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Abstract. The positive Grassmannian Gr
≥0

k,n is a cell complex consisting of all points
in the real Grassmannian whose Plücker coordinates are nonnegative. In this paper we
consider the image of the positive Grassmannian and its positroid cells under two different
maps: the moment map µ onto the hypersimplex [GGMS87], and the amplituhedron map Z̃

onto the amplituhedron [AHT14]. For either map, we define a positroid dissection to be a
collection of images of positroid cells that are disjoint and cover a dense subset of the image.
Positroid dissections of the hypersimplex are of interest because they include many matroid
subdivisions; meanwhile, positroid dissections of the amplituhedron can be used to calculate
the amplituhedron’s ‘volume,’ which in turn computes scattering amplitudes in N = 4 super
Yang-Mills. We define a map we call T-duality from cells of Gr

≥0

k+1,n to cells of Gr
≥0

k,n,
and conjecture that it induces a bijection from positroid dissections of the hypersimplex
∆k+1,n to positroid dissections of the amplituhedron An,k,2; we prove this conjecture for the
(infinite) class of BCFW dissections. We note that T-duality is particularly striking because
the hypersimplex is an (n−1)-dimensional polytope while the amplituhedron An,k,2 is a 2k-
dimensional non-polytopal subset of the Grassmannian Grk,k+2. Moreover, we prove that
the positive tropical Grassmannian is the secondary fan for the regular positroid subdivisions
of the hypersimplex, and prove that a matroid polytope is a positroid polytope if and only if
all two-dimensional faces are positroid polytopes. Finally, towards the goal of generalizing
T-duality for higher m, we define the momentum amplituhedron for any even m.
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1. Introduction

In 1987, the foundational work of Gelfand-Goresky-MacPherson-Serganova [GGMS87] ini-
tiated the study of the Grassmannian and torus orbits in the Grassmannian via the moment
map and matroid polytopes, which arise as moment map images of (closures of) torus orbits.
Classifying points of the Grassmannian based on the moment map images of the corre-
sponding torus orbits leads naturally to the matroid stratification of the Grassmannian. The
moment map image of the entire Grassmannian Grk+1,n is the (n − 1)-dimensional hyper-

simplex ∆k+1,n ¦ Rn, the convex hull of the indicator vectors eI ∈ Rn where I ∈
(

[n]
k+1

)
.

Over the last decades there has been a great deal of work on matroid subdivisions of the
hypersimplex [Kap93, Laf03, Spe08]; these are closely connected to the tropical Grassman-
nian [SS04, Spe08, HJS14] and the Dressian [HJS14], which parametrizes regular matroidal
subdivisions of the hypersimplex.

The matroid stratification of the real Grassmannian is notoriously complicated: Mnev’s
universality theorem says that the topology of the matroid strata can be as bad as that of
any algebraic variety. However, there is a subset of the Grassmannian called the totally non-
negative Grassmannian or (informally) the positive Grassmannian [Lus94, Pos], where these
difficulties disappear: the restriction of the matroid stratification to the positive Grassman-
nian gives a cell complex [Pos, Rie98, PSW09], whose cells SÃ are called positroid cells and
labelled by (among other things) decorated permutations. Since the work of Postnikov [Pos],
there has been an extensive study of positroids [Oh11, ARW16, ARW17] – the matroids
associated to the positroid cells. The moment map images of positroid cells are precisely
the positroid polytopes [TW15], and as we will discuss in this paper, the positive tropical
Grassmannian [SW05] (which equals the positive Dressian [SW21]) parametrizes the regular
positroid subdivisions of the hypersimplex.

Besides the moment map, there is another interesting map on the positive Grassmannian,
which was recently introduced by Arkani-Hamed and Trnka [AHT14] in the context of scat-
tering amplitudes in N = 4 SYM. In particular, any n × (k + m) matrix Z with maximal
minors positive induces a map Z̃ from Grg0

k,n to the Grassmannian Grk,k+m, whose image
has full dimension mk and is called the amplituhedron An,k,m [AHT14]. The case m = 4 is
most relevant to physics: in this case, the BCFW recurrence (named for Britto, Cachazo,
Feng, and Witten [BCFW05]) gives rise to collections of 4k-dimensional cells in Grg0

k,n, whose
images conjecturally tile or triangulate the amplituhedron.

Given that the hypersimplex and the amplituhedron are images of the positive Grassman-
nian, which has a decomposition into positroid cells, one can ask the following questions.
When does a collection of positroid cells give – via the moment map – a positroid dissection
of the hypersimplex? By dissection, we mean that the images of these cells are disjoint and
cover a dense subset of the hypersimplex (but we do not put any constraints on how their

boundaries match up). When does a collection of positroid cells give – via the Z̃-map – a dis-
section of the amplituhedron? We can also ask about positroid tilings, which are dissections

coming from cells on which the moment map (respectively, the Z̃-map) is injective.
The combinatorics of positroid tilings for both the hypersimplex and the amplituhedron

is very interesting: Speyer’s f -vector theorem [Spe08, Spe09] gives an upper bound on the
number of matroid polytopes of each dimension in a matroidal subdivision coming from the
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tropical Grassmannian. In particular, it says that the number of top-dimensional matroid
polytopes in such a subdivision of ∆k+1,n is at most

(
n−2
k

)
. This number is in particular

achieved by finest positroid subdivisions [SW21]. Meanwhile, the third author together
with Karp and Zhang [KWZ20] conjectured that the number of cells in a tiling of the
amplituhedron An,k,m(Z) for even m is precisely M(k, n− k −m, m

2
), where

M(a, b, c) :=
a∏

i=1

b∏

j=1

c∏

k=1

i + j + k − 1

i + j + k − 2

is the number of plane partitions contained in an a× b× c box. Note that when m = 2, this
conjecture says that the number of cells in a tiling of An,k,2(Z) equals

(
n−2
k

)
.

What we show in this paper is that the appearance of the number
(
n−2
k

)
in the context of

both the hypersimplex ∆k+1,n and the amplituhedron An,k,2(Z) is not a coincidence! Indeed,
we can obtain tilings of the amplituhedron from tilings of the hypersimplex, by applying a
T-duality map. This T-duality map sends loopless positroid cells SÃ of Grg0

k+1,n to coloopless

positroid cells SÃ̂ of Grg0
k,n via a simple operation on the decorated permutations, see Section 5.

T-duality sends tiles for the hypersimplex (cells where the moment map is injective) to tiles

for the amplituhedron (cells where Z̃ is injective), see Proposition 6.6, and moreover it sends
dissections of the hypersimplex to dissections of the amplituhedron, see Theorem 6.5 and
Conjecture 6.9. This explains the two appearances of the number

(
n−2
k

)
on the two sides of

the story.
The fact that dissections of ∆k+1,n and An,k,2(Z) are in bijection is a rather surpris-

ing statement. Should there be a map from ∆k+1,n to An,k,2(Z) or vice-versa? We have
dim ∆k+1,n = n − 1 and dimAn,k,2(Z) = 2k, with no relation between n − 1 and 2k (apart
from k f n) so it is not obvious that a nice map between them should exist. Nevertheless
we do show that T-duality descends from a certain map that can be defined directly on
positroid cells of Grg0

k+1,m.
The T-duality map provides a handy tool for studying the amplituhedron An,k,2(Z): we

can try to understand properties of the amplituhedron (and its dissections) by studying
the hypersimplex and applying T-duality. For example, we show in Section 7 that the
rather mysterious parity duality, which relates dissections of An,k,2(Z) with dissections of
An,n−k−2,2, can be obtained by composing the hypersimplex duality ∆k+1,n ≃ ∆n−k−1,n

(which comes from the Grassmannian duality Grk+1,n ≃ Grn−k−1,n) with T-duality on both
sides. As another example, we can try to obtain “nice” dissections of the amplituhedron
from correspondingly nice dissections of the hypersimplex. In general, dissections of ∆k+1,n

and An,k,2(Z) may have unpleasant properties, with images of cells intersecting badly at
their boundaries, see Section 8. However, the regular subdivisions of ∆k+1,n are very nice
polyhedral subdivisions. By Theorem 9.12, the regular positroid dissections of ∆k+1,n come
precisely from the positive Dressian Dr+k+1,n (which equals the positive tropical Grassmannian

Trop+ Grk+1,n). And moreover the images of these subdivisions under the T-duality map
are very nice subdivisions of the amplituhedron An,k,2(Z), see Section 10. We speculate
that Trop+ Grk+1,n plays the role of secondary fan for the regular positroid subdivisions of
An,k,2(Z), see Conjecture 10.7.
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One step in proving Theorem 9.12 is the following new characterization of positroid poly-
topes (see Theorem 3.9): a matroid polytope is a positroid polytope if and only if all of its
two-dimensional faces are positroid polytopes.

Let us now explain how the various geometric objects in our story are related to scatter-
ing amplitudes in supersymmetric fields theories. The main emphasis so far has been on the
so-called “planar limit” of N = 4 super Yang-Mills. In 2009, the works of Arkani-Hamed–
Cachazo–Cheung–Kaplan [AHCCK10] and Bullimore–Mason–Skinner [BMS10] introduced
beautiful Grassmannian formulations for scattering amplitudes in this theory. Remarkably,
this led to the discovery that the positive Grassmannian encodes most of the physical prop-
erties of amplitudes [AHBC+16]. Building on these developments and on Hodges’ idea that
scattering amplitudes might be ‘volumes’ of some geometric object [Hod13], Arkani-Hamed
and Trnka arrived at the definition of the amplituhedron An,k,m(Z) [AHT14] in 2013.

The m = 4 amplituhedron An,k,4 is the object most relevant to physics: it encodes the
geometry of (tree-level) scattering amplitudes in planar N = 4 SYM. However, the ampli-
tuhedron is a well-defined and interesting mathematical object for any m. For example, the
m = 1 amplituhedron An,k,1 can be identified with the complex of bounded faces of a cyclic
hyperplane arrangement [KW19]. The m = 2 amplituhedron An,k,2(Z), which is a main
subject of this paper, also has a beautiful combinatorial structure, and has been recently
studied e.g. in [AHTT18, KWZ20, BH,  LPSV19,  Luk]. From the point of view of physics,
An,k,2(Z) is often considered as a toy-model for the m = 4 case. However it has applications
to physics as well: An,2,2 governs the geometry of scattering amplitudes in N = 4 SYM at
the subleading order in perturbation theory for the so-called ‘MHV’ sector of the theory,
and remarkably, the m = 2 amplituhedron An,k,2(Z) is also relevant for the ‘next to MHV’
sector, enhancing its connection with the geometries of loop amplitudes [KL20].

Meanwhile, in recent years physicists have been increasingly interested in understanding
how cluster algebras encode the analytic properties of scattering amplitudes, both at tree- and
loop- level [GGS+14]. This led them to explore the connection between cluster algebras and
the positive tropical Grassmannian which was observed in [SW05]. In particular, the positive
tropical Grassmannian has been increasingly playing a role in different areas of scattering
amplitudes: from bootstrapping loop amplitudes in N = 4 SYM [DFGK, AHLS21a, HP] to
computing scattering amplitudes in certain scalar theories [CEGM19].

Finally, physicists have already observed a duality between the formulations of scattering
amplitudes N = 4 SYM in momentum space1 and in momentum twistor space. This is pos-
sible because of the so-called ‘Amplitude/Wilson loop duality’ [AR08], which was shown to
arise from a more fundamental duality in String Theory called ‘T-duality’ [BM08]. The geo-
metric counterpart of this fact is a duality between collections of 4k-dimensional ‘BCFW’
cells of Grg0

k,n which (conjecturally) tile the amplituhedron An,k,4, and corresponding col-

lections of (2n − 4)-dimensional cells of Grg0
k+2,n which (conjecturally) tile the momentum

amplituhedron Mn,k,4; the latter object was introduced very recently by the first two au-
thors together with Damgaard and Ferro [DF LP19]. In this paper we see that this duality,
which we have evocatively called T-duality, extends beyond m = 4. In particular, for m = 2,

1More precisely, it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [AHBC+16, Section 8].
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the hypersimplex ∆k+1,n and the m = 2 amplituhedron An,k,2(Z) are somehow dual to each
other, a phenomenon that we explore and employ to study properties of both objects. We
believe that this duality holds for any (even) m: in Section 11 we introduce a generalization
Mn,k,m of the momentum amplituhedron Mn,k,4, and a corresponding notion of T-duality.

Acknowledgements: All three authors would like to thank the Harvard Center for
Mathematical Sciences and Applications (CMSA) for its hospitality, and the first and sec-
ond authors would like to thank the organizers of the “Spacetime and Quantum Mechanics
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2. The positive Grassmannian, the hypersimplex, and the amplituhedron

In this section we introduce the three main geometric objects in this paper: the positive
Grassmannian, the hypersimplex, and the amplituhedron. The latter two objects are images

of the positive Grassmannian under the moment map and the Z̃-map.

Definition 2.1. The (real) Grassmannian Grk,n (for 0 f k f n) is the space of all k-
dimensional subspaces of Rn. An element of Grk,n can be viewed as a k × n matrix of rank
k modulo invertible row operations, whose rows give a basis for the k-dimensional subspace.

Let [n] denote {1, . . . , n}, and
(
[n]
k

)
denote the set of all k-element subsets of [n]. Given

V ∈ Grk,n represented by a k × n matrix A, for I ∈
(
[n]
k

)
we let pI(V ) be the k × k minor

of A using the columns I. The pI(V ) do not depend on our choice of matrix A (up to
simultaneous rescaling by a nonzero constant), and are called the Plücker coordinates of V .

2.1. The positive Grassmannian and its cells.

Definition 2.2 ([Pos, Section 3]). We say that V ∈ Grk,n is totally nonnegative if pI(V ) g 0

for all I ∈
(
[n]
k

)
. The set of all totally nonnegative V ∈ Grk,n is the totally nonnegative

Grassmannian Grg0
k,n; abusing notation, we will often refer to Grg0

k,n as the positive Grass-

mannian. For M ¦
(
[n]
k

)
, let SM be the set of V ∈ Grg0

k,n with the prescribed collection
of Plücker coordinates strictly positive (i.e. pI(V ) > 0 for all I ∈ M), and the remaining

Plücker coordinates equal to zero (i.e. pJ(V ) = 0 for all J ∈
(
[n]
k

)
\M). If SM ̸= ∅, we call

M a positroid and SM its positroid cell.

Each positroid cell SM is indeed a topological cell [Pos, Theorem 6.5], and moreover, the
positroid cells of Grg0

k,n glue together to form a CW complex [PSW09].

As shown in [Pos], the cells of Grg0
k,n are in bijection with various combinatorial objects,

including decorated permutations Ã on [n] with k anti-excedances and equivalence classes
of reduced plabic graphs G of type (k, n). In Section 12 we review these objects and give
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bijections between them. This gives a canonical way to label each positroid by a decorated
permutation and an equivalence class of plabic graphs; we will correspondingly refer to
positroid cells as SÃ, SG, etc.

2.2. The moment map and the hypersimplex. The moment map from the Grassman-
nian Grk,n to Rn is defined as follows.

Definition 2.3. Let A be a k × n matrix representing a point of Grk,n. The moment map2

µ : Grk,n → Rn is defined by

µ(A) =

∑
I∈([n]

k ) |pI(A)|2eI
∑

I∈([n]
k ) |pI(A)|2

,

where eI :=
∑

i∈I ei ∈ Rn, and {e1, . . . , en} is the standard basis of Rn.

It is well-known that the image of the Grassmannian Grk,n under the moment map is the

(k, n)-hypersimplex ∆k,n, which is the convex hull of the points eI where I runs over
(
[n]
k

)
.

If one restricts the moment map to Grg0
k,n then the image is again the hypersimplex ∆k,n

[TW15, Proposition 7.10].
We will consider the restriction of the moment map to positroid cells of Grg0

k,n.

Definition 2.4. Given a positroid cell SÃ of Grg0
k,n, we let Γ◦

Ã = µ(SÃ), and ΓÃ = µ(SÃ).

There are a number of natural questions to ask. What do the ΓÃ look like, and how can
one characterize them? On which positroid cells is the moment map injective? The images
ΓÃ of (closures of) positroid cells are called positroid polytopes ; we will explore their nice
properties in Section 3.

One of our main motivations is to understand positroid dissections of the hypersimplex.

Definition 2.5. Let C = {ΓÃ} be a collection of positroid polytopes, with {SÃ} a collection
of positroid cells of Grg0

k,n. We say that C is a positroid dissection of ∆k,n if we have that:

• dim ΓÃ = n− 1 for each SÃ ∈ C
• the images Γ◦

Ã and Γ◦
Ã′ of two distinct cells in the collection are disjoint

• ∪ÃΓÃ = ∆k,n, i.e. the union of the images of the cells is dense in ∆k,n.

We say that a positroid dissection C = {ΓÃ} of ∆k,n is a positroid tiling (or simply a tiling)
of ∆k,n if µ is injective on each SÃ.

Question 2.6. Let C = {ΓÃ} be a collection of positroid polytopes, with {SÃ} positroid cells
of Grg0

k,n. When is C a positroid dissection of ∆k,n? When is it a positroid tiling?

2We remark that there is another version of the moment map called the algebraic moment map, which we
will briefly discuss later, see Definition 3.18.
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2.3. The Z̃-map and the amplituhedron. Building on [AHBC+16], Arkani-Hamed and
Trnka [AHT14] recently introduced a beautiful new mathematical object called the (tree)

amplituhedron, which is the image of the positive Grassmannian under a map Z̃ induced by
a positive matrix Z.

Definition 2.7. For a f b, define Mat>0
a,b as the set of real a × b matrices whose a × a

minors are all positive. Let Z ∈ Mat>0
n,k+m. The amplituhedron map Z̃ : Grg0

k,n → Grk,k+m

is defined by Z̃(C) := CZ, where C is a k × n matrix representing an element of Grg0
k,n,

and CZ is a k × (k + m) matrix representing an element of Grk,k+m. The amplituhedron

An,k,m(Z) ¦ Grk,k+m is the image Z̃(Grg0
k,n).

In special cases the amplituhedron recovers familiar objects. If Z is a square matrix, i.e.
k + m = n, then An,k,m(Z) is isomorphic to the positive Grassmannian. If k = 1, then it
follows from [Stu88] that An,1,m(Z) is a cyclic polytope in projective space Pm. If m = 1,
then An,k,1(Z) can be identified with the complex of bounded faces of a cyclic hyperplane
arrangement [KW19].

We will consider the restriction of the Z̃-map to positroid cells of Grg0
k,n.

Definition 2.8. Given a positroid cell SÃ of Grg0
k,n, we let Z◦

Ã = Z̃(SÃ), and ZÃ = Z̃(SÃ).
We refer to Z◦

Ã and ZÃ as open Grasstopes and Grasstopes respectively.

As in the case of the hypersimplex, one of our main motivations is to understand positroid
dissections of the amplituhedron An,k,m(Z).

Definition 2.9. Let C = {ZÃ} be a collection of Grasstopes, with {SÃ} a collection of
positroid cells of Grg0

k,n. We say that C is a positroid dissection of An,k,m(Z) if we have that:

• dimZÃ = mk for each ZÃ ∈ C
• pairs of distinct open Grasstopes Z◦

Ã and Z◦
Ã′ in the collection are disjoint

• ∪ÃZÃ = An,k,m(Z).

We say that a positroid dissection C = {ZÃ} of An,k,m(Z) is a positroid tiling (or simply a

tiling) of An,k,m(Z) if Z̃ is injective on each SÃ.

Remark 2.10. Let S be an index set for cells of Grg0
k,n. It is expected that if Z and Z ′ both

lie in Mat>0
k+m,n, then {ZÃ}Ã∈S is a positroid tiling (respectively, dissection) of An,k,m(Z) if

and only if {Z ′
Ã}Ã∈S is a positroid tiling (respectively, dissection) of An,k,m(Z ′).

The results we prove in this paper will be independent of Z.

Question 2.11. Let C = {ZÃ} be a collection of Grasstopes, with {SÃ} positroid cells of
Grg0

k,n. When is C a positroid dissection of An,k,m(Z)? When is it a positroid tiling?

In this paper we will primarily focus on the case m = 2 (with the exception of Sec-
tion 11, where we give some generalizations of our results and conjectures to general even
m). (positroid) tilings of the amplituhedron have been studied in [AHT14], [F LOP16],
[AHBL17], [KWZ20], [GL20], [F LP19]. Very recently the paper [BH] constructed (with
proof) many tilings of the m = 2 amplituhedron. The m = 2 amplituhedron has also been
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studied in [AHTT18] (which gave an alternative description of it in terms of sign patterns; see
also [KWZ20]), in [ Luk] (which described the boundary stratification of the amplituhedron
An,k,2(Z)), and in [ LPSV19] (which discussed its relation to cluster algebras). Note that our
notion of dissection above is the same as the notion of subdivision from [GL20, Definition
7.1]. (However, we prefer the word “dissection,” as the word “subdivision” is often used to
indicate that there are constraints on how the boundaries match up.)

3. Positroid polytopes and the moment map

In this section we study positroid polytopes, which are images of positroid cells of Grg0
k,n un-

der the moment map µ : Grg0
k,n → Rn. We recall some of the known properties of matroid and

positroid polytopes, we give a new characterization of positroid polytopes (see Theorem 3.9),
and we describe when the moment map is an injection on a positroid cell, or equivalently,
when the moment map restricts to a homeomorphism from the closure of a positroid cell to
the corresponding positroid polytope (see Proposition 3.15 and Proposition 3.16).

3.1. Matroid polytopes. The torus T = (C∗)n acts on Grk,n by scaling the columns of a
matrix representative A. We let TA denote the orbit of A under the action of T , and TA
its closure. It follows from classical work of Atiyah [Ati82] and Guillemin-Sternberg [GS82]
that the image µ(TA) is a convex polytope, whose vertices are the images of the torus-fixed
points, i.e. the vertices are the points eI such that pI(A) ̸= 0.

This motivates the notion of matroid polytope. Note that any full rank k × n matrix A
gives rise to a matroid M(A) = ([n],B), where B = {I ∈

(
[n]
k

)
| pI(A) ̸= 0}.

Definition 3.1. Given a matroid M = ([n],B), the (basis) matroid polytope ΓM of M is the
convex hull of the indicator vectors of the bases of M :

ΓM := convex{eB | B ∈ B} ¢ Rn.

The following elegant characterization of matroid polytopes is due to Gelfand, Goresky,
MacPherson, and Serganova.

Theorem 3.2 ([GGMS87]). Let B be a collection of subsets of [n] and let ΓB := convex{eB |
B ∈ B} ¢ Rn. Then B is the collection of bases of a matroid if and only if every edge of ΓB

is a parallel translate of ei − ej for some i, j ∈ [n].

The dimension of a matroid polytope is determined by the number of connected compo-
nents of the matroid. Recall that a matroid which cannot be written as the direct sum of
two nonempty matroids is called connected.

Proposition 3.3 ([Oxl11]). Let M be a matroid on E. For two elements a, b ∈ E, we set
a ∼ b whenever there are bases B1, B2 of M such that B2 = (B1−{a})∪{b}. The relation ∼
is an equivalence relation, and the equivalence classes are precisely the connected components
of M .

Proposition 3.4 ([BGW03]). For any matroid, the dimension of its matroid polytope is
dim ΓM = n− c, where c is the number of connected components of M .

We note that there is an inequality description of any matroid polytope.



THE POSITIVE TROPICAL GRASSMANNIAN AND THE m = 2 AMPLITUHEDRON 9

Proposition 3.5 ([Wel76]). Let M = ([n],B) be any matroid of rank k, and let rM : 2[n] →
Zg0 be its rank function. Then the matroid polytope ΓM can be described as

ΓM =



x ∈ Rn |

∑

i∈[n]

xi = k,
∑

i∈A

xi f rM(A) for all A ¢ [n]



 .

3.2. Positroid polytopes. In this paper we are interested in positroids ; these are the ma-
troids M(A) associated to k × n matrices A with maximal minors all nonnegative.

In Definition 3.1, we defined the matroid polytope ΓM to be the convex hull of the indicator
vectors of the bases of the matroid M . We can of course apply the same definition to any
positroid M , obtaining the positroid polytope ΓM . On the other hand, in Definition 2.4, for
each positroid cell SÃ, we defined ΓÃ = µ(SÃ) to be the closure of the image of the cell under
the moment map. Fortunately these two objects coincide.

Proposition 3.6. [TW15, Proposition 7.10] Let M be the positroid associated to the positroid

cell SÃ. Then ΓM = ΓÃ = µ(SÃ) = µ(SÃ).

The first statement in Theorem 3.7 below was proved in [ARW16, Corollary 5.4] (and gen-
eralized to the setting of Coxeter matroids in [TW15, Theorem 7.13].) The second statement
follows from the proof of [TW15, Theorem 7.13].

Theorem 3.7. Every face of a positroid polytope is a positroid polytope. Moreover, every
face ΓÃ′ of a positroid polytope ΓÃ has the property that SÃ′ ¢ SÃ.

There is a simple inequality characterization of positroid polytopes.

Proposition 3.8. [ARW16, Proposition 5.7] A matroid M of rank k on [n] is a positroid if
and only if its matroid polytope ΓM can be described by the equality x1 + · · · + xn = k and
inequalities of the form ∑

ℓ∈[i,j]

xℓ f rij, with i, j ∈ [n].

Here [i, j] is the cyclic interval given by [i, j] = {i, i + 1, . . . , j} if i < j and [i, j] = {i, i +
1, . . . , n, 1, . . . , j} if i > j.

We now give a new characterization of positroid polytopes. In what follows, we use Sab
as shorthand for S ∪ {a, b}, etc.

Theorem 3.9. Let M be a matroid of rank k on the ground set [n], and consider the matroid
polytope ΓM . It is a positroid polytope (i.e. M is a positroid) if and only if all of its two-
dimensional faces are positroid polytopes.

Moreover, if M fails to be a positroid polytope, then ΓM has a two-dimensional face F with
vertices eSab, eSad, eSbc, eScd, for some 1 f a < b < c < d f n and S of size k − 2 disjoint
from {a, b, c, d}.

Remark 3.10. A different characterization of positroids in terms of faces of their matroid
polytopes was given in [RVY21, Proposition 6.4], see also [RVY21, Lemma 6.2 and Lemma
6.3]. There are also some related ideas in the proof of [Ear19, Lemma 30].
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By Theorem 3.7, every two-dimensional face of ΓM is a positroid polytope. To prove the
other half of Theorem 3.9, we use the following lemma.

Lemma 3.11. Let M be a matroid of rank k on [n] which has two connected components, i.e.
M = M1 ·M2 such that the ground sets of M1 and M2 are S and T = [n] \ S. Suppose that
{S, T} fails to be a noncrossing partition of [n], in other words, there exists a < b < c < d (in
cyclic order) such that a, c ∈ S and b, d ∈ T . Then ΓM has a two-dimensional face which is
not a positroid polytope; in particular, that face is a square with vertices eSab, eSad, eSbc, eScd,
for some 1 f a < b < c < d f n and S of size k − 2 disjoint from {a, b, c, d}.

Proof. By Proposition 3.3, we have bases Aa and Ac of M1 and also bases Bb and Bd of
M2. We can find a linear functional on ΓM1 given by a vector in RS whose dot product is
maximized on the convex hull of eAa and eAc (choose the vector w such that wh = 1 for
h ∈ A, wh = 1

2
for h = a or h = c, and wh = 0 otherwise); therefore there is an edge in

ΓM1 between eAa and eAc. Similarly, there is an edge in ΓM2 between eBb and eBd. Therefore
ΓM = ΓM1×ΓM2 has a two-dimensional face whose vertices are eABab, eABad, eABbc, eABcd. This
is not a positroid polytope because {ab, ad, bc, cd} are not the bases of a rank 2 positroid. □

Proposition 3.12. Let M be a connected matroid. If all of the two-dimensional faces of
ΓM are positroid polytopes, then ΓM is a positroid polytope (i.e. M is a positroid).

Proof. Suppose for the sake of contradiction that ΓM is not a positroid polytope.
Since ΓM is not a positroid polytope, then by Proposition 3.5 and Proposition 3.8, it has a

facet F of the form
∑

i∈S xi = rM(S), where S is not a cyclic interval. In other words, S and
T = [n] \ S fail to form a noncrossing partition. Each facet of ΓM is the matroid polytope
of a matroid with two connected components, so by the greedy algorithm for matroids (see
e.g. [ARW16, Proposition 2.12]), F must be the matroid polytope of M |S ·M/S. But now
by Lemma 3.11, F has a two-dimensional face which is not a positroid polytope. □

We now complete the proof of Theorem 3.9.

Proof. We start by writing M as a direct sum of connected matroids M = M1 · · · · ·Ml.
Let S1, . . . , Sl be the ground sets of M1, . . . ,Ml. By [ARW16, Lemma 7.3], either one of
the Mi’s fails to be a positroid, or {S1, . . . , Sl} fails to be a non-crossing partition of [n]. If
one of the Mi’s fails to be a positroid, then by Proposition 3.12, ΓMi

has a two-dimensional
face which fails to be a positroid. But then so does ΓM = ΓM1 × · · · × ΓMl

. On the other
hand, if {S1, . . . , Sl} fails to be a non-crossing partition of [n], then by Lemma 3.11, ΓM has
a two-dimensional face which fails to be a positroid. This completes the proof. □

Our next goal is to use Proposition 3.4 to determine when the moment map restricted to
a positroid cell is a homeomorphism. To do so, we need to understand how to compute the
number of connected components of a positroid. The following result comes from [ARW16,
Theorem 10.7] and its proof. We say that a permutation Ã of [n] is stabilized-interval-free
(SIF) if it does not stabilize any proper interval of [n]; that is, Ã(I) ̸= I for all intervals
I ª [n].
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Proposition 3.13. Let SÃ be a positroid cell of Grg0
k,n and let MÃ be the corresponding

positroid. Then MÃ is connected if and only if Ã is a SIF permutation of [n]. More generally,
the number of connected components of MÃ equals the number of connected components of
any reduced plabic graph associated to Ã.

Example 3.14. Consider the permutation Ã = (5, 3, 4, 2, 6, 7, 1) (which in cycle notation is
(234)(1567). Then there are two minimal-by-inclusion cyclic intervals such that Ã(I) = I,
namely [2, 4] and [5, 1], and hence the matroid MÃ has two connected components. (Note
that [1, 7] is also a cyclic interval with Ã([1, 7]) = [1, 7] but it is not minimal-by-inclusion.) ♢

Proposition 3.15. Consider a positroid cell SÃ ¢ Grg0
k,n and let MÃ be the corresponding

positroid. Then the following statements are equivalent:

(1) the moment map restricts to an injection on SÃ

(2) the moment map is a homeomorphism from SÃ to ΓÃ

(3) dimSÃ = dim ΓÃ = n − c, where c is the number of connected components of the
matroid MÃ.

Proof. Suppose that (1) holds, i.e. that the moment map is an injection when restricted to
a cell SÃ. Then dim ΓÃ = dimSÃ. By [TW15, Proposition 7.12], the positroid variety XÃ

is a toric variety if and only if dim ΓÃ = dimSÃ, so this implies that XÃ is a toric variety,
and SÃ is its nonnegative part. It is well-known that the moment map is a homeomorphism
when restricted to the nonnegative part of a toric variety [Ful93, Section 4.2], so it follows
that µ is a homeomorphism on SÃ. Therefore (1) implies (2). But obviously (2) implies (1).

Now suppose that (2) holds. Since ΓÃ is the moment map image of SÃ, it follows that
dim ΓÃ = dimSÃ, and by Proposition 3.4, we have that dim ΓÃ = n−c, where c is the number
of connected components of the matroid MÃ. Therefore (2) implies (3).

Now suppose (3) holds. Then by [TW15, Proposition 7.12], XÃ must be a toric variety,
and so the moment map restricts to a homeomorphism from SÃ to ΓÃ. So (3) implies (2). □

Proposition 3.16. Consider a positroid cell SÃ ¢ Grg0
k,n and let MÃ be the corresponding

positroid. Then the moment map is a homeomorphism from SÃ to ΓÃ ¢ Rn if and only if
any reduced plabic graph associated to Ã is a forest. The (n − 1)-dimensional cells SÃ on
which the moment map is a homeomorphism to their image are precisely those cells whose
reduced plabic graphs are trees.

Proof. This follows from Proposition 3.15 and Proposition 3.13, together with the fact that
we can read off the dimension of a positroid cell from any reduced plabic graph G for it as
the number of regions of G minus 1. □

Remark 3.17. The connected (n− 1)-dimensional positroid cells SÃ of Grg0
k,n are precisely

those (n− 1)-dimensional cells where Ã is a single cycle of length n.

As an alternative to the moment map from Definition 2.3, we can also consider the algebraic
moment map as in [Sot03], defined as follows.3

3The reference [Sot03] defines this map for toric varieties, but it makes sense for Grk,n.
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Definition 3.18. Let A be a k × n matrix representing a point of Grk,n. The algebraic
moment map µ̃ : Grk,n → Rn is defined by

µ̃(A) =

∑
I∈([n]

k ) |pI(A)|eI
∑

I∈([n]
k ) |pI(A)|

.

Lemma 3.19. Proposition 3.15 and Proposition 3.16 hold verbatim after replacing moment
map by algebraic moment map. In particular, if SÃ is a positroid cell whose reduced plabic
graph is a tree, then µ̃ is an injection on SÃ and ΓÃ = µ̃(SÃ).

Proof. We note that both the moment map and the algebraic moment map are homeo-
morphisms when restricted to the nonnegative part of a toric variety [Sot03, Theorem 8.5],
[Ful93, Section 4.2]. Therefore the proofs of Proposition 3.15 and Proposition 3.16 hold when
we use the algebraic moment map. □

Proposition 3.20. We have µ̃(Grg0
k,n) = ∆k,n.

Proof. It follows immediately from the definition that µ̃(A) will always be a convex combi-

nation of the points eI for I ∈
(
[n]
k

)
so µ̃(Grg0

k,n) ¦ ∆k,n.
In the other direction, choose any positroid tiling {SÃ} of ∆k,n, e.g. as in Proposition 10.4.

Then by Lemma 3.19 and the definition of positroid tiling, we have µ̃(SÃ) = ΓÃ and
⋃

ΓÃ =
∆k,n. It follows that µ̃(Grg0

k,n) = ∆k,n. □

4. Dissecting the hypersimplex and the amplituhedron

In this section we provide two recursive recipes for dissecting the hypersimplex ∆k+1,n, and
dissecting the amplituhedron An,k,2(Z); the recipe for dissecting the m = 2 amplituhedron
was proposed in [KWZ20, Section 4.1] and proved in [BH]. These recursive recipes are
completely parallel: as we will see in Section 5, the cells of corresponding dissections are in
bijection with each other via the T-duality map on positroid cells. Since these two recursions
are analogous to the BCFW recurrence (which conjecturally gives tilings of the m = 4
amplituhedron), we refer to them as BCFW-style recurrences.

4.1. BCFW dissections of the hypersimplex.

Definition 4.1. Let G (resp. G′) be a reduced plabic graph with n− 1 boundary vertices,
associated to a positroid cell of Grg0

k+1,n−1 (resp. Grg0
k,n−1), which do not have a loop at vertex

n − 1. We define ipre (resp. iinc) to be the map which takes G (resp. G′) and replaces the
(n − 1)st boundary vertex with a trivalent internal white (resp. black) vertex attached to
boundary vertices n− 1 and n, as in the middle (resp. rightmost) graph of Figure 1.

Abusing notation slightly, we also use ipre and iinc to denote the corresponding maps on
decorated permutations, positroid cells and their images under the moment and amplituhe-
dron maps.
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Remark 4.2. Using Section 12, it is straightforward to verify that both ipre(G) and iinc(G
′)

are reduced plabic graphs for cells of Grg0
k+1,n. Moreover, we can in fact define ipre(G) (resp.

iinc(G
′)) on any reduced plabic graph for Grg0

k+1,n−1 (resp. Grg0
k,n−1) which does not have a

black (resp. white) lollipop at vertex n − 1, and will again have that ipre(G) and iinc(G
′)

represent cells of Grg0
k+1,n.

Using Definition 12.7, it is easy to determine the effect of ipre and iinc on decorated per-
mutations. We leave the proof of the following lemma as an exercise.

Lemma 4.3. If Ã = (a1, a2, . . . , an−1) is a decorated permutation such that (n− 1) 7→ an−1

is not a black fixed point, then ipre(Ã) = (a1, a2, . . . , an−2, n, an−1).
If Ã = (a1, a2, . . . , an−1) is a decorated permutation such that (n−1) 7→ an−1 is not a white

fixed point, then iinc(Ã) = (a1, a2, . . . , aj−1, n, aj+1, . . . , an−1, n− 1) where j = Ã−1(n− 1).

Remark 4.4. Lemma 4.3 can be equivalently expressed in terms of L-diagrams (see [Pos]
or [KWZ20, Section 2]). If D is the L-diagram associated to Ã as in the first paragraph of
Lemma 4.3, then ipre(D) is obtained from D by adding a new column to the left of D, where
the new column consists of a single + at the bottom. If D is the L-diagram associated to Ã
as in the second paragraph of Lemma 4.3, then iinc(D) is obtained from D by adding a new
row at the bottom of D, where the row consists of a single box containing a +.

Theorem 4.5 (BCFW recursion for the hypersimplex). Let Ck+1,n−1 (respectively Ck,n−1) be
a collection of positroid polytopes which dissects the hypersimplex ∆k+1,n−1 (resp. ∆k,n−1).
Then

Ck+1,n = ipre(Ck+1,n−1) ∪ iinc(Ck,n−1)

dissects ∆k+1,n.

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any dissection
or tiling that has the form Ck,n from Theorem 4.5.

Diagrammatically, Theorem 4.5 is depicted in Fig. 1.

Figure 1. A BCFW-style recursion for dissecting the hypersimplex. There
is a parallel recursion obtained from this one by cyclically shifting all

boundary vertices of the plabic graphs by i (modulo n).

Remark 4.6. Because of the cyclic symmetry of the positive Grassmannian and the hyper-
simplex (see e.g. Theorem 7.4) there are n− 1 other versions of Theorem 4.5 (and Figure 1)
in which all plabic graph labels get shifted by i modulo n (for 1 f i f n− 1).
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Proof. The hypersimplex ∆k+1,n is cut out by the inequalities 0 f xi f 1, as well as the
equality

∑
i xi = k + 1. We will show that Figure 1 represents the partition of ∆k+1,n into

two pieces, with the middle graph representing the piece cut out by xn−1 + xn f 1, and the
rightmost graph representing the piece cut out by xn−1 + xn g 1.

Towards this end, it follows from Theorem 12.6 that if G is a reduced plabic graph repre-
senting a cell of Grg0

k+1,n−1, such that the positroid MG has bases B, then the bases of Mipre(G)

are precisely B ⊔ {(B \ {n − 1}) ∪ {n} | B ∈ B, n − 1 ∈ B}. In particular, each basis of
Mipre(G) may contain at most one element of {n− 1, n}.

Meanwhile, it follows from Theorem 12.6 that if G is a reduced plabic graph representing
a cell of Grg0

k,n−1, such that the positroid MG has bases B, then the bases of Miinc(G) are
precisely {B ∪ {n} | B ∈ B} ⊔ {B ∪ {n− 1} | B ∈ B, n− 1 /∈ B}. In particular, each basis
of Miinc(G) must contain at least one element of {n− 1, n}.

It is now a straightforward exercise (using e.g. [ARW16, Proposition 5.6]) to determine
that if Ck+1,n−1 is a collection of cells in Grg0

k+1,n−1 whose images dissect ∆k+1,n−1 then the
images of ipre(Ck+1,n−1) dissect the subset of ∆k+1,n cut out by the inequality xn−1 + xn f 1.
Similarly for iinc(Ck,n−1) and the subset of ∆k+1,n cut out by xn−1 + xn g 1. □

Example 4.7. Let n = 5 and k = 2. We will use Theorem 4.5 to obtain a dissec-
tion of ∆k+1,n = ∆3,5. We start with a dissection of ∆3,4 coming from the plabic graph
shown below (corresponding to the decorated permutation (4, 1, 2, 3)), and a dissection of
∆2,4 (corresponding to the permutations (2, 4, 1, 3) and (3, 1, 4, 2)). Applying the theorem
leads to the three plabic graphs in the bottom line, which correspond to the permutations
(4, 1, 2, 5, 3), (2, 5, 1, 3, 4), (3, 1, 5, 2, 4).

∆3,4: ∆2,4:

∆3,5:

♢

Remark 4.8. It is worth pointing out that our BCFW-style recursion does not provide
all possible dissections of the hypersimplex. This comes from the fact that in each step of
the recursion we divide the hypersimplex into two pieces, while there are some dissections
coming from 3-splits (a k-split is a coarsest subdivision with k maximal faces and a common
face of codimension k − 1). The simplest example of a dissection which cannot be obtained
from the recursion can be found already for ∆3,6 and is depicted in Figure 2.
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Figure 2. An example of a dissection of ∆3,6 that cannot be obtained from
the BCFW-style recursion in Theorem 4.5.

4.2. BCFW dissections of the m = 2 amplituhedron. We now introduce some maps
on plabic graphs, and recall a result of Bao and He [BH].

Definition 4.9. Let G be a reduced plabic graph with n− 1 boundary vertices, associated
to a positroid cell of Grg0

k,n−1. We define ºpre to be the map which takes G and adds a black
lollipop at a new boundary vertex n, as shown in the middle graph of Figure 3. Similarly,
we define ºinc to be the map on a plabic graph G′ for Grg0

k−1,n−1 which modifies G′, changing
the graph locally around vertices 1, n, n− 1, as shown at the right of Figure 3.

Remark 4.10. The the resulting graph ºpre(G) is a reduced plabic graph for a cell of Grg0
k,n.

It is not hard to show that, if G′ does not have white fixed points at vertices 1 or n−1, then
ºinc(G

′) is a reduced plabic graph for a cell of Grg0
k,n.

Abusing notation slightly, we also use ºpre and ºinc to denote the corresponding maps on
positroid cells and positroid polytopes, decorated permutations, etc. Using Definition 12.7,
one can also determine the effect of ºpre and ºinc on decorated permutations (and L-diagrams).
We leave the proof of the following lemma as an exercise.

Lemma 4.11. Let Ã = (a1, a2, . . . , an−1) be a decorated permutation on n− 1 letters. Then
ºpre(Ã) = (a1, a2, . . . , an−2, an−1, n), where n is a black fixed point.
Let Ã = (a1, a2, . . . , an−1) be a decorated permutation; assume that neither positions 1 nor

n− 1 are white fixed points. Let h = Ã−1(n− 1). Then ºinc(Ã) is the permutation such that
1 7→ n− 1, h 7→ n, n 7→ a1, and j 7→ aj for all j ̸= 1, h, n.

The construction below is closely related to the recursion from [KWZ20, Definition 4.4],
which is a sort of m = 2 version of the BCFW recurrence.

Theorem 4.12 (BCFW recursions for the m = 2 amplituhedron). [BH, Theorem A] Let
Cn−1,k,2 (respectively Cn−1,k−1,2) be a collection of Grasstopes which dissects the m = 2 am-
plituhedron An−1,k,2(Z

′) (resp. An−1,k−1,2(Z
′′)). Then

Cn,k,2 = ºpre(Cn−1,k,2) ∪ ºinc(Cn−1,k−1,2)

dissects An,k,2(Z).

We use the term BCFW dissection (respectively, BCFW tiling) to refer to any dissection
or tiling that has the form Ck,n from Theorem 4.12.

Diagrammatically, Theorem 4.12 reads as follows:
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Figure 3. A BCFW-style recursion for dissecting the amplituhedron. There
is a parallel recursion obtained from this one by cyclically shifting all

boundary vertices of the plabic graphs by i (modulo n).

Remark 4.13. Because of the cyclic symmetry of the positive Grassmannian and the ampli-
tuhedron (see e.g. Theorem 7.5) there are n−1 other versions of Theorem 4.5 (and Figure 1)
in which all plabic graph labels get shifted by i modulo n (for 1 f i f n− 1).

Note that [BH] worked in the setting of positroid tilings – i.e. they were only considering
collections of cells that map injectively from the positive Grassmannian to the amplituhedron
– but Theorem 4.12 holds in the more general setting of dissections.

Example 4.14. Let n = 5 and k = 2. We will use Theorem 4.12 to obtain a dissection
of An,k,2(Z) = A5,2,2. We start with a dissection of A4,2,2 coming from the plabic graph
shown below (corresponding to the decorated permutation (3, 4, 1, 2)), and a dissection of
A4,1,2 (corresponding to the permutations (3, 2, 4, 1) and (2, 3, 1, 4)). Applying the theorem
leads to the three plabic graphs in the bottom line, which correspond to the permutations
(3, 4, 1, 2, 5), (4, 2, 5, 1, 3), (4, 3, 1, 5, 2). ♢

A4,2,2: A4,1,2:

A5,2,2:



THE POSITIVE TROPICAL GRASSMANNIAN AND THE m = 2 AMPLITUHEDRON 17

5. The T-duality map

In this section we define the T-duality map (previously defined in [KWZ20, Definition
4.5]), from certain positroid cells of Grg0

k+1,n to positroid cells of Grg0
k,n, and we prove many

remarkable properties of it. We will subsequently explain, in Theorem 6.5, how the T-
duality map gives a correspondence between tilings (and more generally dissections) of the
hypersimplex ∆k+1,n and the amplituhedron An,k,2(Z).

To get a preview of the phenomenon we will illustrate, compare the decorated permu-
tations labelling the plabic graphs in Example 4.7 and Example 4.14; can you spot the
correspondence? (This correspondence will be explained in Theorem 6.5.)

5.1. T-duality as a map on permutations.

Definition 5.1. We define the T-duality map from loopless decorated permutations on [n] to
coloopless decorated permutations on [n] as follows. Given a loopless decorated permutation
Ã = (a1, a2, . . . , an) (written in list notation) on [n], we define the decorated permutation Ã̂
by Ã̂(i) = Ã(i−1), so that Ã̂ = (an, a1, a2, . . . , an−1), where any fixed points in Ã̂ are declared
to be loops. Equivalently, Ã̂ is obtained from Ã by composing Ã with the permutation
Ã0 = (n, 1, 2, . . . , n− 1) in the symmetric group, Ã̂ = Ã0 ◦ Ã.

Recall that an anti-excedance of a decorated permutation is a position i such that Ã(i) < i,
or Ã(i) = i and i is a coloop. Our first result shows that T-duality is a bijection between
loopless cells of Grg0

k+1,n and coloopless cells of Grg0
k,n.

Lemma 5.2. The T-duality map Ã 7→ Ã̂ is a bijection between the loopless permutations on
[n] with k+1 anti-excedances, and the coloopless permutations on [n] with k anti-excedances.
Equivalently, the T-duality map is a bijection between loopless positroid cells of Grg0

k+1,n and

coloopless positroid cells of Grg0
k,n.

Proof. The second statement follows from the first by Section 12, so it suffices to prove the
first statement. Let Ã = (a1, . . . , an) be a loopless permutation on [n] with k + 1 anti-
excedances; then Ã̂ = (an, a1, . . . , an−1). Consider any i such that 1 f i f n− 1. Suppose i
is a position of a anti-excedance, i.e. either ai < i or ai = i. Then the letter ai appears in
the (i + 1)st position in Ã̂, and since ai < i + 1, we again have an anti-excedance. On the
other hand, if i is not a position of an anti-excedance, i.e. ai > i (recall that Ã is loopless),
then in the (i + 1)st position of Ã̂ we have ai g i + 1. By Definition 5.1 if we have a fixed
point in position i + 1 (i.e. ai = i + 1) this is a loop, and so position i + 1 of Ã̂ will not be
a anti-excedance. Therefore if I ¢ [n− 1] is the positions of the anti-excedances located in
the first n − 1 positions of Ã, then I + 1 is the positions of the anti-excedances located in
positions {2, 3, . . . , n} in Ã̂.

Now consider position n of Ã. Because Ã is loopless, n will be the position of a anti-
excedance in Ã. And because Ã̂ is defined to be coloopless, 1 will never be the position of a
anti-excedance in Ã̂. Therefore the number of anti-excedances of Ã̂ will be precisely one less
than the number of anti-excedances of Ã.

It is easy to reverse this map so it is a bijection. □
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Remark 5.3. Since by Lemma 5.2 the map Ã 7→ Ã̂ is a bijection, we can also talk about
the inverse map from coloopless permutations on [n] with k anti-excedances to loopless
permutations on [n] with k + 1 anti-excedances. We denote this inverse map by Ã 7→ Ã̌.

Remark 5.4. Our map Ã 7→ Ã̂ is in fact a special case of the map ÄA introduced by
Benedetti-Chavez-Tamayo in [BCTJ22, Definition 23] (in the case where A = ∅).

5.2. T-duality as a map on cells. While we have defined the T-duality map as a map
Ã 7→ Ã̂ on the permutations labelling positroid cells, it can be shown that it is induced from
a map on the corresponding cells. We will follow here the derivation in [AHBC+16] and
define a Q-map which maps elements of the positroid cell SÃ of Grg0

k+1,n to the positroid cell

SÃ̂ of Grg0
k,n. Note that in much of this section we allow m to be any positive even integer.

Definition 5.5. Let ¼ ∈ Grm
2
,n. We say that ¼ is generic if pI(¼) ̸= 0 for all I ∈

(
[n]
m
2

)
.

For m = 2, ¼ = (¼1, ¼2, . . . , ¼n) ∈ Rn is generic in Rn if ¼i ̸= 0 for all i = 1, . . . , n.

Lemma 5.6. Given C = (c1, c2, . . . , cn) representing an element of Grk+m
2
,n where ci are

columns of C, then C contains a generic m
2
-plane if and only if rank ({ci}i∈I) = m

2
for all

I ∈
(
[n]
m
2

)
.

Proof. If a generic m
2

-plane ¼ ∈ M(m
2
, n) is contained in C, then there is a matrix h ∈

M(m
2
, k + m

2
) such that ¼ = h · C. Then pI(¼) =

∑
J∈([k+m

2 ]
m
2

)
pJ(h)CI

J , with I ∈
(
[n]
m
2

)
. If

rank ({ci}i∈I) = m
2

then there exist JI ∈
([k+m

2
]

m
2

)
such that CI

JI
̸= 0, therefore it is enough

to choose h such that pJI (h) ̸= 0 in order to guarantee ¼ = h · C is generic. Vice-versa

if we assume rank ({ci}i∈I) < m
2

then CI
J = 0 for all J ∈

([k+m
2
]

m
2

)
and this would imply

pI(¼) = 0. □

If we specialize to the m = 2 case, we have the following:

Lemma 5.7. Let SÃ be a positroid cell in Grg0
k+1,n. Then SÃ is loopless if and only if every

vector space V ∈ SÃ contains a generic vector.

Lemma 5.8. Let SÃ be a positroid cell. If every vector space V ∈ SÃ contains a generic
m
2
-plane then Ã(i) g i + m

2
(as an affine permutation, see Definition 12.3) for all i.

Proof. Let C = (c1, c2, . . . , cn) be a matrix representing V , listed as a sequence of col-
umn vectors. Let us assume that there exists a such that Ã(a) f a + m

2
− 1. Then

ca ∈ span{ca+1, . . . , ca+m
2
−1} and, in particular, r[a; a + m

2
− 1] < m

2
. The proof follows

immediately from Lemma 5.6. □

Definition 5.9. For a positroid cell SÃ ¢ Grg0
k+m

2
,n and ¼ ∈ Grm

2
,n a generic vector of an

element V ∈ SÃ, we define
S(¼)
Ã := {W ∈ SÃ : ¼ ¢ W}.
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Let C
(¼)
Ã be matrix representatives for elements in S

(¼)
Ã . It is always possible to find an

invertible row transformation which bring C
(¼)
Ã into the form

(5.10) C(¼)
Ã =




¼1 1 ¼1 2 . . . ¼1n
...

...
. . .

...
¼m

2
1 ¼m

2
2 . . . ¼m

2
n

cm
2
+11 cm

2
+12 . . . cm

2
+1n

...
...

. . .
...

cm
2
+k 1 cm

2
+k 2 . . . cm

2
+k n




Let us define a linear transformation Q(¼) : Rn 7→ Rn represented by the n× n matrix Q(¼)

with elements4

(5.11) Q
(¼)
ab =

m
2∑

i=0

(−1)i ¶a,b−m
2
+i pb−m

2
,...,b−m

2
+i−1,m

2
+i+1,...,b (¼) , a, b,∈ [n].

Here we used the notation where ¶ab = 1 when a = b and ¶ab = 0 otherwise.
It is easy to show that ¼Q(¼) = 0 and that Q(¼) has rank n − m

2
. Let us define Ĉ

(¼)
Ã =

C
(¼)
Ã ·Q(¼), then

(5.12) Ĉ(¼)
Ã =




0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

ĉm
2
+11 ĉm

2
+12 . . . ĉm

2
+1n

...
...

. . .
...

ĉm
2
+k 1 ĉm

2
+k 2 . . . ĉm

2
+k n




.

It is easy to check that span{ĉa, ĉa+1, . . . , ĉb} ¢ span{ca−m
2
, ca−m

2
+1, . . . , cb} and moreover

that for consecutive maximal minors we have: pa−m
2
,...a,...a+k−1(C) is proportional to pa,...,a+k−1(Ĉ).

Then, the matrix Q(¼) projects elements of S
(¼)
Ã into SÃ̂, with

(5.13) Ã̂(i) = Ã(i−
m

2
).

The proof of this fact closely follows the one found in [AHBC+16, page 75].
For m = 2 we get the explicit form of Q(¼) is:

(5.14) Q
(¼)
ab = ¶a,b−1¼b − ¶a,b¼b−1 , a, b ∈ [n].

Moreover, we have the following relation between consecutive minors

(5.15) pa,a+1,...,a+k−1(Ĉ) = (−1)k¼a . . . ¼a+k−2 pa−1,a,...,a+k−1(C).

Remark 5.16. In order for the T-duality map to be a well-defined (on affine permutations),
we require that both i f Ã(i) f n + i and i f Ã̂(i) f n + i are satisfied. Given that
Ã̂(i) = Ã(i− m

2
), this implies extra conditions on allowed permutations, i.e. Ã(i) g i+ m

2
and

4Notice that our definition differs from the one found in [AHBC+16] for m = 4. They are however related
to each other by a cyclic shift and rescaling each column of Q(λ).
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Ã̂(i) f i + n − m
2

. We observe that the operation in (5.13) is then well-defined for the cells

S¼
Ã , by Lemma 5.8. Finally, for m = 2 these conditions correspond to lack of loops (resp.

coloops) for Ã (reps. Ã̂).

Proposition 5.17 (How T-duality affects dimensions of cells). Let SÃ be a loopless cell of
Grg0

k+1,n. Then SÃ̂ is a coloopless cell of Grg0
k,n, and dim(SÃ̂) − 2k = dim(SÃ) − (n − 1). In

particular, if dimSÃ = n− 1, then dimSÃ̂ = 2k.

Proof. Let us translate Definition 5.1 into the language of affine permutations. Then T-
duality maps a (k + 1, n)-bounded affine permutation Ãa into a (k, n)-bounded affine per-
mutation Ã̂a = Ãa ◦ t, with t : Z → Z the map i 7→ i − 1. By [Pos, Proposition 17.10] and
Section 12, the codimension of the positroid cell S¿a equals the length ℓ(¿a) of the associ-
ated affine permutation ¿a. Clearly the map t preserves the set of inversions, and hence the
length, of affine bounded permutations, i.e. ℓ(Ãa) = ℓ(Ã̂a). Therefore the codimensions of
SÃa

¦ Grg0
k+1,n and SÃ̂a

¦ Grg0
k,n are equal:

(5.18) (k + 1)(n− k − 1) − dim(SÃa
) = k(n− k) − dim(SÃ̂a

),

from which the claim of the proposition follows immediately. □

Remark 5.19. Alternatively, one may prove the above result by mimicking an argument of
a similar statement given in [AHBC+16, pages 75-76].

6. T-duality relates tiles, tilings, and dissections

In this section we will compare the positroid tiles and tilings (and more generally, dis-
sections) of the hypersimplex ∆k+1,n with those of the amplituhedron An,k,2(Z). Again,
we will see that T-duality connects them! Our main result of this section is Theorem 6.5,
which says that T-duality provides a bijection between the BCFW tilings/dissections of the
hypersimplex ∆k+1,n, and the BCFW tilings/dissections of the amplituhedron An,k,2(Z).

The 2k-dimensional cells of Grg0
k,n which have full-dimensional image in An,k,2(Z) were

studied in [ LPSV19] and called generalized triangles. In this paper we will refer to the above
objects as positroid tiles defined as follows.

Definition 6.1 (Positroid tiles of An,k,2). Let SÃ be a 2k-dimensional cell of Grg0
k,n such that

dimZÃ = dimSÃ, and the restriction of the amplituhedron map Z̃ to SÃ is an injection.
Then we call ZÃ a positroid tile of An,k,2(Z).

A conjectural description of positroid tiles was given in [ LPSV19]:

Definition 6.2. We say that a collection of convex polygons (which have p1, . . . , pr vertices)
inscribed in a given n-gon is a collection of k non-intersecting triangles in an n-gon if each
pair of such polygons intersects in at most a vertex and if the total number of triangles
needed to triangulate all polygons in the collection is k, i.e. (p1 − 2) + . . . + (pr − 2) = k.

It was conjectured and experimentally checked in [ LPSV19] that positroid tiles in An,k,2(Z)
are in bijection with collections of ‘k non-intersecting triangles in a n-gon’. Moreover, one
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Figure 4. The map in Proposition 6.4 for Ã = {4, 7, 1, 6, 5, 3, 2} ∈ Grg0
3,7:

(a) positroid tile label, (b) A triangulation of collections P and P̄ ,
(c) Assigning vertices, (d) Plabic graph of Ã̌ = {7, 1, 6, 5, 3, 2, 4} ∈ Grg0

4,7

can read off the cell SÃ of Grg0
k,n corresponding to a positroid tile of An,k,2(Z) using the

combinatorics of the collection of k non-intersecting triangles in an n-gon, see [ LPSV19,
Section 2.4]. The basic idea is to associate a row vector to each of the non-intersecting
triangles, with generic entries at the positions of the triangle vertices (and zeros everywhere
else). This way one constructs a k × n matrix whose matroid is the matroid for SÃ.

Borrowing the terminology of Definition 6.1, we make the following definition.

Definition 6.3 (Positroid tiles of ∆k+1,n). Let SÃ be an (n− 1)-dimensional cell of Grg0
k+1,n

such that the moment map µ is an injection on SÃ. Then we say the image ΓÃ := µ(SÃ) in
∆k+1,n is a positroid tile in ∆k+1,n.

We have already studied the positroid tiles in ∆k+1,n in Proposition 3.16: they come from
(n − 1)-dimensional positroid cells whose matroid is connected, or equivalently, they come
from the positroid cells whose reduced plabic graphs are trees. And since these are positroid
cells in Grg0

k+1,n, each such plabic graph, when drawn as a trivalent graph, is a tree with n
leaves with precisely k internal black vertices. By simply taking the planar dual of these
tree, we get the following:

Proposition 6.4. There is a bijective map between positroid tiles in ∆k+1,n and collections
of k non-intersecting triangles in an n-gon.

Proof. Consider a collection of non-intersecting polygons inside an n-gon P = (P1, . . . , Pr)
and its complement P = (P 1, . . . P r̄). Let us choose a triangulation of all polygons into
triangles P → T = (T1, . . . , Tk) and P → T = (T 1, . . . , T n−k−2). Associate a black vertex to
the middle of each triangle T and a white vertex with to middle of each triangle T . Finally,
connect each pair of vertices corresponding to triangles sharing an edge and draw an edge
through each boundary of the n-gon. This way we get a tree graph with exactly k black and
n − k − 2 white vertices. Hence it is a plabic graph for the cell SÃ ¢ Gg0

k+1,n corresponding
to a plabic tile of ∆k+1,n. □

In the following theorem we show that T-duality relates BCFW tilings and dissections of
the hypersimplex and amplituhedron.
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Theorem 6.5 (BCFW tilings of ∆k+1,n and An,k,2(Z) are T-dual). The T-duality map
provides a bijection between the BCFW tilings of the hypersimplex ∆k+1,n and the BCFW
tilings of the amplituhedron An,k,2(Z). That is, the collection {ΓÃ} of positroid polytopes
constructed in Theorem 4.12 is a positroid tiling of ∆k+1,n if and only if the T-dual collection
{ZÃ̂} of Grasstopes is a positroid tiling of An,k,2(Z). The same statement holds if we replace
the word “tiling” with “dissection.”

Proof. We prove this by induction on k+n, using Theorem 4.5 and Theorem 4.12. It suffices
to show:

• if {ΓÃ}Ã∈C dissects ∆k+1,n−1 and {Z ′
Ã̂}Ã∈Ĉ dissects An−1,k,2(Z

′) then for any Ã ∈ C,

îpre(Ã) = ºpre(Ã̂).
• if {ΓÃ}Ã∈C dissects ∆k,n−1 and {Z ′′

Ã̂}Ã∈Ĉ dissects An−1,k−1,2(Z
′′) then for any Ã ∈ C,

îinc(Ã) = ºinc(Ã̂).

Let Ã = (a1, . . . , an−1) be a decorated permutation. We first verify the first statement.

Then ipre(Ã) = (a1, a2, . . . , an−2, n, an−1), so îpre(Ã) = (an−1, a1, a2, . . . , an−2, n), where n is a
black fixed point. Meanwhile, Ã̂ = (an−1, a1, a2, . . . , an−2), so ºpre(Ã̂) = (an−1, a1, a2, . . . , an−2, n),
where n is a black fixed point.

We now verify the second statement. Let j = Ã−1(n − 1). Then we have that iinc(Ã) =

(a1, a2, . . . , aj−1, n, aj+1, . . . , an−1, n−1), and îinc(Ã) = (n−1, a1, a2, . . . , aj−1, n, aj+1, . . . , an−1).
Meanwhile Ã̂ = (an−1, a1, a2, . . . , an−2). Then it is straightforward to verify that ºinc(Ã̂) is

exactly the permutation îinc(Ã) = (n− 1, a1, a2, . . . , aj−1, n, aj+1, . . . , an−1), as desired. □

We now see that T-duality relates positroid tiles of the hypersimplex and the amplituhe-
dron.

Proposition 6.6. Suppose the positroid polytope ΓÃ is a positroid tile of the hypersimplex
∆k+1,n. Then the T-dual Grasstope ZÃ̂ is a positroid tile of the amplituhedron An,k,2(Z) for
all Z ∈ Mat>0

n,k+2.

Proof. By Proposition 3.16, the fact that µ is injective implies that a (any) reduced plabic
graph G representing SÃ must be a (planar) tree. But then by Theorem 4.5 (see Figure 1),
G has a black or white vertex which is incident to two adjacent boundary vertices i and i+1
(modulo n), and hence appears in some tiling of the hypersimplex (and specifically on the
right-hand side of Figure 1).

Applying Theorem 6.5, we see that Ã̂ appears in some tiling of the amplituhedron An,k,2(Z).

It follows that Z̃ is injective on SÃ̂. □

By Proposition 6.6 and Proposition 6.4, collections of k non-intersecting triangles in an
n-gon label both positroid tiles of ∆k+1,n and, via T-duality, positroid tiles of An,k,2(Z). We
conjecture that this labelling is compatible with the way [ LPSV19] associates collections of
k non-intersecting triangles in an n-gon with positroid tiles of An,k,2(Z).

Using Proposition 6.6, Proposition 3.13 and Proposition 3.15, we obtain the following.

Corollary 6.7. The Z̃-map is an injection on all 2k-dimensional cells of the form SÃ̂ ¢
Grg0

k,n, where Ã is a SIF permutation and dimSÃ = n− 1.
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We know from Proposition 3.15 that the moment map is an injection on the cell SÃ of
Grg0

k,n precisely when dimSÃ = n− c, where c is the number of connected components of the
positroid of Ã. We have experimentally checked the following statement for these cells.

Conjecture 6.8. Let SÃ be a loopless (n − c)-dimensional cell of Grg0
k+1,n with c connected

components (for c a positive integer). Then SÃ̂ is a coloopless (2k + 1 − c)-dimensional cell

of Grg0
k,n on which Z̃ is injective.

Note that the statement that SÃ̂ is coloopless of dimension (2k+1−c) follows from Lemma 5.2
and Proposition 5.17. Moreover the c = 1 case of the conjecture is Proposition 6.6.

While Theorem 6.5 shows that T-duality relates the large class of BCFW tilings/dissections
of ∆k+1,n to the corresponding large class of BCFW tilings/dissections of An,k,2(Z), not all
tilings/dissections arise from a BCFW-style recursion. Nevertheless, we conjecture the fol-
lowing.

Conjecture 6.9 (Tilings and dissections of ∆k+1,n and An,k,2(Z) are T-dual). A collection
of positroid polytopes {ΓÃ} is a tiling (respectively, dissection) of ∆k+1,n if and only if for all
Z ∈ Mat>0

n,k+2 the collection of T-dual Grasstopes {ZÃ̂} is a tiling (respectively, dissection)
of An,k,2(Z).

This conjecture is supported by Theorem 6.5, Proposition 10.4 and results of Section 7 (which
relates parity duality and T-duality), and will be explored in a subsequent work5. We have
also checked the conjecture using Mathematica, see Section 10.

7. T-duality, cyclic symmetry and parity duality

In this section we discuss the relation of T-duality to parity duality, which relates dissec-
tions of the amplituhedron An,k,m(Z) with dissections of An,n−m−k,m(Z ′). The definition of
parity duality was originally inspired by the physical operation of parity conjugation in quan-
tum field theory – more specifically, in the context of scattering amplitudes in N = 4 Super-
Yang-Mills, where amplitudes can be computed from the geometry of An,k,4(Z) [AHT14].
Furthermore, the conjectural formula of Karp, Williams, and Zhang [KWZ20] for the number
of cells in each tiling of the amplituhedron is invariant under the operation of swapping the
parameters k and n−m−k and hence is consistent with parity duality: this motivated further
works, see [F LP19, Section 2.4] and [GL20]. In particular, [GL20] gave an explicit bijection
between dissections of An,k,m(Z) and dissections of An,n−m−k,m(Z ′), see Theorem 7.7.

In Theorem 7.3, we will explain how parity duality for m = 2 amplituhedra is naturally
induced by a composition of the usual duality for Grassmannians (Grk,n ≃ Grn−k,n) and the

T-duality map (between loopless cells of Grg0
k+1,n and coloopless cells of Grg0

k,n). The usual
Grassmannian duality gives rise to a bijection between dissections of the hypersimplex ∆k+1,n

and dissections of the hypersimplex ∆n−k−1,n. By composing this Grassmannian duality
with the T-duality map (on both sides), we obtain the parity duality between dissections of
An,k,2(Z) and An,n−k−2,2(Z

′)!

5Since our paper appeared on arXiv, Conjecture 6.9 has been proved for tilings in [PSBW21].
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Recall that our convention on dissections is that the images of all positroid cells are of full
dimension n − 1. Therefore all positroids involved in a dissection must be connected, and
the corresponding decorated permutations will be fixed-point-free.

Theorem 7.1 (Grassmannian duality for dissections of the hypersimplex). Let {ΓÃ} be a
collection of positroid polytopes which dissects the hypersimplex ∆k+1,n. Then the collection
of positroid polytopes {ΓÃ−1} dissects the hypersimplex ∆n−k−1,n.

Proof. If G is a plabic graph representing the positroid cell SÃ, and if we swap the colors of
the black and white vertices of G, we obtain a graph G′ representing the positroid SÃ−1 . It is
not hard to see from [ARW16] that G′ and Ã−1 represent the dual positroid to G and Ã. But
now the matroid polytopes ΓÃ and ΓÃ−1 are isomorphic via the map dual : Rn → Rn sending
(x1, . . . , xn) 7→ (1 − x1, . . . , 1 − xn). This maps relates the two dissections in the statement
of the theorem. □

By composing the inverse map on decorated permutations Ã 7→ Ã−1 (which represents the
Grassmannian duality of Theorem 7.1) with T-duality, we obtain the following map.

Definition 7.2. We define Ũk,n to be the map between coloopless permutations on [n] with
k anti-excedances and coloopless permutations on [n] with n − k − 2 anti-excedances such

that Ũk,nÃ̂ = Ã̂−1. Equivalently, we have (Ũk,nÃ)(i) = Ã−1(i − 1) − 1, where values of the
permutation are considered modulo n, and any fixed points which are created are designated
to be loops.

Theorem 7.3 (Parity duality from T-duality and Grassmannian duality). Let {ZÃ} be a
collection of Grasstopes which dissects the amplituhedron An,k,2(Z). Then the collection of
Grasstopes {ZŨk,nÃ

} dissects the amplituhedron An,n−k−2,2(Z
′).

We will prove Theorem 7.3 by using the cyclic symmetry of the positive Grassmannian and

the amplituhedron, and showing (see Lemma 7.8) that up to a cyclic shift, our map Ũk,n

agrees with the parity duality map of [GL20].
The totally nonnegative Grassmannian exhibits a beautiful cyclic symmetry [Pos]. Let

us represent an element of Grg0
k,n by a k × n matrix, encoded by the sequence of n columns

ïv1, . . . , vnð. We define the (left) cyclic shift map Ã to be the map which sends ïv1, . . . , vnð
to the point ïv2, . . . , vn, (−1)k−1v1ð, which one can easily verify lies in Grg0

k,n. Since the cyclic
shift maps positroid cells to positroid cells, for Ã a decorated permutation, we define ÃÃ to be
the decorated permutation such that SÃÃ = Ã(SÃ). It is easy to see that ÃÃ(i) = Ã(i+1)−1.
(Note that under the cyclic shift, a fixed point of Ã at position i+1 gets sent to a fixed point
of ÃÃ at position i; we color fixed points accordingly.) Meanwhile the inverse operation, the
right cyclic shift Ã−1 satisfies (Ã−1Ã)(i) = Ã(i − 1) + 1. We use Ãt (respectively, Ã−t) to
denote the repeated application of Ã (resp. Ã−1) t times, so that (ÃtÃ)(i) := Ã(i+ t)− t and
(Ã−tÃ)(i) := Ã(i− t) + t.

The next result follows easily from the definitions.

Theorem 7.4 (Cyclic symmetry for dissections of the hypersimplex). Let {ΓÃ} be a col-
lection of positroid polytopes which dissects the hypersimplex ∆k+1,n. Then the collection of
positroid polytopes {ΓÃÃ} dissects ∆k+1,n.
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Proof. Let ÃR : Rn → Rn be defined by (x1, . . . , xn) 7→ (x2, . . . , xn, x1). Clearly ÃR is an
isomorphism mapping the hypersimplex ∆k+1,n back to itself. Moreover, applying the cyclic
shift Ã to a positroid has the effect of simply shifting all its bases, so the matroid polytope
of ÃÃ satisfies ΓÃÃ = ÃR(ΓÃ). The result now follows. □

The above cyclic symmetry for dissections of the hypersimplex also has an analogue for
the amplituhedron.

Theorem 7.5 (Cyclic symmetry for dissections of the amplituhedron). [BH, Corollary 3.2]
Let {ΓÃ} be a collection of Grasstopes which dissects the amplituhedron An,k,m(Z), with m
even. Then the collection of Grasstopes {ZÃÃ} also dissects An,k,m(Z).

In order to make contact with [GL20], we introduce a map Uk,n on (coloopless) decorated
permutations as follows.

Definition 7.6. We define Uk,n to be the map from coloopless permutations on [n] with k
anti-excedances to coloopless permutations on [n] with n− k − 2 anti-excedances such that
(Uk,nÃ)(i) = Ã−1(i+k)+(n−k−2), where values of the permutation are considered modulo
n, and any fixed points which are created are designated to be loops.

It is not hard to see that this map is equivalent to the parity duality from [GL20] for m = 2.
In particular we have the following theorem:

Theorem 7.7. [GL20, Theorem 7.2] Let {ZÃ} be a collection of Grasstopes which dissects
the amplituhedron An,k,2(Z). Then the collection of Grasstopes {ZUk,nÃ} dissects the ampli-
tuhedron An,n−k−2,2(Z

′).

Lemma 7.8. For fixed n and k, the maps Ũk,n and Uk,n are related by the cyclic shift map

(7.9) Ũk,n = Ã−(k+1) ◦ Uk,n.

Proof. Since (Uk,nÃ)(i) = Ã−1(i + k) + (n − k − 2), we have that (Ã−(k+1) ◦ Uk,nÃ)(i) =

Ã−1((i + k) − (k + 1)) + (n − k − 2) + (k + 1) = Ã−1(i − 1) + n − 1, which is exactly Ũk,n

(mod n). □

We now prove Theorem 7.3.

Proof. This result follows immediately from Theorem 7.5, Theorem 7.7, and Lemma 7.8. □

Remark 7.10. From Theorem 7.4 and Theorem 7.5 it is clear that if we redefine the T-
duality map in Definition 5.1 by composing it with any cyclic shift Ãa (for a an integer), the
main properties of the map will be preserved. In particular, any statement about dissections
of the hypersimplex versus the corresponding ones of the amplituhedron will continue to
hold, along with the parity duality.

Remark 7.11. Parity duality has a nice graphical interpretation when we represent positroid
tiles of An,k,2(Z) as collection of k non-intersecting triangles in an n-gon. The Grassmannian

duality of Grg0
k+1,n amounts to swapping black and white vertices in the plabic graphs, and
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when we compose it with the T-duality map, by Proposition 6.4, results in taking the comple-
mentary polygons inside the n-gon. We end up with a collection of n−k−2 non-intersecting
triangles in the n-gon.

8. Good and bad dissections of the hypersimplex and the amplituhedron

Among all possible positroid dissections, there are some with particularly nice features,
which we will call “good”, as well as others with rather unpleasant properties. We show
below examples of both a good and a bad dissection.

Example 8.1. Let us study the following tiling of A6,2,2(Z):

C1 = {SÃ(1) , SÃ(2) , SÃ(3) , SÃ(4) , SÃ(5) , SÃ(6) , }

with

Ã(1) = (1, 2, 5, 6, 3, 4), Ã(2) = (1, 3, 6, 5, 2, 4), Ã(3) = (1, 4, 6, 2, 5, 3) ,

Ã(4) = (2, 6, 3, 5, 1, 4), Ã(5) = (2, 6, 4, 1, 5, 3), Ã(6) = (3, 6, 1, 4, 5, 2) .

All elements of C1 are positroid tiles and their images under Z̃ are 4-dimensional. The tiling
C1 is a refinement of the following dissection

C2 = {SÃ(1) , SÃ(7) , SÃ(8) , SÃ(6)}

with

Ã(7) = (1, 4, 6, 5, 2, 3) , Ã(8) = (2, 6, 4, 5, 1, 3) .

The dissection C2 has the property that if a pair of cell images under Z̃-map intersect along
a 3-dimensional surface then this surface is an image of another positroid cell in Grg0

2,6:

ZÃ(1) ∩ ZÃ(7) = Z(1,2,6,5,3,4)

ZÃ(7) ∩ ZÃ(8) = Z(1,6,4,5,2,3)

ZÃ(8) ∩ ZÃ(6) = Z(2,6,1,4,5,3)

and all remaining pairs of images intersect along lower dimensional surfaces. We consider the
dissection C2 “good” because all its elements have compatible codimension one boundaries.
However, the dissection C1 does not have this property. Let us observe that

ZÃ(2) ∪ ZÃ(3) = ZÃ(7)

ZÃ(4) ∪ ZÃ(5) = ZÃ(8)

We expect that, after we subdivide ZÃ(7) and ZÃ(8) , the boundary Z(1,6,4,5,2,3) which they
share will also get subdivided. This however happens in two different ways and we do not
get compatible codimension one faces for the dissection C1. It is a similar picture to the one
we get when we consider polyhedral subdivisions of a double square pyramid: it is possible
to subdivide it into two pieces along its equator, and then further subdivide each pyramid
into two simplices. However, in order to get a polyhedral triangulation of the double square
pyramid, we need to do it in a compatible way, along the same diagonal of the equatorial
square. ♢
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Therefore, we prefer to work with dissections where the boundaries of the strata interact
nicely. Towards this end, we introduce the following notion of good dissection.

Definition 8.2. Let C = {ΓÃ(1) , . . . ,ΓÃ(ℓ)} be a dissection of ∆k+1,n. We say that C is a
good dissection of ∆k+1,n if the following condition is satisfied: for i ̸= j, if ΓÃ(i) ∩ ΓÃ(j) has
codimension one, then ΓÃ(i) ∩ ΓÃ(j) equals ΓÃ, where ΓÃ is a facet of both ΓÃ(i) and ΓÃ(j) .

Note that the above condition is equivalent to requiring that C is a polyhedral subdivision
of ∆k+1,n. To make the analogous notion for amplituhedron, we need to define facets.

Definition 8.3. Let ZÃ ¢ An,k,m(Z) be a Grasstope. We say that ZÃ′ is a facet of ZÃ if it
is maximal by inclusion among the Grasstopes satisfying the following properties: the cell
SÃ′ is contained in SÃ; ZÃ′ is contained in the boundary of ZÃ; ZÃ′ has codimension 1 in ZÃ.

Definition 8.4. Let C = {ZÃ(1) , . . . , ZÃ(ℓ)} be a collection of Grasstopes of An,k,2(Z). We say
that C is a good dissection of A if the following condition is satisfied: for i ̸= j, if ZÃ(i) ∩ZÃ(j)

has codimension one, then ZÃ(i) ∩ZÃ(j) equals ZÃ, where ZÃ is a facet of both ZÃ(i) and ZÃ(j) .

In the following, we will conjecture that good dissections of the hypersimplex are in one-
to-one correspondence with good dissections of the amplituhedron. Towards this goal, we
start by providing a characterization of good intersections of positroid polytopes.

Proposition 8.5. Let ΓÃ(1) and ΓÃ(2) be two (n − 1)-dimensional positroid polytopes whose
intersection ΓÃ(1) ∩ ΓÃ(2) is a polytope of dimension n − 2. Then ΓÃ(1) ∩ ΓÃ(2) is a positroid
polytope of the form ΓÃ(3), where Ã(3) is a loopless permutation.

Proof. By Theorem 3.7, ΓÃ(1) ∩ΓÃ(2) is a positroid polytope and hence has the form ΓÃ(3) , for
some decorated permutation Ã(3). (Using Proposition 3.4, the fact that dim(ΓÃ(3)) = n − 2
implies that the positroid associated to Ã(3) has precisely two connected components.)

Now we claim that the positroid associated to Ã(3) is loopless. In general there is an easy
geometric way of recognizing when a matroid M is loopless from the polytope ΓM : M is
loopless if and only if ΓM is not contained in any of the n facets of the hypersimplex of
the type xi = 0 for 1 f i f n. Since ΓÃ(3) arises as the codimension 1 intersection of two
full-dimensional matroid polytopes contained in ∆k+1,n it necessarily meets the interior of
the hypersimplex and hence the matroid must be loopless. □

Remark 8.6. Recall that the T-duality map is well-defined on positroid cells whose matroid
is connected, and more generally, loopless. Proposition 8.5 implies that if we consider two
cells SÃ(1) and SÃ(2) of Grg0

k+1,n whose matroid is connected and whose moment map images
(necessarily top-dimensional) intersect in a common facet, then that facet is the moment
map image of a loopless cell SÃ(3) . Therefore we can apply the T-duality map to all three
cells SÃ(1) , SÃ(2) , and SÃ(3) .

Conjecture 8.7. Let SÃ(1) and SÃ(2) be two positroid cells in Grg0
k,n corresponding to coloopless

permutations Ã(1) and Ã(2). Let dimZ◦
Ã(1) = dimZ◦

Ã(2) = 2k with ZÃ(1) ∩ ZÃ(2) = ZÃ(3), where

SÃ(3) ¢ Gg0
k,n is such that dimZ◦

Ã(3) = 2k − 1. Then Ã(3) is a coloopless permutation.
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Remark 8.8. Conjecture 8.7 guarantees that if we consider two positroid cells with top-
dimensional images in the amplituhedron An,k,2(Z), which have a facet in common, then
the positroid cell corresponding to this facet is coloopless and therefore we can apply the
T-duality map to it.

Finally we arrive at a conjecture connecting good dissections of hypersimplex and ampli-
tuhedron, which we confirmed experimentally.

Conjecture 8.9. The collection of positroid polytopes {ΓÃ} is a good tiling (respectively, good
dissection) of ∆k+1,n if and only if, for all Z ∈ Mat>0

n,k+2, the collection of T-dual Grasstopes
{ZÃ̂} is a good tiling (respectively, good dissection) of An,k,2(Z).

9. The positive tropical Grassmannian and positroid subdivisions

The goal of this section is to use the positive tropical Grassmannian to understand the
regular positroid subdivisions of the hypersimplex. In Section 10, we will apply the T-duality
map to these regular positroid subdivisions of the hypersimplex, to obtain subdivisions of
the amplituhedron which have very nice properties.

The tropical Grassmannian – or rather, an outer approximation of it called the Dressian –
controls the regular matroidal subdivisions of the hypersimplex [Kap93], [Spe08, Proposition
2.2]. There is a positive subset of the tropical Grassmannian, called the positive tropical
Grassmannian, which was introduced by Speyer and the third author in [SW05]. The positive
tropical Grassmannian equals the positive Dressian, and as we will show in Theorem 9.12,
it controls the regular positroid subdivisions of the hypersimplex.

Remark 9.1. We’ve learned since circulating the first draft of this paper that some of our
results in this section regarding positroid subdivisions of the hypersimplex and the positive
tropical Grassmannian, though not previously in the literature, were known or anticipated by
various other experts including David Speyer, Nima Arkani-Hamed, Thomas Lam, Marcus
Spradlin, Nick Early, Felipe Rincon, Jorge Olarte. There is some related work in [Ear19]
and the upcoming [AHLS21b].

9.1. The tropical Grassmannian, the Dressian, and their positive analogues.

Definition 9.2. Given e = (e1, . . . , eN) ∈ ZN
g0, we let xe denote xe1

1 . . . xeN
N . Let E ¢ ZN

g0.

For f =
∑

e∈E fex
e a nonzero polynomial, we denote by Trop(f) ¢ RN the set of all points

(X1, . . . , XN) such that, if we form the collection of numbers
∑N

i=1 eiXi for e ranging over
E, then the minimum of this collection is not unique. We say that Trop(f) is the tropical
hypersurface associated to f .

In our examples, we always consider polynomials f with real coefficients. We also have a
positive version of Definition 9.2.

Definition 9.3. Let E = E+⊔E− ¢ ZN
g0, and let f be a nonzero polynomial with real coef-

ficients which we write as f =
∑

e∈E+ fex
e −

∑
e∈E− fex

e, where all of the coefficients fe are
nonnegative real numbers. We denote by Trop+(f) ¢ RN the set of all points (X1, . . . , XN)

such that, if we form the collection of numbers
∑N

i=1 eiXi for e ranging over E, then the



THE POSITIVE TROPICAL GRASSMANNIAN AND THE m = 2 AMPLITUHEDRON 29

minimum of this collection is not unique and furthermore is achieved for some e ∈ E+ and
some e ∈ E−. We say that Trop+(f) is the positive part of Trop(f).

The Grassmannian Grk,n is a projective variety which can be embedded in projective space

P([n]
k )−1, and is cut out by the Plücker ideal, that is, the ideal of relations satisfied by the

Plücker coordinates of a generic k×n matrix. These relations include the three-term Plücker
relations defined below.

Definition 9.4. Let 1 < a < b < c < d f n and choose a subset S ∈
(

[n]
k−2

)
which is disjoint

from {a, b, c, d}. Then pSacpSbd = pSabpScd +pSadpSbc is a three-term Plücker relations for the
Grassmannian Grk,n. Here Sac denotes S ∪ {a, c}, etc.

Definition 9.5. Given S, a, b, c, d as in Definition 9.4, we say that the tropical three-term
Plücker relation holds if

• PSac + PSbd = PSab + PScd f PSad + PSbc or
• PSac + PSbd = PSad + PSbc f PSab + PScd or
• PSab + PScd = PSad + PSbc f PSac + PSbd.

And we say that the positive tropical three-term Plücker relation holds if either of the first
two conditions above holds.

Definition 9.6. The tropical Grassmannian TropGrk,n ¢ R([n]
k ) is the intersection of the

tropical hypersurfaces Trop(f), where f ranges over all elements of the Plücker ideal. The

Dressian Drk,n ¢ R([n]
k ) is the intersection of the tropical hypersurfaces Trop(f), where f

ranges over all three-term Plücker relations.

Similarly, the positive tropical Grassmannian Trop+ Grk,n ¢ R([n]
k ) is the intersection of

the positive tropical hypersurfaces Trop+(f), where f ranges over all elements of the Plücker

ideal. The positive Dressian Dr+k,n ¢ R([n]
k ) is the intersection of the positive tropical hyper-

surfaces Trop+(f), where f ranges over all three-term Plücker relations.

Note that the Dressian Drk,n (respectively, the positive Dressian Dr+k,n) is the subset of

R([n]
k ) where the tropical (respectively, positive tropical) three-term Plücker relations hold.

In general, the Dressian Drk,n is much larger than the tropical Grassmannian TropGrk,n –
for example, the dimension of the Dressian Dr3,n grows quadratically is n, while the dimension
of the tropical Grassmannian TropGr3,n is linear in n [HJJS08]. However, the situation for
their positive parts is different.

Theorem 9.7. [SW21]. The positive tropical Grassmannian Trop+ Grk,n equals the positive
Dressian Dr+k,n.

Definition 9.8. We say that a point {PI}I∈([n]
k ) ∈ R([n]

k ) is a (finite) tropical Plücker vector if

it lies in the Dressian Drk,n, i.e. for every three-term Plücker relation, it lies in the associated
tropical hypersurface. And we say that {PI}I∈([n]

k ) is a positive tropical Plücker vector, if it lies

in the positive Dressian Dr+k,n (equivalently, the positive tropical Grassmannian Trop+ Grk,n),
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i.e. for every three-term Plücker relation, it lies in the positive part of the associated tropical
hypersurface.

Example 9.9. For Gr2,4, there is only one Plücker relation, p13p24 = p12p34 + p14p23. The

Dressian Dr2,4 ¢ R([4]
2 ) is defined to be the set of points (P12, P13, P14, P23, P24, P34) ∈ R6

such that

• P13 + P24 = P12 + P34 f P14 + P23 or
• P13 + P24 = P14 + P23 f P12 + P34 or
• P12 + P34 = P14 + P23 f P13 + P24.

And Dr+2,4 = Trop+ Gr2,4 ¢ R([4]
2 ) is defined to be the set of points (P12, P13, P14, P23, P24, P34) ∈

R6 such that

• P13 + P24 = P12 + P34 f P14 + P23 or
• P13 + P24 = P14 + P23 f P12 + P34

♢

9.2. The positive tropical Grassmannian and positroid subdivisions. Recall that
∆k,n denotes the (k, n)-hypersimplex, defined as the convex hull of the points eI where I

runs over
(
[n]
k

)
. Consider a real-valued height function {I} 7→ PI on the vertices of ∆k,n. We

define a polyhedral subdivision DP of ∆k,n as follows: consider the points (eI , PI) ∈ ∆k,n×R
and take their convex hull. Take the lower faces (those whose outwards normal vector have
last component negative) and project them back down to ∆k,n; this gives us the subdivision
DP . We will omit the subscript P when it is clear from context. A subdivision obtained in
this manner is called regular.

Remark 9.10. A lower face F of the regular subdivision defined above is determined by some
vector ¼ = (¼1, . . . , ¼n,−1) whose dot product with the vertices of the face F is maximized.
So if F is the matroid polytope of a matroid M with bases B, this is equivalent to saying
that ¼i1 + · · · + ¼ik − PI = ¼j1 + · · · + ¼jk − PJ > ¼h1 + · · · + ¼hk

− PH for any two bases
I, J ∈ B and H /∈ B.

Given a subpolytope Γ of ∆k,n, we say that Γ is matroidal if the vertices of Γ, considered

as elements of
(
[n]
k

)
, are the bases of a matroid M , i.e. Γ = ΓM .

The following result is originally due to Kapranov [Kap93]; it was also proved in [Spe08,
Proposition 2.2].

Theorem 9.11. The following are equivalent.

• The collection {PI}I∈([n]
k ) is a tropical Plücker vector.

• The one-skeleta of DP and ∆k,n are the same.
• Every face of DP is matroidal.

Given a subpolytope Γ of ∆k,n, we say that Γ is positroid if the vertices of Γ, considered

as elements of
(
[n]
k

)
, are the bases of a positroid M , i.e. Γ = ΓM . We now give a positroid

version of Theorem 9.11.

Theorem 9.12. The following are equivalent.
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• The collection {PI}I∈([n]
k ) is a positive tropical Plücker vector.

• Every face of DP is positroid.

Proof. Suppose that the collection {PI}I∈([n]
k ) are positive tropical Plücker coordinates. Then

in particular they are tropical Plücker coordinates, and so by Theorem 9.11, every face of
DP is matroidal.

Suppose that one of those faces ΓM fails to be positroid. Then by Theorem 3.9, ΓM (and
hence DP ) has a two-dimensional face with vertices eSab, eSad, eSbc, eScd, for some 1 f a <
b < c < d f n and S of size k − 2 disjoint from {a, b, c, d}. By Remark 9.10, this means
that there is a vector ¼ = (¼1, . . . , ¼n,−1) whose dot product is maximized at the face F . In
particular, if we compare the value of the dot product at vertices of F versus eSac and eSbd,
we get ¼a + ¼b − PSab = ¼c + ¼d − PScd = ¼a + ¼d − PSad = ¼b + ¼c − PSbc is greater than
either ¼a + ¼c − PSac or ¼b + ¼d − PSbd. But then

¼a+¼b−PSab+¼c+¼d−PScd = ¼a+¼d−PSad+¼b+¼c−PSbc > ¼a+¼c−PSac+¼b+¼d−PSbd,

which implies that

PSab + PScd = PSad + PSbc < PSac + PSbd,

which contradicts the fact that {PI} is a collection of positive tropical Plücker coordinates.
Suppose that every face of DP is positroid. Then every face is in particular matroidal,

and so by Theorem 9.11, the collection {PI}I∈([n]
k ) are tropical Plücker coordinates. Suppose

that they fail to be positive tropical Plücker coordinates. Then there is some S ∈
(

[n]
k−2

)
and

a < b < c < d disjoint from S such that PSab + PScd = PSad + PSbc < PSac + PSbd. We will
obtain a contradiction by showing that DP has a two-dimensional (non-positroid) face with
vertices eSab, eSad, eSbc, eScd, for some 1 f a < b < c < d f n and S of size k−2 disjoint from
{a, b, c, d}.

To show that these vertices form a face, choose some large number N which is greater
than the absolute value of any of the tropical Plücker coordinates, i.e. N > max{|PI |}I∈([n]

k ).

We define a vector (¼1, . . . , ¼n) ∈ Rn by setting

¼i =





1
2
(PSab + PSac + PSad) for i=a

1
2
(PSab + PSbc + PSbd) for i=b

1
2
(PSac + PSbc + PScd) for i=c

1
2
(PSad + PSbd + PScd) for i=d

3
2
N for i ∈ S

−3
2
N for i /∈ S ∪ {a, b, c, d}.

We now compute the lower face of DP determined by vector ¼ := (¼1, . . . , ¼n,−1), using
Remark 9.10. Clearly any point (eI , PI) of ∆k,n×R maximizing the dot product with ¼ must
have eI ∈ {eSab, eSac, eSad, eSbc, eSbd, eScd}. The relation PSab+PScd = PSad+PSbc < PSac+PSbd

implies that the lower face of DP determined by ¼ has vertices eSab, eSad, eSbc, eScd. □
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It follows from Theorem 9.12 that the regular subdivisions of ∆k+1,n consisting of positroid
polytopes are precisely those of the form DP , where P = {PI} is a positive tropical Plücker
vector. This motivates the following definition.

Definition 9.13. We say that a positroid dissection of ∆k+1,n is a regular positroid subdivi-

sion if it has the form DP , where P = {PI} ∈ R([n]
k ) is a positive tropical Plücker vector.

Remark 9.14. Every regular subdivision of a polytope is a polytopal subdivision, and so
in particular it is a good dissection (see Definition 8.2).

9.3. Fan structures on the Dressian and positive Dressian. As described in [HJJS08],
there are two natural fan structures on the (positive) Dressian: the Plücker fan, and the
secondary fan.

We say that two elements of the Dressian, i.e. two tropical Plücker vectors {PI}I∈([n]
k )

and {P ′
I}I∈([n]

k ) ∈ R([n]
k ), lie in the same cone of the Plucker fan if for each S, a, b, c, d as

in Definition 9.5, the same inequality holds for both {PSac, PSbd, PSab, PScd, PSad, PSbc} and
{P ′

Sac, P
′
Sbd, P

′
Sab, P

′
Scd, P

′
Sad, P

′
Sbc}. In particular, the maximal cones in the Plücker fan struc-

ture are the cones where the inequalities from Definition 9.5 are all strict.
On the other hand, using Theorem 9.11 and Theorem 9.12, we say that two elements

of the Dressian, i.e. two tropical Plücker vectors {PI}I∈([n]
k ) and {P ′

I}I∈([n]
k ) ∈ R([n]

k ), lie in

the same cone of the secondary fan if the matroidal subdivisions DP and DP ′ coincide. In
particular, the maximal cones in the secondary fan structure are the cones corresponding to
the unrefinable positroid subdivisions.

In [HJJS08] it was shown that for the Dressian Dr3,n, the Plücker fan structure and the
secondary fan structure coincide. And in [OPS19, Theorem 14] it was shown that the fan
structures coincide for general Dressians Drk,n. We can now just refer to the fan structure
on Dr+k,n = Trop+ Grk,n without specifying either “Plücker fan” or “secondary fan.”

We have the following result.

Corollary 9.15. A collection C = {SÃ} of positroid cells of Grg0
k,n gives a regular positroid

tiling of ∆k,n (see Definition 2.5) if and only if this tiling has the form DP , for P = {PI}I∈([n]
k )

a positive tropical Plücker vector from a maximal cone of Trop+ Grk,n.

Proof. Suppose that a collection {SÃ} of positroid cells of Grg0
k,n is a regular positroid tiling;

in other words, the images of the cells {SÃ} under the moment map are the top-dimensional
positroid polytopes in the subdivision DP of ∆k,n, and the moment map is an injection on
each SÃ. Therefore by Proposition 3.15 and Proposition 3.16, dimSÃ = n−1, each positroid
MÃ is connected, and the reduced plabic graph associated to Ã is a (planar) tree.

We claim that the collection {SÃ} gives an unrefineable possible positroid subdivision
of the hypersimplex. That is, there is no nontrival way to subdivide one of the positroid
polytopes ΓÃ into two full dimensional positroid polytopes. If we can subdivide ΓÃ as above,
and there is another full-dimensional positroid polytope ΓÃ′ strictly contained in ΓÃ, then
the bases of MÃ′ are a subset of the bases of ΓÃ, and hence the cell SÃ′ lies in the closure of



THE POSITIVE TROPICAL GRASSMANNIAN AND THE m = 2 AMPLITUHEDRON 33

SÃ. But then a reduced plabic graph G′ for SÃ′ can be obtained by deleting some edges from
a reduced plabic graph G for SÃ; this means that G′ has fewer faces than G and hence has
the corresponding cell has smaller dimension, which is a contradiction, so the claim is true.

But now the fact that {SÃ} gives an unrefineable positroid subdivision means that it came
from a maximal cone of Trop+ Grk,n.

Conversely, consider a regular positroid subdivision DP coming from a maximal cone of
Trop+ Grk,n. Then the subdivision DP (which we identify with its top-dimensional pieces
{SÃ}) is an unrefineable positroid subdivision. In other words, none of the positroid polytopes
ΓÃ can be subdivided into two full-dimensional positroid polytopes, which in turn means that
the reduced plabic graph corresponding to Ã must be a tree. This implies that the moment
map is an injection on each SÃ and hence {SÃ} gives a regular positroid tiling of ∆k,n. □

Corollary 9.16. The number of regular positroid tilings of the hypersimplex ∆k,n equals the
number of maximal cones in the positive tropical Grassmannian Trop+ Grk,n.

The fact that the Plücker fan structure and the secondary fan structure on Trop+ Grk,n
coincide also implies that the f -vector of Trop+ Grk,n reflects the number of positroid sub-
divisions of ∆k,n (with maximal cones corresponding to unrefineable subdivisions and rays
corresponding to coarsest subdivisions).

10. Subdivisions of ∆k+1,n and An,k,2(Z) from Trop+ Grk+1,n

In Section 8, we discussed the fact that arbitrary dissections of the hypersimplex and the
amplituhedron can have rather unpleasant properties, with their maximal cells intersecting
badly at their boundaries. We introduced the notion of good dissections for the hypersimplex
and amplituhedron in Definition 8.2 and Definition 8.4. Our goal in this section is to intro-
duce a large class of good dissections for the amplituhedron which come from Trop+ Grk+1,n.

10.1. Regular positroid subdivisions of An,k,2(Z). Recall from Definition 9.13 that the
regular positroid subdivisions of ∆k+1,n are precisely the dissections DP induced from height

functions P = {PI} ∈ R([n]
k ) on the hypersimplex which are positive tropical Plücker vectors.

While we do not know how to define a notion of height function for the amplituhedron,
we know from Section 5, Section 6, and Section 7 that T-duality maps dissections of ∆k+1,n

to the amplituhedron An,k,2(Z) and preserves various nice properties along the way. We
therefore apply the T-duality map from Definition 5.1 to regular positroid subdivisions of
∆k+1,n, to define a class of subdivisions of the m = 2 amplituhedron An,k,2(Z) which we
optimistically refer to as regular (positroid) subdivisions.

Definition 10.1. We say that a positroid dissection of An,k,2(Z) is a regular positroid sub-
division if it has the form {ZÃ̂}, where {ΓÃ} is a regular positroid subdivision of ∆k+1,n.

As every regular positroid subdivision of ∆k+1,n is a polyhedral subdivision (and hence is
good), Conjecture 8.9 implies the following.

Conjecture 10.2. Every regular positroid subdivision of An,k,2(Z) is a good dissection.

In Section 10.5 we provide some computational evidence for Conjecture 10.2. For example,
for A6,2,2(Z) and A7,2,2(Z), every regular positroid subdivision is good, and moreover, all
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Figure 5. The collection T5,2 of plabic graphs giving a regular subdivision
of ∆3,5

good dissections are regular positroid subdivisions. (This appears to also be the case for
A8,2,2(Z); but we were only able to compute the number of tilings in this case.) One might
hope to strengthen Conjecture 10.2 and conjecture that the regular positroid subdivisions
are precisely the good dissections. However, the notion of regularity is rather subtle (as
usual in polyhedral geometry), and starting from A9,2,2(Z), there are some good dissections
which are not regular.

10.2. A large class of regular positroid tilings of ∆k+1,n and An,k,2(Z).

Definition 10.3. Let T be any planar trivalent tree with n leaves (which will necessarily
have n − 2 internal vertices), embedded in a disk with the leaves labelled from 1 to n in
clockwise order. Let Tn,k be the set of

(
n−2
k

)
plabic graphs obtained from T by colouring

precisely k of the internal vertices black, as in Section 10.2.

Proposition 10.4. The cells of Grg0
k+1,n corresponding to the plabic graphs in Tn,k give a

regular tiling of ∆k+1,n. Therefore the images of these cells under the T-duality map give a
regular tiling of An,k,2(Z).

Proof. We can use Theorem 4.5 (see Figure 1) to inductively prove that the cells corre-
sponding to Tn,k give a tiling of ∆k+1,n. The fact that the cells corresponding to the plabic
graphs in Tn,k give a regular tiling of ∆k+1,n follows from [Spe08, Theorem 8.4]. Now using
Theorem 6.5, it follows that the images of these cells under the T-duality map give a tiling
of An,k,2(Z). The fact that this tiling is regular now follows from Definition 10.1. □

Remark 10.5. The above construction gives us Cn−2 regular tilings of An,k,2(Z), where
Cn = 1

n+1

(
2n
n

)
is the Catalan number.

10.3. The fan structure for regular positroid subdivisions. We now discuss the fan
structure for regular positroid subdivisions of the hypersimplex and amplituhedron.

Definition 10.6. Given two subdivisions {ΓÃ} and {ΓÃ′} of ∆k+1,n, we say that {ΓÃ} refines
{ΓÃ′} and write {ΓÃ} ¯ {ΓÃ′} if every ΓÃ is contained in some ΓÃ′ .



THE POSITIVE TROPICAL GRASSMANNIAN AND THE m = 2 AMPLITUHEDRON 35

Similarly, given two subdivisions {ZÃ} and {ZÃ′} of An,k,2(Z), we say that {ZÃ} refines
{ZÃ′} and write {ZÃ} ¯ {ZÃ′} if every ZÃ is contained in some ZÃ′ .

Recall from Section 9.3 that we have a fan structure on Trop+ Grk+1,n (the secondary fan,
which coincides with the Plücker fan) which describes the regular positroid subdivisions of
∆k+1,n, ordered by refinement. We expect that this fan structure on Trop+ Grk+1,n also
describes the regular positroid subdivisions of An,k,2(Z).

Conjecture 10.7. The regular positroid subdivisions of An,k,2(Z) are parametrized by the
cones of Trop+ Grk+1,n, with the natural partial order on the cones reflecting the refinement
order on positroid subdivisions.

Conjecture 10.7 is consistent with the following conjecture.

Conjecture 10.8. Consider two regular positroid subdivisions {ΓÃ} and {ΓÃ′} of ∆k+1,n,
and two corresponding positroid subdivisions {ZÃ̂} and {ZÃ̂′} of An,k,2(Z). Then we have
that {ΓÃ} ¯ {ΓÃ′} if and only if {ZÃ̂} ¯ {ZÃ̂′}

In particular, the regular positroid tilings of An,k,2(Z) should come precisely from the maxi-
mal cones of Trop+ Grk+1,n. More specifically, if {PI} lies in a maximal cone of Trop+ Grk+1,n,
and {SÃ} is the regular positroid tiling corresponding to DP , then {SÃ̂} should be a regular
positroid tiling of An,k,2(Z). (Moreover, all regular positroid tilings of An,k,2(Z) should arise
in this way.)

10.4. The f-vector of Trop+ Grk+1,n. In light of Conjecture 10.7, it is useful to compute
the f -vector of the positive tropical Grassmannian. This is the vector (f0, f1, . . . , fd) whose
components compute the number of cones of fixed dimension.

As shown in [SW05], the positive tropical Grassmannian has an n-dimensional lineality
space coming from the torus action. However, one may mod out by this torus action and
study the resulting fan. The method used in [SW05] was to show that Trop+ Grk,n (a

polyhedral subcomplex of R([n]
k )) is combinatorially equivalent to an (n − k − 1)(k − 1)-

dimensional fan Fk,n, obtained by using an “X-cluster” or “web” parametrization of the
positive Grassmannian, and modding out by the torus action. As explained in [SW05,
Section 6], Fk,n is the dual fan to the Minkowski sum of the

(
n
k

)
Newton polytopes obtained

by writing down each Plücker coordinate in the X-cluster parametrization.
Using this technique, [SW05] computed the f -vector of Trop+ Gr2,n (which is the f -vector

of the associahedron, with maximal cones corresponding to tilings of a polygon) Trop+ Gr3,6,
and Trop+ Gr3,7. The above f -vector computations were recently extended in [AHLS21a]
using the notion of “stringy canonical forms” and in [BC, CGUZ] using planar arrays and
matrices of Feynman diagrams. See also [HP, DFGK, Ear] for recent, physics-inspired de-
velopments in this direction. We list all known results about maximal cones in the positive
tropical Grassmannian Trop+ Grk+1,n and their relation to tilings of hypersimplex ∆k+1,n in
Table 1.

Apart from the f -vector of Trop+ Gr2,n, the known f -vectors of positive tropical Grass-
mannians Trop+ Grk,n (with k f n

2
) are the following:

Trop+ Gr3,6 :(1, 48, 98, 66, 16, 1)
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Trop+ Gr3,7 :(1, 693, 2163, 2583, 1463, 392, 42, 1)

Trop+ Gr3,8 :(1, 13612, 57768, 100852, 93104, 48544, 14088, 2072, 120, 1)

Trop+ Gr4,8 :(1, 90608, 444930, 922314, 1047200, 706042, 285948, 66740, 7984, 360, 1)

For Trop+ Gr4,9 it is also known that the second component of the f -vector is 30659424
[CGUZ].

Remark 10.9. The coordinate ring of the Grassmannian has the structure of a cluster
algebra [Sco06]. In particular, Gr2,n, Gr3,6, Gr3,7, Gr3,8 have cluster structures of finite
types An, D4, E6, and E8, respectively. As discussed in [SW05], there is an intriguing
connection between Trop+ Grk,n and the cluster structure. In particular, F2,n is the fan
to the type An associahedron, while F3,6 and F3,7 are coarsenings of the fans associated
to the D4 and E6 associahedra. Via our correspondence between Trop+ Grk+1,n and the
amplituhedron An,k,2(Z), the Grassmannian cluster structure on Grk+1,n should be reflected
in good subdivisions of An,k,2(Z). In particular the type An cluster structure should control
An,1,2(Z) (this is apparent, since An,1,2(Z) is a projective polygon), while the type D4, E6,
and E8 cluster structures should be closely related to A6,2,2(Z), A7,2,2(Z), and A8,2,2(Z).

10.5. Experimental Data. Checks for this section6 for small values of n and k have been
performed using Wolfram Mathematica. In particular, we used the packages ‘positroid’

[Bou] and ‘amplituhedronBoundaries’ [LuM21]. This allowed us to find the complete
poset of good dissections of A6,2,2 and A7,2,2, whose f -vectors read:

A6,2,2 : (1, 48, 98, 66, 16, 1)

A7,2,2 : (1, 693, 2163, 2583, 1463, 392, 42, 1) .

These are exactly the f -vectors of the positive tropical Grassmannian Trop+ Gr3,6 and
Trop+ Gr3,7, respectively. For higher values of n and k, we have been able to find all
(good) tilings, and our findings7 are summarized in Table 1. In particular, we observe
that for A8,2,2(Z) the number of good tilings agrees with the number of maximal cones in
Trop+ Gr3,8. Starting from n = 9, the number of good tilings is larger than the number of
maximal cones in positive tropical Grassmannian. It is indeed the first example where one
can find good tilings which are not regular. In particular, out of 346806 good tilings, 96 are
not regular. Similarly, for k = 3 and n = 8, 888 good tilings of A8,3,2(Z) are not regular. We
note that these correspond exactly to degenerate matrices found in [CGUZ].

11. T-duality and the momentum amplituhedron for general (even) m

Throughout the paper we have explored the remarkable connection between the hyper-
simplex and the m = 2 amplituhedron. This was established via the T-duality map which
allowed to relate positroid tiles, tilings, and dissections of both objects. It is then a natural
question to wonder whether the story generalizes for any (even) m.

6A more detailed discussion of these checks can be found in the arXiv version of this paper (v3).
7We also included there the results for Gr

≥0

3,9 which, by using our conjectures, can be derived from [CGUZ].
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(k, n) Tilings Good tilings Trop+ Grk+1,n Non-regular good tilings

(1, n) Cn−2 Cn−2 Cn−2 0

(2, 5) 5 5 5 0
(2, 6) 120 48 48 0
(2, 7) 3073 693 693 0
(2, 8) 6 443 460 13 612 13 612 0
(2, 9) ? 346 806 346 710 96

(3, 6) 14 14 14 0
(3, 7) 3073 693 693 0
(3, 8) ? 91 496 90 608 888
(3, 9) ? 33 182 763 30 659 424 2 523 339

Table 1. New results about the tilings of the amplituhedron An,k,2(Z) in
relation to known results about the number of maximal cones of the positive

tropical Grassmannian Trop+ Grk+1,n.

For m = 4, we know that the amplituhedron An,k,4(Z) encodes the geometry of scattering
amplitudes in N = 4 SYM, expressed in momentum twistor space. Physicists have already
observed a beautiful connection between this and the formulation of scattering amplitudes
of the same theory in momentum space8. At the core of this connection lies the Amplitude-
Wilson Loop Duality [AR08], which was shown to arise from a more fundamental duality
in String Theory called ‘T-duality’ [BM08]. For both formulations a Grassmannian rep-
resentation has been found [BMS10, AHCCK10]: scattering amplitudes (at tree level) are
computed by performing a contour integral around specific cycles inside the positive Grass-
mannian (what in physics is referred to as a ‘BCFW contour’). If we are in momentum space,
then one has to integrate over cycles corresponding to collections of (2n − 4)-dimensional
positroid cells of Grg0

k+2,n. Whereas, if we are in momentum twistor space, the integral is over

collections of 4k-dimensional positroid cells of Grg0
k,n. The two integrals compute the same

scattering amplitude, and it was indeed shown that that formulas are related by a change
of variables. In particular, this implied the existence of a map between certain (2n − 4)-
dimensional positroid cells of Grg0

k+2,n and certain 4k-dimensional positroid cells of Grg0
k,n

(called ‘BCFW’), which was defined in [AHBC+16, Formula (8.25)]. It is easy to see that
this map is exactly our T-duality map for the case m = 4 in (5.13), up to a cyclic shift:

(11.1) ÃÃ̂(i) = Ã(i−
m

2
+ 1) − 1 = Ã(i− 1) − 1.

Collections of 4k-dimensional ‘BCFW’ positroid cells of Grg0
k,n defined from physics were

conjectured to triangulate An,k,4(Z). The main results in the literature towards proving this
conjecture can be found in [KWZ20]. On the other hand, the corresponding collections of
(2n − 4)-dimensional ‘BCFW’ positroid cells of Grg0

k+2,n were conjectured to triangulate an

8More precisely it is ‘spinor helicity’ space, or, equivalently (related by half-Fourier transform), in twistor
space. See [AHBC+16, Section 8].
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object Mn,k,4(Λ, Λ̃) called ‘momentum amplituhedron’, introduced recently by two of the
authors in [DF LP19]9.

The story aligns with the philosophy of the rest of this paper. In particular, one aims to
seek for an object and a map which relates its tiles, tilings (and, more generally, dissections)
to the ones of An,k,m(Z), for general (even) m. There is a natural candidate for such a map:
we have already seen that the T-duality map defined in (5.13) does indeed the job in the case
of m = 2 and m = 4. Moreover, some of the statements which has been proven throughout
the paper for m = 2, as Proposition 5.17 and Theorem 7.3, can be generalized for general
(even) m.

Proposition 11.2. Let SÃ be a cell of Grg0
k+m

2
,n such that, as affine permutation, Ã(i) g i+m

2
.

Then SÃ̂ is a cell of Grg0
k,n such that Ã̂(i) f i+n− m

2
. Moreover, dim(SÃ̂)−mk = dim(SÃ)−

m
2

(n− m
2

). In particular, if dimSÃ = m
2

(n− m
2

), then dimSÃ̂ = mk.

Proof. This is a straightforward generalization of the proof of Proposition 5.17. It is enough
to observe that, in the language of affine permutations, T-duality maps a (k + m/2, n)-
bounded affine permutation Ãa into a (k, n)-bounded affine permutation Ã̂a = Ãa ◦ t

m/2, with
tm/2 : Z → Z the map i 7→ i−m/2. Clearly, tm/2 preserve the length of affine permutations.
Hence the codimensions of SÃa

¦ Grg0
k+m

2
,n and SÃ̂a

¦ Grg0
k,n are equal. □

It is also natural to think of parity duality between An,k,m(Z) and An,n−k−m,m(Z ′) as
a composition of the Grassmannian duality and T-duality (plus cyclic shifts). Imitating

Definition 7.2, let us define Ũk,n,m(Ã̂) := Ã̂−1. Then we have the following theorem:

Theorem 11.3 (Parity duality from T-duality and Grassmannian duality). Let {ZÃ} be a
collection of Grasstopes which dissects the amplituhedron An,k,m(Z). Then the collection of
Grasstopes {ZŨk,n,mÃ} dissects the amplituhedron An,n−k−m,m(Z ′).

Proof. The parity duality Uk,n,m in [GL20] was defined for any (even) m as: Uk,n,m(Ã) :=

(Ã−k)−1+(n−k−m). Then it easy to show that Uk,n,m = Ãk+m
2 ◦Ũk,n,m. Using Theorem 7.5,

the prove follows immediately. □

Since we found a natural candidate map, we now introduce a candidate object, which
would speculatively relate to An,k,m(Z) via the T-duality map. This is a generalization of

the momentum amplituhedron Mn,k,4(Λ, Λ̃) and it is defined below.

Definition 11.4. For k, n such that k f n, define the twisted positive part of Grk,n as:

(11.5) Gr+,Ä
k,n := {X ∈ Grk,n : (−1)inv(I,[n]\I)∆[n]\I(X) g 0}

where inv(A,B) := #{a ∈ A, b ∈ B|a > b} denotes the inversion number.

The lemma below can be found in [Kar17, Lemma 1.11], which sketched a proof and
attributed it to Hochster and Hilbert.

9In the paper, the momentum amplituhedron was denoted as Mn,k, without the subscript ‘4’.
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Lemma 11.6. Suppose ∆I(V ) are the Plücker coordinates of a point V ∈ Grk,n. Then the
kernel V § ∈ Grn−k,n of V is represented by the point with Plücker coordinates ∆J(V §) =

(−1)inv(J,[n]\J)∆[n]\J(V ) for J ∈
(

[n]
n−k

)
.

Definition 11.7. For a, b such that a f b, define Mat>0
a,b the set of real a× b matrices whose

a× a minors are all positive and its twisted positive part as

(11.8) Mat>0,Ä
a,b := {A ∈ Mata,b : (−1)inv(I,[b]\I)∆[b]\I(A) > 0}

Definition 11.9 (The momentum amplituhedron). Let Λ̃ ∈ Mat>0
n,k′+m

2
,Λ ∈ Mat>0,Ä

n,n−k′+m
2

,

k′+m/2 f n. The momentum amplituhedron map ΦΛ̃,Λ : Grg0
k′,n → Grk′,k′+m

2
×Grn−k′,n−k′+m

2

is defined by ΦΛ̃,Λ(C) := (CΛ̃, C§Λ), where C and C§ are matrices representing an element

of Grg0
k′,n and its orthogonal in Grg0,Ä

k′,n respectively, and CΛ̃ and C§Λ matrices represent-
ing an element of Grk′,k′+m

2
and Grn−k′,n−k′+m

2
respectively. The momentum amplituhedron

Mn,k′,m(Λ, Λ̃) ¦ Grk′,k′+m
2
×Grn−k′,n−k′+m

2
is the image ΦΛ̃,Λ(Grg0

k′,n).

Proposition 11.10 (Momentum conservation). Let (Ỹ , Y ) represent a point in Grk′,k′+m
2
×

Grn−k′,n−k′+m
2
and let Ỹ § and Y § be matrices representing the orthogonal complements of

Y and Ỹ , respectively. If (Ỹ , Y ) is in the momentum amplituhedron Mn,k′,m(Λ, Λ̃), then

(11.11) (Y §ΛT ) · (Ỹ §Λ̃T )T = 0

Proof. From the identity

(11.12) 0 = Y §Y T = Y §ΛT (C§)T

we deduce that the row-span of Y §ΛT is included in the row-span of the orthogonal of C§,
i.e. C. Analogously, from

(11.13) 0 = Ỹ §Ỹ T = Ỹ §Λ̃TC

we deduce that the row-span of Ỹ §Λ̃T is included in the row-span of the C§. Therefore
Y §ΛT and Ỹ §Λ̃T belong to orthogonal subspaces and satisfy

(Y §ΛT ) · (Ỹ §Λ̃T )T = 0.(11.14)

□

Remark 11.15. In reference to Definition 11.9, we observe that:

(11.16) dim
(
Grk′,k′+m/2 ×Grn−k′,n−k′+m/2

)
=

m

2
k′ +

m

2
(n− k′) =

m

2
n.

Moreover, Proposition 11.10 implies that the momentum amplituhedron Mn,k,m is included
in a codimension (m

2
)2 sub-variety of Grk′,k′+m/2×Grn−k′,n−k′+m/2. Therefore, the dimension

of Mn,k′,m is at most (and conjectured to be exactly):

(11.17)
m

2
n−

(m
2

)2

=
m

2

(
n−

m

2

)
.
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We observe that, for m = 2, this dimension is exactly n − 1, which is the dimension of the
hypersimplex ∆k+1,n; whereas, for m = 4, the dimension is 2n−4, which is the one of BCFW
cells in momentum space.

Remark 11.18. For m = 2, Definition 11.9 reads:

(11.19) ΦΛ̃,Λ : Grg0
k′,n → Grk′,k+1 ×Grn−k′,n−k′+1

∼= Pk′ × Pn−k′ .

Moreover, the conditions in Proposition 11.10 are equivalent to:

(11.20) ¼ · ¼̃ = 0

where we used the dot product in Rn of the vectors ¼ := Λ(Y §)T and ¼̃ := Λ̃(Ỹ §)T .
Note that the m = 2 momentum amplituhedron is not equal to the hypersimplex, as

pointed out in [LuS22].

Remark 11.21. For m = 4, Definition 11.9 coincides with the one in [DF LP19]. This is
the positive geometry relevant for scattering amplitudes for N = 4 SYM in spinor helicity
space.

Many properties of Mn,k,4(Λ, Λ̃) have still to be explored and proven. Let ΦÃ denote
the image under the amplituhedron map ΦΛ,Λ̃(S̄Ã) of (the closure of) a positroid cell SÃ in

Grk′,n. Analogously to the amplituhedron, we call ΦÃ a positroid tile of Mn,k,4(Λ, Λ̃) if it is
full-dimensional and if the momentum amplituhedron map is injective on SÃ. We also define

positroid tilings of Mn,k,4(Λ, Λ̃) collections {ΦÃ} of positroid tiles whose interior is disjoint

and cover Mn,k,4(Λ, Λ̃). Then the conjecture in [DF LP19] can be stated as:

Conjecture 11.22. [DF LP19] There exists an open subset P ¢ Mat>0,Ä
n,k′+2 ×Mat>0

n,n−k′+2 such

that for all (Λ, Λ̃) ∈ P a collection of positroid tiles {ΦÃ} is a positroid tiling (respectively,

dissection) of Mn,k+2,4(Λ, Λ̃) if and only if for all Z ∈ Mat>0
n,k+4 the collection of T-dual

Grasstopes {ZÃ̂} is a tiling (respectively, dissection) of An,k,4(Z).

Remark 11.23. [DF LP19] provided experimental evidence that a subset P with the prop-
erties above can be obtained by imposing positivity of planar Mandelstam variables. In

particular, choosing the rows of Λ§ and Λ̃ on the moment curve as (Λ§)i,a = ia, Λ̃i,ȧ = iȧ,
with i ∈ [n], a ∈ [k′ − 2], ȧ ∈ [k′ + 2] would give a point in P .

Finally, we speculate that:

Conjecture 11.24. Let m be a multiple of 4 and k′ = k+m/2. There exists an open subset

P ¢ Mat>0,Ä
n,k′+m

2
×Mat>0

n,n−k′+m
2
such that for all (Λ, Λ̃) ∈ P a collection {ΦÃ} of positroid tiles

is a tiling (respectively, dissection) of Mn,k′,m(Λ, Λ̃) if and only if the collection of T-dual
Grasstopes {ZÃ̂} is a tiling (respectively, dissection) of An,k,m(Z).
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12. Appendix. Combinatorics of cells of the positive Grassmannian.

In [Pos], Postnikov classified the cells of the positive Grassmannian, showing that the
positroid cells could be indexed by decorated permutations and also equivalence classes of
reduced plabic graphs. We review these objects here. This will give us a canonical way to
label each positroid by a decorated permutation or an equivalence class of plabic graphs. We
refer to reader to [Pos] or [KWZ20, Section 2] for more details.

Definition 12.1. A decorated permutation on [n] is a bijection Ã : [n] → [n] whose fixed
points are each coloured either black (loop) or white (coloop). We denote a black fixed point
i by Ã(i) = i, and a white fixed point i by Ã(i) = i. An anti-excedance of the decorated
permutation Ã is an element i ∈ [n] such that either Ã−1(i) > i or Ã(i) = i. We say that a
decorated permutation on [n] is of type (k, n) if it has k anti-excedances.

For example, Ã = (3, 2, 5, 1, 6, 8, 7, 4) has a loop in position 2, and a coloop in position 7.
It has three anti-excedances, in positions 4, 7, 8.

Definition 12.2. Given a k × n matrix C = (c1, . . . , cn) written as a list of its columns, we
associate a decorated permutation Ã := ÃC as follows. We set Ã(i) := j to be the label of
the first column j such that ci ∈ span{ci+1, ci+2, . . . , cj}. If ci is the all-zero vector, we call i
a loop or black fixed point and if ci is not in the span of the other column vectors, we call i
a coloop or white fixed point. We let

SÃ = {C ∈ Grg0
k,n | ÃC = Ã}.

Postnikov showed that SÃ is a cell, and that the positive Grassmannian Grg0
k,n is the union

of cells SÃ where Ã ranges over decorated permutations of type (k, n) [Pos, Section 16].
Decorated permutations can be equivalently thought of as affine permutations [KLS13].

Definition 12.3. An affine permutation on [n] is a bijection Ã : Z → Z such that for all
i ∈ Z, Ã(i + n) = Ã(i) + n and i f Ã(i) f i + n. If

∑n
i=1(Ã(i) − i) = kn we say Ã is

(k, n)-bounded.

There is a bijection between decorated permutations of type (k, n) and (k, n)-bounded
affine permutations. Given a decorated permutation Ãd we can define an affine permutation
Ãa by the following procedure: if Ãd(i) > i, then define Ãa(i) := Ãd(i); if Ãd(i) < i, then
define Ãa(i) := Ãd(i) + n; if Ãd(i) is a loop then define Ãa(i) := i; if Ãd(i) is a coloop
then define Ãa(i) := i + n. For example, under this map, the decorated permutation Ãd =
(3, 2, 5, 1, 6, 8, 7, 4) in the previous example gives rise to Ãa = (3, 2, 5, 9, 6, 8, 15, 12).

Let a pair (i, j) be an inversion of Ãa if i, j ∈ Z, i < j, and Ãa(i) > Ãa(j). Two inversions
(i, j) and (i′, j′) are equivalent if i′ − i = j′ − j ∈ nZ. Then the length ℓ(Ãa) of Ãa is defined
to be the number of equivalence classes of inversions. We note that ℓ(Ãa) equals the number
of alignments of the associated decorated permutation Ãd (see [Pos, Section 5]).

Positroid cells can also be represented by plabic graphs.

Definition 12.4. A plabic graph10 is an undirected planar graph G drawn inside a disk
(considered modulo homotopy) with n boundary vertices on the boundary of the disk, labeled

10“Plabic” stands for planar bi-colored.
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1, . . . , n in clockwise order, as well as some internal vertices. Each boundary vertex is incident
to a single edge, and each internal vertex is colored either black or white. If a boundary
vertex is incident to a leaf (a vertex of degree 1), we refer to that leaf as a lollipop. We will
assume that G has no internal leaves except for lollipops.

Definition 12.5. A perfect orientation O of a plabic graph G is a choice of orientation
of each of its edges such that each black internal vertex u is incident to exactly one edge
directed away from u; and each white internal vertex v is incident to exactly one edge directed
towards v. A plabic graph is called perfectly orientable if it admits a perfect orientation. Let
GO denote the directed graph associated with a perfect orientation O of G. The source set
IO ¢ [n] of a perfect orientation O is the set of i which are sources of the directed graph
GO. Similarly, if j ∈ IO := [n] − IO, then j is a sink of O.

Figure 6 shows a plabic graph with a perfect orientation. In that example, IO = {2, 3, 6, 8}.

Figure 6. A plabic graph with a perfect orientation.

All perfect orientations of a fixed plabic graph G have source sets of the same size k,
where k − (n − k) =

∑
color(v) · (deg(v) − 2). Here the sum is over all internal vertices v,

color(v) = 1 for a black vertex v, and color(v) = −1 for a white vertex; see [Pos]. In this
case we say that G is of type (k, n).

Now let us connect plabic graphs to the positroids and positroid cells from Definition 2.2.

Theorem 12.6 ([Pos, Section 11]). Let G be a plabic graph of type (k, n). Then we have a
positroid MG on [n] defined by

MG = {IO | O is a perfect orientation of G},

where IO is the set of sources of O. Moreover, every positroid cell has the form SMG
for

some plabic graph G.

One can also read off the positroid from G using flows [Tal08] or perfect matchings.
If a plabic graph G is reduced (see [Pos, Section 12]) or [FWZ21, Chapter 7]), we have

that SMG
= SÃG

, where ÃG is the decorated permutation defined as follows.
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Definition 12.7. Let G be a reduced plabic graph with boundary vertices 1, . . . , n. For
each boundary vertex i ∈ [n], we follow a path along the edges of G starting at i, turning
(maximally) right at every internal black vertex, and (maximally) left at every internal white
vertex. This path ends at some boundary vertex Ã(i). By [Pos, Section 13], the fact that
G is reduced implies that each fixed point of Ã is attached to a lollipop; we color each fixed
point by the color of its lollipop. This defines a decorated permutation, called the decorated
trip permutation ÃG = Ã of G.
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