are a particularly nice subset of BCFW cells.

The images of the standard BCFW cells yield a tiling of the amplituhedron [ELT21].

Definition 2.15 (Standard BCFW cells). The set of standard BCFW cells is defined recursively.

For k = 0, let the trivial cell Gr>0
0,n be a BCFW cell. If S is a BCFW cell, so is the cell obtained by

adding a zero column using pre in the penultimate position. If SL, SR are BCFW cells, so is their

BCFW product SL ▷◁ SR.

Example 2.16. For k = 1, each BCFW cell in Grg0
1,n has a plabic graph of the form shown in

Figure 2 (middle). The Plücker coordinates ïað, ïbð, ïcð, ïdð, ïeð are positive, and all others are zero.

In Figure 2 (right), Sex ¢ Grg0
2,7 is obtained as SL ▷◁ SR, with SL, SR BCFW cells in Grg0

1,NL
,Grg0

0,NR

respectively, with NL = {7, 1, 2, 3, 4}, NR = {4, 5, 6, 7} and B = (3, 4, 5, 6, 7). The standard BCFW

cells for k = 1 are those BCFW cells where a, b and c, d are consecutive and e = n, as shown in

Figure 2 (left). For k = n− 4, the totally positive Grassmannian Gr>0
n−4,n is the only BCFW cell.

6A group of butterflies is officially called a kaleidoscope.
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Figure 2. The plabic graph of a standard BCFW cell (left) and general BCFW
cell (center) in Grg0

1,n, where the . . . denote black lollipops in the remaining indices;

the plabic graph of a BCFW cell Sex ¢ Grg0
2,7 (right).

In [ELP+23, Section 7] we showed that the amplituhedron map is injective on each BCFW cell.

We can therefore define BCFW tiles.

Definition 2.17 (BCFW tiles and standard BCFW tiles). We define a BCFW tile to be the

(closure of the) image of a BCFW cell under the amplituhedron map. In other words, each BCFW

tile has the form Zr := Z̃(Sr), where r is a recipe. We define a standard BCFW tile to be a BCFW

tile that comes from a standard BCFW cell.

2.4. Standard BCFW cells from chord diagrams. In this section we introduce chord diagrams,

and show how each gives an algorithm for constructing a standard BCFW cell. In Section 2.5 we

then give a generalization of this algorithm, called a recipe, for constructing a general BCFW cell.

Definition 2.18 (Chord diagram [ELT21]). Let k, n ∈ N. A chord diagram D ∈ CDn,k is a set of

k quadruples named chords, of integers in the set {1, . . . , n} named markers, of the following form:

D = {(a1, b1, c1, d1), . . . , (ak, bk, ck, dk)} where bi = ai + 1 and di = ci + 1

such that every chord Di = (ai, bi, ci, di) ∈ D satisfies 1 f ai < bi < ci < di f n− 1 and no

two chords Di, Dj ∈ D satisfy ai = aj or ai < aj < ci < cj .

The number of different chord diagrams with n markers and k chords is the Narayana number

N(n− 3, k + 1): |CDn,k| = 1
k+1

(
n−4
k

)(
n−3
k

)
.

See Figure 3, where we visualize such a chord diagram D in the plane as a horizontal line with n

markers labeled {1, . . . , n} from left to right, and k nonintersecting chords above it, whose start and

end lie in the segments (ai, bi) and (ci, di) respectively. The definition imposes restrictions on the

chords: they cannot start before 1, end after n−1, or start or end on a marker. Two chords cannot

start in the same segment (s, s+ 1), and one chord cannot start and end in the same segment, nor

in adjacent segments. Two chord cannot cross.

We say that a chord is a top chord if there is no chord above it, e.g. D3 and D6 in Figure 3. One

natural way to label the chords is by D1, . . . , Dk such that for all 1 f j f k, Dj is the rightmost

top chord among the set of chords {D1, . . . , Dj} as in Figure 3. This is equivalent to sorting the

chords according to their ends.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D3

D1
D2

D6

D5 D4

D = {(3, 4, 5, 6), (5, 6, 8, 9), (1, 2, 8, 9), (10, 11, 12, 13), (9, 10, 12, 13), (8, 9, 13, 14)}

Figure 3. A chord diagram D with k = 6 chords n = 15 markers.

Definition 2.19 (Terminology for chords). A chord is a top chord if there is no chord above it,

and otherwise it is a descendant of the chords above it, called its ancestors, and in particular a child

of the chord immediately above it, which is called its parent. Two chords are siblings if they are

either top chords or children of a common parent. Two chords are same-end if their ends occur

in a common segment (e, e + 1), are head-to-tail if the first ends in the segment where the second

starts, and are sticky if their starts lie in consecutive segments (s, s+ 1) and (s+ 1, s+ 2).

Example 2.20. Consider the chord diagram in Figure 3. D4 has parent D5 and ancestors D5 and

D6. D1 and D2 are siblings, and D3 and D6 are siblings. Chords D2 and D3 are same-end, chords

D1 and D2 are head-to-tail, and chords D5 and D6 are sticky.

Remark 2.21. The definition of a chord diagram naturally extends to the case of a finite set of

markers N ¢ {1, . . . , n} rather than {1, . . . , n}, and a set K of chord indices rather than {1, . . . , k}.

We will always have that the largest marker is n ∈ N , the starts and ends of chords will be

consecutive pairs in N (and also N) and the rightmost top chord will be denoted by Dk = DmaxK .

The notion of chord subdiagram in Definition 2.22 is an example of this extended notion of chord

diagram.

Definition 2.22 (Left and right subdiagrams). Let D be a chord diagram in CDn,k. A subdiagram

is obtained by restricting to a subset of the chords and a subset of the markers which contains

both these chords and the marker n. Let Dk = (a, b, c, d) be the rightmost top chord of D, where

1 f a < b < c < d < n, and moreover a, b and c, d are consecutive.

In the case that d, n are consecutive as well we defineDL, the left subdiagram ofD, on the markers

NL = {1, 2, . . . , a, b, n} and the right subdiagram DR on NR = {b, . . . , c, d, n}. The subdiagram DL

contains all chords that are to the left of Dk , and DR contains the descendants of Dk .

Example 2.23. For the chord diagram D in Figure 3, the rightmost top chord is D6 = (8, 9, 13, 14),

so NL = {1, . . . , 9, 15} and DL = {D1, D2, D3}, while NR = {9, . . . , 15} and DR = {D4, D5}.

Definition 2.24 (Standard BCFW cell from a chord diagram). Let D be a chord diagram with

k chords on a set of markers N . We recursively construct from D a standard BCFW cell SD in

Grg0

k,N as follows:
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Figure 4. Recursive construction of a standard BCFW cell from a chord diagram
as in Definition 2.24. Top left (right): construction of D (GD) from D′ (G′) as in
(1a); bottom left (right) construction of D (GD) from DL, DR (GL, GR) as in (1b).

(1) If k = 0, then the BCFW cell is the trivial cell SD := Grg0

0,N .

(2) Otherwise, let Dk = (a, b, c, d) be the rightmost top chord of D and let p denote the penultimate

marker in N .

(a) If d ̸= p, let D′ be the subdiagram on N \ {p} with the same chords as D, and let SD′ be

the standard BCFW cell associated to D′. Then, we define SD := prep SD′ , which denotes

the standard BCFW cell obtained from SD′ by inserting a zero column in the penultimate

position p.

(b) If d = p, let SL and SR be the standard BCFW cells on NL and NR associated to the

left and right subdiagrams DL and DR of D. Then, we let SD := SL ▷◁ SR, the standard

BCFW cell which is their BCFW product as in Definition 2.12.

Example 2.25. The standard BCFW cell SD of the chord diagram D in Figure 3 is SL ▷◁ SR

where the chord subdiagrams DL, DR are as in Example 2.23. One can keep applying the recursive

definition and obtain:

SL = Gr0,{1,2,15} ▷◁
((
Gr0,{2,3,4,15} ▷◁ Gr0,{4,5,6,15}

)
▷◁ Gr0,{6,7,8,9,15}

)

SR = pre14
(
Gr0,{9,10,15} ▷◁

(
Gr0,{10,11,15} ▷◁ Gr0,{11,12,13,15}

))

2.5. BCFW cells from recipes. In this section, we review the conventions for labeling general

BCFW cells from [ELP+23, Section 6]. Each general BCFW cell may be specified by a list of

operations from Definition 2.13. The class of general BCFW cells includes the standard BCFW

cells, but is additionally closed under the operations of cyclic shift, reflection, and inserting a zero

column anywhere (cf. Definition 2.13) at any stage of the recursive generation. Since any sequence

of these operations can be expressed as preI followed by cycr followed by refls for some I, r, s, we

can specify in a concise form which ones take place after each BCFW product. We will record the

generation of a BCFW cell using the formalism of recipe in Definition 2.26.
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1 2 3 4 5 6 7 8 9 15

D3

D1
D2

9 10 11 12 13 14 15

D5

D4

Figure 5. The left diagram DL and the right diagram DR for the chord diagram
D in Figure 3.

Definition 2.26 (General BCFW cell from a recipe). A step-tuple on a finite index set N ¢ N is

a 4-tuple

((ai, bi, ci, di, ni), preIi , cyc
ri , reflsi),

where Ii ¦ N such that ni is the largest element in N \ Ii, ai < bi and ci < di < ni are both

consecutive in N \ Ii, 0 f ri < |N |, and si ∈ {0, 1}. A step-tuple records in order: a BCFW

product of two cells using indices (ai, bi, ci, di, ni); zero column insertions in positions Ii; applying

the cyclic shift ri times; applying reflection si times. Note that some of these operations may be

the identity. Each operation in a step-tuple which is not the identity is called a step.

A recipe r on N is either the empty set (the trivial recipe on N , denote rtrivN ), or a recipe rL on

NL followed by a recipe rR on NR followed by a step-tuple ((ak, bk, ck, dk, nk), preIk , cyc
rk , reflsk)

on N , where NL = (N \ Ik) ∩ {nk, . . . , ak, bk} and NR = (N \ Ik) ∩ {bk, . . . , ck, dk, nk}. We let Sr

denote the general BCFW cell on N obtained by applying the sequence of operations specified by

r. If r consists of k step-tuples, then Sr ¢ Grg0

k,N .

Example 2.27. Consider the recipe r consisting of the following sequence of 4 step-tuples:

((3, 4, 5, 6, 12), pre2), ((1, 2, 5, 6, 12), cyc
2, refl)), ((6, 7, 8, 9, 11), pre10,12), ((5, 6, 10, 11, 12), cyc

4, refl).

Figure 6 shows the plabic graph of the general BCFW cell Sr obtained from r following Definition 2.26.

Remark 2.28 (Recipe from a chord diagram). We now explain how a chord diagram D gives

rise to a recipe r(D). Let D be a chord diagram with k chords on a set of markers N . If k = 0,

r(D) is the trivial recipe on N . Otherwise, let (ak, bk, ck, dk) denote the rightmost top chord, let

n := maxN , and let Ik := {p ∈ N | dk < p < n}. Let D be the chord diagram obtained from

D by removing the markers in Ik, and let DL and DR be the left and right subdiagrams of D,

on marker sets NL ¦ N \ Ik and NR ¦ N \ Ik, respectively. Then the recipe r(D) from D is

recursively constructed as the recipe r(DL) followed by the recipe r(DR) followed by the step-tuple

((ak, bk, ck, dk, n), preIk) on N .

Example 2.29. We now illustrate Remark 2.28 on the chord diagram DL of Example 2.25, which

is pictured in Figure 5. In this case we obtain the recipe

r
triv
{1,2,15}, r

triv
{2,3,4,15}, r

triv
{4,5,6,15}, ((3, 4, 5, 6, 15)), r

triv
{6,7,8,9,15}, ((5, 6, 8, 9, 15)), ((1, 2, 8, 9, 15)).

Because our arguments are frequently recursive, we need some notation for the BCFW cells

obtained by deleting the final step of a recipe. We use the following notation throughout.



10 C. EVEN-ZOHAR, T. LAKREC, M. PARISI, M. SHERMAN-BENNETT, R. TESSLER, AND L. WILLIAMS

Figure 6. Illustration of building up a BCFW cell using the recipe r of
Example 2.27. Box i shows the result after the first i step-tuples. The result of
the step (ai, bi, ci, di, ni) is shown on the left in each box, and the results of the steps
preIi , cyc

ri and reflsi are shown on the right.

Notation 2.30. Let r be a recipe for a BCFW cell S ∈ Grg0

k,N . Let FStep denote the final

step, which is either (ak, bk, ck, dk, nk), preIk , cyc or refl. If FStep ̸= (ak, bk, ck, dk, nk), then we let p

denote the recipe obtained by replacing FStep with the identity. Note that Sp is again a BCFW cell.

If FStep = (ak, bk, ck, dk, nk), let rL and rR denote the recipes on NL and NR as in Definition 2.26.

Then rL, rR are recipes for BCFW cells SL ¢ Grg0

kL,NL
and SR ¢ Grg0

kR,NR
and S = SL ▷◁ SR. Note

that to avoid clutter, we will usually use L,R as subscripts rather than writing SrL , SrR .

Remark 2.31. In contrast with the bijective correspondence between standard BCFW cells and

chord diagrams, multiple recipes could give rise to the same general BCFW cell. Even the sets of 5

indices that are involved in the BCFW products are not uniquely determined by the resulting cell.

3. Background: cluster algebra and BCFW tiles

In this section we review some of the connections between BCFW tiles and the cluster algebra

of the Grassmannian Gr4,n. See e.g. [ELP+23, Section 3] for a relevant review on cluster algebras.
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3.1. Product promotion. A key ingredient for connecting BCFW tiles to cluster algebras is

product promotion – a map which is the algebraic counterpart of the BCFW product.

Definition 3.1. Using Notation 2.10, product promotion is the homomorphism

ΨB = Ψ : C(Ĝr4,NL
)× C(Ĝr4,NR

) → C(Ĝr4,n),

induced by the following substitution:

on Ĝr4,NL
: b 7→

(ba) ∩ (cdn)

ïa c d nð
,

on Ĝr4,NR
: n 7→

(ba) ∩ (cdn)

ïa b c dð
, d 7→

(dc) ∩ (abn)

ïa b c nð
.

The vector (ij) ∩ (rsq) := viïj r s qð − vjïi r s qð = −vrïi j s qð + vsïi j r qð − vqïi j r sð is in the

intersection of the 2-plane and the 3-plane spanned by vi, vj and vr, vs, vq, respectively.

Theorem 3.2 below says7 that Ψ is a quasi-homomorphism from the cluster algebra8 C[Ĝr
◦

4,NL
]×

C[Ĝr
◦

4,NR
] to the cluster algebra C[Ĝr

◦

4,n]. See [ELP+23, Definition 3.23] or [Fra16, Definition 3.1,

Proposition 3.2] for the definition of a quasi-homomorphism.

Theorem 3.2. [ELP+23, Theorem 4.7] Product promotion Ψ is a quasi-homomorphism of cluster

algebras. In particular, Ψ maps a cluster variable (respectively, cluster) of C[Ĝr
◦

4,NL
]×C[Ĝr

◦

4,NR
], to

a cluster variable (respectively, sub-cluster) of C[Ĝr
◦

4,n], up to multiplication by Laurent monomials

in T ′ := {ïa b c nð, ïa b c dð, ïb c d nð, ïa c d nð}.

Remark 3.3. Definition 3.1 and Theorem 3.2 extend also to the degenerate cases, e.g. for a = 1

(upper promotion), where Ψ : C(Ĝr4,NR
) → C(Ĝr4,n), see [ELP+23, Section 4.3].

Definition 3.4. Let x be a cluster variable of C[Ĝr
◦

4,NL
] or C[Ĝr

◦

4,NR
]. We define the rescaled

product promotion Ψ(x) of x to be the cluster variable of Gr4,n obtained from Ψ(x) by removing9

the Laurent monomial in T ′ (c.f. Theorem 3.2).

The fact that product promotion is a cluster quasi-homomorphism may be of independent interest

in the study of the cluster structure on Gr4,n. Much of the work thus far on the cluster structure

of the Grassmannian has focused on cluster variables which are polynomials in Plücker coordinates

with low degree; by contrast, the cluster variables we obtain can have arbitrarily high degree in

Plücker coordinates. We introduce the following notation:

(1) ïa b c | d e | f g hð := ïa b c (d e) ∩ (f g h)ð = ïa b c dð ïe f g hð − ïa b c eð ïd f g hð.

More generally, we consider polynomials called chain polynomials of degree s + 1 as follows (see

[ELP+23, Definition 2.5]):

ïa0 b0 c0 | d1,0 d1,1 | b1 c1 | d2,0 d2,1 | b2 c2 | . . . | ds,0 ds,1 | bs cs asð

=
∑

t∈{0,1}s

(−1)t1+···+ts ïa0 b0 c0 d1,t1ð ïd1,1−t1 b1 c1 d2,t2ð ïd2,1−t2 b2 c2 d3,t3ð · · · ïds,1−ts bs cs asð
(2)

7We will sometime omit the dependence on the indices B = {a, b, c, d, n} in Ψ (and Ψ) for brevity.
8
C[Ĝr

◦

4,NL
]× C[Ĝr

◦

4,NR
] is a cluster algebra where each seed is the disjoint union of a seed of each factor.

9If x = ïbcdnð, then Ψ(x) = Ψ(x) = x.
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Example 3.5. ForNL andNR as in Example 2.16, the only Plücker which changes is: Ψ(ï1 2 4 7ð) =

ï1 2 7|3 4|5 6 7ð/ï3 4 6 7ð, and Ψ(ï1 2 4 7ð) = ï1 2 7|3 4|5 6 7ð which is a quadratic cluster variable in

Gr4,7, e.g. obtained by mutating ï2367ð in the rectangle seed Σ4,7 (see [ELP+23, Definition 3.12]).

3.2. Coordinate cluster variables. Using rescaled product promotion and Definition 2.3, we

associate to each recipe r a collection of compatible cluster variables x(r) for Gr4,n. This will

allow us to describe each (open) tile as the subset of the Grassmannian Grk,k+4 where these cluster

variables take on particular signs.

Definition 3.6 (Coordinate cluster variables of BCFW cells). Let Sr ¢ Grg0

k,n be a BCFW cell.

We use Notation 2.30. The coordinate cluster variables x(r) := {·̄ri} for Sr are defined recursively

as follows:

• If FStep = (a, b, c, d, n) =: B, then we define

³̄r
k := ïb c d nð, ¯́r

k := ïa c d nð, µ̄rk := ïa b d nð, ¶̄rk := ïa b c nð, ε̄rk := ïa b c dð

and for i ̸= k, ·̄ri :=

{
ΨB(·̄

L
i )

ΨB(·̄
R
i )

if the ith step-tuple is in

{
rL

rR

.

• If FStep =





refl

cyc

preIk

then ·̄ri :=





refl∗ ·̄pi

cyc−∗ ·̄pi

·̄pi

.

Note that x(r) depends on the recipe r rather than just the BCFW cell.

Notation 3.7. Given a cluster variable x in Gr4,n, we will denote by x(Y ) the functionary on

Grk,k+4 obtained by identifying Plücker coordinates ïIð in Gr4,n with twistor coordinates ïïIðð in

Grk,k+4 (cf. Definition 2.8).

Interpreting each cluster variable as a functionary, we describe each BCFW tile as the semialgebraic

subset of Grk,k+4 where the coordinate cluster variables take on particular signs. This appears as

Corollary 7.12 in [ELP+23]:

Theorem 3.8 (Sign description for general BCFW tiles). Let Zr be a general BCFW tile. For

each element x of x(r), the functionary x(Y ) has a definite sign sx on Z◦
r and

Z◦
r = {Y ∈ Grk,k+4 : sx x(Y ) > 0 for all x ∈ x(r)}.

Example 3.9 (Coordinate cluster variables). The coordinate cluster variables for Sr in Figure 6

are obtained by applying the recursion in Definition 3.6:

i ³̄i
¯́
i µ̄i ¶̄i ε̄i

1 ï7 8 9 | 4 3 | 9ABð ï6 8 9 | 4 3 | 9ABð ï9AB | 3 4 | 6 7 | 8 9 | 3 4 5ð ï6 7 8 | 4 5 | 8 9 | 3 4 | 9ABð ï6 7 8 9ð

2 ï5 8 9 | 4 3 | 9ABð ï3 4 8 9ð ï3 4 5 9ð ï3 4 5 8ð ï4 5 8 9ð

3 ï1 2C |BA | 3 4 9ð ï1 3C |AB | 3 4 9ð ï2 3C |AB | 3 4 9ð ï1 2 3 |BA | 3 4 9ð ï1 2 3Cð

4 ï3 9ABð ï4 9ABð ï3 4 9Að ï3 4 9Bð ï3 4ABð
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See [ELP+23, Example 7.4] for more details.

3.3. BCFW tiles. In [ELP+23, Section 7] we proved that BCFW cells give tiles of the amplituhedron

An,k,4(Z) by explaining how to invert the amplituhedron map Z̃ on the image Z◦
r = Z̃(Sr) of each

BCFW cell Sr. For each point Y ∈ Z◦
r , the pre-image Z̃−1(Y ) is a point in Grg0

k,n represented

by the twistor matrix M tw
r (Y ), whose entries are expressed in terms of ratios of the coordinate

functionaries {·ri (Y )}5ki=1 of Sr, see [ELP+23, Definition 7.1]. The coordinate functionaries are

defined recursively in a similar way as in Definition 3.6 using product promotion. Moreover, they

can be used to give a semilagebraic description of the tile. This is summarized in the theorem

below, which appears as [ELP+23, Theorem 7.7].

Theorem 3.10 (General BCFW cells give tiles). Let Sr be a general BCFW cell with recipe r. Then

for all Z ∈ Mat>0
n,k+4, Z̃ is injective on Sr and thus Zr is a tile. In particular, given Y ∈ Z̃(Sr), the

unique preimage of Y in Sr is given by (the rowspan of) of the twistor matrix M tw
r (Y ). Moreover,

Z◦
r = {Y ∈ Grk,k+4 : ·

r
i (Y ) > 0 for all coordinate functionaries of Sr}.

For functionaries, we can introduce a similar notation as for the chain polyonmials in Equation (1):

(3) ïïa b c | d e | f g hðð = ïïa b c dðð ïïe f g hðð − ïïa b c eðð ïïd f g hðð.

More generally, we define chain functionaries of degree s + 1 to be the polynomials obtained

from Equation (2) by replacing Plücker coordinates ïIð by twistor coordinates ïïIðð. See [ELP+23,

Definition 2.19].

Example 3.11 (Coordinate functionaries). The coordinate functionaries for Sr in Figure 6 are:

i ³i(Y ) ´i(Y ) µi(Y ) ¶i(Y ) ϵi(Y )

1 ïï7 8 9 | 4 3 | 9ABðð
ïï3 4 9Aðð

−
ïï6 8 9 | 4 3 | 9ABðð

ïï4 9ABðð
ïï9AB | 3 4 | 6 7 | 8 9 | 3 4 5ðð

ïï3 4 5 8ððïï4 9ABðð
−

ïï6 7 8 | 4 5 | 8 9 | 3 4 | 9ABðð
ïï4 5 8 9ððïï4 9ABðð

ïï6 7 8 9ðð

2 −
ïï5 8 9 | 4 3 | 9ABðð

ïï4 9ABðð
ïï3 4 8 9ðð ïï3 4 5 9ðð −ïï3 4 5 8ðð ïï4 5 8 9ðð

3 −
ïï1 2C |B A | 3 4 9ðð

ïï3 4 9Bðð
−

ïï1 3C |AB | 3 4 9ðð
ïï3 4 9Bðð

ïï2 3C |AB | 3 4 9ðð
ïï3 4 9Bðð

−
ïï1 2 3 |B A | 3 4 9ðð

ïï3 4 9Bðð
ïï1 2 3Cðð

4 −ïï3 9ABðð ïï4 9ABðð ïï3 4 9Aðð −ïï3 4 9Bðð ïï3 4ABðð

See [ELP+23, Example 7.2] for more details.

For a standard BCFW tile ZD, we call the coordinate cluster variables domino cluster variables or

simply domino variables, and denote them as x(D) = {³̄i, ¯́i, µ̄i, ¶̄i, ε̄i | 1 f i f k}. See [ELP+23,

Theorem 8.4] for explicit formulas for the domino variables. The formulas have different cases

depending on whether certain chords are head-to-tail siblings, same-end parent and child, or sticky

parent and child (cf. terminology in Definition 2.19).

Example 3.12 (Domino cluster variables). The domino cluster variables x(D) for the chord

diagram D in Figure 3 are as follows. We will denote (10, 11, 12, 13, 14, 15) as (A,B,C,D,E, F ).
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i ³̄i
¯́
i µ̄i ¶̄i ε̄i

1 ï4 5 6 | 2 1 | 8 9F ð ï3 5 6 | 2 1 | 8 9F ð ïF 8 9 | 2 1 | 3 4 | 5 6 | 8 9F ð ï3 4 5 | 2 1 | 8 9F ð ï3 4 5 6ð

2 ï6 8 9F ð ï5 8 9F ð ïF 1 2 | 5 6 | 8 9F ð ï5 6 8 | 2 1 | 8 9F ð ï5 6 8 9ð

3 ï2 8 9F ð ï1 8 9F ð ïF 1 2 | 8 9 |DE F ð ï1 2 8F ð ï1 2 8 9ð

4 ïBC D | 9 8 |DE F ð ¯́
4 = ³̄5 ï8 9ABð ï9ABCð ïABC Dð

5 ïAC D | 9 8 |DE F ð ï8 9C Dð ï8 9ADð ï8 9ACð ï9AC Dð

6 ï9DE F ð ï8DE F ð ï8 9E F ð ï8 9DF ð ï8 9DEð

See [ELP+23, Example 8.5] for more details.

Definition 3.13 (Mutable and frozen domino variables). Let D ∈ CDn,k be a chord diagram,

corresponding to a standard BCFW tile ZD in An,k,4(Z). Let Froz(ZD) denote the following

collection of domino cluster variables:

• ³̄i unless Di has a sticky child

• ¯́
i unless Di starts where another chord ends or Di has a same-end sticky parent.

• µ̄i in all cases.

• ¶̄i unless Di has a same-end child.

• ε̄i unless Di has a same-end child.

Let Mut(ZD) denote the complementary set of domino variables, i.e. Mut(ZD) = x(D)\Froz(ZD).

Remark 3.14. One can show (see [ELP+23, Remark 8.2]) that if Di has a same-end sticky parent

Dp, then ¯́
i = ³̄p.

Example 3.15 (Mutable and frozen domino variables). Let ZD be the tile with the chord diagramD

from Figure 3 and domino variables as in Example 3.12. Among those, the mutable variables are:

³̄5, ³̄6, ¯́
2, ¯́

4, ¯́
6, ¶̄3, ¶̄5, ε̄3, ε̄5 ∈ Mut(ZD).

Hence Froz(ZD) consists of the remaining 21 domino variables. Note that ³̄5 = ¯́
4 by Remark 3.14.

Definition 3.16 (The seed ΣD of a BCFW tile ZD). Let D ∈ CDn,k be a chord diagram, and

ZD the corresponding BCFW tile. We define a seed ΣD = (x(D), QD) as follows. The extended

cluster x(D) has the sets Mut(ZD) of mutable cluster variables and Froz(D) of frozen variables

(recall Definition 3.13). To obtain the quiver QD, we consider each chord Di in turn, check if it

satisfies any of the conditions in the table below, and if so, we draw the corresponding arrows.
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C
on

d
it
io
n

j i
j

i
j

i

head-to-tail left sibling Dj same-end child Dj sticky child Dj

A
rr
ow

s µ̄j ¶̄j

³̄i ¯́
i

µ̄i ¶̄i ε̄i

µ̄j ¶̄j ε̄j

³̄i ¯́
iε̄i

³̄jε̄j

if same-end

If Di has sticky same-end child Dj then the dotted arrow from ³̄i to ε̄i appears, along with the

usual arrows of the “sticky” and “same-end” cases. In view of Remark 3.14, in this case ³̄i stands

also for ¯́
j as they are equal.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

D3

D1
D2

D6

D5 D4

Figure 7. The seed ΣD associated to the chord diagram D above (also in Figure 3).
The variables x(D) are as in Example 3.12. The mutable variables Mut(ZD) are
circled; the other variables are the frozen variables Froz(ZD). The colors (red, green,
blue) indicate the different cases of Definition 3.16.

Example 3.17 (Seed of a standard BCFW tile). The seed ΣD from Figure 7 is built from

Definition 3.16 by applying the rules for the following conditions. Head-to-tail left siblings: (i, j) ∈

{(2, 1), (6, 3)}; same-end child: (i, j) ∈ {(3, 2), (5, 4)}; sticky child: (i, j) ∈ {(6, 5), (5, 4)}.

Theorem 3.18 appears as Theorems 9.10 in [ELP+23].
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Theorem 3.18 (The seed of a standard BCFW tile is a subseed of a Gr4,n seed). Let D ∈

CDn,k. The seed ΣD = (x(D), QD) is a subseed of a seed for Gr4,n. Hence every cluster variable

(respectively, exchange relation) of A(ΣD) is a cluster variable (resp., exchange relation) for Gr4,n.

The following theorem characterizes the open BCFW tile Z◦
D in terms of any extended cluster

of A(ΣD). It generalizes Theorem 3.8 for standard BCFW tiles and it appears as Theorem 9.11 in

[ELP+23].

Theorem 3.19 (Positivity tests for standard BCFW tiles). Let D ∈ CDn,k. Using Notation 3.7,

every cluster and frozen variable x in A(ΣD) is such that x(Y ) has a definite sign sx ∈ {1,−1} on

the open BCFW tile Z◦
D, and

(4) Z◦
D = {Y ∈ Grk,k+4 : sx · x(Y ) > 0 for all x in any fixed extended cluster of A(ΣD)}.

The signs of the domino variables in Theorem 3.19 are given by [ELP+23, Proposition 8.10].

Example 3.20 (Positivity test for a standard BCFW tiles). For the tile ZD with chord diagram

D in Figure 7 and x(D) as in Example 3.12:

Z◦
D = {Y ∈ Gr6,10 : sx · x(Y ) > 0 for all x ∈ x(D)},

where the signs sx are negative if x is among: ³̄2, ³̄3, ³̄5 = ¯́
4, ¯́

1, ¯́
6, µ̄2, ¶̄1, ¶̄5, ¶̄6. Otherwise,

sx is positive.

The following result appears as [ELP+23, Theorem 7.16].

Theorem 3.21 (Cluster adjacency for general BCFW tiles). Let Zr be a general BCFW tile of

An,k,4(Z). Each facet ZS of Zr lies on a hypersurface cut out by a functionary FS(ïïIðð) such that

FS(ïIð) ∈ x(r). Thus {FS(ïIð) : ZS a facet of Zr} consists of compatible cluster variables of Gr4,n.

4. Facets of BCFW tiles

The main goal of this section is to prove Theorem 4.1, which characterizes the facets of standard

BCFW tiles; this proof is in Section 4.1 and Section 4.2. Then in Section 4.3 we also state (without

proof) a characterization of the facets of general BCFW tiles.

4.1. Facets of standard BCFW tiles.

Theorem 4.1 (Frozen variables as facets). Let D ∈ CDn,k be a chord diagram, corresponding

to a standard BCFW tile ZD in An,k,4(Z). Then for each cluster variable ·̄i ∈ Froz(ZD) (cf.

Definition 3.13) there is a unique facet of ZD which lies in the zero locus of the functionary ·̄i(Y );

the plabic graph of this facet is constructed in Theorem 4.11. Moreover, for any Z, there are no

other facets of ZD.

We need several lemmas in order to prove Theorem 4.1. The first two are consequences of the

Cauchy-Binet formula for the twistors (see, e.g., [ELP+23, Lemma 2.16]). We recall the notion of

coindependence ([ELP+23, Definition 5.5])

Definition 4.2. Let V ∈ Grg0
k,n. A subset I ¦ [n] is coindependent for V if V has a nonzero Plücker

coordinate ïJðV , such that J ∩ I = ∅. If k = 0 we declare all subsets to be coindependent. If S is a

positroid cell in Grg0
k,n, then J is coindependent for S if J is coindependent for the elements of S.
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Lemma 4.3. Let I = {i1, . . . , im} ∈
(
[n]
m

)
. If ïïCZ,Zi1 , . . . , Zimðð ̸= 0, then I must be coindependent

for C ∈ Grg0

k,n.

Proof. If ïïCZ,Zi1 , . . . , Zimðð ≠ 0, then by the second equation of [ELP+23, Lemma 2.16], there

must be some J such that ïJðC ̸= 0 and J ∩ I = ∅. This means that I is coindependent for C. □

Definition 4.4 ([ELP+23, Definition 11.1]). We say that functionary F has a strong sign on a

positroid cell S if there exists an expansion of F (Z̃(C)), for C ∈ S, as a sum of monomials in the

Plücker coordinates of C and the minor determinants of Z all of whose coefficients have the same

sign.

Lemma 4.5. Let I ∈
(
[n]
4

)
, and let S be a cell of Grg0

k,n. Suppose that ïïIðð has a strong sign on

Z◦
S, but for some cell S′ ¢ S, we have ïïIðð = 0 on ZS′. Then for each J ∈

([n]
k

)
disjoint from I, we

must have ïJðC = 0 for all C ∈ S′. In other words, I is not coindependent for S′.

Proof. Since ïïIðð has a strong sign on ZS , all nonzero terms of [ELP+23, Lemma 2.16], which

necessarily come from J for which J and I are disjoint, must have the same sign. Since ïïIðð = 0

on ZS′ , all the above nonzero terms must vanish when we go to the cell S′ in the boundary of S.

But this means that all Plücker coordinates ïJð, with J disjoint from I, must vanish on S′. □

Lemma 4.6. Let SL ¢ Grg0
kL,NL

and SR ¢ Grg0
kR,NR

be positroid cells, with plabic graphs GL and

GR. Let G = GL ▷◁ GR. If {a, b, n} fails to be coindependent for SL or {b, c, d, n} fails to be

coindependent for SR, then for each I ∈
(
{a,b,c,d,n}

4

)
, we have ïïIðð = 0 on ZG.

Proof. We will prove the contrapositive. Suppose that for some I ∈
(
{a,b,c,d,n}

4

)
, we have ïïIðð ̸= 0

on ZSG
. Then by Lemma 4.3, I must be coindependent for the cell SG. Then by [ELP+23, Remark

5.6], the plabic graph G must have a perfect orientation O where all boundary vertices in I are

sinks. But now it is a simple exercise to check that if in the graph GL ▷◁ GR which appears in

Figure 8 (ignoring the arrows) we put sinks at the (outer) boundary vertices I, then there is a

unique way to complete this to a perfect orientation of the “butterfly” portion of the graph. And

in particular, this orientation will include the directed edges shown in Figure 8. But then the

perfect orientation O, restricted to GL and GR, must have sinks at vertices a, b, n of GL, and at

vertices b, c, d, n of GR. But then {a, b, n} and {b, c, d, n} must be coindependent for SL and SR,

respectively. □

Lemma 4.7. For every cell S ¦ ∂SD in the boundary of a standard BCFW cell SD,

ZS ¦ ∂ZD.

So Z◦
D is the interior of ZD and ∂Z◦

D = ∂ZD = Z̃(∂SD).

Proof. The second and third statements follows from the first, using [ELP+23, Corollary 11.17].

We now focus on proving the first statement. It is enough to prove it for facets, since images

of boundary cells of higher codimensions are contained in the closure of the images of facets. By

[ELT21, Proposition 7.10], each facet S of SD is either a facet of another BCFW cell SD′ or its

image ZS lies in the zero locus of a twistor coordinate ïïi, i+ 1, j, j + 1ðð for some i, j.

In the former case it follows that for every p ∈ Z◦
S , every open neighborhood of p intersects

both Z◦
D and Z◦

D′ . By [ELT21, Theorem 1.4], which shows that the images of different standard
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Figure 8.

BCFW cells do not intersect, we have that Z◦
D ∩Z◦

D′ = ∅. Therefore Z◦
S is indeed in the topological

boundary of ZD.

For the latter case, [ELT21, Proposition 8.1] shows that the intersection of the hypersurface

{ïïi, i+1, j, j+1ðð = 0} with An,k,4(Z) is contained in the topological boundary ∂An,k,4(Z). Hence

if ZS lies on this hypersurface, ZS must also be contained in the topological boundary of ZD. □

Lemma 4.8. Let D be a standard BCFW cell, and let À1, À2 ∈ x(D) be two different domino

cluster variables for ZD. Then the intersection of zero loci of À1(Y ), À2(Y ) (the natural identification

between functionaries and homogenous polynomials in Plücker coordinates is explained in [ELP+23,

Notation 7.11]) meets ZD in codimension greater than 1. It follows that for each mutable cluster

variable À ∈ Mut(D), the zero locus of À(Y ) intersects ZD in codimension greater than one.

The proof of Lemma 4.8 is postponed to the next subsection.

Theorem 4.9. Let S = SL ▷◁ SR be a BCFW cell, and suppose I ∈
(
{a,b,c,d,n}

4

)
. Then there is at

most one facet S′ of S, such that among the five twistor coordinates coming from
(
{a,b,c,d,n}

4

)
, only

ïïIðð vanishes on ZS′. To construct the potential facet, we start from the graph in Figure 9 and

remove the edge labeled by x12 (respectively, x10, x6, x8, x1), obtaining a graph G(i) corresponding

to a cell S(i) (for 1 f i f 5) such that ïïabcdðð (respectively, ïïabdnðð, ïïbcdnðð, ïïacdnðð, ïïabcnðð)

is the unique twistor coordinate coming from
(
{a,b,c,d,n}

4

)
which vanishes on Z̃(S(i)). Moreover, we

can realize the elements of S(1) using path matrices which have a row whose support is precisely

{a, b, c, d} (and similarly for the other S(i)). If G(i) is reduced, then S(i) is the desired facet S′.

Proof. Let GL and GR be reduced plabic graphs corresponding to SL and SR. By [Pos06, Theorem

18.5] (see also [ELP+23, Theorem B.14] ), any cell S′ of codimension 1 in S comes from a plabic

graph G′ obtained by removing an edge e from GL ▷◁ GR. Such an edge could be in GL or GR

or in the “butterfly.” Choose I from
(
{a,b,c,d,n}

4

)
. We first claim that if ïïIðð is the unique twistor

coordinate among
(
{a,b,c,d,n}

4

)
which vanishes on ZS′ , then edge e must come from the butterfly.

Suppose e does not come from the butterfly. Then G′ = G′
L ▷◁ G′

R, where either G′
L = GL

and G′
R is obtained from GR by removing an edge e, or vice versa. Since we are assuming the

twistor coordinates from
(
{a,b,c,d,n}

4

)
which are not ïïIðð do not vanish on ZS′ , Lemma 4.6 implies

that {a, b, n} is coindependent for the cell of G′
L, and {b, c, d, n} is coindependent for the cell of
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G′
R. Hence G′

L and G′
R have perfect orientations where {a, b, n} and {b, c, d, n} are sinks. But now

by [ELP+23, Lemma 10.4], all elements of
(
{a,b,c,d,n}

4

)
are coindependent for S′, the cell associated

to G′
L ▷◁ G′

R. Meanwhile we know by [ELP+23, Lemma 11.6] that ïïIðð has a strong sign on ZS .

Therefore by Lemma 4.5, I is not coindependent for S′. This is a contradiction.

Now we know that if ïïIðð is the unique twistor coordinate among
(
{a,b,c,d,n}

4

)
which vanishes on

ZS′ , then S′ has a plabic graph which is obtained from GL ▷◁ GR by removing an edge e from

the butterfly. Let us choose perfect orientations of GL and GR where {a, b, n} and {b, c, d, n} are

sinks. We can then complete this to a perfect orientation of G = GL ▷◁ GR with a source at d, as

in Figure 9.

Figure 9. A perfect orientation of the butterfly, and the nonzero entries of row d
in the associated path matrix.

Then the path matrix C associated to this perfect orientation has a row indexed by d with

exactly five nonzero entries in positions a, b, c, d, n. If we weight the edges of G as in Figure 9, the

row d of the path matrix is exactly as shown in the bottom of Figure 9.

Now notice that if we delete the edge e labeled by x12, i.e. if x12 = 0, then our perfect orientation

restricts to a perfect orientation of the remaining subgraph, and when we construct the path matrix

C ′, row d will have support {a, b, c, d}. Thus the path matrix C ′, representing points of a cell S(1),

will fail to be coindependent at {a, b, c, d} and hence the twistor coordinate ïïa, b, c, dðð will vanish

on ZS(1) . However, we can still find perfect orientations of the “butterfly \{e}” with sinks at the

other four elements of
(
{a,b,c,d,n}

4

)
, which all include n. So these other four twistor coordinates will

not vanish on ZS(1) .

Similarly, if we delete the edge e labeled by x10, then row d will have support {a, b, d, n},

and the analogous argument shows that the associated cell S(2) will fail to be coindependent at

{a, b, d, n}. Moreover ïïa, b, d, nðð will be the unique twistor among
(
{a,b,c,d,n}

4

)
which vanishes on

ZS(2) . Meanwhile, if we delete the edge e labeled by x6 (respectively, x8), we get a cell S(3)
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(respectively, S(4)) for which ïïb, c, d, nðð (respectively, ïïa, c, d, nðð) is the unique twistor among(
{a,b,c,d,n}

4

)
which vanishes on the image of the cell under Z̃.

In order to discuss what happens when we delete the edge labeled by x1, we first need to construct

a new perfect orientation O′, by reversing the directed path from d to n. Then when we delete the

edge labeled by x1, O
′ restricts to a perfect orientation, and the associated path matrix has a row

indexed by n whose support is {a, b, c, n}. As before ïïa, b, c, nðð will be the unique twistor among(
{a,b,c,d,n}

4

)
which vanishes on ZS(5) .

This constructs the plabic graphs G(i) corresponding to the cells S(i) (for 1 f i f 5) whose

existence the theorem predicts. If G(i) is reduced, then S(i) is a facet of S, as desired.

To show that no other cells have the desired properties, we show that if we delete any other edge

of the butterfly, we get a cell S′ such that at least two twistors coordinates among
(
{a,b,c,d,n}

4

)
vanish

on ZS′ . For example if we delete the edges labeled x2 or x4, we still have a perfect orientation but

now row d of the path matrix C ′ has support at most three, which means that at least two twistor

coordinates among
(
{a,b,c,d,n}

4

)
will vanish on C ′Z. To analyze what happens if we delete any of the

other edges we have to change the perfect orientation, but in all cases our path matrix C ′ will have

a row whose support is a 1, 2, or 3-element subset of {a, b, c, d, n}, which means that at least two

twistor coordinates among
(
{a,b,c,d,n}

4

)
will vanish on C ′Z. □

Lemma 4.10. Let S be a standard BCFW cell, and let Ã be its trip permutation. Then Ã(n) /∈

{1, n− 1, n− 2}, and Ã(1) ̸= n− 1.

Proof. This follows from the Le-diagram description of standard BCFW cells from [KWZ20, Definition

6.2], or the related ·-diagram description given in [ELT21, Definition 2.24]. □

Theorem 4.11 (Plabic graphs for potential facets of standard BCFW tile). Let G = GL ▷◁ GR be

a reduced plabic graph for the standard BCFW cell S = SL ▷◁ SR associated to a chord diagram D

with top chord Dk . Use the notation of Theorem 4.9 and Figure 9, and identify the labels of edges

of G with the edges themselves.

(³). If Dk does not have a sticky child, then G \ {x6} is reduced.10

(´). Dk does not start where another chord ends if and only if G \ {x8} is reduced.

(µ). The graph G \ {x10} is reduced.

(¶). Dk does not have a same-end child if and only if G \ {x1} is reduced.

(ϵ). Dk does not have a same-end child if and only if G \ {x12} is reduced.

Before proving the theorem, we recall a useful lemma.

Lemma 4.12. [Pos06, Lemma 18.9] Let G be a reduced plabic graph with trip permutation Ã, let

e be an edge of G, and let T1 : i → Ã(i) and T2 : j → Ã(j) be the two trips in G that pass through

e (the trips will pass through this edge in two different directions). Then G \ {e} is reduced if and

only if the pair (i, Ã(i)) and (j, Ã(j)) is a simple crossing in Ã.

Proof of Theorem 4.11. Case (³). If Dk does not have a sticky child, then GR has a black lollipop

at b. This means that in G, the edge connecting vertex b in GR to the “butterfly” can be contracted.

The trips going through edge x6 are shown in Figure 10. Since these two trips end at adjacent

10The converse may not be true.
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Figure 10. If Dk does not have a sticky child, then G \ {x6} is reduced.

boundary vertices, they must be part of a simple crossing. Therefore by [Pos06, Lemma 18.9],

G \ {x6} is reduced.

Figure 11. Left: if Dk does not start where another chord ends then G \ {x8} is
reduced. Right: if Dk starts where another chord ends then G\{x8} is non-reduced.

Case (´). Suppose that Dk does not start where another chord ends. Then GL has a black

lollipop at vertex b, which means that the edge (shown dashed in Figure 11) connecting that vertex

to the butterfly can be contracted. The two trips which pass through x8 are shown in pink and

green in Figure 11. By Lemma 4.10, ÃGL
(n) ̸= a and so the pink trip in G must start at the left

part of the graph, i.e. at some element in {1, 2, . . . , a − 1}. We also claim that the pink trip in G

must end at the right part of the graph, i.e. at some element in {b+ 1, b+ 2, . . . , c− 1}, otherwise

the pink and green trips would have a bad double crossing and G would fail to be reduced [Pos06,

Theorem 13.2]. But now it is clear that the pink and green trips must form a simple crossing,

because there is no other trip in G that starts at an element of {1, 2, . . . , a} and ends at an element

of {b+ 1, b+ 2, . . . , c− 1}. Therefore by [Pos06, Lemma 18.9], G \ {x8} is reduced.

Now suppose that Dk starts where another chord ends. Then GL has the form shown at the

right of Figure 11: in particular, the vertices a and b of GL are connected by a black-white bridge.

But then when we delete edge x8, the resulting graph has a configuration of vertices which is

move-equivalent to a bubble (cf [ELP+23, Definition B.2]), as shown in the right of Figure 11.

Therefore G \ {x8} is not reduced.

Case (µ). The two trips passing through x10 are shown in Figure 12. Since these two trips end

at c and d, there cannot be another trip ending between c and d, hence they represent a simple

crossing. Therefore by Lemma 4.12, G \ {x10} is reduced.

Case (¶). Suppose that Dk does not have a same-end child. Then D does not have another chord

ending at (c, d), and hence in GR, the vertex d will be a black lollipop that can be contracted. First
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Figure 12. The graph G \ {x10} is reduced.

Figure 13. Left: If Dk does not have a same-end child and D has no chord ending
at (c−1, c), then G\{x1} is reduced. Middle: If Dk does not have a same-end child
and D does have a chord ending at (c− 1, c), then G \ {x1} is reduced. Right: if Dk

has a same-end child then G \ {x1} is not reduced.

suppose there is no chord in D ending at (c − 1, c), then there is also a lollipop in GR at c, and

G looks as shown at the left of Figure 13. Then one of the trips through edge x1 goes from c to

d, so the two trips passing through x1 must form a simple crossing. Therefore by [Pos06, Lemma

18.9], G \ {x1} is reduced. Now suppose there is a chord in D ending at (c − 1, c). Then G looks

as shown in the middle of Figure 13. By Lemma 4.10, ÃGR
(1) ̸= n− 1 and ÃGR

(n) ̸= n− 1, so the

pink trip must start at an element of {b+1, . . . , c− 1}. Similarly, by Lemma 4.10, ÃGL
(n) ̸= n− 2

and ÃGL
(n) ̸= n − 1, so the green trip must end at an element of {1, 2, . . . , a − 1}. But now the

pink and green trips must form a simple crossing, because there is no other trip that can start at

an element of {b + 1, . . . , c − 1} and end at an element of {1, 2, . . . , a − 1}. Therefore G \ {x1} is

reduced.

Now suppose that Dk has a same-end child. Then GR has a black-white bridge at vertices c, d,

and when we delete {x1}, G \ {x1} looks as in the right of Figure 13. We obtain a face which is

move-equivalent to a bubble, so G \ {x1} is not reduced.

Case (ϵ). Suppose that Dk does not have a same-end child. Then GR has a black lollipop

(which can be contracted), and hence the two trips passing through x12 are as shown at the left

of Figure 14. Since these two trips start at adjacent vertices d and n, they must form a simple

crossing. Therefore by [Pos06, Lemma 18.9], G \ {x12} is reduced.

Now suppose that Dk does have a same-end child. Then GR has a black-white bridge, as shown

in the right of Figure 14. GR is itself the plabic graph of a standard BCFW cell, so we can write

it as GR = GL′ ▷◁ GR′ . If d is a black lollipop in GR′ , then we can contract the edge joining that

lollipop to the butterfly in Gr, and then we find that region R1 in Figure 14 is move-equivalent to a
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Figure 14. Left: if Dk does not have a same-end child then G \ {x12} is reduced.
Right: if Dk has a same-end child then G \ {x12} is not reduced.

bubble. On the other hand, if d is not a black lollipop in GR′ , then Dk has a same-end grandchild,

so GR′ has a black-white bridge. Then one can do a square move at R2 which turns R1 into a

bubble. Therefore G \ {x12} is not reduced. □

Proof of Theorem 4.1. By Lemma 4.7, all facets of SD map to the boundary of ZD, so any cell in

∂SD whose image is codimension 1 in ZD is a facet of ZD. Theorem 3.21 shows that all facets of

ZD lie in the zero locus of a cluster variable in x(D). By Lemma 4.8, no facet is contained in the

zero locus of a mutable cluster variable Mut(ZD). Thus, we are left to show the following.

Claim 4.13. For each frozen variable ·̄ in Froz(D), there is exactly one cell S of codimension 1 in

SD such that ZS is codimension 1 in ZD and ZS lies in the zero locus of ·̄.

In [ELT21, Section 7] it was shown that each facet S′ of a standard BCFW cell SD either:

(1) maps to the interior of An,k,4(Z), in which case it maps injectively [ELT21, Proposition 8.2],

and lies in the zero locus of a coordinate functionary,11 or

(2) maps to the boundary of An,k,4(Z), in which case ZS′ lies in the zero locus of a domino cluster

variable of the form ïïi, i+ 1, j, j + 1ðð.

In the first case, Claim 4.13 follows from results of [ELT21], as we now explain. Those facets of

SD which map injectively to the interior of the amplituhedron are in bijection with the elements of

Froz(ZD) which do not have the form ïïi, i+1, j, j+1ðð, and can be explicitly constructed using the

BCFW recursion, but with one parameter set to 0 [ELT21, Lemma 7.9]. Then using the arguments

from the proof of Theorem 3.21 , one can see that if S′ is a facet of SD where a single BCFW

coordinate ·i vanishes, then ZS′ lies in the zero locus of the corresponding cluster variable ·̄i.

Moreover, for every BCFW parameter, there is at most one facet of SD where only that parameter

vanishes (cf. [ELT21, Lemmas 7.9, 7.13, 7.14, 7.15]).

We now show that Claim 4.13 holds for frozen domino variables of the form ïi, i + 1, j, j + 1ð,

using results of [ELT21, Section 7] as well as Theorem 4.9 and Theorem 4.11. We use the notation

of [ELT21] which are close to the ones used in this paper, but not identical.

11[ELT21, Section 7] is phrased using entries and 2-by-2 minors of the domino matrix, which are the same as our
BCFW coordinates.
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Step 1: constructing the facets. Since we are concerned only with facets of ZD where a boundary

twistor ïïi, i+ 1, j, j + 1ðð vanishes, we can use Theorem 4.9 and Theorem 4.11 to build the plabic

graph G corresponding to the facet (we will show in Step 3 below that the image of the cell SG has

codimension 1 in ZD). Concretely, in order to construct the graph G corresponding to the facet

of ZD where ·̄i vanishes (where ·̄i is a boundary twistor), we follow the procedure for constructing

SD, but at the ith step we remove the edge of the butterfly dictated by Theorem 4.9.

Step 2: Uniqueness of facets where a given cluster variable vanishes. We use induction to show

that for each ïïi, i+1, j, j +1ðð ∈ Froz(ZD), there is at most one facet of a tile ZD in its zero locus.

From [ELP+23, Lemma 10.5] , we know that each facet ZS′ of a BCFW tile ZD either (1) lies in the

vanishing locus of a domino variable ·̄k of the kth chord (which is a twistor coordinate with indices

in {a, b, c, d, n}), or (2) the cell S′ is the BCFW product of a BCFW cell and a facet of another

BCFW cell. By induction, the tiles coming from Case (2) lie in the vanishing locus of distinct

cluster variables; and these cluster variables must all be different from the twistor coordinates of

the kth chord. (The only case when a coordinate cluster variable from SL or SR promotes to a

twistor coordinate for the top chord is the case of ¯́
i where Di is a sticky same-end child of Dk;

in this case, ¯́
i = ³̄k = ïïbcdnðð which is not a boundary twistor since Dk has a child.) In Case

(1), Theorem 4.9 shows that there is at most one facet ZS′ of ZSD
which lies in the zero locus of

a single chord twistor of the kth chord. But now by Lemma 4.8, if two cluster variables vanish

on ZS′ , it must have codimension at least 2, so all facets of ZD must lie in the vanishing locus of

distinct cluster variables.

Step 3: Injectivity of the amplituhedron map. In light of Theorem 4.9, we can alternatively

construct the facets by following the recipe of Definition 2.15 , but setting exactly one of the

BCFW parameters {³i, ´i, ¶i, µi, ϵi} for 1 f i f k equal to 0 at the appropriate BCFW step. Using

slightly different conventions, such a construction12 was given in [ELT21, Definition 7.6 and Lemma

7.7] for most facets, building each facet in terms of the operations prei, inci, xi(R+), yi(R+).

Now we need to show that the amplituhedron map restricted to S′, the facet of S obtained by

setting a particular BCFW parameter ⋆ to 0, is injective. The proof is similar to the proof of

[ELP+23, Theorem 7.7]. The positroid cell S′ is constructed by a sequence of adding zero columns,

BCFW products, and a single “degenerate” BCFW product.

As in the proof of [ELP+23, Theorem 7.7] the proof of injectivity follows by showing that

injectivity persists through the different steps of the construction of S′. The treatment in the cases

of adding a zero column, and doing a BCFW product is identical to the treatment in [ELP+23,

Theorem 7.7] , relying on [ELP+23, Theorem 11.3] (as before we need to verify that {bi, ci, di, n}

is coindependent at the time of the ith BCFW step). The treatment in the single degenerate

BCFW product is also completely analogous to that of[ELP+23, Theorem 7.7] , and this proves

the injectivity.

Note, however, that in the application of [ELP+23, Lemma 11.13] for the degenerate step, the

coordinate ⋆ turns out to be 0, while the other four keep the same sign they would have had on

the BCFW cell at that stage. This twistor will be promoted, according to [ELP+23, Theorem 11.3]

to a functionary vanishing on this facet. The same argument used in the proof of Theorem 3.21

shows that each facet lies in the zero locus of the corresponding reduced functionary. In light of the

12This construction was called the (D, ⋆)−extended domino form for ⋆ ∈ {³i, ´i, µi, ¶i, εi, ¸ij , ¹ij}.
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uniqueness discussion above, we see that each such reduced boundary functionary corresponds to

a unique facet. It also follows that the facet is characterized as the locus where the corresponding

functionary vanishes, but the other coordinate functionaries keep their signs. Lemma 4.7 shows

that the facets indeed map to the boundary of the tile.

□

Note that the uniqueness in the above proof follows from two facts. First, if a facet in the

domain has image which is not a facet at some time of the cell construction process, then the

BCFW product of this facet with a standard BCFW cell will also have image which is not a facet.

Second, when a new facet in the domain (which corresponds to the rightmost top chord at a given

time of the process) maps to a facet of the tile, it is the maximal face in the domain, among those

which map into the zero locus of the corresponding chord twistor, hence other components in this

zero locus are of lower dimension already in the domain.

4.2. Proof of Lemma 4.8. The proof of the lemma will use the notion of transversality. For this

we recall some notions and facts.

Definition 4.14. Let X be an n dimensional manifold with an atlas {(U³, ϕ³ : U³ → R
n)}³∈A.

We say that a set L ¦ X is of measure 0, if for every ³ ∈ A, the set ϕ³(L ∩ U³) is of Lebesgue

measure 0 in R
n. If M ¢ X is the complement of a measure 0 subset, we say that almost every

x ∈ X belongs to M.

Definition 4.15. Let f : X → M be a smooth map between smooth manifolds X,M . Let L be a

smooth submanifold of M. We say that f is transverse to L, and write f ⋔ L if for every x ∈ f−1(L)

dfx(TxX) + Tf(x)L = Tf(x)M,

where TxX denotes the tangent space of X at x ∈ X, and dfx is the differential map at x, which

maps TxX into Tf(x)M.

Theorem 4.16 (Thom’s Parametric Transversality Theorem). Let X be a smooth manifold, let

B,M be smooth manifolds and let L be a submanifold of M . Let f : X×B → M be a smooth map.

Suppose that f ⋔ L. Then for almost every b ∈ B the map

f(−, b) : X × {b} → M

is transverse to M.

We first prove a general “almost-every Z” result.

Lemma 4.17. The zero locus in the amplituhedron An,k,4(Z) of two different irreducible functionaries

(as in Definition 2.9) is of codimension at least 2 for almost all Z.

We know from [GLS13, Theorem 1.3] that all cluster variables are irreducible; therefore, in light

of Definition 2.9, functionaries which correspond to cluster variables of Gr4,n are irreducible.

Proof. We will prove the lemma in the B-amplituhedron (cf. [KW19, Definition 3.8] (see also

[ELP+23, Definition 2.20]) Bn,k,4(W ), where W is the column span of Z. This will imply the result

for An,k,4(Z), since the map fZ of [ELP+23, Proposition 2.21] (which combines [KW19, Lemma
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3.10 and Proposition 3.12]) is a diffeomorphism from a neighborhood of the B-amplituhedron to a

neighborhood of An,k,4(Z). The map between the two spaces takes the zero locus of an irreducible

functionary to the zero locus of an irreducible polynomial in the Plücker coordinates of Gr4,n, and

we consider its intersection with Bn,k,4(W ). It will be enough to show that its intersection with

Gr4(W ), for a generic W ∈ Grk+4,n is of codimension 2. We will use Thom’s transversality. Let

M = Gr4,n, and L the intersection of zero loci of the two functions. Then L is of codimension 2. Let

B be a small ball around W ∈ Grk+4,n, and X = Gr4(W ). Identify the fiber bundle F → B whose

fiber over W ′ ∈ B is Gr4(W
′) with X×B. This can be done since the two spaces are diffeomorphic,

for B small enough. The map f : X ×B → M is defined by

f(V,W ′) = V,

where W ′ ∈ B, V ∈ Gr4(W
′) and in the right hand side V is considered as an element of Gr4,n .

Clearly dfV,W ′(TV,W ′X ×B) = TV Gr4,n, so that the assumption of Theorem 4.16 is met. Thus, for

almost every W ′ ∈ B, the intersection Gr4(W
′)∩L is of codimension 2, hence the intersection with

L of the B−amplituhedron, for almost every W, is of codimension at least 2. □

Proof of Lemma 4.8. The last statement follows from the first one, since if À is a mutable variable

for ZD, then the mutation relation has the form

ÀÀ′ = A+B,

where À is the variable of interest, and A,B are products of other cluster variables. Moreover, by

[ELP+23, Proposition 9.27], A,B have the same sign on Z◦
D. Thus, the vanishing of À implies the

vanishing of at least one more cluster variable.

Every facet of ZD lies in the zero locus of a cluster variable, by Theorem 3.21. By [ELP+23,

Theorem 11.3] we know that the cluster variables of ZD have a strongly positive expression, hence

every such functionary either vanishes identically on a given boundary ZS , for all positive Z, or

never vanishes there, for all positive Z. Let S1, . . . , SN be the facets of SD which map to the zero

locus of a single cluster variable.

From the previous lemma it follows that for almost all positive Z the remaining faces of SD map

to the union of finitely many codimension 2 submanifolds of ZD. These submanifolds are contained

in ∂ZD, using Lemma 4.7 and the fact that no cluster variable of ZD vanishes on Z◦
D.

Denote by L(À1, À2) ¢ ZD the vanishing locus of À1 and À2 in ZD. Let S
′
1, . . . , S

′
M be the faces of

D which map to L(À1, À2). Note that

(5) L(À1, À2) ¦ ZD \
(
Z◦
D ⊔N

i=1 Z
◦
Si

)
¦ ∂ZD.

For almost all positive Z, L(À1, À2) is of codimension at least 2. We will now show that for almost

all positive Z

L(À1, À2) ¦ ⊔iZSi
,

together with (5) this implies, that for almost all positive Z, and every j = 1, . . . ,M

(6) ZS′
j
¦ ⊔N

i=1 ⊔S′ is a face of Si
ZS′ ,

that is, the union of images of faces of D of codimension at least 2.
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In order to show (5), take an arbitrary p ∈ L(À1, À2). We will show that every neighborhood U

of p contains a point from
⋃N

i=1 Z
◦
Si
. Indeed, assume without loss of generality that U is connected,

since p belongs to the boundary of ZD, we can find two points q0 ∈ ZD ∩ U, q1 ∈ U \ ZD. We can

find a path (qt)t∈[0,1] ¢ U from q0 to q1 in U not passing throw the intersection of zero loci of any

two different cluster variables, which we assume to be of codimension 2 or more (see, e.g., the proof

of [ELT21, Proposition 8.5]). Let t be the last time where qt ∈ ZD. Then qt must be in the zero

locus of a single cluster variable, hence in some ZSi
.

Now, since (6) holds for almost every positive Z, and both its left hand and right hand are images

of compact sets, it holds in fact for every positive Z. Indeed, if Z is the limit of (Zi)
∞
i=1 where for

each Zi (6) holds, it also holds for Z.

□

4.3. Facets of general BCFW tiles. We now describe, without proof, the facets of general

BCFW tiles in Claim 4.25. Instead of the recipe in Definition 2.26, it is convenient to use a slightly

different indexing set for BCFW tiles.

Definition 4.18. Let r be a recipe with k step-tuples, which is composed by a recipe rL followed

by a recipe rR followed by a step-tuple ((ak, bk, ck, dk, nk), preIk , cyc
rk , reflsk). We introduce the

following collection of 5-tuples D̃ = {(ãi, b̃i, c̃i, d̃i, ñi)}
k
i=1 = D̃L ∪ D̃R ∪ D̃k we call generalized

chords defined recursively as:

• D̃k = (ãk, b̃k, c̃k, d̃k, ñk) = reflsk ◦ cycrk(ak, bk, ck, dk, nk),

• D̃L = reflsk ◦ cycrk D̃′
L and D̃R = reflsk ◦ cycrk D̃′

R,

where D̃′
L (resp. D̃′

R) are the generalized chords for the recipe rL (resp. rR).

Notation 4.19. Given a BCFW cell Sr, we will sometime label it as SD̃ in terms of the corresponding

generalized chords D̃. We denote by D̃
(j)
L ∪D̃

(j)
R ∪D̃j the generalized chords of the recipe r(j) obtained

from r by performing only the first j step-tuples. Here D̃
(j)
L (resp. D̃

(j)
R ) are the generalized chords

of r
(j)
L (resp. r

(j)
R ).

Example 4.20. Consider the BCFW cell Sr of Figure 6. Its generalized chords are:

D̃ = {(6, 7, 8, 9, 3), (4, 5, 8, 9, 3), (3, 2, 1, 12, 10), (4, 3, 11, 10, 9)}. Its plabic graph is as in Figure 15.

We introduce the definition of condensability and condensations of a BCFW cell Sr as follows.

Definition 4.21. Let SD̃ ¦ Grg0
k,n be a BCFW cell, and D̃ = {D̃i}

k
i=1 the corresponding generalized

chords. For i ∈ [k], f̃i ∈ {ãi, b̃i, c̃i, d̃i, ñi} we say that SD̃ is f̃i-condensable if either f̃i = c̃i or

f̃i =





ãi

b̃i

d̃i

ñi

and for all D̃j ∈





D̃
(i)
R

D̃
(i)
L

D̃
(i)
R

D̃
(i)
R

,





{b̃i, ñi}

{b̃i, ãi}

{c̃i, d̃i}

{d̃i, ñi}

̸¢ D̃j ,

where we used Notation 4.19.
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Figure 15.

Example 4.22. Consider the BCFW cell Sr of Figure 6 and its generalized chords as in Example 4.20.

The cell Sr is f̃i-condensable for all f̃i except for f̃i ∈ {d̃2, ñ2, b̃4}. For example, the cell is not

d̃2-condensable because {c̃2, d̃2} = {8, 9} ¢ D̃1, and D̃1 is in D̃
(2)
R .

Definition 4.23. Let Sr ¦ Grg0
k,n be a BCFW cell, and D̃ = {D̃i}

k
i=1 the corresponding generalized

chords. We define the f̃i-condensation ∂f̃iSr of Sr to be the cell built using the recipe r, but at the

i-th BCFW product, we delete the edge e1 if f̃i = ãi; e2 if f̃i = b̃i; e3 if f̃i = c̃i; e4 if f̃i = d̃i; and

e5 if f̃i = ñi as in Figure 16.

Figure 16.

Definition 4.24. Let SD̃ be a general BCFW cell, with generalized chords D̃ = {(ãj , . . . , ñj)}
k
j=1.

The f̃i-condensation ∂f̃iSD̃ of SD̃ is rigid if for all ℓ > i, {b̃ℓ, c̃ℓ, d̃ℓ, ñℓ} is coindependent (as in

Definition 4.2) for ∂f̃iSD̃
(ℓ)
R

, where D̃
(ℓ)
R is as in Notation 4.19.

Using the techniques of this paper, and extending the ones used for the standard BCFW tiles,

the following statement can be shown.
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Claim 4.25 (Facets of general BCFW tiles). Let S = SD̃ be a BCFW cell with recipe r. If SD̃ is

f̃i-condensable and S′ = ∂f̃iSD̃ is rigid, then ZS′ is a facet of ZS .

Moreover, let ·̄i be the coordinate cluster variable of ZS defined as

(7) ·̄i =





³̄r

i, if f̃i = ãi
¯́r
i , if f̃i = b̃i

µ̄ri , if f̃i = c̃i

¶̄ri , if f̃i = d̃i

ε̄ri, if f̃i = ñi

(see Definition 3.6),

then the facet ZS′ is cut out by the functionary ·̄i(Y ). Finally, all facets of ZS arise this way.

Remark 4.26. It can be shown that in case ∂·̃iSD̃ is not rigid, then for the minimal l > i such

that the condition in Definition 4.24 is not met, ³̄l equals the BCFW coordinate ·̄i of the i-th

generalized chord which corresponds to f̃i according to Equation (7).

Example 4.27. Consider the example in Figure 6. All the condensations of the condensable cases

in Example 4.22 are rigid. Therefore Sr has 17 facets and they are cut out by all the functionaries

in Example 3.9, except for ¶̄2(Y ), ε̄2(Y ), ¯́4(Y ), corresponding to the non-condensable cases in

Example 4.22.

We omit the proof of Claim 4.25 as it is similar to the proof of Theorem 4.1 in the standard

BCFW case, but the technical details are much lengthier.

Remark 4.28. In the case of standard BCFW cells, the f̃i-condensation is non-rigid only in the

case of f̃i = b̃i when Di is a sticky same-end child of a chord Dp. In this case, ¯́
i = ³̄p and

¯́
i = ³̄p = 0 does not cut out a facet. The non-condensable cases correspond precisely to the

remaining mutable variables Mut(D) (cf. Definition 3.13).

5. The spurion tile and tiling

The amplituhedron An,k,4(Z) has a broad class of tiles, the BCFW tiles (cf. Definition 2.17).

Moreover, we can use BCFW tiles to tile An,k,4(Z) into a broad class of tilings, the BCFW tilings,

see [ELP+23, Section 12]. We note that there are tilings made of BCFW tiles which are not BCFW

tilings (e.g. cf. [ELP+23, Theorem 12.6]). However, there are also tiles which are not BCFW tiles,

and it turns out that they can also be used to tile An,k,4(Z). In this section we report the first

example in the literature of a tiling containing a non-BCFW tile.

5.1. Spurion tiles. The simplest case of a tiling with non BCFW tiles is for n = 9 and k = 2, i.e.

for A9,2,4(Z). Consider the positroid cell Ssp ¢ Grg0
2,9 with plabic graph in Figure 17.

A matrix Csp representing a point in Ssp has triples of proportional columns whose labels are:

{1, 2, 3}, {4, 5, 6}, {7, 8, 9}. We denote such configuration of column vectors as (123)(456)(789), see

Appendix A. Therefore any such matrix representative has rows of support at least 6. We showed

in [ELP+23, Section 6] that points in a BCFW cells can be represented by matrices with at least

one row of support 5. Therefore, Ssp is not a BCFW cell and we call it a spurion cell. By writing a

parametrization with functionaries, and applying techniques from [ELP+23], it is possible to show
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Figure 17. Plabic graph of the spurion cell Ssp ¢ Grg0
2,9.

that the amplituhedron map is injective on Ssp, hence Zsp := Z̃(Ssp) is a tile for A9,2,4(Z), which

we call a spurion tile. This is an example of a non BCFW tile. Applying cyclic shifts to Ssp (Zsp),

we can obtain two other spurion cells (tiles) for A9,2,4(Z).

5.2. A tiling containing the spurion. We are able to find a tiling Tsp of A9,2,4(Z) containing a

spurion tile. We report the collection of tiles in Tsp in Appendix A. Moreover, Tsp is a good13 tiling

of A9,2,4(Z) and it is ‘close’ to a good BCFW tiling TBCFW . We report the collection of 5 tiles

to substitute in order to go from Tsp to TBCFW in Appendix A. We present a sketch of a proof in

Section 5.3.1.

5.3. Spurion tiles and cluster algebras. The spurion tile exhibits the same relationship to

the cluster structure on Gr4,n as BCFW tiles. Firstly, Zsp satisfies cluster adjacency in [ELP+23,

Conjecture 7.17(i)]. Indeed, Zsp has 9 facets lying on the vanishing locus of the following collection

Fsp of functionaries: a1(Y ) = ïï123|65|789ðð, a2(Y ) = ïï123|64|789ðð, a3(Y ) = ïï123|54|789ðð,

together with their cyclic shifts (cyc∗)3 and (cyc∗)6. The functionaries (up to sign) in Fsp correspond

to a collection Froz(Zsp) of compatible cluster variables of Gr4,n (see Notation 3.7). A seed Σ̃sp for

Gr4,n containing Froz(Zsp) was found in [GP23, Figure 1], see Figure 18.

Moreover, the open spurion tile Z◦
sp ¢ Gr2,6 is fully determined by the functionaries in Fsp

having a definite sign (see Figure 18). Therefore, the coordinate cluster variables xsp are exactly

the ones in Froz(Zsp) (containing the functionaries that cut out the facets of Zsp). Let x̃sp denote

the extended cluster of Σ̃sp. We observe that all functionaries x(Y ) with x cluster variables in

x̃sp have a definite sign on Zsp. Furthermore, the seed obtained from Σ̃sp by freezing Froz(Zsp)

is a signed seed [ELP+23, Definition 9.22], hence Zsp also satisfies the positivity test in [ELP+23,

Conjecture 7.17(ii)].

Remark 5.1 (Relation to Physics). Spurion cells first appeared in [AHBC+16a, Table 1]. They

are informally called ‘spurion’ by physicists because they correspond to Yangian invariants (see,

e.g. [ELP+23, Remark 4.6]) which have only spurious poles, i.e. poles which cancel in the sum

when computing the scattering amplitude. Geometrically, this is reflected in the fact the spurion

tile, contrary to general BCFW tiles, does not have any facet which lie on the boundary of the

amplituhedron.

It had been an open problem to determine whether tree-level scattering amplitudes in N = 4

SYM could be expressed in terms of the spurion. By showing the amplituhedron An,k,4(Z) has

13meaning that internal facets of adjacent tiles match pairwise.
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a2

a3a4

a5

a6

a7
a8

a9

a1

f1

f2

f3

f4

f5

f6 f7

f8

f9

s1s2

s3

Figure 18. The seed Σ̃sp, where: a1 = ï123|65|789ð, a2 = ï123|64|789ð, a3 =
ï123|54|789ð, a4 = ï789|23|456ð, a5 = ï789|13|456ð, a6 = ï789|12|456ð, a7 =
ï456|89|123ð, a8 = ï456|79|123ð, a7 = ï456|78|123ð, s1 = ï1456ð, s2 = ï1237ð,
s1 = ï4789ð. The functionaries a2(Y ), a5(Y ), a8(Y ) are positive on Z◦

sp and all the
others are negative.

tilings comprising the spurion tile, we solve this problem. The spurion tiling corresponds to a new

expression of scattering amplitudes, which can not be obtained from physics via BCFW recursions.

5.3.1. Sketch of a proof for the tiling with spurion. We now sketch a proof that the spurion tiling

of Appendix A is indeed a tiling.

• Let S¿ ¢ Grg0
2,6 be the 9 dimensional positroid cell labelled by the affine permutation ¿ =

{2, 6, 4, 5, 8, 7, 9, 12, 10}. S¿ has exactly 10 facets S1, . . . , S10 ¢ S¿ that map injectively to

A9,2,4(Z), giving the tiles ZS1 , . . . , ZS10 . ZS1 is a spurion tile, and the remaining nine are BCFW

tiles, five of which, ZS6 , . . . , ZS10 , are part of the BCFW tiling TBCFW . We now perform a flip on

TBCFW by replacing the tiles ZS6 , . . . , ZS10 with ZS1 , . . . , ZS5 . Let Tsp be the resulting collection

of tiles. We claim that Tsp is a tiling of A9,2,4(Z) (which contains the spurion tile ZS1).

In order to show the claim, it is enough to prove that {Z◦
Si
}5i=1 are pairwise disjoint and that

(8)
5⋃

i=1

ZSi
=

10⋃

i=6

ZSi
.

Let F ′ (F ′′) denote the left (right) hand side of Equation (8).

• The tiles ZS6 , . . . , ZS10 have the following facets: 15 ‘external’ facets ZB1 , . . . , ZB15 , which cover

the boundary of F ′′; 10 ‘internal’ facets, each of which belongs to a pair of tiles among ZS6 , . . . , ZS10

which lie on opposite sides of it. Similarly, the tiles ZS1 , . . . , ZS5 have the same 15 external facets

ZB1 , . . . , ZB15 and 10 internal facets ZB′
1
, . . . , ZB′

10
, each of which belongs to a pair of tiles among

ZS1 , . . . , ZS5 .



32 C. EVEN-ZOHAR, T. LAKREC, M. PARISI, M. SHERMAN-BENNETT, R. TESSLER, AND L. WILLIAMS

• One can show that the functionaries vanishing on the internal facets serve as separating functionaries

for all pairs of tiles in {ZSi
}5i=1. In particular, if ZB′

i
is a facet of both ZSj

and ZSr , one

can show the facet functionary of ZB′
i
has definite opposite sign on Z◦

Sj
and Z◦

Sr
by using the

Cauchy-Binet expansion for twistors (see, for example, [ELP+23, Lemma 2.16]) and Plücker

relations. Moreover, using similar techniques, one can show that each external facet ZBi
belongs

to a pair of tiles ZSj′
¢ F ′ and ZSj′′

¢ F ′′ and the corresponding facet functionary has definite

same sign on Z◦
Sj′

and Z◦
Sj′′

.

• The previous arguments and a topological argument shows that the collection {ZSi
}5i=1 tiles

F ′, whose boundary is ∂F ′′. Moreover, locally both F ′ and F ′′ lie on the same side of such

boundary. Since F ′,F ′′ are of the same dimension of the amplituhedron, by standard algebraic

topology arguments (e.g. those of [ELT21, Section 8]), one can conclude that F ′ = F ′′. The

claim follows. □

6. Standard BCFW tiles as positive parts of cluster varieties

In this section, we provide a birational map from Grk,k+4 to a cluster variety VD which maps

an open standard BCFW tile Z◦
D bijectively to the positive part of VD. The tile seed Σ̌D defining

VD is quasi-homomorphic to the seed ΣD of [ELP+23, Definition 9.8]. Throughout this section,

we fix a chord diagram D ∈ CDn,k. In a mild abuse of notation, we use the terminology “domino

variable” also for the functionary x(Y ) corresponding to a domino cluster variable x ∈ x(D).

First, recall we have two sets of functions which determine a point of the tile: the 5k coordinate

functionaries and the 5k − t domino variables, where t is the number of chords of D which are

sticky same-end children. It will be useful to express the coordinate functionaries of Z◦
D in terms

of the domino variables x(D). By definition, the coordinate functionaries are (signed) Laurent

monomials in the domino variables. In the next proposition, we give explicit formulas for these

Laurent monomials, up to sign. The signs may be computed using [ELP+23, Proposition 8.10] and

the fact that all coordinate functionaries are positive on the tile (cf. Theorem 3.10).

For a chord Di in a chord diagram D, we set Ei :=
∏

ℓ ε̄ℓ where the product is over all ancestors

of Di which contribute to the expression |ci di ·i nð (cf. [ELP+23, Notation 8.3]). We define E′
i

identically, but with the product over ancestors contributing to |bi ci ·i nð .

Proposition 6.1. Let D ∈ CDn,k be a chord diagram. Then we have the following expressions for

the coordinate functionaries of ZD in terms of the domino variables:

³i(Y ) = ±
³̄i

Ei
, ´i(Y ) = ±

( ¯́i)(³̄p)

Ei
, ¶i(Y ) = ±

¶̄i(³̄p)

E′
i

, εi(Y ) = ±ε̄i,

µi = ±
µ̄i(³̄p)

Ei(¶̄p)( ¯́j)(ε̄p)(ε̄g)

where (³̄p) appears if Di has a sticky parent Dp; ( ¯́i) appears unless Di has a sticky and same-end

parent; (¶̄p) appears if Di has a same-end parent Dp; ( ¯́j) appears if Dj is right head-to-tail sibling

of Di; (ε̄p) appears if ( ¯́j) appears and Di has a sticky parent Dp which is not same-end to Dj; and

(ε̄g) appears if Di has a same-end parent Dp and Dp has a sticky but not same-end parent Dg.
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Proposition 6.1 can be proved using the explicit formulas for domino variables [ELP+23, Theorem

8.4] and [ELP+23, Lemma 8.7] on factorization under promotion.

Example 6.2. For the chord diagram D in Figure 3, the formulas for coordinate functionaries in

terms of domino variables are:

i ³i ´i µi ¶i εi

1 ³̄1
ε̄3

−
¯́
1

ε̄3

µ̄1
¯́
2ε̄3

− ¶̄1
ε̄3

ε̄1

2 −³̄2
¯́
2

µ̄2
¶̄3 ¯́6

¶̄2
ε̄3

ε̄2

3 −³̄3
¯́
3 − µ̄3

¯́
6

¶̄3 ε̄3

4 ³̄4
ε̄6

− ³̄5
ε̄6

µ̄4³̄5

¶̄5ε̄
2
6

− ¶̄4³̄5
ε̄5ε̄6

ε̄4

5 − ³̄5
ε̄6

¯́
5³̄6

ε̄6

µ̄5³̄6

ε̄6
− ¶̄5³̄6

ε̄6
ε̄5

6 ³̄6 − ¯́
6 µ̄6 −¶̄6 ε̄6

Note that both the set of domino variables and the set of coordinate functionaries give redundant

descriptions of the tile, which is 4k dimensional. We will use Lemma 6.3 to rescale the domino

variables x(D) by (signed) Laurent monomials in Froz(D) to obtain 4k “tile variables.” The tile

variables form a coordinate system for Z◦
D, are positive on Z◦

D, and will comprise the cluster

variables of Σ̌D.

We perform this scaling in two steps. First, for a domino variable ·̄i(Y ), let s be the sign of

·̄i(Y ) on the open tile Z◦
D (cf. [ELP+23, Proposition 8.10] ) and define the signed domino variable

as ·̂i(Y ) := s · ·̄i(Y ). Note that each coordinate functionary is a Laurent monomial in the signed

domino variables, given by the formulas in Proposition 6.1 by replacing each domino variable with

a signed domino variable and deleting the signs. We denote by x̂(D) the set of signed domino

variables.

The second step of the scaling is more involved. The next proposition identifies the correct

scaling factor m(·̂i) for each signed domino variable ·̂i, which will be a Laurent monomial in the

µ̂i. The proof of this proposition gives an algorithm to determine the scaling factor.

We use the notation M[X] to denote the group of Laurent monomials in the variables X.

Lemma 6.3. Let Γ := {µ̂i : Di does not have a sticky same-end parent}. There exists a unique

group homomorphism m : M[x̂(D)] → M[Γ] such that

(1) for µ̂i ∈ Γ, m(µ̂i) is µ̂−1
i .

(2) for each i ∈ [k], the image m(·i) of the coordinate functionary ·i(Y ) is equal for all · ∈

{³, ´, µ, ¶, ϵ}.

Moreover, the degree of m(·̂i) in twistor coordinates is equal to the degree of ·̂−1
i in twistor

coordinates for all ·̂i ∈ x̌(D).

Proof. A group homomorphism is uniquely determined by the images of x̂(D). We will determine

m on the signed domino variables ·̂i(Y ) for i = k, k − 1, . . . , 1, in that order. For the rest of this

proof, “degree” means “degree in twistor coordinates.”
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We begin with the signed domino variables for the chord Dk. Note that µ̂k ∈ Γ since Dk is a top

chord. So (1) is satisfied if and only if m(µ̂k) = µ̂−1
k . Since Dk is a top chord, Proposition 6.1 implies

that ·̂k is equal to the coordinate functionary ·k. Thus (2) is satisfied if and only if m(·̂k) = µ̂−1
k

for · ∈ {³, ´, µ, ¶, ϵ}. We see that when (1) and (2) hold, the degree of ·̂−1
k is equal to the degree

of µ̂−1
k .

Now, assume for all ℓ > i and all signed domino variables ·̂ℓ that there is a unique choice of

image m(·̂ℓ) so that (1) and (2) hold for ℓ, and the statement about degrees holds. We will show

that there is also a unique choice of each image m(·̂i) so that (1) and (2) also hold for i, and that

for this choice, the statement about degrees holds.

Case 1: If µ̂i /∈ Γ then (1) is vacuously true. Since Di is a sticky same-end child of its parent Dp,

we see from Proposition 6.1 that the coordinate functionary ´i is a Laurent monomial in signed

domino variables ·̂ℓ where ℓ > i. Thus the image m(´i) is determined by the values of m(·̂ℓ).

For (2) to hold, we must have m(´i) = m(·i) for all other coordinate functionaries ·i. Again by

Proposition 6.1, ·i = ·̂i ·M where M is a Laurent monomial in signed domino variables for ℓ > i.

So (2) holds if and only if m(·̂i) = m(´i)/m(M).

For the statement about degrees, notice first that the coordinate functionaries ·i are degree

1, because they are promotions of twistor coordinates and promotion preserves degree. The

assumption on the degrees of m(·̂ℓ) implies that the degree of m(´i) is -1. Since ·i = ·̂i · M ,

the degree of ·̂i is 1− deg(M). On the other hand, m(·̂i) = m(´i)/m(M) implies that the degree

of m(·̂) is −1 − degm(M), which is equal to −1 + deg(M) by the assumption on the degrees of

m(·̂ℓ). So we have the desired equality of degrees.

Case 2: If µ̂i ∈ Γ, then (1) holds if and only if m(µ̂i) = µ̂−1
i . The statement about degrees

clearly holds for µ̂i. The choice of m(µ̂i) completely determines the image m(µi) of the coordinate

functionary µi, using Proposition 6.1. Similar reasoning as the above case shows that there is a

unique choice of m(·̂i) so that (2) holds, and that the statement about degrees holds for this choice.

□

Definition 6.4 (Tile variables and seeds). Let m be as in Lemma 6.3. For each signed domino

variable ·̂i(Y ) ∈ x̂(D) \ Γ, we define the tile variable as ·̌i(Y ) := m(·̂i(Y )) · ·̂i(Y ). We denote

by x̌(D) the set of tile variables. We define the tile seed Σ̌D = (x̌(D), Q̌D) as the seed obtained

from ΣD by deleting {µ̄i : µ̄i /∈ Γ}, and replacing each domino variable ·̄i by the corresponding tile

variable ·̌i(Y ). Finally, we let A(Σ̌D) be the associated cluster algebra, which we call tile cluster

algebra.

Each tile variable is positive on Z◦
D, there are exactly 4k = dimZ◦

D tile variables, and each

tile variable is degree 0 in the twistor coordinates. It will sometimes be convenient to extend the

definition of tile variables to ·̂i ∈ Γ; in this case ·̌i(Y ) := 1.

Example 6.5 (Tile cluster variables). For the chord diagram D in Figure 3, the domino variables

³̄2, ³̄3, ³̄5 = ¯́
4, ¯́

1, ¯́
6, µ̄2, ¶̄1, ¶̄5, ¶̄6

are negative on the tile Z◦
D, and all others are positive (cf. Example 3.20). So the signed domino

variable ·̂i coincides with the domino variable ·̄i unless ·̄i is one of the variables listed above. To
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Figure 19. (Left): the tile seed Σ̌D for D in Figure 3. See Examples 3.12 and 6.5
for the formulas for the tile variables ·̌i. (Right): the mutation of Σ̌D at ε̌5.

obtain the tile cluster variable ·̌i for D, multiply ·̂i by the monomial m(·̂i) listed in the table

below.

i m(³̂i) m( ˆ́i) m(µ̂i) m(¶̂i) m(ε̂i)

1 µ̂2µ̂6(µ̂1µ̂3)
−1 µ̂2µ̂6(µ̂1µ̂3)

−1 µ̂−1
1 µ̂2µ̂6(µ̂1µ̂3)

−1 µ̂2µ̂
−1
1

2 µ̂3(µ̂2µ̂6)
−1 µ̂3(µ̂2µ̂6)

−1 µ̂−1
2 µ̂−1

2 µ̂3(µ̂2µ̂6)
−1

3 µ̂6(µ̂3)
−1 µ̂6(µ̂3)

−1 µ̂−1
3 µ̂6(µ̂3)

−1 µ̂6(µ̂3)
−1

4 (µ̂5µ̂6)
−1 (µ̂5µ̂6)

−1 (µ̂5µ̂6)
−1 µ̂−1

5 µ̂−1
5

5 (µ̂5µ̂6)
−1 µ̂−1

5 µ̂−1
5 µ̂−1

5 µ̂−1
5

6 µ̂−1
6 µ̂−1

6 µ̂−1
6 µ̂−1

6 µ̂−1
6

The tile seed Σ̌D is displayed on the left in Figure 19.

As the next result shows, the tile variables give coordinates on the open tile.

Proposition 6.6. The map f : Z◦
D 7→ R

x̌(D)
+ sending a point Y 7→ (·̌i(Y )) to its list of tile variables

is a bijection.

Proof. We first show that each point in R
x̌(D)
+ has a preimage in Z◦

D. Recall that Proposition 6.1

gives formulas for each coordinate functionary ·i(Y ) as a Laurent monomial N·i(·̂j(Y )) in the

signed domino variables. We define a Laurent monomial map

F : R
x̌(D)
+ → (R+)

5k

sending (·̌i) ∈ R
x̌(D)
+ to (· ′i := N·i(·̌j)), where the latter set ranges over all coordinate functionaries.

That is, we evaluate the Laurent monomials N·i for coordinate functionaries in terms of signed

domino variables on the tuple (·̌i). (We set ·̌j := 1 if ·̂j(Y ) ∈ Γ.) For a point p ∈ R
x̌(D)
+ , define

Mp := MD(F (p)) to be the BCFW matrix using {· ′i} as BCFW coordinates. We claim that

Yp := Z̃(Mp) ∈ Z◦
D is a preimage of p under f . That is, the tile variables of Yp are precisely p.

Recall that the rowspan of the BCFW matrix depends only on the projection of F (p) to (Gr>0
1,5)

k.

We define a vector q ∈ (R+)
5k whose entries are · ′i if Di has a sticky same-end parent and are · ′i/µ

′
i

otherwise. By construction, q and F (p) project to the same point. So the rowspan of Mp is

equal to the rowspan of MD(q), and thus (the rowspan of) Yp is also equal to (the rowspan of)

Yq := Z̃(MD(q)). Theorem 3.10, and in particular the proof of [ELP+23, Proposition 11.15], implies

that the coordinate functionaries of Yq are exactly equal to the BCFW coordinates ofMD(q); that is,

the coordinate functionaries of Yq are the entries of the vector q. Moreover, the twistor coordinates
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of Yp and Yq differ by a global scalar. Because coordinate functionaries are degree 1 in twistors,

the coordinate functionaries of Yp and Yq also differ by a global scalar. So ·i(Yp) = c · · ′i/µ
′
i if Di

does not have a sticky same-end parent and ·i(Yp) = c · · ′i otherwise.

We need to show that ·̌i(Yp), a function evaluated on Yp, is equal to ·̌i, which is either a coordinate

of p or equal to 1. We will show this for i = k, k − 1, . . . , 1.

For i = k, since Dk is a top chord, for any Y ∈ Z◦
D

·k(Y ) = ·̂k(Y ) so ·̌k(Y ) = ·k(Y )/µk(Y ).

Setting Y = Yp, we obtain ·̌k(Yp) = · ′k/µ
′
k. In this case, according to the definition of F , we have

·̌k = · ′k. In particular, µ′k = 1. So we have ·̌k(Yp) = · ′k = ·̌k.

Assume ·̌ℓ = ·̌ℓ(Yp) for ℓ > i.

Case 1: Suppose thatDi has a sticky same-end parent. For any Y ∈ Z◦
D, we have thatN´i

(·̌j(Y )) =

m(´i(Y ))´i(Y ) and the only tile variables appearing in the Laurent monomial on the left hand side

are for chords Dℓ with ℓ > i. So, for Y = Yp, we have m(´i(YP )) · c´
′
i = N´i

(·̌j) = ´′
i, implying

that m(´i(YP )) = c−1. For ·i ̸= ´i, we have

N·i(·̌j(YP )) = m(´i(YP ))·i(YP ) = · ′i = N·i(·̌j).

In the second equality, we use property (2) of the map m. Since N·i(·̌j(Y )) is ·̌i(Y ) times tile

variables for ℓ > i and ·̌ℓ = ·̌ℓ(Yp) for ℓ > i, the above string of equalities implies that ·̌i(YP ) is

equal to ·̌j .

Case 2: SupposeDi does not have a sticky same-end parent. Then µ̌i(Y ) = 1 = µ̌i, since µ̌i(Y ) ∈ Γ.

This means that µ′i = Nµi(·̌j(Yp)). On the other hand, Nµi(·̌j(Yp)) = m(µi(Yp))µi(Yp) = m(µi(Yp))c,

so c = µ′i/m(µi(Yp)). For ·i ̸= µi, we have

N·i(·̌j(Yp)) = m(µi(Yp))·i(Yp) = c ·m(µi(Yp))·
′
i/µ

′
i = · ′i = N·i(·̌j).

Again, in the second equality, we use property (2) of the map m. By a similar argument as in the

first case, this shows that ·̌i(Yp) = ·̌i.

This shows that Yp is a preimage of p in Z◦
D. For uniqueness, note that the tile variables

determine the coordinate functionaries up to a scalar for each i. So another preimage Y ′ would

have coordinate functionaries ·i(Y
′) which can only differ from ·i(Yp) by a scalar ci. However, this

implies that the twistor matrix MD(Y
′) has the same rowspan as the twistor matrix MD(Yp), and

thus Y ′ = Z̃(MD(Y
′)) is equal to Yp = Z̃(MD(Yp)).

□

One may upgrade Proposition 6.6 to a statement about the cluster variety VD corresponding to

the tile seed Σ̌D as follows.

Theorem 6.7. Let f : Grk,k+4 99K VD be the map Y 7→ (·̌i(Y )) sending a point to its list of tile

variables. Then f is a birational map which maps Z◦
D onto the positive part of VD.

Proof. Let TD ¢ Grk,k+4 be the subset where all tile variables are well-defined and nonvanishing.

Note that TD is open and nonempty, as it contains Z◦
D. The map f is well-defined on TD, and the

tile coordinates are rational functions in the Plücker coordinates of Y , so f is rational. Note that

f(TD) is contained in the cluster torus TΣ̌D
= (C∗)x̌(D) ¢ VD.
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In the proof of Proposition 6.6, we constructed an inverse to f on the positive part R
x̌(D)
+ of VD.

This inverse extends to an open subset of the cluster torus TΣ̌D
. Indeed, for p ∈ TΣ̌D

, define Mp

and Yp as in the proof of Proposition 6.6. The matrix Mp is full-rank by e.g. [MS17], as it is the

path matrix of a plabic graph with nonzero complex edge weights. However, Yp may or may not

be full rank. Let T ′ ¢ TΣ̌D
be the subset of points p such that the coordinate functionaries of Yp

are well-defined and non-vanishing. The coordinate functionaries of Yp are rational functions in the

coordinates of p; if they are all well-defined and non-vanishing, then in particular Yp has at least

one nonvanishing twistor coordinate, and so is full rank. The tile variables can be expressed as

Laurent monomials in the signed domino variables, and so also as Laurent monomials in coordinate

functionaries. Thus, if the coordinate functionaries of Yp are non-vanishing, so are the tile variables.

This implies for p ∈ T ′, Yp ∈ TD. Note that T ′ contains the positive part of VD, and so is open in

VD.

We claim that p 7→ Yp is the inverse of f on T ′. The argument is very similar to the proof

of Proposition 6.6. We outline the additional arguments needed. First, allowing the BCFW

coordinates to vary over (Gr1,5)
k rather than (Gr>0

1,5)
k, the BCFW matrices will parametrize a torus

containing SD [MS17]. Second, for any point Y ∈ Grk,k+4 which has all non-vanishing coordinate

functionaries, the proof of [ELP+23, Proposition 11.15] shows that the unique pre-image of Y in

this torus is given by the twistor matrix MD(Y ). That is, the BCFW coordinates of this unique

pre-image are exactly the coordinate functionaries of Y . With these facts in hand, the proof of

Proposition 6.6 goes through identically for p ∈ T ′. As the Plücker coordinates of Yp are rational

functions in the coordinates of p, p 7→ Yp is rational.

Finally, Proposition 6.6 shows that f maps Z◦
D onto the positive part of VD.

□

It would be interesting to upgrade Theorem 6.7 to a biregular map TD → TΣ̌D
, or to an embedding

VD ↪→ Grk,k+4.

For each cluster in the tile cluster algebra A(Σ̌D), Theorem 6.7 gives a way to describe Z◦
D as a

semi-algebraic set, this time using dimension-many inequalities:

Corollary 6.8 (Positivity test). We have

Z◦
D = {Y ∈ Grk,k+4 : x(Y ) > 0 for all x in any fixed cluster of A(Σ̌D)}

In particular, Y ∈ Grk,k+4 is in Z◦
D if and only if all tile variables are positive on Y .

Proof. All cluster variables in A(Σ̌D) are positive on Z◦
D by construction, so it suffices to show the

right hand side is contained in the left-hand side. If Y is in the right-hand side, then f(Y ) is in the

positive part of VD. The inverse of f maps the positive part to Z◦
D, so Y ∈ Z◦

D. □

7. Canonical forms of BCFW tiles from cluster algebra

In this section we use the cluster structure for BCFW tiles to compute the canonical form of

such tiles purely in terms of cluster variables for Gr4,n.

7.1. Background on Positive Geometry.



38 C. EVEN-ZOHAR, T. LAKREC, M. PARISI, M. SHERMAN-BENNETT, R. TESSLER, AND L. WILLIAMS

Definition 7.1 ([AHBL17]). Let X be a d-dimensional complex irreducible algebraic variety which

is defined over R, and let Xg0 be a closed14 semialgebraic subset of X(R), whose interior X>0

is a d-dimensional oriented real manifold. Let C1 . . . Cr be the irreducible components of the

Zariski-closure of the boundary Xg0 \ X>0, and for 1 f i f r let Cg0
i denote the closure of the

interior of Ci ∩ Xg0. We say that (X,Xg0) is a positive geometry of dimension d if there exists

a unique nonzero rational d-form Ω(X,Xg0) called the canonical form, satisfying the recursive

axioms:

• If d = 0, then X = Xg0 = pt is a point, and we define Ω = ±1 depending on the orientation.

• If d > 0, then we require that Ω(X,Xg0) has poles only along the boundary components Ci,

these poles are simple, and for each 1 f i f r, we have that (Ci, C
g0
i ) is a positive geometry of

dimension d− 1, called a facet of (X,Xg0), and

ResCi
Ω(X,Xg0) = Ω(Ci, C

g0
i ).

Example 7.2 (d = 1). (P1, [a, b]), with the canonical form Ω = b−a
(x−a)(b−x)dx is a positive geometry

(closed interval). Its facets are: ({a}, {a}), ({b}, {b}) and ResaΩ = 1,ResbΩ = −1.

Example 7.3 (d = 2). (P2,□1234), where □1234 is a quadrilateral with vertices v1 = (0, 0); v2 =

(2, 0); v3 = (1, 2), v4 = (0, 1), see Figure 20. The canonical form is:

(9) Ω(P2,□1234) =
y − 4x− 4

xy(y − x− 1)(2x+ y − 4)
dx ' dy.

The facets are: (P1, [v1, v2]), (P
1, [v2, v3]), (P

1, [v3, v4]), (P
1, [v4, v1]).

Res[v1,v2]Ω(P
2,□1234) =

2

x(2− x)
dx = Ω(P1, [v1, v2]).

(P2, half disk) with Ω = 1
y(x2+y2−1)

dx ' dy is a positive geometry. A closed disk is not a positive

geometry. For more positive geometries in d = 2 see the work on planar polypols [KPR+21].

Figure 20. From left to right: the quadrilateral □1234; the tiling of □1234 into the
triangles ∆124,∆234; half disk; closed disk.

Definition 7.4. Let (X,Xg0) be a positive geometry. A collection {(Xi, X
g0
i )}i∈C of positive

geometries is a tiling of (X,Xg0) if:

• the interiors X>0
i are pairwise disjoint;

• the union ∪iX
g0
i equals Xg0;

• the orientation of each X>0
i agrees with X>0.

14We always use the Euclidean topology, unless specified otherwise (e.g. in the case of Zariski topology).
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Heuristic 7.5. [AHBL17] Let (X,Xg0) be a positive geometry and the collection {(Xi, X
g0
i )}i∈C

be a tiling of (X,Xg0). Then

(10) Ω(X,Xg0) =
∑

i∈C

Ω(Xi, X
g0
i ).

Example 7.6. (P2,□1234) can be tiled by the two triangles (P2,∆124) and (P2,∆234) with vertices

(v1, v2, v4) and (v2, v3, v4) respectively, see Figure 20. Their canonical forms are:

Ω(∆124) =
2

xy(2− x− 2y)
dx ' dy, Ω(∆234) =

9

(1 + x− y)(4− 2x− y)(2− x− 2y)
dx ' dy.

Then Ω(□1234) = Ω(∆124) + Ω(∆234), cf. Equation (9). Moreover, the (‘spurious’) pole along the

facet (24) cut out by 2− x− 2y = 0 cancels in the sum. Indeed, (24) is not a facet of □1234.

Theorem 7.7. [AHBL17, KR20] Let P be a projective pointed polyhedral cone (or projective

polytope) in P
m. Then (Pm,P) is a positive geometry. Moreover,

Ω(Pm,P) =
N(x)

D(x)
dmx,

where D(x) is the product of linear forms defining facets of P, and N(x) is the adjoint of P.

The adjoint is a polynomial that cancels the ‘unwanted’ poles outside the polyope, i.e. it cuts

out the hypersurface which passes through the residual hyperplane arrangement of P.

Theorem 7.8. [Pos06, KLS13, Lam22] (Grk,n(C),Grg0
k,n) is a positive geometry with canonical

form:

Ω(Grk,n(C),Grg0
k,n) =

dk(n−k)C

ï1, . . . , kðï2, . . . , k + 1ð . . . ïn, 1, . . . , k − 1ð
,

where ïIð denotes the Plücker coordinate of a point C ∈ Grg0
k,n. Moreover, the faces (ΠS(C), S̄) are

positive geometries, where S ¢ Grg0
k,n is a positroid cell and ΠS(C) is its Zariski closure in Grk,n(C),

called the positroid variety of S.

7.2. The canonical form of the amplituhedron. Both (cyclic) polytopes and the positive

Grassmannian are positive geometries. These objects can also be seen as special cases of amplituhedra

(in particular, the amplituhedraAn,1,m(Z) andAn,n−m,m(Z), respectively). Since the amplituhedron

An,k,m(Z) is a subset of Grk,k+m, it is natural to conjecture the following.

Conjecture 7.9. [AHBL17] The amplituhedron (Grk,k+m(C),An,k,m(Z)) is a positive geometry.

In order to find the canonical form of the amplituhedron, one method is to tile An,k,m(Z) and

sum over the canonical forms of the tiles (cf. Heuristic 7.5).

Definition 7.10 (Candidate canonical form of a tile). Let ZS be a tile of An,k,m(Z). As the

amplituhedron map Z̃ is injective on the open tile Z◦
S , we can define its inverse Z̃−1 : Z◦

S → S.

Then let us consider the pullback of the canonical form of the positroid cell under Z̃−1:

(11) Ω̃(ZS) = (Z̃−1)∗Ω(ΠS(C), S̄).

We call Ω̃(ZS) the
15 candidate canonical form of the tile ZS .

15we will always consider it up to a global sign, which is not relevant for our paper and depends on the orientation.
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By Theorem 7.8, (ΠS(C), S̄) is positive geometry and has a canonical form Ω(ΠS(C), S̄). Moreover,

by [AHT14, Section 6] and [GL20, Section 8.2], Equation (11) is well-defined.

Each positroid cell S has a positive parameterization [Pos06], i.e. there is a diffeomorphism

h : S → R
mk
+ which sends a matrix representative C in S to a collection of positive coordinates

(³1, . . . , ³mk) in R
mk
+ . In this case, if we denote ϕ = h ◦ Z̃−1, then

(12) Ω̃(ZS) = ϕ∗
mk
∧

i=1

d log(³i).

Conjecture 7.11 (Tiles are positive geometries). Let ZS be a tile of An,k,m(Z). Then (Grk,k+m(C), ZS)

is a positive geometry and its canonical form Ω(Grk,k+m(C), ZS) is the candidate canonical form

Ω̃(ZS) in Definition 7.10.

Conjecture 7.12 (Canonical form from tilings). Let {ZS}S∈C be a tiling of An,k,m(Z). Then the

canonical form of the amplituhedron An,k,m(Z) is obtained as

(13) Ω(Grk,k+m(C),An,k,m(Z)) =
∑

S∈C

Ω(Grk,k+m(C), ZS).

In particular, the right hand side of Equation (13) is independent of the tiling.

Remark 7.13. Clearly finding tilings of the amplituhedron and inverting the amplituhedron map

on tiles are crucial step for computing the canonical form of the amplituhedron, and hence scattering

amplitudes. In this paper and in [ELP+23] we inverted the amplituhedron map [ELP+23, Theorem

7.7] on BCFW tiles and proved the existence of a large family of tilings, the BCFW tilings [ELP+23,

Theorem 12.3]. It then follows from [MS09, AHCCK10, AHBC+16b, AHT14] that tree-level

scattering amplitudes in N = 4 SYM expressed via BCFW recursions are computed by the sum of

the candidate canonical forms of the tiles in a BCFW tiling of An,k,4(Z).

Proposition 7.14 (Canonical form of tiles from coordinate functionaries). Let Zr be a BCFW tile

and ([³i(Y ) : ´i(Y ) : µi(Y ) : ¶i(Y ) : εi(Y )])ki=1 its associated coordinate functionaries as in [ELP+23,

Definition 7.1]. Then the candidate canonical form Ω̃(Zr) of Zr is given by:

(14) Ω̃(ZS) =

k
∧

i=1

dlog
´i(Y )

³i(Y )
' dlog

µi(Y )

³i(Y )
' dlog

¶i(Y )

³i(Y )
' dlog

ϵi(Y )

³i(Y )
.

Analogously, for each i ∈ [k], we could have chosen any other coordinate functionary ·i(Y ) instead

of ³i(Y ) to divide the others by.

Proof. Given a BCFW tile Zr, the inverse of the amplituhedron map Z̃−1 sends a point Y in Z◦
r

to a point in Grg0
k,n represented by the twistor matrix M tw

r
(Y ) [ELP+23, Definition 7.1]. Moreover,

there is a positive parametrization of Sr in terms of BCFW parameters ([³i : ´i : µi : ¶i : εi])
k
i=1

in (Gr>0
1,5)

k [ELP+23, Proposition 6.22], or equivalently in terms of e.g.
(

´i

³i
, µi
³i
, ¶i
³i
, εi
³i

)k

i=1
in R

4k
+ .

Composing this with Z̃−1 gives a diffeomorphism g : Z◦
S → R

4k
+ that sends Y ∈ Z◦

S to the (ratios of)

coordinate functionaries
(

´i(Y )
³i(Y ) ,

µi(Y )
³i(Y ) ,

¶i(Y )
³i(Y ) ,

ϵi(Y )
³i(Y )

)k

i=1
. Hence can obtain the candidate canonical
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form of the tile ZS as:

Ω̃(ZS) = g∗
k
∧

i=1

dlog
´i
³i

'dlog
µi
³i

'dlog
¶i
³i

'dlog
ϵi
³i

=

k
∧

i=1

dlog
´i(Y )

³i(Y )
'dlog

µi(Y )

³i(Y )
'dlog

¶i(Y )

³i(Y )
'dlog

ϵi(Y )

³i(Y )
.

□

Example 7.15. For the BCFW tile Sr in Figure 6, the coordinate functionaries {·i(Y )} are in

Example 3.11. Then we can compute the canonical form of Sr in terms of {·i(Y )} by Equation (14).

Proposition 7.16 (Canonical form of tiles from tile variables and clusters). Let ZD be a standard

BCFW tile. Let x̌(D) = {·̌i(Y )}4ki=1 be its collection of tile variables and A(Σ̌D) its associated

cluster algebra as in Definition 6.4. Then the candidate canonical form Ω̃(ZD) of ZD is given by:

(15) Ω̃(ZD) =
∧

·̌i(Y )∈x̌(D)

dlog ·̌i(Y ).

Moreover, for each fixed cluster x̌ = {xi}
4k
i=1 in A(Σ̌D), the form Ω̃(ZD) is given by:

(16) Ω̃(ZD) =
∧

xi∈x̌

dlog xi(Y ).

The proof easily follows from Theorem 6.7, and the fact there is a bijection f : Z◦
D → R

4k
+ that

sends Y ∈ Z◦
D to the collection x̌(D) = {·̌i(Y )} of 4k tile variables. Each tile variable ·̌i(Y ) is a

signed ratio of cluster variables for Gr4,n, in particular of domino variables x(D), see Proposition 6.1.

The same argument holds if instead of x̌(D), we consider an arbitrary cluster x̌ in A(Σ̌D).

Example 7.17. For the BCFW tile ZD in Figure 7, the tile variables ·̌i(Y ) were computed in

Example 3.12. Then we can compute the candidate canonical form Ω̃(ZD) in terms of ·̌i(Y ) by

Equation (15). Moreover, we can also compute Ω̃(ZD) by using a different cluster obtained e.g. by

mutating the tile seed Σ̌D at ε̌5, see Figure 19. The collection of cluster variables then would have

ε̌′5 instead of ε̌5, where

ε̌′5 =
ïABC | 89 |DEF ð

µ̂5µ̂6
=

ïABC | 89 |DEF ð

ï8 9 A Dðï8 9 E F ð

and we use A,B,C,D,E, F for 10, 11, 12, 13, 14, 15. Note that any sequence of mutations applied

to Σ̌D will give cluster variables which are cluster variables for Gr4,n times a Laurent monomial in

the µ̂i.
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Appendix A. List of tiles in a spurion tiling

A good tiling Tsp = {ZÃ} for A9,2,4 containing a spurion tile (#28 in the list). For each tile ZÃ

we display its affine permutation Ã and the vector configuration of the columns of a matrix CÃ

representing a point in SÃ, where columns within the same bracket (. . .) are proportional.

# Affine Permutation Vector Conf.

1 {1, 4, 5, 6, 7, 11, 12, 8, 9} (2)(3)(4)(5)(6)(7)

2 {1, 4, 5, 7, 6, 8, 12, 11, 9} (8, 2)(3)(4)(5, 6)(7)

3 {1, 4, 5, 7, 8, 6, 11, 12, 9} (2)(3)(4)(5)(7)(8)

4 {1, 4, 5, 8, 6, 7, 12, 9, 11} (8, 9, 2)(3)(4)(5, 6, 7)

5 {1, 4, 5, 8, 7, 6, 9, 12, 11} (9, 2)(3)(4)(5, 7)(8)

6 {1, 4, 5, 8, 9, 6, 7, 11, 12} (2)(3)(4)(5)(8)(9)

7 {1, 5, 3, 6, 7, 8, 11, 13, 9} (2)(4)(5)(6)(7)(8)

8 {1, 5, 3, 6, 8, 7, 9, 13, 11} (9, 2)(4)(5)(6, 7)(8)

9 {1, 5, 3, 6, 8, 9, 7, 11, 13} (2)(4)(5)(6)(8)(9)

10 {1, 5, 4, 6, 7, 11, 8, 12, 9} (2)(3, 4)(5)(6)(7, 8)

11 {1, 5, 4, 6, 8, 11, 7, 9, 12} (2)(3, 4)(5)(6)(8, 9)

12 {1, 5, 4, 7, 6, 8, 11, 12, 9} (2)(3, 4)(5, 6)(7)(8)

13 {1, 5, 4, 8, 6, 7, 9, 12, 11} (3, 4)(5, 6, 7)(8)(9, 2)

14 {1, 5, 4, 8, 6, 9, 7, 11, 12} (2)(3, 4)(5, 6)(8)(9)

15 {1, 6, 3, 4, 7, 8, 9, 11, 14} (2)(5)(6)(7)(8)(9)

16 {1, 6, 4, 5, 7, 8, 12, 9, 11} (3, 4, 5)(6)(7)(8, 9, 2)

17 {1, 6, 4, 5, 8, 7, 9, 12, 11} (3, 4, 5)(6, 7)(8)(9, 2)

18 {1, 6, 5, 4, 8, 7, 9, 11, 12} (2)(3, 5)(6, 7)(8)(9)

19 {2, 3, 5, 9, 6, 7, 8, 13, 10} (9, 1, 2, 3)(4)(5, 6, 7, 8)

20 {2, 4, 5, 9, 6, 8, 7, 12, 10} (9, 1, 2)(3)(4)(5, 6, 8)

21 {2, 4, 5, 9, 8, 6, 7, 10, 12} (1, 2)(3)(4)(5, 8)(9)

22 {2, 4, 6, 9, 5, 7, 8, 12, 10} (9, 1, 2)(3)(4)(6, 7, 8)

23 {2, 5, 3, 6, 9, 7, 8, 13, 10} (9, 1, 2)(4)(5)(6, 7, 8)

24 {2, 5, 3, 6, 9, 8, 7, 10, 13} (1, 2)(4)(5)(6, 8)(9)

25 {2, 5, 4, 6, 9, 10, 7, 8, 12} (1, 2)(3, 4)(5)(6)(9)

# Affine Permutation Vector Conf.

26 {2, 5, 4, 9, 6, 8, 7, 10, 12} (1, 2)(3, 4)(5, 6, 8)(9)

27 {2, 6, 4, 5, 7, 9, 12, 8, 10} (3, 4, 5)(6)(7)(9, 1, 2)

28 {2, 6, 4, 5, 9, 7, 8, 12, 10} (3, 4, 5)(6, 7, 8)(9, 1, 2)

29 {2, 7, 4, 5, 6, 8, 12, 9, 10} (3, 4, 5, 6)(7)(8, 9, 1, 2)

30 {2, 7, 4, 5, 8, 6, 9, 12, 10} (3, 4, 5)(7)(8)(9, 1, 2)

31 {3, 4, 5, 9, 10, 6, 7, 8, 11} (1)(2)(3)(4)(5)(9)

32 {3, 5, 4, 6, 10, 9, 7, 8, 11} (1)(2)(3, 4)(5)(6, 9)

33 {3, 5, 6, 4, 9, 10, 7, 8, 11} (1)(2)(3)(5)(6)(9)

34 {3, 6, 4, 5, 9, 8, 7, 11, 10} (9, 1)(2)(3, 4, 5)(6, 8)

35 {3, 6, 4, 5, 10, 7, 8, 11, 9} (1)(2)(3, 4, 5)(6, 7, 8)

36 {3, 6, 4, 9, 5, 8, 7, 10, 11} (1)(2)(3, 4)(6, 8)(9)

37 {3, 6, 5, 4, 7, 8, 11, 10, 9} (8, 1)(2)(3, 5)(6)(7)

38 {3, 6, 5, 4, 8, 7, 11, 9, 10} (8, 9, 1)(2)(3, 5)(6, 7)

39 {3, 6, 5, 4, 9, 7, 8, 11, 10} (9, 1)(2)(3, 5)(6, 7, 8)

40 {3, 7, 5, 4, 8, 6, 9, 11, 10} (9, 1)(2)(3, 5)(7)(8)

41 {4, 6, 3, 5, 9, 8, 7, 10, 11} (1)(2)(4, 5)(6, 8)(9)

42 {5, 6, 3, 4, 7, 9, 8, 11, 10} (9, 1)(2)(5)(6)(7, 8)

43 {5, 6, 3, 4, 8, 9, 7, 10, 11} (1)(2)(5)(6)(8)(9)

44 {5, 7, 3, 4, 6, 8, 9, 11, 10} (9, 1)(2)(5, 6)(7)(8)

45 {6, 3, 4, 5, 9, 7, 8, 11, 10} (2, 3, 4, 5)(6, 7, 8)(9, 1)

46 {6, 3, 4, 9, 5, 7, 8, 10, 11} (1)(2, 3, 4)(6, 7, 8)(9)

47 {6, 3, 5, 4, 7, 8, 11, 9, 10} (2, 3, 5)(6)(7)(8, 9, 1)

48 {6, 4, 3, 5, 9, 7, 8, 10, 11} (1)(2, 4, 5)(6, 7, 8)(9)

49 {6, 5, 3, 4, 7, 9, 8, 10, 11} (1)(2, 5)(6)(7, 8)(9)

50 {6, 7, 3, 4, 5, 8, 9, 10, 11} (1)(2)(6)(7)(8)(9)

Substituting the 5 tiles #28, 34, 35, 38, 46 in Tsp with 5 tiles in the table below, we obtain a good

BCFW tiling TBCFW .

Affine Permutation Vector Conf.

{1, 6, 4, 5, 9, 7, 8, 11, 12} (2)(3, 4, 5)(6, 7, 8)(9)

{3, 6, 4, 5, 9, 7, 11, 8, 10} (9, 1)(2)(3, 4, 5)(6, 7)

{3, 6, 4, 9, 5, 7, 8, 11, 10} (9, 1)(2)(3, 4)(6, 7, 8)

{3, 7, 4, 5, 9, 6, 8, 11, 10} (9, 1)(2)(3, 4, 5)(7, 8)

{4, 6, 3, 5, 9, 7, 8, 11, 10} (9, 1)(2)(4, 5)(6, 7, 8)
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