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ABSTRACT. The amplituhedron is a mathematical object which was introduced to provide a geometric
origin of scattering amplitudes in N/ = 4 super Yang Mills theory. It generalizes cyclic polytopes and
the positive Grassmannian, and has a very rich combinatorics with connections to cluster algebras.
In this article we provide a series of results about tiles and tilings of the m = 4 amplituhedron.
Firstly, we provide a full characterization of facets of BCFW tiles in terms of cluster variables for
Gra,n. Secondly, we exhibit a tiling of the m = 4 amplituhedron which involves a tile which does
not come from the BCFW recurrence — the spurion tile, which also satisfies all cluster properties.
Finally, strengthening the connection with cluster algebras, we show that each standard BCFW tile
is the positive part of a cluster variety, which allows us to compute the canonical form of each such
tile explicitly in terms of cluster variables for Grs,. This paper is a companion to our previous
paper “Cluster algebras and tilings for the m = 4 amplituhedron.”
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1. INTRODUCTION

The amplituhedron is a geometric object which was introduced in the context of scattering
amplitudes in N = 4 super Yang Mills theory. In particular, the fact that the BCFW recurrence!
computes scattering amplitudes in N' = 4 super Yang Mills theory is a reflection of the geometric
statement (which we proved in [ELP*23]) that each BCFW collection of cells in the positive
Grassmannian gives rise to a tiling of the m = 4 amplituhedron. The m = 4 amplituhedron also
has a close connection to cluster algebras: we proved in [ELPT23] that each BCFW tile satisfies
the cluster adjacency conjecture, that is, its facets are cut out by compatible cluster variables.

IBCFW refers to Britto, Cachazo, Feng, and Witten
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In this paper, which is a companion paper to [ELP*23], we continue our study of the cluster
structure and tilings of the m = 4 amplituhedron. In particular, we provide a full characterization
of the facets of BCFW tiles in terms of cluster variables for Gry,. For standard BCFW tiles we
prove our characterization of facets, see Theorem 4.1, extending results of [ELT21]|. For general
BCFW cells we state a characterization of facets in Claim 4.25 but omit the proof, which uses the
same ideas as the proof of Theorem 4.1 but is more technical.

While there are many tilings of the amplituhedron which use BCFW tiles, we show that there
are also tilings that involve other tiles. In particular, we exhibit the first known tiling of an
amplituhedron which uses a non-BCFW tile, the spurion tile.

Finally, strengthening the connection with cluster algebras, we show that each standard BCFW
tile is the positive part of a cluster variety, see Theorem 6.7. In Section 7 we then use our description
of BCFW tiles in terms of cluster variables for Grs, in order to compute the canonical form of
each such tile. The results of this paper provide computational tools to study BCFW tiles, their
cluster structures, canonical forms and tilings.

The structure of this paper is as follows. In Section 2 and Section 3 we provide background on

the amplituhedron and cluster algebras. In Section 4 we characterize the facets of BCFW tiles in
terms of cluster variables for Gry,. In Section 5 we discuss the spurion tiling of the amplituhedron.
In Section 6 we show that each standard BCFW tile can be thought of as the positive part of a
cluster variety. Finally in Section 7 we explain how to compute the canonical form of a BCFW tile
from the cluster variables.
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2. BACKGROUND: THE AMPLITUHEDRON AND BCFW TILES

2.1. The positive Grassmannian. The Grassmannian Gry,,(F) is the space of all k-dimensional
subspaces of an n-dimensional vector space F". Let [n] denote {1,...,n}, and ([Z]) denote the set
of all k-element subsets of [n]. We can represent a point V' € Gry, ,(F) as the row-span of a full-rank
k x n matrix C' with entries in F. Then for I = {i; < --- <} € ([Z]), we let (I)v = (i1i2 ... ig)v
be the k x k minor of C' using the columns I. The (I)y are called the Plicker coordinates of V', and

are independent of the choice of matrix representative C' (up to common rescaling). The Plicker
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embedding V — {<I>V}Ie([”]) embeds Gry, ,(F) into projective space? . If C has columns vy, ..., vy,
k

we may also identify (i1 ia ... i) with v;, Avi, A+ Awv;,, hence e.g. (i1ia ... 0x) = —(i2i1 ... ig).

In this paper we will often be working with the real Grassmannian Gry, = Gry,(R). We will

also denote by Grj y the Grassmannians of k-planes in a vector space with basis indexed by a set
N C [n].

Definition 2.1 (Positive Grassmannian). [Lus94, Pos06] We say that V' € Gry,, is totally nonnegative
if (up to a global change of sign) (I)y > 0 forall I € ([Z]). Similarly, V' is totally positive if (I)y > 0
for all I € ([Z]). We let Gr,i(; and Gr,i% denote the set of totally nonnegative and totally positive
elements of Gry, ,,, respectively. Grr/,f?1 is called the totally nonnegative Grassmannian, or sometimes
just the positive Grassmannian.

If we partition Gr,ion into strata based on which Pliicker coordinates are strictly positive and
which are 0, we obtain a cell decomposition of Grfﬁl into positroid cells [Pos06]. Each positroid
cell S gives rise to a matroid M, whose bases are precisely the k-element subsets I such that the
Pliicker coordinate (I) does not vanish on S; M is called a positroid.

One can index positroid cells in Gr,i(;Z by (equivalence classes of) plabic graphs [Pos06].

Definition 2.2. Let G be a plabic graph, i.e. a planar bipartite graph® embedded in a disk, with
black vertices 1,2,...,n on the boundary of the disk. An almost perfect matching M of G is a
collection of edges which covers each internal vertex of G exactly once. The boundary of M, denoted
OM, is the set of boundary vertices covered by M. The positroid associated to G is the collection
M = M(G) :={0OM : M an almost perfect matching of G}.

For more details about plabic graphs relevant for this paper, see e.g. [ELPT23, Appendix A].
Both Gry,y, and Gri(;l admit the following set of operations, which will be useful to us.

Definition 2.3 (Operations on the Grassmannian). We define the following maps on Maty, ,, which
descends to maps on Gry,, and Grf%, which we denote in the same way:

e (cyclic shift) We define the cyclic shift as the map cyc : Maty, ,, — Maty,, which sends v; —
(—=1)F 1o, and v; — v;_1,2 < i < n, and in terms of Pliicker coordinates: (I) + (I —1).

o (reflection) We define reflection as the map refl : Maty, ,, — Maty, ,, which sends v; — v,41—; and
rescales a row by (—1)(§), and in terms of Pliicker coordinates: (I) — (n+1—1I).

e (zero column) For J C [n], we define the map pre; : Mat, j,)\;;y — Maty,, which adds zero
columns in positions J, and in terms of Pliicker coordinates: (I) — (I).

Here, I —1 is obtained from I € ([Z]) by subtracting 1 (mod n) from each element of [ and n+1—1
is obtained from [ by subtracting each element of I from n + 1.

2.2. The amplituhedron. Building on [AHBC*16a, Hod13], Arkani-Hamed and Trnka [AHT14]
introduced the (tree) amplituhedron, which they defined as the image of the positive Grassmannian
under a positive linear map. Let Matﬁg denote the set of n X p matrices whose maximal minors
are positive.

2We will sometimes abuse notation and identify C' with its row-span; we will also drop the subscript V' on Pliicker
coordinates when it does not cause confusion.
3We will always assume that plabic graphs are reduced [Pos06, Definition 12.5].
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Definition 2.4 (Amplituhedron). Let Z € Mati(;Hm, where k +m < n. The amplituhedron map
Z: Grf% — GTp, g4+-m is defined by Z(C’) := CZ, where C'is a k X n matrix representing an element
of Grf?l, and CZ is a k x (k + m) matrix representing an element of Gry, j4r,. The amplituhedron

Ay km(Z) C Grg gy is the image Z(Gr,%?l).
In this article we will be concerned with the case where m = 4.

Definition 2.5 (Tiles). Fix k,n,m with k +m < n and choose Z € Mat;%er. Given a positroid
cell S of Grf%, we let Zg := Z(S) and Zg := Z(S) = Z(8). We call Zg and Z3 a tile and an open
tile for Ay, . (Z) if dim(S) = km and Z is injective on S.

Definition 2.6 (Tilings). A tiling of A, ; ,,(Z) is a collection {Zg | S € C} of tiles, such that their
union equals A, 1, (Z) and the open tiles Zg, Zg, are pairwise disjoint.

There is a natural notion of facet of a tile, generalizing the notion of facet of a polytope.

Definition 2.7 (Facet of a cell and a tile). Given two positroid cells S" and S, we say that S’ is
a facet of S if ' C 9S and S’ has codimension 1 in S. If S is a facet of S and Zg is a tile of
Ap km(Z), we say that Zg is a facet of Zg if Zgs C 0Zg and has codimension 1 in Zg.

Definition 2.8 (Twistor coordinates). Fix Z € Mat>% with rows Z1,..., 7, € R¥™. Given

n,k+m
Y € Gry jtm withrows yi, ..., yg, and {i1, ..., %, } C [n], we define the twistor coordinate ((i1is - - - im))
to be the determinant of the matrix with rows y1,...,yx, Zi,-- ., Zi,,-

Note that the twistor coordinates are defined only up to a common scalar multiple. An element
of Gry g4m is uniquely determined by its twistor coordinates [KW19]. Moreover, Gry jym can
be embedded into Gry,, so that the twistor coordinate (i1 ...%y,)) is the pullback of the Pliicker
coordinate (i1, ..., o) in Gry, ,.

Definition 2.9. We refer to a homogeneous polynomial in twistor coordinates as a functionary.
For S C Gr,?on, we say a functionary F' has a definite sign s € {1} (or vanishes) on Z§ if for all
VA Mati% 44 and for all Y € Zg, F(Y) has sign s (or 0, respectively). A functionary is irreducible
if it is the pullback of an irreducible function on Gry, .

We will use functionaries to describe amplituhedron tiles and to connect with cluster algebras.

2.3. BCFW cells and BCFW tiles. In this section we review the operation of BCFW product
used to build BCFW cells, following [ELP*23, Section 5]. We then define BCFW cells and tiles.

Notation 2.10. Choose integers 1 < a < b < ¢ < d < n with a,b and ¢, d,n consecutive. Let?
Ny = {n,1,2,...,a,b},Ngp = {b,...,c,d,n} and B = (a,b,c,d,n)>. Also fix k < n and two
nonnegative integers k;, < |Np| and kr < |Npg| such that kp + kr +1 = k.

Remark 2.11. While it is convenient to state our results in terms of [n] and Gr,f?l, our results
hold if we replace [n] by any set of indices N C [n], and replace 1 and n by the smallest and largest
elements of IV, respectively.

4Note that we will overload the notation and let n index an element of a vector space basis for different vector spaces;

however, in what follows, the meaning should be clear from context.
5The ‘B’ stands for “butterfly.”
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Definition 2.12 (BCFW product). Let Sy, C Gr,iO’NL, Sgr C GriSWR be as in Notation 2.10, with
G1,GpR the respective plabic graphs, and let B = (a,b,¢,d,n) as in Notation 2.10. The BCFW
product of S and Sg is the positroid cell St <t S C Grf% corresponding to the plabic graph in
the right-hand side of Figure 1. ’

FiGure 1. The BCFW product Sy, > Sg of S;, and Sgr in terms of their plabic
graphs. Note that G; and GRr are joined along the purple graph associated to
B = (a,b,c,d,n); we call it a ‘butterfly graph’ since it resembles a butterfly.

When it is not clear from the context, we will say > is performed ‘with indices B’.
We now introduce the family of BCFW cells to be the set of positroid cells which is closed under
the operations in Definitions 2.3 and 2.12:

Definition 2.13 (BCFW cells). The set of BOFW cells is defined recursively. For k = 0, let the
trivial cell Grgfil be a BCFW cell. This is represented by a plabic graph with black lollipops at
each of the boundary vertices. If S is a BCFW cell, so is the cell obtained by applying cyc, refl, pre
to S. If Sg, Sg are BCFW cells, so is their BCFW product S > Sg.

Remark 2.14. It follows from the definition that the plabic graph of a BCFW cell is built by glueing
together a collection of (possibly rotated or reflected) ‘butterfly graphs.” We could therefore refer
to the plabic graph of a BCFW cell as a kaleidoscope®.

The standard BCFW cells, which we define below, are a particularly nice subset of BCFW cells.
The images of the standard BCFW cells yield a tiling of the amplituhedron [ELT21].

Definition 2.15 (Standard BCFW cells). The set of standard BCFW cells is defined recursively.
For k = 0, let the trivial cell Grg’% be a BCFW cell. If S is a BCFW cell, so is the cell obtained by
adding a zero column using pre in the penultimate position. If S, Sg are BCFW cells, so is their
BCFW product Sy, > Sg.

Example 2.16. For k£ = 1, each BCFW cell in Grlz,g has a plabic graph of the form shown in
Figure 2 (middle). The Pliicker coordinates (a), (b), (c), (d), (e} are positive, and all others are zero.
In Figure 2 (right), Ser C Gr53 is obtained as Sy, o< Sg, with S, Sg BCFW cells in Gi} , Grg
respectively, with Ny, = {7,1,2,3,4}, Np = {4,5,6,7} and B = (3,4,5,6,7). The standard BCFW
cells for £ = 1 are those BCFW cells where a,b and ¢, d are consecutive and e = n, as shown in
Figure 2 (left). For k = n — 4, the totally positive Grassmannian Gr’?, is the only BCFW cell.

n—4,mn

6A group of butterflies is officially called a kaleidoscope.
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FIGURE 2. The plabic graph of a standard BCFW cell (left) and general BCFW
cell (center) in Grf?l, where the ... denote black lollipops in the remaining indices;

the plabic graph of a BCFW cell S, C Grig (right).

In [ELP 23, Section 7] we showed that the amplituhedron map is injective on each BCFW cell.
We can therefore define BCFW tiles.

Definition 2.17 (BCFW tiles and standard BCFW tiles). We define a BCFW tile to be the
(closure of the) image of a BCFW cell under the amplituhedron map. In other words, each BCFW
tile has the form Z, := Z(S,), where t is a recipe. We define a standard BCFW tile to be a BCFW
tile that comes from a standard BCFW cell.

2.4. Standard BCFW cells from chord diagrams. In this section we introduce chord diagrams,
and show how each gives an algorithm for constructing a standard BCFW cell. In Section 2.5 we
then give a generalization of this algorithm, called a recipe, for constructing a general BCFW cell.

Definition 2.18 (Chord diagram [ELT21]). Let k,n € N. A chord diagram D € CD,,, is a set of
k quadruples named chords, of integers in the set {1,...,n} named markers, of the following form:

D = {(a1,b1,c1,d1),...,(ak, bg,ck,d)} where b, =a;+1and d; =c¢; +1

such that every chord D; = (a;, b;,¢;,d;) € D satisfies 1 < a; < b; < ¢ < di < n—1and no
two chords D;, D; € D satisfy a; = aj ora; < aj < ¢ < ¢;j.

The number of different chord diagrams with n markers and k chords is the Narayana number
N(n—3k+1): [CDusl = 75" ("7

See Figure 3, where we visualize such a chord diagram D in the plane as a horizontal line with n
markers labeled {1,...,n} from left to right, and k nonintersecting chords above it, whose start and
end lie in the segments (a;, b;) and (¢;, d;) respectively. The definition imposes restrictions on the
chords: they cannot start before 1, end after n — 1, or start or end on a marker. Two chords cannot
start in the same segment (s,s + 1), and one chord cannot start and end in the same segment, nor
in adjacent segments. Two chord cannot cross.

We say that a chord is a top chord if there is no chord above it, e.g. D3 and Dg in Figure 3. One
natural way to label the chords is by D1,..., Dy, such that for all 1 < j < k, D; is the rightmost
top chord among the set of chords {Di,...,D;} as in Figure 3. This is equivalent to sorting the
chords according to their ends.
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D = {(3,4,5,6),(5,6,8,9),(1,2,8,9),(10,11,12,13), (9, 10,12,13),(8,9,13,14)}
F1cURE 3. A chord diagram D with k = 6 chords n = 15 markers.

Definition 2.19 (Terminology for chords). A chord is a top chord if there is no chord above it,
and otherwise it is a descendant of the chords above it, called its ancestors, and in particular a child
of the chord immediately above it, which is called its parent. Two chords are siblings if they are
either top chords or children of a common parent. Two chords are same-end if their ends occur
in a common segment (e, e + 1), are head-to-tail if the first ends in the segment where the second
starts, and are sticky if their starts lie in consecutive segments (s, s + 1) and (s + 1,s + 2).

Example 2.20. Consider the chord diagram in Figure 3. D4 has parent D5 and ancestors D5 and
Dg. Dy and Dy are siblings, and D3 and Dg are siblings. Chords Dy and D3 are same-end, chords
Dy and Ds are head-to-tail, and chords D5 and Dg are sticky.

Remark 2.21. The definition of a chord diagram naturally extends to the case of a finite set of
markers N C {1,...,n} rather than {1,...,n}, and a set K of chord indices rather than {1,..., k}.
We will always have that the largest marker is n € N, the starts and ends of chords will be
consecutive pairs in N (and also N) and the rightmost top chord will be denoted by Dy = Dpax k-
The notion of chord subdiagram in Definition 2.22 is an example of this extended notion of chord
diagram.

Definition 2.22 (Left and right subdiagrams). Let D be a chord diagram in CD,, . A subdiagram
is obtained by restricting to a subset of the chords and a subset of the markers which contains
both these chords and the marker n. Let Dy = (a, b, ¢, d) be the rightmost top chord of D, where
1<a<b<c<d<n,and moreover a,b and ¢, d are consecutive.

In the case that d, n are consecutive as well we define Dy, the left subdiagram of D, on the markers
N ={1,2,...,a,b,n} and the right subdiagram Dr on Np = {b,...,c,d,n}. The subdiagram Dy,
contains all chords that are to the left of Dy, and Dy contains the descendants of Dy.

Example 2.23. For the chord diagram D in Figure 3, the rightmost top chord is Dg = (8,9, 13, 14),
so Np, ={1,...,9,15} and Dy = {Dy, D2, D3}, while Np ={9,...,15} and Dg = {D4, Ds}.

Definition 2.24 (Standard BCFW cell from a chord diagram). Let D be a chord diagram with
k chords on a set of markers N. We recursively construct from D a standard BCFW cell Sp in
Gr{’y as follows:
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FIGURE 4. Recursive construction of a standard BCFW cell from a chord diagram
as in Definition 2.24. Top left (right): construction of D (Gp) from D’ (G') as in
(1a); bottom left (right) construction of D (Gp) from Dy, Dr (GL,GRr) as in (1b).

(1) If £ =0, then the BCFW cell is the trivial cell Sp := Grgsv.
(2) Otherwise, let Dy, = (a, b, ¢, d) be the rightmost top chord of D and let p denote the penultimate
marker in .

(a) If d # p, let D’ be the subdiagram on N \ {p} with the same chords as D, and let Sp be
the standard BCFW cell associated to D’. Then, we define Sp := pre, Spr, which denotes
the standard BCFW cell obtained from Sps by inserting a zero column in the penultimate
position p.

(b) If d = p, let S;, and Sk be the standard BCFW cells on Nj, and Np associated to the
left and right subdiagrams Dy and Dg of D. Then, we let Sp := S, 1 Sg, the standard
BCFW cell which is their BCFW product as in Definition 2.12.

Example 2.25. The standard BCFW cell Sp of the chord diagram D in Figure 3 is Sp <1 Sg
where the chord subdiagrams Dy, D are as in Example 2.23. One can keep applying the recursive
definition and obtain:

St = Gro (12,15} X ((Gro,{2,3,4,15} > Gro,{4,5,6,15}) > GTO,{6,7,8,9,15})
Sr = prey (Gro,{9,10,15} > (Gl“o,{1o,11,15} > Gro,{11,12,13,15}))

2.5. BCFW cells from recipes. In this section, we review the conventions for labeling general
BCFW cells from [ELP*23, Section 6]. Each general BCFW cell may be specified by a list of
operations from Definition 2.13. The class of general BCFW cells includes the standard BCFW
cells, but is additionally closed under the operations of cyclic shift, reflection, and inserting a zero
column anywhere (cf. Definition 2.13) at any stage of the recursive generation. Since any sequence
of these operations can be expressed as pre; followed by cyc” followed by refl® for some I, 7, s, we
can specify in a concise form which ones take place after each BCFW product. We will record the
generation of a BCFW cell using the formalism of recipe in Definition 2.26.
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FIGURE 5. The left diagram Dy, and the right diagram Dpg for the chord diagram
D in Figure 3.

Definition 2.26 (General BCFW cell from a recipe). A step-tuple on a finite index set N C N is
a 4-tuple
((ai, bi, i, diymi), prey,, cyc” refl*),

where I; C N such that n; is the largest element in N \ I;, a; < b; and ¢; < d; < n; are both
consecutive in N \ ;, 0 < r; < |N|, and s; € {0,1}. A step-tuple records in order: a BCFW
product of two cells using indices (a;, b;, ¢;, d;, n;); zero column insertions in positions I;; applying
the cyclic shift r; times; applying reflection s; times. Note that some of these operations may be
the identity. Each operation in a step-tuple which is not the identity is called a step.

A recipe v on N is either the empty set (the trivial recipe on N, denote tiiV), or a recipe vz, on
Ny, followed by a recipe tgr on Ng followed by a step-tuple ((ag, bk, c, dx, k), prey, , cyc™, refl®)
on N, where Np, = (N \ Iy) N {ng,...,ax, by} and Ngp = (N \ I) N {bx, ..., g, di,ni}. We let S,
denote the general BCFW cell on N obtained by applying the sequence of operations specified by
v. If ¢ consists of k step-tuples, then S, C Gr,ioN.

Example 2.27. Consider the recipe t consisting of the following sequence of 4 step-tuples:
((3,4,5,6,12), prey), ((1,2,5,6,12), cyc?, refl)), ((6,7, 8,9, 11), preyg 12), ((5,6,10,11,12), cyc?, refl).
Figure 6 shows the plabic graph of the general BCFW cell S obtained from v following Definition 2.26.

Remark 2.28 (Recipe from a chord diagram). We now explain how a chord diagram D gives
rise to a recipe t(D). Let D be a chord diagram with k& chords on a set of markers N. If k = 0,
t(D) is the trivial recipe on N. Otherwise, let (a, by, ¢k, dr) denote the rightmost top chord, let
n :=maxN, and let I := {p € N | d, < p < n}. Let D be the chord diagram obtained from
D by removing the markers in I, and let Dy and Dp be the left and right subdiagrams of D,
on marker sets N, C N \ I and Ng C N \ I, respectively. Then the recipe v(D) from D is
recursively constructed as the recipe t(Dy,) followed by the recipe v(Dpg) followed by the step-tuple
((ak, b, cx, di,n), pre; ) on N.

Example 2.29. We now illustrate Remark 2.28 on the chord diagram Dy, of Example 2.25, which
is pictured in Figure 5. In this case we obtain the recipe

U 1510 T B 415y Tl 56,15y ((3:4,5,6,15)), ¢16Y ¢ 915y, ((5,6,8,9,15)),((1,2,8,9,15)).

Because our arguments are frequently recursive, we need some notation for the BCFW cells
obtained by deleting the final step of a recipe. We use the following notation throughout.
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1 5 3 6 6 7
2 4 {
12
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212 1 9 =
((3,4,5,6,12), pre,) ((1,2,5,6,12), cyc?, refl) ((6,7,8,9,11), preqg 12)

3 4

10 9 8
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(( yet,

Ficgure 6. Hlustration of building up a BCFW cell using the recipe t of
Example 2.27. Box ¢ shows the result after the first ¢ step-tuples. The result of
the step (aj, b;, ¢, dj, n;) is shown on the left in each box, and the results of the steps
prey,,cyc™ and refl® are shown on the right.

Notation 2.30. Let t be a recipe for a BCFW cell § € Gr,fON. Let FStep denote the final
step, which is either (ag, by, ¢k, di, nk), prey, , cyc or refl. If FStep 7é (ag, by, ck, di, ny), then we let p
denote the recipe obtained by replacing FStep with the identity. Note that S, is again a BCFW cell.
If FStep = (ag, bk, ¢k, di, k), let vz, and v denote the recipes on Ni, and Ng as in Definition 2.26.
Then vy, tr are recipes for BCFW cells Sy, C Gr,f;NL and Sg C Gr,iijNR and S = Sy, 1 Sg. Note
that to avoid clutter, we will usually use L, R as subscripts rather than writing Sy, , St,.

Remark 2.31. In contrast with the bijective correspondence between standard BCFW cells and
chord diagrams, multiple recipes could give rise to the same general BCFW cell. Even the sets of 5
indices that are involved in the BCFW products are not uniquely determined by the resulting cell.

3. BACKGROUND: CLUSTER ALGEBRA AND BCFW TILES

In this section we review some of the connections between BCFW tiles and the cluster algebra
of the Grassmannian Gry,. See e.g. [ELP123, Section 3] for a relevant review on cluster algebras.
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3.1. Product promotion. A key ingredient for connecting BCFW tiles to cluster algebras is
product promotion — a map which is the algebraic counterpart of the BCFW product.

Definition 3.1. Using Notation 2.10, product promotion is the homomorphism
Up=U: (C((/}\I‘LL,NL) X (C(é\r47NR) — (C(é\l'47n),

induced by the following substitution:
(ba) N (edn)

(acdn)
(ba) N (cdn) (de) N (abn)
e d =

(abcd) (aben)
The vector (ij) N (rsq) == v;(jrsq) —vj(irsq) = —v(ijsq) +vs(ijrq) —vg(ijrs) is in the

on Gryn,: b —

on Gryng: n +—

intersection of the 2-plane and the 3-plane spanned by v;,v; and v,, v, vy, respectively.

Theorem 3.2 below says’ that U is a quasi-homomorphism from the cluster algebra® (C[(/}\ri Nyl X
(C[é\riNR] to the cluster algebra C[(/}\rz,n]. See [ELP 23, Definition 3.23] or [Fral6, Definition 3.1,
Proposition 3.2] for the definition of a quasi-homomorphism.

Theorem 3.2. [ELP 23, Theorem 4.7] Product promotion ¥ is a quasi-homomorphism of cluster
algebras. In particular, ¥ maps a cluster variable (respectively, cluster) of(C[GrZNL] XC[GTZ,NR]’ to

a cluster variable (respectively, sub-cluster) of (C[(/}\rzjn], up to multiplication by Laurent monomials

in T':={{aben),{abed), (bedn),(acdn)}.

Remark 3.3. Definition 3.1 and Theorem 3.2 extend also to the degenerate cases, e.g. for a =1
(upper promotion), where W : C(Gry,ny) — C(Gray,), see [ELPT23, Section 4.3].

Definition 3.4. Let z be a cluster variable of C[GZ,NL] or C[GZ,NR]- We define the rescaled
product promotion W(z) of z to be the cluster variable of Gry, obtained from ¥(z) by removing”
the Laurent monomial in 77 (c.f. Theorem 3.2).

The fact that product promotion is a cluster quasi-homomorphism may be of independent interest
in the study of the cluster structure on Gry,. Much of the work thus far on the cluster structure
of the Grassmannian has focused on cluster variables which are polynomials in Pliicker coordinates
with low degree; by contrast, the cluster variables we obtain can have arbitrarily high degree in
Pliicker coordinates. We introduce the following notation:

(1) (abelde| fgh) = (abe(de) N (fgh)) = (abed) (e f gh) — (abee) (d f gh).

More generally, we consider polynomials called chain polynomials of degree s + 1 as follows (see
[ELP*23, Definition 2.5]):

(agboco|dipdii|bici|daoday|bacal ... |dsods]|bscsas)
@ - Z (=) F e (ag b co dugy) (di1—ty b1 1 day) (o1, b2 cadag) -+ (ds 11, bs €5 as)
te{0,1}s

"We will sometime omit the dependence on the indices B = {a,b,c,d,n} in ¥ (and ¥) for brevity.

8@[@2,1\@} X (C[(/}\rZ,NR] is a cluster algebra where each seed is the disjoint union of a seed of each factor.
9f 2 = (bedn), then W(z) = U (x) = z.
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Example 3.5. For Ny, and Ng as in Example 2.16, the only Pliicker which changesis: U((1247)) =
(127|34]567)/(3467), and U((1247)) = (127|34|567) which is a quadratic cluster variable in
Gry 7, e.g. obtained by mutating (2367) in the rectangle seed ¥4 7 (see [ELP123, Definition 3.12]).

3.2. Coordinate cluster variables. Using rescaled product promotion and Definition 2.3, we
associate to each recipe t a collection of compatible cluster variables x(t) for Grs,. This will
allow us to describe each (open) tile as the subset of the Grassmannian Gry, ;44 where these cluster
variables take on particular signs.

Definition 3.6 (Coordinate cluster variables of BCFW cells). Let S; C Gr7° be a BCFW cell.
We use Notation 2.30. The coordinate cluster variables x(t) := {(f} for S, are defined recursively
as follows:

e If FStep = (a,b,c,d,n) =: B, then we define
ay := (bedn), Bp := (acdn), 7} := (abdn), 6 := (aben), & = (abcd)
AL

) T (¢
and fori £k, (& = f’(@R) if the ith step-tuple is in
V(¢

7

tr

TR

refl refl* ¢
e If FStep = < cyc then ¢} := ¢ cyc™*
preg, Ezp
Note that x(tr) depends on the recipe t rather than just the BCFW cell.
Notation 3.7. Given a cluster variable z in Gry,, we will denote by 2(Y’) the functionary on

Gry, k+4 obtained by identifying Pliicker coordinates (I) in Gry, with twistor coordinates (1)) in
Gry g4 (cf. Definition 2.8).

Interpreting each cluster variable as a functionary, we describe each BCFW tile as the semialgebraic
subset of Gry 44 Where the coordinate cluster variables take on particular signs. This appears as
Corollary 7.12 in [ELP*23]:

Theorem 3.8 (Sign description for general BCFW tiles). Let Z; be a general BCFW tile. For
each element x of x(t), the functionary x(Y) has a definite sign s, on Z7 and

Z; ={Y € Grgpya : sz 2(Y) >0 for all v € x(v)}.

Example 3.9 (Coordinate cluster variables). The coordinate cluster variables for S, in Figure 6
are obtained by applying the recursion in Definition 3.6:

i [ & % | o B
11(789|43|9AB)|(689|43|9AB)|(9AB|34]67|89|345)|(678(45(89|34|9AB)| (6789)
2| (589(43]|9AB) (3489) (3459) (3458) (4589)
3(12C | BA|349)[(13C|AB[349)| (23C|AB|349) | (123|BA|349) [(123C)
4 (39 AB) (49 AB) (349 A) (349 B) (34AB)
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See [ELP*23, Example 7.4] for more details.

3.3. BCFW tiles. In [ELP123, Section 7] we proved that BCFW cells give tiles of the amplituhedron
Ay 1.4(Z) by explaining how to invert the amplituhedron map Z on the image Z° = Z(S,) of each
BCFW cell S,. For each point Y € Z?2, the pre-image Z74Y) is a point in Gr,fﬁl represented
by the twistor matriz M (Y), whose entries are expressed in terms of ratios of the coordinate
functionaries {CF(Y)}3*, of S, see [ELP*23, Definition 7.1]. The coordinate functionaries are
defined recursively in a similar way as in Definition 3.6 using product promotion. Moreover, they
can be used to give a semilagebraic description of the tile. This is summarized in the theorem
below, which appears as [ELP*23, Theorem 7.7].

Theorem 3.10 (General BCEW cells give tiles). Let S, be a general BCFW cell with recipe v. Then
forall Z € Mati%M, Z is injective on Sy and thus Z, is a tile. In particular, given' Y € Z(S,), the
unique preimage of Y in S, is given by (the rowspan of) of the twistor matriz M™(Y'). Moreover,

Zg ={Y € Grypya : ¢ (Y) > 0 for all coordinate functionaries of Se}.

For functionaries, we can introduce a similar notation as for the chain polyonmials in Equation (1):

3) {abelde| fgh) = (abed) (efgh) — (abee)) (dfgh).

More generally, we define chain functionaries of degree s + 1 to be the polynomials obtained
from Equation (2) by replacing Pliicker coordinates (I) by twistor coordinates ((I)). See [ELP*23,
Definition 2.19].

Example 3.11 (Coordinate functionaries). The coordinate functionaries for S, in Figure 6 are:

i ) [ s0) ] u®) | 5i(Y) [ av) |
e B [ o B [ o rboody ™ |~ ety oy | (6789)
2| - samy | (3489) (3459) —(3458) {(4589)
3 7((120(3\41139,43\;349» 7((13%‘3\;49}3;349)) ((23031;9}3};)349)) 7((123(\3}2:};3;49)) <<123C>>
4] —(39AB) | (49AB) (349 A)) —(349B) (34 AB))

See [ELP23, Example 7.2] for more details.

For a standard BCFW tile Zp, we call the coordinate cluster variables domino cluster variables or
simply domino variables, and denote them as x(D) = {a;, i, %, 6,5 | 1 <i < k}. See [ELP*23,
Theorem 8.4] for explicit formulas for the domino variables. The formulas have different cases
depending on whether certain chords are head-to-tail siblings, same-end parent and child, or sticky
parent and child (cf. terminology in Definition 2.19).

Example 3.12 (Domino cluster variables). The domino cluster variables x(D) for the chord
diagram D in Figure 3 are as follows. We will denote (10,11,12,13,14,15) as (A, B,C,D, E, F).
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’lH Q; ‘ Bi Yi ‘ 8 ‘ & ‘
1| (456|21[89F) |(356|21|89F)|(F89|21|34|56|89F)|(345]21|89F)| (3456)
2 (689F) (589 F) (F12]56|89F) (568|21[89F)| (5689)
3 (289 F) (189F) (F12|89|DEF) (128 F) (1289)
4|{BCD|98|DEF) Ba = as (89 AB) (9ABC) |(ABCD)
5|(ACDI|98|DEF)| (89CD) (89 AD) (89AC) (9AC D)
6 (9DEF) (8DEF) (89EF) (89DF) (89D E)

See [ELP 123, Example 8.5] for more details.

Definition 3.13 (Mutable and frozen domino variables). Let D € CD,  be a chord diagram,
corresponding to a standard BCFW tile Zp in A, ;4(Z). Let Froz(Zp) denote the following
collection of domino cluster variables:

e a; unless D; has a sticky child

° Bl unless D; starts where another chord ends or D; has a same-end sticky parent.
e 7; in all cases.

e §; unless D; has a same-end child.

e Z; unless D; has a same-end child.

Let Mut(Zp) denote the complementary set of domino variables, i.e. Mut(Zp) = x(D) \ Froz(Zp).

Remark 3.14. One can show (see [ELP"23, Remark 8.2]) that if D; has a same-end sticky parent
D,, then Bi = Q.

Example 3.15 (Mutable and frozen domino variables). Let Zp be the tile with the chord diagram D
from Figure 3 and domino variables as in Example 3.12. Among those, the mutable variables are:

as, O, /527 347 Bﬁa 53, 5_57 €3, 5 € Mut(ZD)

Hence Froz(Zp) consists of the remaining 21 domino variables. Note that as = 34 by Remark 3.14.

Definition 3.16 (The seed Xp of a BCFW tile Zp). Let D € CD,, ) be a chord diagram, and
Zp the corresponding BCFW tile. We define a seed ¥p = (x(D),Qp) as follows. The extended
cluster x(D) has the sets Mut(Zp) of mutable cluster variables and Froz(D) of frozen variables
(recall Definition 3.13). To obtain the quiver @)p, we consider each chord D; in turn, check if it
satisfies any of the conditions in the table below, and if so, we draw the corresponding arrows.
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Condition
<o

head-to-tail left sibling D; same-end child D; sticky child D;

if same-end

Arrows
EI

If D; has sticky same-end child D; then the dotted arrow from &; to & appears, along with the
usual arrows of the “sticky” and “same-end” cases. In view of Remark 3.14, in this case &; stands

also for Bj as they are equal.

FIGURE 7. The seed X p associated to the chord diagram D above (also in Figure 3).
The variables x(D) are as in Example 3.12. The mutable variables Mut(Zp) are
circled; the other variables are the frozen variables Froz(Zp). The colors (red, green,
blue) indicate the different cases of Definition 3.16.

Example 3.17 (Seed of a standard BCFW tile). The seed ¥p from Figure 7 is built from
Definition 3.16 by applying the rules for the following conditions. Head-to-tail left siblings: (i, j) €
{(2,1),(6,3)}; same-end child: (i, 7) € {(3,2),(5,4)}; sticky child: (7,j) € {(6,5),(5,4)}.

Theorem 3.18 appears as Theorems 9.10 in [ELPT23].
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Theorem 3.18 (The seed of a standard BCFW tile is a subseed of a Gra, seed). Let D €
CDy 1. The seed ¥p = (x(D),Qp) is a subseed of a seed for Gry,. Hence every cluster variable
(respectively, exchange relation) of A(Xp) is a cluster variable (resp., exchange relation) for Gry,,.

The following theorem characterizes the open BCFW tile Z7, in terms of any extended cluster
of A(Xp). It generalizes Theorem 3.8 for standard BCFW tiles and it appears as Theorem 9.11 in
[ELPT23].

Theorem 3.19 (Positivity tests for standard BCEFW tiles). Let D € CD,, . Using Notation 3.7,
every cluster and frozen variable x in A(Xp) is such that x(Y') has a definite sign s, € {1,—1} on
the open BCFW tile Z%,, and

4)  Zp ={Y € Grypya : Sz -x(Y) >0 for all x in any fized extended cluster of A(Xp)}.
The signs of the domino variables in Theorem 3.19 are given by [ELP*23, Proposition 8.10].

Example 3.20 (Positivity test for a standard BCFW tiles). For the tile Zp with chord diagram
D in Figure 7 and x(D) as in Example 3.12:

23 ={Y € Grg10: 85 - o(Y) > 0 for all @ € x(D)},

where the signs s, are negative if x is among: aw, as, as = B4, b1, B6, 72, 01, 05, 0g. Otherwise,
Sz 18 positive.

The following result appears as [ELP*23, Theorem 7.16].

Theorem 3.21 (Cluster adjacency for general BCFW tiles). Let Z, be a general BCFW tile of
Ay i4a(Z). Each facet Zg of Z; lies on a hypersurface cut out by a functionary Fs({(I))) such that
Fs((I)) € x(v). Thus {Fs((I)) : Zs a facet of Z} consists of compatible cluster variables of Grya,,.

4. FACETS oF BCFW TILES

The main goal of this section is to prove Theorem 4.1, which characterizes the facets of standard
BCFW tiles; this proof is in Section 4.1 and Section 4.2. Then in Section 4.3 we also state (without
proof) a characterization of the facets of general BCFW tiles.

4.1. Facets of standard BCFW tiles.

Theorem 4.1 (Frozen variables as facets). Let D € CD,, be a chord diagram, corresponding
to a standard BCFW tile Zp in A, 4(Z). Then for each cluster variable {; € Froz(Zp) (cf.
Definition 3.13) there is a unique facet of Zp which lies in the zero locus of the functionary (;(Y);
the plabic graph of this facet is constructed in Theorem 4.11. Moreover, for any Z, there are no
other facets of Zp.

We need several lemmas in order to prove Theorem 4.1. The first two are consequences of the
Cauchy-Binet formula for the twistors (see, e.g., [ELP123, Lemma 2.16]). We recall the notion of
coindependence ([ELP123, Definition 5.5])

Definition 4.2. Let V € Grf%. A subset I C [n] is coindependent for V if V' has a nonzero Pliicker
coordinate (J)y, such that JNI = (. If k = 0 we declare all subsets to be coindependent. If S is a
positroid cell in Grfg, then J is coindependent for S if J is coindependent for the elements of S.



A CLUSTER OF RESULTS ON AMPLITUHEDRON TILES 17

Lemma 4.3. Let [ = {iy,...,inm} € ([gl]) If(Cz,2z,,...,2;,) # 0, then I must be coindependent
for C € Grg?,.

Proof. It (CZ,Z;,,...,Z; ) # 0, then by the second equation of [ELP23, Lemma 2.16], there
must be some J such that (J)¢ # 0 and J NI = (. This means that I is coindependent for C. O

Definition 4.4 ([ELP*23, Definition 11.1]). We say that functionary F' has a strong sign on a
positroid cell S if there exists an expansion of F(Z(C)), for C € S, as a sum of monomials in the
Pliicker coordinates of C' and the minor determinants of Z all of whose coefficients have the same

sign.

Lemma 4.5. Let I € ([Z}), and let S be a cell of Gr,fﬁl. Suppose that (I)) has a strong sign on

Z2, but for some cell S" C S, we have (I)) =0 on Zgi. Then for each J € ([Z]) disjoint from I, we
must have (J)c =0 for all C € S’. In other words, I is not coindependent for S’.

Proof. Since ((I)) has a strong sign on Zg, all nonzero terms of [ELP'23, Lemma 2.16], which
necessarily come from J for which J and I are disjoint, must have the same sign. Since {(I)) =0
on Zg, all the above nonzero terms must vanish when we go to the cell S’ in the boundary of S.
But this means that all Pliicker coordinates (J), with J disjoint from I, must vanish on S’. O

Lemma 4.6. Let S;, C Gr,iONL and Sp C Grlig Ng be positroid cells, with plabic graphs G and
Gr. Let G = G, < Gg. If {a,b,n} fails to be coindependent for S or {b,c,d,n} fails to be
coindependent for Sg, then for each I € ({a’b’i’d’”}), we have (I)) =0 on Zg.

Proof. We will prove the contrapositive. Suppose that for some I € ({a’b’i’d’n}), we have (I)) # 0
on Zs,. Then by Lemma 4.3, I must be coindependent for the cell Sg. Then by [ELP*23, Remark
5.6], the plabic graph G must have a perfect orientation @ where all boundary vertices in I are
sinks. But now it is a simple exercise to check that if in the graph G > G which appears in
Figure 8 (ignoring the arrows) we put sinks at the (outer) boundary vertices I, then there is a
unique way to complete this to a perfect orientation of the “butterfly” portion of the graph. And
in particular, this orientation will include the directed edges shown in Figure 8. But then the
perfect orientation O, restricted to Gy and Gr, must have sinks at vertices a,b,n of G, and at
vertices b, ¢,d,n of Gr. But then {a,b,n} and {b,c,d,n} must be coindependent for S; and Sg,
respectively. O

Lemma 4.7. For every cell S C 0Sp in the boundary of a standard BCFW cell Sp,
Zs C 0Zp.
So Z2, is the interior of Zp and 0Z%) = 0Zp = Z(dSp).

Proof. The second and third statements follows from the first, using [ELP*23, Corollary 11.17].
We now focus on proving the first statement. It is enough to prove it for facets, since images
of boundary cells of higher codimensions are contained in the closure of the images of facets. By
[ELT21, Proposition 7.10], each facet S of Sp is either a facet of another BCFW cell Sp or its
image Zg lies in the zero locus of a twistor coordinate ((i,7 + 1,7,j + 1)) for some 4, j.
In the former case it follows that for every p € Zg, every open neighborhood of p intersects
both Z7, and Zp,. By [ELT21, Theorem 1.4], which shows that the images of different standard
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FIGURE 8.

BCFW cells do not intersect, we have that Z3, N 25, = (). Therefore Zg is indeed in the topological
boundary of Zp.

For the latter case, [ELT21, Proposition 8.1] shows that the intersection of the hypersurface
{{(i,i+1,5,j+1)) =0} with A, 14(Z) is contained in the topological boundary 0.A, 1.4(Z). Hence
if Zg lies on this hypersurface, Zg must also be contained in the topological boundary of Zp. 0O

Lemma 4.8. Let D be a standard BCFW cell, and let &1,&2 € x(D) be two different domino
cluster variables for Zp. Then the intersection of zero loci of £1(Y), &(Y) (the natural identification
between functionaries and homogenous polynomials in Plicker coordinates is explained in [ELPT23,
Notation 7.11]) meets Zp in codimension greater than 1. It follows that for each mutable cluster
variable £ € Mut(D), the zero locus of £(Y') intersects Zp in codimension greater than one.

The proof of Lemma, 4.8 is postponed to the next subsection.

Theorem 4.9. Let S = S <1 Sg be a BCFW cell, and suppose I € ({a’b’i’d’n}). Then there is at

most one facet S' of S, such that among the five twistor coordinates coming from ({“’b’i’d’"}), only
(I)) vanishes on Zgr. To construct the potential facet, we start from the graph in Figure 9 and
remove the edge labeled by x12 (respectively, x1g, x¢, 3, 1), obtaining a graph G corresponding
to a cell SO (for 1 < i < 5) such that (abed)) (respectively, (abdn)), (bedn)), {acdn)), {aben)))

is the unique twistor coordinate coming from ({a’b’fl’d’n}) which vanishes on Z(S(i)). Moreover, we
can realize the elements of S using path matrices which have a row whose support is precisely

{a,b,c,d} (and similarly for the other S©W). If GO is reduced, then S is the desired facet S'.

Proof. Let G, and G be reduced plabic graphs corresponding to Sy, and Sg. By [Pos06, Theorem
18.5] (see also [ELPT23, Theorem B.14] ), any cell S’ of codimension 1 in S comes from a plabic
graph G’ obtained by removing an edge e from G <t Gg. Such an edge could be in G, or Gg
or in the “butterfly.” Choose I from ({a’b’i’d’"}). We first claim that if (7)) is the unique twistor

{“’b’i’d’"}) which vanishes on Zg/, then edge e must come from the butterfly.

coordinate among (

Suppose e does not come from the butterfly. Then G’ = G > G, where either G, = G,
and G is obtained from G by removing an edge e, or vice versa. Since we are assuming the
twistor coordinates from ({a’b"id’"}) which are not ((I)) do not vanish on Zg/, Lemma 4.6 implies

that {a,b,n} is coindependent for the cell of G’, and {b,c,d,n} is coindependent for the cell of
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G'y. Hence G’ and G have perfect orientations where {a,b,n} and {b,c,d,n} are sinks. But now
by [ELP*23, Lemma 10.4], all elements of ({“’b’i’d’”}) are coindependent for S’, the cell associated
to G, <1 G%. Meanwhile we know by [ELP*23, Lemma 11.6] that ((I)) has a strong sign on Zg.
Therefore by Lemma 4.5, I is not coindependent for S’. This is a contradiction.

{a’b’fl’d’"}) which vanishes on

Now we know that if (/) is the unique twistor coordinate among (
Zg:, then S’ has a plabic graph which is obtained from G <t Gg by removing an edge e from
the butterfly. Let us choose perfect orientations of G and G where {a,b,n} and {b,c,d,n} are
sinks. We can then complete this to a perfect orientation of G = G, <t Gr with a source at d, as

in Figure 9.

d ($1$2$3$4$5$6$7, T1T2T3T4T5X8 Ly, T1T10T11, 1, 961902953513129013)

FIGURE 9. A perfect orientation of the butterfly, and the nonzero entries of row d
in the associated path matrix.

Then the path matrix C associated to this perfect orientation has a row indexed by d with
exactly five nonzero entries in positions a, b, ¢, d, n. If we weight the edges of G as in Figure 9, the
row d of the path matrix is exactly as shown in the bottom of Figure 9.

Now notice that if we delete the edge e labeled by x19, i.e. if 12 = 0, then our perfect orientation
restricts to a perfect orientation of the remaining subgraph, and when we construct the path matrix
C’, row d will have support {a,b,c,d}. Thus the path matrix C’, representing points of a cell OR
will fail to be coindependent at {a, b, c,d} and hence the twistor coordinate ((a,b, ¢, d)) will vanish
on Zgn). However, we can still find perfect orientations of the “butterfly \{e}” with sinks at the

{“’b’i’d’”}), which all include n. So these other four twistor coordinates will

other four elements of (
not vanish on Zg).
Similarly, if we delete the edge e labeled by xig, then row d will have support {a,b,d,n},
and the analogous argument shows that the associated cell S®) will fail to be coindependent at
{a,b,d,n}. Moreover ((a,b,d,n)) will be the unique twistor among ({“’b’i’d’"}) which vanishes on

Zg). Meanwhile, if we delete the edge e labeled by x¢ (respectively, zg), we get a cell S3)
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(respectively, S™) for which (b, c,d,n) (respectively, (a,c,d,n)) is the unique twistor among
({“’b’i’d’"}) which vanishes on the image of the cell under Z.

In order to discuss what happens when we delete the edge labeled by x1, we first need to construct
a new perfect orientation (', by reversing the directed path from d to n. Then when we delete the
edge labeled by x1, O restricts to a perfect orientation, and the associated path matrix has a row
indexed by n whose support is {a,b,c,n}. As before {(a,b,c,n)) will be the unique twistor among
({a’b’i’d’"}) which vanishes on Zgs).

This constructs the plabic graphs G corresponding to the cells S®) (for 1 < i < 5) whose
existence the theorem predicts. If G is reduced, then S is a facet of S, as desired.

To show that no other cells have the desired properties, we show that if we delete any other edge
of the butterfly, we get a cell S’ such that at least two twistors coordinates among ({“’b’i’d’”}) vanish
on Zg. For example if we delete the edges labeled xo or x4, we still have a perfect orientation but
now row d of the path matrix C’ has support at most three, which means that at least two twistor
coordinates among ({“’b"id’"}) will vanish on C'Z. To analyze what happens if we delete any of the
other edges we have to change the perfect orientation, but in all cases our path matrix C’ will have
a row whose support is a 1, 2, or 3-element subset of {a, b, c,d,n}, which means that at least two
twistor coordinates among ({“’b’i’d’"} ) will vanish on C’Z. O

Lemma 4.10. Let S be a standard BCFW cell, and let m be its trip permutation. Then w(n) ¢
{I,n—1,n—2}, and 7(1) #n — 1.

Proof. This follows from the Le-diagram description of standard BCFW cells from [KWZ20, Definition
6.2], or the related @®-diagram description given in [ELT21, Definition 2.24]. O

Theorem 4.11 (Plabic graphs for potential facets of standard BCFW tile). Let G = G, < G be
a reduced plabic graph for the standard BCFW cell S = St <1 Sg associated to a chord diagram D
with top chord Dy. Use the notation of Theorem 4.9 and Figure 9, and identify the labels of edges
of G with the edges themselves.

(o). If Dy does not have a sticky child, then G \ {x¢} is reduced.'’

(B). Dy does not start where another chord ends if and only if G \ {zs} is reduced.

(v). The graph G\ {z10} is reduced.

(6). Dy does not have a same-end child if and only if G\ {x1} is reduced.

(€). Dy does not have a same-end child if and only if G\ {z12} is reduced.

Before proving the theorem, we recall a useful lemma.

Lemma 4.12. [Pos06, Lemma 18.9] Let G be a reduced plabic graph with trip permutation m, let
e be an edge of G, and let Ty : i — (i) and Ty : j — 7(j) be the two trips in G that pass through
e (the trips will pass through this edge in two different directions). Then G \ {e} is reduced if and
only if the pair (i,7(2)) and (j,7(j)) is a simple crossing in .

Proof of Theorem 4.11. Case («). If Dy does not have a sticky child, then G has a black lollipop
at b. This means that in G, the edge connecting vertex b in G to the “butterfly” can be contracted.
The trips going through edge zg are shown in Figure 10. Since these two trips end at adjacent

10The converse may not be true.
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F1GuRE 10. If Dy does not have a sticky child, then G \ {z¢} is reduced.

boundary vertices, they must be part of a simple crossing. Therefore by [Pos06, Lemma 18.9],
G \ {zg} is reduced.

F1cure 11. Left: if Dy does not start where another chord ends then G\ {zg} is
reduced. Right: if Dy, starts where another chord ends then G'\ {zg} is non-reduced.

Case (f). Suppose that Dy does not start where another chord ends. Then G has a black
lollipop at vertex b, which means that the edge (shown dashed in Figure 11) connecting that vertex
to the butterfly can be contracted. The two trips which pass through xg are shown in pink and
green in Figure 11. By Lemma 4.10, 7g, (n) # a and so the pink trip in G must start at the left
part of the graph, i.e. at some element in {1,2,...,a — 1}. We also claim that the pink trip in G
must end at the right part of the graph, i.e. at some element in {b+ 1,b+2,...,¢c— 1}, otherwise
the pink and green trips would have a bad double crossing and G would fail to be reduced [Pos06,
Theorem 13.2]. But now it is clear that the pink and green trips must form a simple crossing,
because there is no other trip in G that starts at an element of {1,2,...,a} and ends at an element
of {b+1,b+2,...,c— 1}. Therefore by [Pos06, Lemma 18.9], G \ {zg} is reduced.

Now suppose that D; starts where another chord ends. Then G has the form shown at the
right of Figure 11: in particular, the vertices a and b of G, are connected by a black-white bridge.
But then when we delete edge xg, the resulting graph has a configuration of vertices which is
move-equivalent to a bubble (cf [ELPT23, Definition B.2]), as shown in the right of Figure 11.
Therefore G \ {zg} is not reduced.

Case (7). The two trips passing through x19 are shown in Figure 12. Since these two trips end
at ¢ and d, there cannot be another trip ending between ¢ and d, hence they represent a simple
crossing. Therefore by Lemma 4.12, G \ {z10} is reduced.

Case (0). Suppose that Dy, does not have a same-end child. Then D does not have another chord
ending at (¢, d), and hence in G, the vertex d will be a black lollipop that can be contracted. First
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FIGURE 12. The graph G \ {x10} is reduced.

Ficure 13. Left: If Dy does not have a same-end child and D has no chord ending
at (c—1,c), then G\ {z1} is reduced. Middle: If Dy, does not have a same-end child
and D does have a chord ending at (¢ — 1, ¢), then G\ {x;} is reduced. Right: if Dy,
has a same-end child then G \ {x;} is not reduced.

suppose there is no chord in D ending at (¢ — 1,¢), then there is also a lollipop in Gr at ¢, and
G looks as shown at the left of Figure 13. Then one of the trips through edge x; goes from ¢ to
d, so the two trips passing through x; must form a simple crossing. Therefore by [Pos06, Lemma
18.9], G\ {z1} is reduced. Now suppose there is a chord in D ending at (¢ — 1,¢). Then G looks
as shown in the middle of Figure 13. By Lemma 4.10, 7g,(1) # n — 1 and mg,(n) # n — 1, so the
pink trip must start at an element of {b+1,...,¢— 1}. Similarly, by Lemma 4.10, 7¢g, (n) # n — 2
and mg, (n) # n — 1, so the green trip must end at an element of {1,2,...,a — 1}. But now the
pink and green trips must form a simple crossing, because there is no other trip that can start at
an element of {b+1,...,c— 1} and end at an element of {1,2,...,a — 1}. Therefore G \ {z1} is
reduced.

Now suppose that Dy has a same-end child. Then G has a black-white bridge at vertices c, d,
and when we delete {z1}, G\ {x1} looks as in the right of Figure 13. We obtain a face which is
move-equivalent to a bubble, so G\ {z1} is not reduced.

Case (€). Suppose that Dj does not have a same-end child. Then Gg has a black lollipop
(which can be contracted), and hence the two trips passing through x12 are as shown at the left
of Figure 14. Since these two trips start at adjacent vertices d and n, they must form a simple
crossing. Therefore by [Pos06, Lemma 18.9], G \ {z12} is reduced.

Now suppose that Dy does have a same-end child. Then G has a black-white bridge, as shown
in the right of Figure 14. Gp is itself the plabic graph of a standard BCFW cell, so we can write
it as Ggr = G <1 Gg. If d is a black lollipop in G/, then we can contract the edge joining that
lollipop to the butterfly in G, and then we find that region R; in Figure 14 is move-equivalent to a
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FIGURE 14. Left: if Dy does not have a same-end child then G\ {z12} is reduced.
Right: if Dy has a same-end child then G \ {12} is not reduced.

bubble. On the other hand, if d is not a black lollipop in Gg/, then Dy has a same-end grandchild,
so Ggr has a black-white bridge. Then one can do a square move at Ry which turns R; into a
bubble. Therefore G \ {12} is not reduced. O

Proof of Theorem 4.1. By Lemma 4.7, all facets of Sp map to the boundary of Zp, so any cell in
0Sp whose image is codimension 1 in Zp is a facet of Zp. Theorem 3.21 shows that all facets of
Zp lie in the zero locus of a cluster variable in x(D). By Lemma 4.8, no facet is contained in the
zero locus of a mutable cluster variable Mut(Zp). Thus, we are left to show the following.

Claim 4.13. For each frozen variable ¢ in Froz(D), there is exactly one cell S of codimension 1 in
Sp such that Zg is codimension 1 in Zp and Zg lies in the zero locus of C.

In [ELT21, Section 7] it was shown that each facet S’ of a standard BCFW cell Sp either:

(1) maps to the interior of A, ;. 4(Z), in which case it maps injectively [ELT21, Proposition 8.2],
and lies in the zero locus of a coordinate functionary,'! or

(2) maps to the boundary of A, 4(Z), in which case Zg lies in the zero locus of a domino cluster
variable of the form ((i,7+ 1,7,7 + 1)).

In the first case, Claim 4.13 follows from results of [ELT21], as we now explain. Those facets of
Sp which map injectively to the interior of the amplituhedron are in bijection with the elements of
Froz(Zp) which do not have the form ((i,i4 1, j,j+ 1)), and can be explicitly constructed using the
BCFW recursion, but with one parameter set to 0 [ELT21, Lemma 7.9]. Then using the arguments
from the proof of Theorem 3.21 , one can see that if S’ is a facet of Sp where a single BCFW
coordinate (; vanishes, then Zg lies in the zero locus of the corresponding cluster variable ;.
Moreover, for every BCFW parameter, there is at most one facet of Sp where only that parameter
vanishes (cf. [ELT21, Lemmas 7.9, 7.13, 7.14, 7.15]).

We now show that Claim 4.13 holds for frozen domino variables of the form (i,i + 1,7,7 + 1),
using results of [ELT21, Section 7] as well as Theorem 4.9 and Theorem 4.11. We use the notation
of [ELT21] which are close to the ones used in this paper, but not identical.

11[ELT21, Section 7] is phrased using entries and 2-by-2 minors of the domino matrix, which are the same as our
BCFW coordinates.
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Step 1: constructing the facets. Since we are concerned only with facets of Zp where a boundary
twistor ((i,7 + 1, 7,j + 1)) vanishes, we can use Theorem 4.9 and Theorem 4.11 to build the plabic
graph G corresponding to the facet (we will show in Step 3 below that the image of the cell Sg has
codimension 1 in Zp). Concretely, in order to construct the graph G corresponding to the facet
of Zp where (; vanishes (where (; is a boundary twistor), we follow the procedure for constructing
Sp, but at the ith step we remove the edge of the butterfly dictated by Theorem 4.9.

Step 2: Uniqueness of facets where a given cluster variable vanishes. We use induction to show
that for each ((i,i+1,7,7 4+ 1)) € Froz(Zp), there is at most one facet of a tile Zp in its zero locus.
From [ELP"23, Lemma 10.5] , we know that each facet Zg of a BCFW tile Zp either (1) lies in the
vanishing locus of a domino variable (j of the kth chord (which is a twistor coordinate with indices
in {a,b,c,d,n}), or (2) the cell S" is the BCFW product of a BCFW cell and a facet of another
BCFW cell. By induction, the tiles coming from Case (2) lie in the vanishing locus of distinct
cluster variables; and these cluster variables must all be different from the twistor coordinates of
the kth chord. (The only case when a coordinate cluster variable from S or Sp promotes to a
twistor coordinate for the top chord is the case of 3; where D; is a sticky same-end child of Dy;
in this case, 3; = ai = ((bedn)) which is not a boundary twistor since Dy, has a child.) In Case
(1), Theorem 4.9 shows that there is at most one facet Zg of Zg, which lies in the zero locus of
a single chord twistor of the kth chord. But now by Lemma 4.8, if two cluster variables vanish
on Zgs, it must have codimension at least 2, so all facets of Zp must lie in the vanishing locus of
distinct cluster variables.

Step 3: Injectivity of the amplituhedron map. In light of Theorem 4.9, we can alternatively
construct the facets by following the recipe of Definition 2.15 , but setting exactly one of the
BCFW parameters {a;, 3, 9i,7i, €;} for 1 <1i < k equal to 0 at the appropriate BCEW step. Using
slightly different conventions, such a construction'? was given in [ELT21, Definition 7.6 and Lemma
7.7] for most facets, building each facet in terms of the operations pre;, inc;, z; (R4 ), y;(R4).

Now we need to show that the amplituhedron map restricted to S’, the facet of S obtained by
setting a particular BCFW parameter x to 0, is injective. The proof is similar to the proof of
[ELP*23, Theorem 7.7]. The positroid cell S’ is constructed by a sequence of adding zero columns,
BCFW products, and a single “degenerate” BCFW product.

As in the proof of [ELP23, Theorem 7.7] the proof of injectivity follows by showing that
injectivity persists through the different steps of the construction of S’. The treatment in the cases
of adding a zero column, and doing a BCFW product is identical to the treatment in [ELPT23,
Theorem 7.7] , relying on [ELP*23, Theorem 11.3] (as before we need to verify that {b;,c;,d;,n}
is coindependent at the time of the ith BCFW step). The treatment in the single degenerate
BCFW product is also completely analogous to that of[ELP™23, Theorem 7.7] , and this proves
the injectivity.

Note, however, that in the application of [ELP*23, Lemma 11.13] for the degenerate step, the
coordinate * turns out to be 0, while the other four keep the same sign they would have had on
the BOCFW cell at that stage. This twistor will be promoted, according to [ELP*23, Theorem 11.3]
to a functionary vanishing on this facet. The same argument used in the proof of Theorem 3.21
shows that each facet lies in the zero locus of the corresponding reduced functionary. In light of the

12This construction was called the (D, x)—extended domino form for x € {au, Bi,Yi, 0i, €4, Nij, 0ij }-
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uniqueness discussion above, we see that each such reduced boundary functionary corresponds to
a unique facet. It also follows that the facet is characterized as the locus where the corresponding
functionary vanishes, but the other coordinate functionaries keep their signs. Lemma 4.7 shows
that the facets indeed map to the boundary of the tile.

O

Note that the uniqueness in the above proof follows from two facts. First, if a facet in the
domain has image which is not a facet at some time of the cell construction process, then the
BCFW product of this facet with a standard BCFW cell will also have image which is not a facet.
Second, when a new facet in the domain (which corresponds to the rightmost top chord at a given
time of the process) maps to a facet of the tile, it is the maximal face in the domain, among those
which map into the zero locus of the corresponding chord twistor, hence other components in this
zero locus are of lower dimension already in the domain.

4.2. Proof of Lemma 4.8. The proof of the lemma will use the notion of transversality. For this
we recall some notions and facts.

Definition 4.14. Let X be an n dimensional manifold with an atlas {(Ua, ¢o : Uy — R™)}aca.
We say that a set L C X is of measure 0, if for every a € A, the set ¢, (L NU,) is of Lebesgue
measure 0 in R™. If M C X is the complement of a measure 0 subset, we say that almost every
x € X belongs to M.

Definition 4.15. Let f : X — M be a smooth map between smooth manifolds X, M. Let L be a
smooth submanifold of M. We say that f is transverse to L, and write f M L if for every € f~1(L)

where T, X denotes the tangent space of X at x € X, and df, is the differential map at x, which
maps T3 X into Ty, M.

Theorem 4.16 (Thom’s Parametric Transversality Theorem). Let X be a smooth manifold, let
B, M be smooth manifolds and let L be a submanifold of M. Let f: X x B — M be a smooth map.
Suppose that f h L. Then for almost every b € B the map

f(=0): X x{b} - M
s transverse to M.

We first prove a general “almost-every Z” result.

Lemma 4.17. The zero locus in the amplituhedron A,  4(Z) of two different irreducible functionaries
(as in Definition 2.9) is of codimension at least 2 for almost all Z.

We know from [GLS13, Theorem 1.3] that all cluster variables are irreducible; therefore, in light
of Definition 2.9, functionaries which correspond to cluster variables of Gry,, are irreducible.

Proof. We will prove the lemma in the B-amplituhedron (cf. [KW19, Definition 3.8] (see also
[ELP 23, Definition 2.20]) B,,  4(W), where W is the column span of Z. This will imply the result
for A, 4(Z), since the map fz of [ELP*23, Proposition 2.21] (which combines [KW19, Lemma
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3.10 and Proposition 3.12]) is a diffeomorphism from a neighborhood of the B-amplituhedron to a
neighborhood of A, 4(Z). The map between the two spaces takes the zero locus of an irreducible
functionary to the zero locus of an irreducible polynomial in the Pliicker coordinates of Gry,,, and
we consider its intersection with B, 4(W). It will be enough to show that its intersection with
Gra(W), for a generic W € Gryya,, is of codimension 2. We will use Thom’s transversality. Let
M = Gryp, and L the intersection of zero loci of the two functions. Then L is of codimension 2. Let
B be a small ball around W € Gryy4 p, and X = Grg(W). Identify the fiber bundle F' — B whose
fiber over W’ € B is Gry(W’) with X x B. This can be done since the two spaces are diffeomorphic,
for B small enough. The map f: X x B — M is defined by

f(V’ W,) =V,

where W' € B, V € Gry(W’) and in the right hand side V is considered as an element of Gra,, .
Clearly dfv,w/ (Ty,w+X x B) = Ty Gryp, so that the assumption of Theorem 4.16 is met. Thus, for
almost every W’ € B, the intersection Grg(W')N L is of codimension 2, hence the intersection with
L of the B—amplituhedron, for almost every W, is of codimension at least 2. O

Proof of Lemma 4.8. The last statement follows from the first one, since if £ is a mutable variable
for Zp, then the mutation relation has the form

(' =A+B,

where £ is the variable of interest, and A, B are products of other cluster variables. Moreover, by
[ELP*23, Proposition 9.27], A, B have the same sign on Z9,. Thus, the vanishing of £ implies the
vanishing of at least one more cluster variable.

Every facet of Zp lies in the zero locus of a cluster variable, by Theorem 3.21. By [ELP*23,
Theorem 11.3] we know that the cluster variables of Zp have a strongly positive expression, hence
every such functionary either vanishes identically on a given boundary Zg, for all positive Z, or
never vanishes there, for all positive Z. Let S1,..., Sy be the facets of Sp which map to the zero
locus of a single cluster variable.

From the previous lemma it follows that for almost all positive Z the remaining faces of Sp map
to the union of finitely many codimension 2 submanifolds of Zp. These submanifolds are contained
in 0Zp, using Lemma 4.7 and the fact that no cluster variable of Zp vanishes on Z7,.

Denote by L(&1,&2) C Zp the vanishing locus of & and & in Zp. Let S7,...,S), be the faces of
D which map to L(&1,&2). Note that

(5) L(&1,6) € Zp \ (Zp U, Z8,) € 0Zp.
For almost all positive Z, L(&1,&2) is of codimension at least 2. We will now show that for almost
all positive Z
L(&, &) € UiZs,,
together with (5) this implies, that for almost all positive Z, and every j =1,..., M
(6) Zg; © Uiy Usr s a face of 5, £

that is, the union of images of faces of D of codimension at least 2.
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In order to show (5), take an arbitrary p € L(&1,&2). We will show that every neighborhood U
of p contains a point from UZ]\L 1 Zg,- Indeed, assume without loss of generality that U is connected,
since p belongs to the boundary of Zp, we can find two points o € Zp N U, ¢q1 € U \ Zp. We can
find a path (gt)icpo,1) C U from go to g1 in U not passing throw the intersection of zero loci of any
two different cluster variables, which we assume to be of codimension 2 or more (see, e.g., the proof
of [ELT21, Proposition 8.5]). Let ¢ be the last time where ¢, € Zp. Then ¢; must be in the zero
locus of a single cluster variable, hence in some Zg;.

Now, since (6) holds for almost every positive Z, and both its left hand and right hand are images
of compact sets, it holds in fact for every positive Z. Indeed, if Z is the limit of (Z;)72; where for
each Z; (6) holds, it also holds for Z.

O

4.3. Facets of general BCFW tiles. We now describe, without proof, the facets of general
BCFW tiles in Claim 4.25. Instead of the recipe in Definition 2.26, it is convenient to use a slightly
different indexing set for BCFW tiles.

Definition 4.18. Let t be a recipe with k step-tuples, which is composed by a recipe vy, followed
by a recipe tg followed by a step-tuple ((ax, by, cx, dx, nx), prey, , cyc™, refl**). We introduce the
following collection of 5-tuples D = {(di,l;i,éi,cfi,fzi)}le = Dy U Dg U Dy, we call generalized
chords defined recursively as:

° [)k = (dk, l;k, Ck, Czk, ﬁk) = refl®* o cyc"* (ak, by, ¢k, dy, nk),

o Dy = refl® ocyc'™ D’L and Dp = refl** o cyc’* Dh,

where D/, (resp. [?’R) are the generalized chords for the recipe vz, (resp. tg).

Notation 4.19. Given a BCFW cell S;, we will sometime label it as S in terms of the corresponding
generalized chords D. We denote by [?(Lj) UDg) UDj the generalized chords of the recipe tU) obtained

from ¢ by performing only the first j step-tuples. Here D(Lj) (resp. Dg)) are the generalized chords

of t(Lj) (resp. tg)).

Example 4.20. Consider the BCFW cell S, of Figure 6. Its generalized chords are:
D =1{(6,7,8,9,3),(4,5,8,9,3),(3,2,1,12,10), (4,3,11,10,9)}. Its plabic graph is as in Figure 15.

We introduce the definition of condensability and condensations of a BCFW cell S, as follows.

Definition 4.21. Let Sy C Gr%% be a BCFW cell, and D = {ﬁz}le the corresponding generalized
chords. For i € [k], f; € {a, bi, Gi, (L,ﬁz} we say that Sp is f;-condensable if either f; = & or

a; DS) {bs, 714}
x b; ~ DY by, @i ~
fi=4¢ - andforall Dje{ _f | {jcf} ¢ D;,
d; DR: {éi,di}
iy 2% {d;, 7;}

where we used Notation 4.19.
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FIGURE 15.

Example 4.22. Consider the BCFW cell S; of Figure 6 and its generalized chords as in Example 4.20.
The cell S; is f;-condensable for all f; except for f; € {da,n2,bs}. For example, the cell is not
ds-condensable because {¢a, Jg} ={8,9} C Dy, and Dy is in Dg).

Definition 4.23. Let S, C Gr,i?t be a BCFW cell, and D= {[?i}le the corresponding generalized
chords. We define the fi—condensation 0 7 S: of S; to be the cell built using the recipe t, but at the
i-th BCFW product, we delete the edge ey if f; = a;; es if f; = b;; e3 if f; = &; eq if f; = d;; and
es if f; = n,; as in Figure 16.

FIGURE 16.

Definition 4.24. Let S be a general BCFW cell, with generalized chords D = {(a;, ... ,ﬁj)}é?:l.
The f;-condensation aﬁ_SD of Sp is rigid if for all £ > i, {bg,é,dg, 7y} is coindependent (as in
Definition 4.2) for (9]3, S g, where Eg) is as in Notation 4.19.

¢ R

Using the techniques of this paper, and extending the ones used for the standard BCFW tiles,
the following statement can be shown.
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Claim 4.25 (Facets of general BCFW tiles). Let S = S5 be a BCEW cell with recipe t. If S5 is
f;~condensable and S’ = 9 7 Sp is rigid, then Zg is a facet of Zg.
Moreover, let ; be the coordinate cluster variable of Zg defined as

7t . rs _~
a;, if fi=a;

G5, if fi = b;
(7) Gi= 55, if fi=¢ (see Definition 3.6),
Sga if .]Ez = Jz

_t . rs =
5i7 lf fl =Ny

then the facet Zg is cut out by the functionary (;(Y'). Finally, all facets of Zg arise this way.

Remark 4.26. It can be shown that in case 8@_5 5 is not rigid, then for the minimal [ > ¢ such
that the condition in Definition 4.24 is not met, a; equals the BCFW coordinate (; of the i-th
generalized chord which corresponds to f; according to Equation (7).

Example 4.27. Consider the example in Figure 6. All the condensations of the condensable cases
in Example 4.22 are rigid. Therefore S, has 17 facets and they are cut out by all the functionaries
in Example 3.9, except for 02(Y),&2(Y),B4(Y), corresponding to the non-condensable cases in
Example 4.22.

We omit the proof of Claim 4.25 as it is similar to the proof of Theorem 4.1 in the standard
BCFW case, but the technical details are much lengthier.

Remark 4.28. In the case of standard BCFW cells, the fi-condensation is non-rigid only in the
case of f; = b; when D; is a sticky same-end child of a chord D,. In this case, B = ay, and
Bi = ap = 0 does not cut out a facet. The non-condensable cases correspond precisely to the
remaining mutable variables Mut(D) (cf. Definition 3.13).

5. THE SPURION TILE AND TILING

The amplituhedron A, 1 4(Z) has a broad class of tiles, the BCFW tiles (cf. Definition 2.17).
Moreover, we can use BCFW tiles to tile A, ;. 4(Z) into a broad class of tilings, the BCFW tilings,
see [ELP 123, Section 12]. We note that there are tilings made of BCFW tiles which are not BCFW
tilings (e.g. cf. [ELP*23, Theorem 12.6]). However, there are also tiles which are not BCFW tiles,
and it turns out that they can also be used to tile A, ;4(Z). In this section we report the first
example in the literature of a tiling containing a non-BCFW tile.

5.1. Spurion tiles. The simplest case of a tiling with non BCFW tiles is for n =9 and k£ = 2, i.e.
for Ag24(Z). Consider the positroid cell Sy, C Grig with plabic graph in Figure 17.

A matrix Cy, representing a point in S, has triples of proportional columns whose labels are:
{1,2,3},{4,5,6},{7,8,9}. We denote such configuration of column vectors as (123)(456)(789), see
Appendix A. Therefore any such matrix representative has rows of support at least 6. We showed
in [ELP*23, Section 6] that points in a BCFW cells can be represented by matrices with at least
one row of support 5. Therefore, Sy, is not a BCFW cell and we call it a spurion cell. By writing a
parametrization with functionaries, and applying techniques from [ELPT23], it is possible to show
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FIGURE 17. Plabic graph of the spurion cell S, C Grig.

that the amplituhedron map is injective on S, hence Zy), := Z(Ssp) is a tile for Ag 2 4(Z), which
we call a spurion tile. This is an example of a non BCFW tile. Applying cyclic shifts to Sy, (Zsp),
we can obtain two other spurion cells (tiles) for Ag 2 4(Z).

5.2. A tiling containing the spurion. We are able to find a tiling 7, of Ag24(Z) containing a
spurion tile. We report the collection of tiles in 7y, in Appendix A. Moreover, T, is a good"™? tiling
of Ag24(Z) and it is ‘close’ to a good BCFW tiling Tpcrw. We report the collection of 5 tiles
to substitute in order to go from 7y, to Tpcrw in Appendix A. We present a sketch of a proof in
Section 5.3.1.

5.3. Spurion tiles and cluster algebras. The spurion tile exhibits the same relationship to
the cluster structure on Gry, as BCFW tiles. Firstly, Z, satisfies cluster adjacency in [ELP+23,
Conjecture 7.17(i)]. Indeed, Z,), has 9 facets lying on the vanishing locus of the following collection
Fop of functionaries: a1(Y) = ((123]65|789)), a2(Y) = ((123|64]789)), a3(Y) = ((123|54|789)),
together with their cyclic shifts (cyc*)? and (cyc*)8. The functionaries (up to sign) in F, correspond
to a collection Froz(Z,) of compatible cluster variables of Gry,, (see Notation 3.7). A seed X, for
Gry,p, containing Froz(Z,,) was found in [GP23, Figure 1], see Figure 18.

Moreover, the open spurion tile Zg, C Grag is fully determined by the functionaries in Fy),
having a definite sign (see Figure 18). Therefore, the coordinate cluster variables xg, are exactly
the ones in Froz(Z,,) (containing the functionaries that cut out the facets of Zs,). Let X, denote
the extended cluster of isp. We observe that all functionaries x(Y) with x cluster variables in
Xsp have a definite sign on Z,. Furthermore, the seed obtained from f)sp by freezing Froz(Zs),)
is a signed seed [ELPT23, Definition 9.22], hence Zy), also satisfies the positivity test in [ELPT23,
Conjecture 7.17(ii)].

Remark 5.1 (Relation to Physics). Spurion cells first appeared in [AHBC'16a, Table 1]. They
are informally called ‘spurion’ by physicists because they correspond to Yangian invariants (see,
e.g. [ELPT23, Remark 4.6]) which have only spurious poles, i.e. poles which cancel in the sum
when computing the scattering amplitude. Geometrically, this is reflected in the fact the spurion
tile, contrary to general BCFW tiles, does not have any facet which lie on the boundary of the
amplituhedron.

It had been an open problem to determine whether tree-level scattering amplitudes in N' = 4
SYM could be expressed in terms of the spurion. By showing the amplituhedron A, ; 4(Z) has

13meaning that internal facets of adjacent tiles match pairwise.
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FIGURE 18. The seed X, where: a; = (123(65789), ay = (123(64|789), a3 =
(123|54|789), a4 = (789|23]456), as = (789|13|456), ag = (789|12[456), ay; =
(456|89|123), ag = (456|79|123), ay = (456|78|123), s; = (1456), s = (1237),

= (4789). The functionaries az(Y),a5(Y"),as(Y) are positive on Zg, and all the
others are negative.

tilings comprising the spurion tile, we solve this problem. The spurion tiling corresponds to a new
expression of scattering amplitudes, which can not be obtained from physics via BCFW recursions.

5.3.1. Sketch of a proof for the tiling with spurion. We now sketch a proof that the spurion tiling
of Appendix A is indeed a tiling.

Let S, C Grig be the 9 dimensional positroid cell labelled by the affine permutation v =
{2,6,4,5,8,7,9,12,10}. S, has exactly 10 facets Si,...,S190 C S, that map injectively to
Ao 24(Z), giving the tiles Zg,,...,Zs,,. Zs, is a spurion tile, and the remaining nine are BCFW
tiles, five of which, Zg,, ..., Zg,,, are part of the BCFW tiling Tpcrw. We now perform a flip on
Tecrw by replacing the tiles Zg, ..., Zg,, with Zg,, ..., Zs,. Let Ty, be the resulting collection
of tiles. We claim that T, is a tiling of Ag 2 4(Z) (which contains the spurion tile Zg,).

In order to show the claim, it is enough to prove that {Z3 g, }i—1 are pairwise disjoint and that

5 10
(8) U Zs, = U Zs,.
i=1 i=6
Let F' (F") denote the left (right) hand side of Equation (8).
The tiles Zg;, ..., Zg,, have the following facets: 15 ‘external’ facets Zp,, ..., Zp,;, which cover
the boundary of F”; 10 ‘internal’ facets, each of which belongs to a pair of tiles among Zg,, . . ., Zs,,
which lie on opposite sides of it. Similarly, the tiles Zg,, ..., Zg, have the same 15 external facets
ZBy,---,4B,; and 10 internal facets Zp,---,4p,, cach of which belongs to a pair of tiles among

Zsys s Zss.
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e One can show that the functionaries vanishing on the internal facets serve as separating functionaries
for all pairs of tiles in {Zg,}?_;. In particular, if Z B is a facet of both Zg; and Zg,, one
can show the facet functionary of Z B! has definite opposite sign on Zgj and Zg by using the
Cauchy-Binet expansion for twistors (see, for example, [ELP23, Lemma 2.16]) and Pliicker
relations. Moreover, using similar techniques, one can show that each external facet Zp, belongs
to a pair of tiles ZSJ,, C F' and Zgj,, C F" and the corresponding facet functionary has definite
same sign on Zgj/ and Zgj”.

e The previous arguments and a topological argument shows that the collection {Zsi};:’:1 tiles
F', whose boundary is OF”. Moreover, locally both ' and F” lie on the same side of such
boundary. Since F', F” are of the same dimension of the amplituhedron, by standard algebraic
topology arguments (e.g. those of [ELT21, Section 8]), one can conclude that 7' = F”. The
claim follows. 0

6. STANDARD BCFW TILES AS POSITIVE PARTS OF CLUSTER VARIETIES

In this section, we provide a birational map from Gry 44 to a cluster variety Vp which maps
an open standard BCFW tile Z%, bijectively to the positive part of Vp. The tile seed Y p defining
Vp is quasi-homomorphic to the seed ¥p of [ELPT23, Definition 9.8]. Throughout this section,
we fix a chord diagram D € CD,, ;. In a mild abuse of notation, we use the terminology “domino
variable” also for the functionary x(Y") corresponding to a domino cluster variable x € x(D).

First, recall we have two sets of functions which determine a point of the tile: the 5k coordinate
functionaries and the 5k — t domino variables, where t is the number of chords of D which are
sticky same-end children. It will be useful to express the coordinate functionaries of Z7, in terms
of the domino variables x(D). By definition, the coordinate functionaries are (signed) Laurent
monomials in the domino variables. In the next proposition, we give explicit formulas for these
Laurent monomials, up to sign. The signs may be computed using [ELP*23, Proposition 8.10] and
the fact that all coordinate functionaries are positive on the tile (cf. Theorem 3.10).

For a chord D; in a chord diagram D, we set E; := [[,&; where the product is over all ancestors
of D; which contribute to the expression |¢; d; /4 n) (cf. [ELP123, Notation 8.3]). We define E!
identically, but with the product over ancestors contributing to |b; ¢; /% n) .

Proposition 6.1. Let D € CD,, ;. be a chord diagram. Then we have the following expressions for
the coordinate functionaries of Zp in terms of the domino variables:

@i (Y) = j:z Bi(Y) = i(B)E(O‘p) 5i(Y) = i‘sigp), ei(Y) = +&,

_ 7@‘7(5@)
Ei(dp)(8;)(ep)(Eg)

where (ay,) appears if D; has a sticky parent Dy; (B;) appears unless D; has a sticky and same-end

vi==*

parent; (0,) appears if D; has a same-end parent Dy; (B;) appears if D; is right head-to-tail sibling
of Di; (2p) appears if (B;) appears and D; has a sticky parent D, which is not same-end to D;; and
(€g) appears if D; has a same-end parent D, and D, has a sticky but not same-end parent D,.
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Proposition 6.1 can be proved using the explicit formulas for domino variables [ELP*23, Theorem
8.4] and [ELP123, Lemma 8.7] on factorization under promotion.

Example 6.2. For the chord diagram D in Figure 3, the formulas for coordinate functionaries in
terms of domino variables are:

¢ @ Bi Yi i €
1 ;7: _% % —7% €1
3| —as| Ps _% o3 €3
IREREIEAE
51| % ﬁi‘? %57?6 —65s—§ﬁ &s
6 ag _56 Y6 __6 g6

Note that both the set of domino variables and the set of coordinate functionaries give redundant
descriptions of the tile, which is 4k dimensional. We will use Lemma 6.3 to rescale the domino
variables x(D) by (signed) Laurent monomials in Froz(D) to obtain 4k “tile variables.” The tile
variables form a coordinate system for Z7), are positive on Z%, and will comprise the cluster
variables of 3 p.

We perform this scaling in two steps. First, for a domino variable (;(Y), let s be the sign of
i(Y) on the open tile Z% (cf. [ELP*23, Proposition 8.10] ) and define the signed domino variable
as Gi(Y) := s-G(Y). Note that each coordinate functionary is a Laurent monomial in the signed
domino variables, given by the formulas in Proposition 6.1 by replacing each domino variable with
a signed domino variable and deleting the signs. We denote by x(D) the set of signed domino
variables.

The second step of the scaling is more involved. The next proposition identifies the correct
scaling factor m(fz) for each signed domino variable C}, which will be a Laurent monomial in the
;- The proof of this proposition gives an algorithm to determine the scaling factor.

We use the notation M[X] to denote the group of Laurent monomials in the variables X.

Lemma 6.3. Let I' := {4; : D; does not have a sticky same-end parent}. There exists a unique
group homomorphism m : M[x(D)] — M[I'] such that
(1) for 5 € T, m(%) is 3; "
(2) for each i € [k], the image m((;) of the coordinate functionary (;(Y) is equal for all ¢ €
{a, B,7,0,€}.
Moreover, the degree of m(g]) in twistor coordinates is equal to the degree of 6;1 in twistor
coordinates for all ; € x(D).

Proof. A group homomorphism is uniquely determined by the images of X(D). We will determine
m on the signed domino variables (;(Y) for i = k,k —1,...,1, in that order. For the rest of this
proof, “degree” means “degree in twistor coordinates.”
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We begin with the signed domino variables for the chord Dj. Note that 43 € I since Dy, is a top
chord. So (1) is satisfied if and only if m(4) = 4, ! Since Dy, is a top chord, Proposition 6.1 implies
that (j, is equal to the coordinate functionary (. Thus (2) is satisfied if and only if m(fk) =Y !
for ¢ € {a, B,7,0,¢e}. We see that when (1) and (2) hold, the degree of é,;l is equal to the degree
of 4 1.

Now, assume for all £ > ¢ and all signed domino variables Q that there is a unique choice of

image m(Cy) so that (1) and (2) hold for £, and the statement about degrees holds. We will show
that there is also a unique choice of each image m((;) so that (1) and (2) also hold for i, and that
for this choice, the statement about degrees holds.
Case 1: If 4; ¢ " then (1) is vacuously true. Since Dj; is a sticky same-end child of its parent D,,
we see from Proposition 6.1 that the coordinate functionary g; is a Laurent monomial in signed
domino variables ¢, where ¢ > i. Thus the image m(3;) is determined by the values of m((y).
For (2) to hold, we must have m(8;) = m((;) for all other coordinate functionaries ;. Again by
Proposition 6.1, (; = C} - M where M is a Laurent monomial in signed domino variables for £ > 1.
So (2) holds if and only if m(¢;) = m(8;)/m(M).

For the statement about degrees, notice first that the coordinate functionaries (; are degree
1, because they are promotions of twistor coordinates and promotion preserves degree. The
assumption on the degrees of m(é‘g) implies that the degree of m(f;) is -1. Since (; = G- M,
the degree of (; is 1 — deg(M). On the other hand, m(¢;) = m(3;)/m(M) implies that the degree
of m(f) is —1 — degm(M), which is equal to —1 4 deg(M) by the assumption on the degrees of
m((}). So we have the desired equality of degrees.

Case 2: If 4; € T, then (1) holds if and only if m(4;) = 4, '. The statement about degrees
clearly holds for 4;. The choice of m(%;) completely determines the image m(+y;) of the coordinate
functionary ~;, using Proposition 6.1. Similar reasoning as the above case shows that there is a
unique choice of m(¢;) so that (2) holds, and that the statement about degrees holds for this choice.

]

Definition 6.4 (Tile variables and seeds). Let m be as in Lemma 6.3. For each signed domino
variable G;(Y) € %(D) \ I, we define the tile variable as (V) = m(G(Y)) - G(Y). We denote
by %(D) the set of tile variables. We define the tile seed Y¥p = (%X(D),Qp) as the seed obtained
from X p by deleting {%; : 7; ¢ '}, and replacing each domino variable ¢; by the corresponding tile
variable (;(Y). Finally, we let A(Xp) be the associated cluster algebra, which we call tile cluster
algebra.

Each tile variable is positive on Z7, there are exactly 4k = dim Z7, tile variables, and each
tile variable is degree 0 in the twistor coordinates. It will sometimes be convenient to extend the
definition of tile variables to ¢; € I'; in this case (;(Y) := 1.

Example 6.5 (Tile cluster variables). For the chord diagram D in Figure 3, the domino variables
ag, ag, &z = Ba, B1, Bs, Y2, 01, 05, 06

are negative on the tile Zp,, and all others are positive (cf. Example 3.20). So the signed domino
variable ¢; coincides with the domino variable (; unless (; is one of the variables listed above. To
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FIGURE 19. (Left): the tile seed Xp for D in Figure 3. See Examples 3.12 and 6.5
for the formulas for the tile variables ;. (Right): the mutation of ¥p at &5.

obtain the tile cluster variable ¢; for D, multiply Qtl by the monomial m(@) listed in the table

below.

il om@) | omB) | mG) | om@) | m(&) |
14296 (3193) ' [329%6(5193) 1| A1 |Ae¥e(19s) | Aedr
2| As(329) " | As(2¥6) L | A5 51 As(5296) !
3| A6(93) 7t Y6(93) ! A3t Y6(93) Y6(93) !
4 Gs%6) ™t | (%)t | (B596)~ A5 A5
5] (45%6) " 35 | A5 | 35 | 35 |
6 Ao " Ao " 46! Ao " Ao "

The tile seed ¥p is displayed on the left in Figure 19.

As the next result shows, the tile variables give coordinates on the open tile.

Proposition 6.6. The map f : Z3 — Ri(D) sending a point Y +— ((;(Y)) to its list of tile variables

s a bijection.

Proof. We first show that each point in Ri(D) has a preimage in Z7,. Recall that Proposition 6.1
gives formulas for each coordinate functionary (;(Y') as a Laurent monomial N¢,(¢;(Y)) in the
signed domino variables. We define a Laurent monomial map

F:RXP 5 (Ry)%

sending (¢;) € ]Rj(_(D) to (¢! := N¢,(Cj)), where the latter set ranges over all coordinate functionaries.
That is, we evaluate the Laurent monomials N¢, for coordinate functionaries in terms of signed
domino variables on the tuple (). (We set {; := 1 if (;(Y) € T.) For a point p € Ri(D), define
M, := Mp(F(p)) to be the BCFW matrix using {¢/} as BCFW coordinates. We claim that
Y, = Z (M) € Z7) is a preimage of p under f. That is, the tile variables of Y), are precisely p.
Recall that the rowspan of the BCFW matrix depends only on the projection of F(p) to (Gr7$)¥.
We define a vector ¢ € (R )% whose entries are ¢! if D; has a sticky same-end parent and are ¢/ /7,
otherwise. By construction, ¢ and F(p) project to the same point. So the rowspan of M, is
equal to the rowspan of Mp(q), and thus (the rowspan of) Y, is also equal to (the rowspan of)
Y, := Z(MD (q)). Theorem 3.10, and in particular the proof of [ELP 23, Proposition 11.15], implies
that the coordinate functionaries of Y, are exactly equal to the BCFW coordinates of Mp(q); that is,
the coordinate functionaries of Y, are the entries of the vector g. Moreover, the twistor coordinates
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of Y}, and Y, differ by a global scalar. Because coordinate functionaries are degree 1 in twistors,
the coordinate functionaries of Y, and Y, also differ by a global scalar. So (;(Y,) = ¢- (}/7; if D;
does not have a sticky same-end parent and ¢;(Y,) = ¢ - ¢/ otherwise.

We need to show that CVZ(Yp), a function evaluated on Y),, is equal to ¢, which is either a coordinate
of p or equal to 1. We will show this for i =k, k—1,...,1.

For ¢ = k, since Dy, is a top chord, for any Y € Z3,

G(Y) = G(Y) so G(Y) = G(Y) /().
Setting Y = Y}, we obtain (;(Y,) = (}./7;. In this case, according to the definition of F, we have
(k. = ¢, In particular, v, = 1. So we have (.(Y,) = ¢}, = .

Assume ¢ = ((Y;,) for £ > 4.

Case 1: Suppose that D; has a sticky same-end parent. For any Y € Z7,, we have that Npg, (CVJ (Y)) =
m(B;(Y))5;(Y) and the only tile variables appearing in the Laurent monomial on the left hand side
are for chords Dy with ¢ > i. So, for Y = Y,, we have m(8;(Yp)) - ¢B: = Np,((;) = B!, implying
that m(B;(Yp)) = ¢~1. For ¢; # f3;, we have
N, (G(Yp)) = m(Bi(YP))G(Yp) = ¢ = Ne,(G)-

In the second equality, we use property (2) of the map m. Since N, (;(Y)) is (V) times tile
variables for £ > i and {, = Cvg(Yp) for £ > 4, the above string of equalities implies that ;(Yp) is
equal to éj.
Case 2: Suppose D; does not have a sticky same-end parent. Then 7;(Y) =1 = 4;, since %;(Y") € T.
This means that 7, = N, ({;(Y;)). On the other hand, N, (;(Yp)) = m(vi(Yp))vi(Yy) = m(vi(Yy))e,
so ¢ =7} /m(vi(Yp)). For (; # i, we have

Ne, (G(Yp) = m(i(Yp))Gi(Yp) = ¢ m(vi(Yp)Gi /7 = ¢ = Nei(G)-
Again, in the second equality, we use property (2) of the map m. By a similar argument as in the
first case, this shows that (;(Vp) = (;.

This shows that Y), is a preimage of p in Z%. For uniqueness, note that the tile variables
determine the coordinate functionaries up to a scalar for each i. So another preimage Y’ would
have coordinate functionaries ¢;(Y”) which can only differ from ¢;(Y}) by a scalar ¢;. However, this
implies that the twistor matrix Mp(Y”’) has the same rowspan as the twistor matrix Mp(Y,), and
thus Y/ = Z(Mp(Y")) is equal to Y, = Z(Mp(Yy)).

]

One may upgrade Proposition 6.6 to a statement about the cluster variety Vp corresponding to
the tile seed X p as follows.

Theorem 6.7. Let f : Gry 14 -+ Vp be the map Y — (Gi(Y)) sending a point to its list of tile
variables. Then f is a birational map which maps Z7, onto the positive part of Vp.

Proof. Let Tp C Gry, ;44 be the subset where all tile variables are well-defined and nonvanishing.
Note that T)p is open and nonempty, as it contains Z7,. The map f is well-defined on Tp, and the
tile coordinates are rational functions in the Pliicker coordinates of Y, so f is rational. Note that

f(Tp) is contained in the cluster torus 7% (CH*P) ¢ yp.

b=
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In the proof of Proposition 6.6, we constructed an inverse to f on the positive part Ri(D) of Vp.
This inverse extends to an open subset of the cluster torus T: S Indeed, for p € T: S define M,
and Y), as in the proof of Proposition 6.6. The matrix M, is full-rank by e.g. [MS17], as it is the
path matrix of a plabic graph with nonzero complex edge weights. However, Y, may or may not
be full rank. Let T C Ty, be the subset of points p such that the coordinate functionaries of Y,
are well-defined and non-vanishing. The coordinate functionaries of Y), are rational functions in the
coordinates of p; if they are all well-defined and non-vanishing, then in particular Y, has at least
one nonvanishing twistor coordinate, and so is full rank. The tile variables can be expressed as
Laurent monomials in the signed domino variables, and so also as Laurent monomials in coordinate
functionaries. Thus, if the coordinate functionaries of Y}, are non-vanishing, so are the tile variables.
This implies for p € 7", Y, € Tp. Note that 7" contains the positive part of Vp, and so is open in
Vp.
We claim that p — Y, is the inverse of f on 7”. The argument is very similar to the proof
of Proposition 6.6. We outline the additional arguments needed. First, allowing the BCFW

k the BCFW matrices will parametrize a torus

coordinates to vary over (Gry5)* rather than (Gr7%)
containing Sp [MS17]. Second, for any point Y € Gry, ;14 which has all non-vanishing coordinate
functionaries, the proof of [ELP*23, Proposition 11.15] shows that the unique pre-image of Y in
this torus is given by the twistor matrix Mp(Y). That is, the BCFW coordinates of this unique
pre-image are exactly the coordinate functionaries of Y. With these facts in hand, the proof of
Proposition 6.6 goes through identically for p € 7”. As the Pliicker coordinates of Y, are rational
functions in the coordinates of p, p — Y, is rational.
Finally, Proposition 6.6 shows that f maps Z7, onto the positive part of Vp.
0

It would be interesting to upgrade Theorem 6.7 to a biregular map Tp — T, , or to an embedding
Vp < GTg fya- )

For each cluster in the tile cluster algebra A(Xp), Theorem 6.7 gives a way to describe Zp, as a
semi-algebraic set, this time using dimension-many inequalities:

Corollary 6.8 (Positivity test). We have
7% ={Y € Gryjra : 2(Y) > 0 for all x in any fived cluster of A(Xp)}

In particular, Y € Gry, 44 s in Zp if and only if all tile variables are positive on Y .

Proof. All cluster variables in A(Xp) are positive on Z7 by construction, so it suffices to show the
right hand side is contained in the left-hand side. If Y is in the right-hand side, then f(Y) is in the
positive part of Vp. The inverse of f maps the positive part to 27, so Y € Z73,. O

7. CANONICAL FORMS OF BCFW TILES FROM CLUSTER ALGEBRA

In this section we use the cluster structure for BCFW tiles to compute the canonical form of
such tiles purely in terms of cluster variables for Gry,.

7.1. Background on Positive Geometry.
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Definition 7.1 ([AHBL17]). Let X be a d-dimensional complex irreducible algebraic variety which
is defined over R, and let X=° be a closed!? semialgebraic subset of X (R), whose interior X>°
is a d-dimensional oriented real manifold. Let C7...C, be the irreducible components of the
Zariski-closure of the boundary X =0 \ X >0 and for 1 < i < r let C’Z-ZO denote the closure of the
interior of C; N X=Y. We say that (X, X=0) is a positive geometry of dimension d if there exists
a unique nonzero rational d-form Q(X, XZ%) called the canonical form, satisfying the recursive
axioms:

o If d =0, then X = X>0 = pt is a point, and we define ) = 1 depending on the orientation.

o If d > 0, then we require that (X, X>¢) has poles only along the boundary components Cj,
these poles are simple, and for each 1 < i < r, we have that (Cj, CZ-ZO) is a positive geometry of
dimension d — 1, called a facet of (X, X=°), and

Resc, (X, X20) = Q(C;, C7).

Example 7.2 (d = 1). (P!, ][a, b]), with the canonical form Q = de is a positive geometry

(closed interval). Its facets are: ({a},{a}), ({b},{b}) and Res,Q = 1,Res;Q = —1.

).
Example 7.3 (d = 2). (P?,[J;234), where [ja34 is a quadrilateral with vertices v; = (0,0); vy =
2)

(2,0);03 = (1,
(9) Q(P?, Oyg34) =

,v4 = (0,1), see Figure 20. The canonical form is:
y—4dxr —4
zyly—xz—1)2x +y—4)
The facets are: (P!, [v1,vs]), (P!, [vg,v3]), (P, [vs,v4]), (P, [v4, v1]).
2
22— 1)

)d:c A dy is a positive geometry. A closed disk is not a positive

dz A dy.

Res [y 55 2(P?, O1234) = dz = Q(P, [v1, v)).

(P?, half disk) with Q = -1,

geometry. For more positive geometries in d = 2 see the work on planar polypols [KPR™21].

U3

(o V4

V1 U2 U1

FiGUrE 20. From left to right: the quadrilateral [J1234; the tiling of [i234 into the
triangles Aia4, Assq; half disk; closed disk.

Definition 7.4. Let (X, X=%) be a positive geometry. A collection {(Xi,XZ-ZO)}iec of positive
geometries is a tiling of (X, X=0) if:

e the interiors X Z->0 are pairwise disjoint;

e the union UiXiZO equals X=0;

e the orientation of each X 0 agrees with X>0,

e always use the Euclidean topology, unless specified otherwise (e.g. in the case of Zariski topology).
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Heuristic 7.5. [AHBL17] Let (X, X=°) be a positive geometry and the collection {(X;, XZ%)}icc
be a tiling of (X, X=%). Then
(10) QX, X=0) =) " 0(X;, X7°).
1€C

Example 7.6. (P?,J1934) can be tiled by the two triangles (P2, Aja4) and (P2, Agz4) with vertices
(v1,v2,v4) and (v, vs,v4) respectively, see Figure 20. Their canonical forms are:

2 9
———de Ady, Q(Ag) =
= a2y N ) = e e - o)
Then Q(Oj234) = Q(A124) + Q(Aa234), cf. Equation (9). Moreover, the (‘spurious’) pole along the
facet (24) cut out by 2 — z — 2y = 0 cancels in the sum. Indeed, (24) is not a facet of [y234.

Q(A124) =

dx A dy.

Theorem 7.7. [AHBL17, KR20] Let P be a projective pointed polyhedral cone (or projective

polytope) in P™. Then (P™,P) is a positive geometry. Moreover,
N(z)
Q(P™ = dm
(P, P) D(x) “

where D(x) is the product of linear forms defining facets of P, and N(z) is the adjoint of P.

The adjoint is a polynomial that cancels the ‘unwanted’ poles outside the polyope, i.e. it cuts
out the hypersurface which passes through the residual hyperplane arrangement of P.

Theorem 7.8. [Pos06, KLS13, Lam22] (Gry,,(C), GT,%%) is a positive geometry with canonical
form:

dk(n—k:)c
(1,...,k)(2,...,k+1)...(n,1,...,k—1)’
where (I) denotes the Pliicker coordinate of a point C € GT’E%. Moreover, the faces (Ilg(C), S) are

positive geometries, where S C Grkzgl is a positroid cell and I1g(C) is its Zariski closure in Gry, ,(C),

Q(Gryn(C), Griy) =

called the positroid variety of S.

7.2. The canonical form of the amplituhedron. Both (cyclic) polytopes and the positive
Grassmannian are positive geometries. These objects can also be seen as special cases of amplituhedra
(in particular, the amplituhedra Ay, 1 ,,(Z) and A, y—m m(Z), respectively). Since the amplituhedron
Ay km(Z) is a subset of Gry, 4, it is natural to conjecture the following.

Conjecture 7.9. [AHBL17] The amplituhedron (Gry j4m(C), An k.m(Z)) is a positive geometry.

In order to find the canonical form of the amplituhedron, one method is to tile A, k. (Z) and
sum over the canonical forms of the tiles (cf. Heuristic 7.5).

Definition 7.10 (Candidate canonical form of a tile). Let Zg be a tile of A, 5., (Z). As the
amplituhedron map Z is injective on the open tile Zg, we can define its inverse Z -1 Zg — S.
Then let us consider the pullback of the canonical form of the positroid cell under Z '

(11) 0(Zs) = (Z"1)"0(Is(C), 5).
We call Q(Zg) the'® candidate canonical form of the tile Zs.

15y will always consider it up to a global sign, which is not relevant for our paper and depends on the orientation.



40 C. EVEN-ZOHAR, T. LAKREC, M. PARISI, M. SHERMAN-BENNETT, R. TESSLER, AND L. WILLIAMS

By Theorem 7.8, (ILs(C), S) is positive geometry and has a canonical form Q(I15(C), S). Moreover,
by [AHT14, Section 6] and [GL20, Section 8.2], Equation (11) is well-defined.

Each positroid cell S has a positive parameterization [Pos06], i.e. there is a diffeomorphism
h:§8 — RT’“ which sends a matrix representative C in S to a collection of positive coordinates

(a1, ..., Q) in RT’“. In this case, if we denote ¢ = ho Z~1, then
~ mk
(12) (Zs) = ¢ /\ d log(a).
i=1

Conjecture 7.11 (Tiles are positive geometries). Let Zg be a tile of Ay jpm(Z). Then (Gry g+m(C), Zs)
is a positive geometry and its canonical form Q(Gry k+m(C), Zs) is the candidate canonical form

Q(Zg) in Definition 7.10.

Conjecture 7.12 (Canonical form from tilings). Let {Zs}sec be a tiling of Ay km(Z). Then the
canonical form of the amplituhedron Ay, i m(Z) is obtained as

(13) QUGrhsm(C), Anpm(Z)) =D QUGCrp pam(C), Zs).
SeC

In particular, the right hand side of Equation (13) is independent of the tiling.

Remark 7.13. Clearly finding tilings of the amplituhedron and inverting the amplituhedron map
on tiles are crucial step for computing the canonical form of the amplituhedron, and hence scattering
amplitudes. In this paper and in [ELP*23] we inverted the amplituhedron map [ELP*23, Theorem
7.7) on BCFW tiles and proved the existence of a large family of tilings, the BCFW tilings [ELP'23,
Theorem 12.3]. It then follows from [MS09, AHCCK10, AHBC*16b, AHT14] that tree-level
scattering amplitudes in N' = 4 SYM expressed via BCFW recursions are computed by the sum of
the candidate canonical forms of the tiles in a BCFW tiling of A, 1 4(Z).

Proposition 7.14 (Canonical form of tiles from coordinate functionaries). Let Z, be a BCFW tile
and ([a;(Y) : Bi(Y) : 7(Y) : 6:(Y) - 5i(Y)])f:1 its associated coordinate functionaries as in [ELPT23,
Definition 7.1]. Then the candidate canonical form Q(Zt) of Z. is given by:

Bi(Y) . 7i(Y) . 5 (Y) o €i(Y)
i (Y) A dl gai(Y) A dl gai(Y) A dl gai(Y)'

k
(14) Q(Zg) = /\ dlog

Analogously, for each i € [k], we could have chosen any other coordinate functionary (;(Y') instead
of a;(Y) to divide the others by.

Proof. Given a BCFW tile Z, the inverse of the amplituhedron map Z~! sends a point Y in zy
to a point in Grf% represented by the twistor matrix M (Y) [ELP'23, Definition 7.1]. Moreover,

there is a positive parametrization of S; in terms of BCFW parameters ([o; : i : 7y : d; ai])le

k
in (Grig)k [ELP*23, Proposition 6.22], or equivalently in terms of e.g. (ﬁ 2 8 ﬁ) . in R~

Q; ’ Q; ’ Q; ’ Q;
~ 1=
Composing this with Z~! gives a diffeomorphism g : Zg — Rik that sends Y € Zg to the (ratios of)

Bi(Y) 7i(Y) &(Y) &) )k
Oéi(Y)’ ai(Y)’ Oci(Y)’ OCZ(Y) i=1

coordinate functionaries ( . Hence can obtain the candidate canonical
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form of the tile Zg as:

k k
~ . Bi Vi i € Bi(Y) YY) 5(Y) &(Y)
0(Zs) = g* )\ dloga—i/\dloga—i/\dloga—i/\dlogafi =A dlogai (Y)/\dlogai ) /\dlogai (Y)/\dlogai T
=1 =1
O

Example 7.15. For the BCFW tile S, in Figure 6, the coordinate functionaries {(;(Y)} are in
Example 3.11. Then we can compute the canonical form of S, in terms of {(;(Y")} by Equation (14).

Proposition 7.16 (Canonical form of tiles from tile variables and clusters). Let Zp be a standard
BCFW tile. Let (D) = {¢(Y)}#, be its collection of tile variables and A(Xp) its associated
cluster algebra as in Definition 6.4. Then the candidate canonical form QUZp) of Zp is given by:

(15) QZp)= N\ diog §i(Y).
Gi(Y)ex(D)
Moreover, for each fized cluster x = {x;}*, in A(Sp), the form Q(Zp) is given by:
(16) V(Zp) = )\ dlog z;(Y).
Tr;EX

The proof easily follows from Theorem 6.7, and the fact there is a bijection f : Z7 — Rik that
sends Y € Z% to the collection x(D) = {{;(Y)} of 4k tile variables. Each tile variable {;(Y) is a
signed ratio of cluster variables for Gry ,, in particular of domino variables x(D), see Proposition 6.1.
The same argument holds if instead of %(D), we consider an arbitrary cluster x in A(Xp).

Example 7.17. For the BCFW tile Zp in Figure 7, the tile variables @(Y) were computed in
Example 3.12. Then we can compute the candidate canonical form Q(Zp) in terms of (V) by
Equation (15). Moreover, we can also compute €2(Zp) by using a different cluster obtained e.g. by
mutating the tile seed X p at &5, see Figure 19. The collection of cluster variables then would have
gf instead of &5, where

Y576 (89 AD)SI9EF)
and we use A, B,C, D, E, F for 10,11,12,13,14,15. Note that any sequence of mutations applied
to Xp will give cluster variables which are cluster variables for Gry,, times a Laurent monomial in

. _ (ABC|89|DEF) _ (ABC|89| DEF)
5

the ’A)/,L
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APPENDIX A. LIST OF TILES IN A SPURION TILING

A good tiling Ty, = {Z,} for Ag 24 containing a spurion tile (#28 in the list). For each tile Z,
we display its affine permutation m and the vector configuration of the columns of a matrix Cx

representing a point in Sy, where columns within the same bracket (...) are proportional.

Affine Permutation

Vector Conf. #

Affine Permutation

Vector Conf.

_ =
DD © 00N oo w N TR

NN N NN = = = = =
= W N R O © 00 3 O O = W N

[\
t

{1,4,5,6,7,11,12,8,9}
{1,4,5,7,6,8,12,11,9}
{1,4,5,7,8,6,11,12,9}
{1,4,5,8,6,7,12,9,11}
{1,4,5,8,7,6,9,12,11}
{1,4,5,8,9,6,7,11,12}
{1,5,3,6,7,8,11,13,9}
{1,5,3,6,8,7,9,13,11}
{1,5,3,6,8,9,7,11,13}
{1,5,4,6,7,11,8,12,9}
{1,5,4,6,8,11,7,9,12}
{1,5,4,7,6,8,11,12,9}
{1,5,4,8,6,7,9,12,11}
{1,5,4,8,6,9,7,11,12}
{1,6,3,4,7,8,9,11,14}
{1,6,4,5,7,8,12,9,11}
{1,6,4,5,8,7,9,12,11}
{1,6,5,4,8,7,9,11,12}

{2,3,5,9,6,7,8,13,10} | (9

{2,4,5,9,6,8,7,12,10}
{2,4,5,9,8,6,7,10,12}
{2,4,6,9,5,7,8,12,10}
{2,5,3,6,9,7,8,13,10}
{2,5,3,6,9,8,7,10,13}
{2,5,4,6,9,10,7,8,12}

)
8,9,2)(3)(4)(5,6,7) || 29
)

(3,4)(5,6,7)(8)(9,2) | 38
)

1,2)(3)(4)(6,7,8
1,2)(4)(5)(6,7,8) || 48

2)(3)4)(5)(6)(7) || 26

(
2)(3)(4)(5,6)(7) || 27
8) || 28

)(3)(4)(5,7)(8) || 30
(2)(3)(4)(5)(8)(9) | 31
(2)(4)(5)

(9,2)(4)(5)(6,7)(8) || 33

)
(5)(&)(
(6)(7)(8) || 32
)
(

)4)(5)(6)(8)(9) || 34
(3,4)(5)(6)(7,8) || 35
(3,4)(5)(6)(8,9) || 36
(3,4)(5,6)(7)(8) || 37

)(3,4)(5,6)(8)(9 39
2)(5)(6)(7)(8)(9) || 40
,4,5)(6)(7)(8,9,2) || 41
4,5)(6,7)(8)(9,2) || 42
)(3,5)(6,7)(8)(9) | 43
1,2,3)(4)(5,6,7,8) || 44

2)B)H)(5,6,8) | 45
2)(3)(4)(5,8)(9) | 46
47

)(9) |49
3,4)(5)(6)(9) | 50

{2,5,4,9,6,8,7,10,12}
{2,6,4,5,7,9,12,8,10}
{2,6,4,5,9,7,8,12,10}
{2,7,4,5,6,8,12,9, 10}
{2,7,4,5,8,6,9,12,10}
{3,4,5,9,10,6,7,8,11}
{3,5,4,6,10,9,7,8,11}
{3,5,6,4,9,10,7,8,11}
{3,6,4,5,9,8,7,11,10}
{3,6,4,5,10,7,8,11,9}
{3,6,4,9,5,8,7,10,11}
{3,6,5,4,7,8,11,10,9}
{3,6,5,4,8,7,11,9,10}
{3,6,5,4,9,7,8,11,10}
{3,7,5,4,8,6,9,11,10}
{4,6,3,5,9,8,7,10,11}
{5,6,3,4,7,9,8,11,10}
{5,6,3,4,8,9,7,10,11}
{5,7,3,4,6,8,9,11,10}
{6,3,4,5,9,7,8,11,10}
{6,3,4,9,5,7,8,10,11}
{6,3,5,4,7,8,11,9, 10}
{6,4,3,5,9,7,8,10,11}
{6,5,3,4,7,9,8,10,11}
{6,7,3,4,5,8,9,10,11}

(1,2)(3,4)(5,6,8)(9)
(3,4,5)(6)(7)(9,1,2)
(3,4,5)(6,7,8)(9,1,2)
(3,4,5,6)(7)(8,9,1,2)
(3,4,5)(7

Substituting the 5 tiles #28, 34, 35, 38,46 in T, with 5 tiles in the table below, we obtain a good

BCFEFW tiling Tporw .-

Affine Permutation

Vector Conf.

{1,6,4,5,9,7,8,11,12}
{3,6,4,5,9,7,11,8,10}
{3,6,4,9,5,7,8,11,10}
{3,7,4,5,9,6,8,11,10}
{4,6,3,5,9,7,8,11,10}




[AHBC™16a]

[AHBCT16b]

[AHBL17]
[AHCCK10]
[AHT14]
[ELP*23]
[ELT21]

[Fral6]
[GL20]

[GLS13]
[GP23)
[Hod13]
[KLS13]
[KPR*21]
[KR20]
[KW19]
[KWZ20]

[Lam22]
[Lus94]

[MS09)]
[MS17]

[Pos06]
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