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Small particles fall through sheared beds of larger particles in settings ranging from geophysics to
industry, but study of large-to-small size ratios, R, spanning the trapping threshold, Rt, has been
neglected. In simulations of non-cohesive spheres for R < Rt, the small-sphere vertical velocity,
vp, first increases with shear rate, γ̇, as trapping time decreases, but vp then decreases as velocity
fluctuations frustrate downward mobility. For R > Rt, vp is constant at low γ̇, but again decreases
at high γ̇. We model these behaviors and discuss analogies with electron transport in solids.

The movement of solid particles through porous me-
dia, i.e., percolation, is relevant in many scientific and
engineering contexts. In granular materials, smaller par-
ticles fall through void spaces between larger particles.
In geophysics, percolation of solids, like that for soil ero-
sion or sediment transport in rivers, influences environ-
mental sustainability, landscape dynamics, and ecological
habitats. In biological systems, percolation occurs as the
movement of nutrients through biological tissues and or-
gans. In industry, percolation occurs in filtration systems
for separation and packed beds for absorption. The per-
colation dynamics in these processes depend strongly on
the relative particle size and pore structure (static and
dynamic) of the porous media.

In mixtures of size-disperse granular materials, small-
particle percolation leads to de-mixing (segregation),
which is a critical issue in various natural [1–3] and in-
dustrial processes [4, 5]. Recent studies have advanced
models of granular segregation (see, e.g., [6, 7]), but
nearly all consider mixtures with large-to-small parti-
cle diameter ratios, R ≲ 2, where interparticle contacts
are enduring [8–10]. In these cases, segregation can be
characterized by a concentration-dependent mean verti-
cal velocity (i.e., the percolation velocity [11]), vp, which
increases monotonically with both R and shear rate, γ̇.

For larger R, where the small particles are referred to
as fine particles or fines, the vp-dependence on γ̇ and
R in sheared flows changes significantly. In particular,
for R ≳ 2 and low fines concentration, vp increases dra-
matically with increasing R [11, 12], while, in contrast,
vp is nearly R-independent at larger fines concentration
(above 10%) for 2 ≲ R ≲ 4 [13]. Here we focus on fine-
particle percolation in uniform shear flow in the zero-
concentration limit, where an increasing tendency toward
free-sifting or spontaneous interparticle percolation [14–
17] (i.e., the downward motion of fines at γ̇ = 0) with
increasing R leads to qualitative changes in the depen-
dence of vp on γ̇ and other parameters. To focus on the
effects of γ̇ and R, we consider non-cohesive particle in-
teractions, noting that cohesive forces profoundly affect
the statics and dynamics of granular material when they

are large relative to particle weight.

Free-sifting has been studied primarily in static beds
for R > Rt [16, 18–21], where the free-sifting threshold,
Rt, is Rt0 = (2/

√
3− 1)−1 ≈ 6.46 for rigid monodisperse

bed-spheres [22], but is larger in polydisperse mixtures
of “soft” particles [23]. Free-sifting can also occur for
R < Rt in randomly packed static beds when a subset
of pore throats—the minimum opening between neigh-
boring bed spheres—exceeds the fine-particle diameter.
In this case, motion is transient since a fine particle in-
evitably encounters an impassible pore throat [24] and is
trapped. Despite the ubiquity of fines in industrial solids
processing [25, 26], their potential for affecting the mobil-
ity of various geophysical flows [27–29], and their impor-
tance in sediment infiltration that shapes rivers [30, 31],
few studies address the movement, or percolation, of fines
through sheared granular beds [11, 12, 32].

In this paper we show that free-sifting is pronounced
and unavoidably coupled with shear for R < Rt, because
fines that would be trapped in a static bed are repeatedly
re-mobilized by shear-induced particle rearrangements.
In past work, the complexity of this problem and the
limited parameter-space explored produced puzzling in-
consistencies regarding the dependence of vp on γ̇ [32]
and R [11–13]. Here we resolve these issues by char-
acterizing the small-sphere vertical velocity in a larger-
sphere bed for size ratios spanning the free-sifting thresh-
old (2 ≤ R ≤ 10) and spatially-uniform shear rates cov-
ering the quasi-static and rapid dense flow regimes [33].
Our results reveal a non-monotonic dependence of vp on
γ̇, provide relations for predicting vp in the low- and
high-shear-rate regimes, and add insight into the domi-
nant physics in each regime. We also address similarities
between gravitational-field driven fine-particle transport
and electric-field driven conduction of electrons, where
Rt delineates the boundary between semiconductor-like
(R < Rt) and metal-like (R > Rt) transport regimes and
γ̇ acts similarly to temperature.

Methods—LIGGGHTS [34], a discrete element method
code, is used to simulate single spheres of diameter df
in a confined dense flow of bed particles of diameter,
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d, with a prescribed horizontal velocity varying linearly
with depth [35] as depicted in Fig. 1(a). The domain
is periodic in the streamwise (x) and spanwise (z) di-
rections and confined in the depthwise direction (y) by
two horizontal walls formed by particles with diameter
d positioned on a planar-square lattice with a unit cell
length of 1.2d and two-dimensional packing density of
0.545. The horizontal position of each wall-particle is
randomized within its unit cell. A constant downward
force on the top wall, which is otherwise free to move
vertically and in the spanwise direction, sets the bed over-
burden pressure, P0, which is increased with increasing
γ̇ to maintain a constant volume fraction ϕ ≈ 0.58 of
bed particles as shown in Fig. 1(b) and discussed in fur-
ther detail below. The bottom wall is stationary while
the top wall is translated in the streamwise direction
with velocity U = γ̇h(t), where the time-dependent bed
height, h(t), accommodates dilation due to shear and
varies in time by ∼ ±0.1%. The flow domain is 20d
long, 10d wide and 60d deep, comprising approximately
12 500 large particles (gray region) for most of the simu-
lations. Bed particles have a uniform diameter-dispersity
of ±10% to minimize layering [36]. To ensure homoge-
neous shear in the presence of gravity, a small streamwise
stabilizing force −k(γ̇yi − ui), where ui and yi are the
streamwise velocity and height of bed particle i, respec-
tively, and k = 0.1 kg/s, is applied to each bed particle
(but not the percolating fine particles) at each simula-
tion time step [35, 37–39]. This approach produces the
desired homogeneous shear flow without altering the flow
rheology [40] or segregation [41].

After the sheared bed of large particles reaches steady
state, fine particles with identical diameter df are ran-
domly positioned just above (1.02 < y/h < 1.03)
the porous top wall of the bed. All fine particles
are given an initial streamwise velocity matching the
streamwise velocity of the moving top-wall, which allows
them to quickly fall beneath the wall when they are si-
multaneously released. In order to examine the zero-
concentration limit and, thereby, avoid the complications
associated with fine particle jamming, fine particles in-
teract with bed particles but not with each other. The
number of fine particles depends on R and varies from
∼ 103 (R = 2) to ∼ 104 (R = 10), which keeps the
fine particle volume concentration below 1%. This low
concentration prevents the multiple fine particles perco-
lating simultaneously through the bed from significantly
altering the flow kinematics and rheology of the bed par-
ticles and allows the dynamics of multiple independent
fine particles to be computed in one simulation, which is
computationally efficient and provides sufficient data for
accurate statistics. Doubling the number of fine parti-
cles in additional simulations, covering 3 ≤ R ≤ 7 and
1 s−1 ≤ γ̇ ≤ 40 s−1, does not alter the flow kinematics,
the bed rheology, or the measured value of vp. Simulation
times vary with R and γ̇, and are typically on the order
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FIG. 1. Simulation conditions. (a) Single fine particles (not
shown) percolate under gravity in a confined granular shear
flow with a controlled spatially uniform shear rate γ̇ (see text).
(b) Bed particle packing density, ϕ, vs. non-dimensional shear

rate γ̇∗ = γ̇
√

d/g for overburden pressure, P0, held constant
at 1.2 kPa (black line and circles) or gradually increased above
1.2 kPa for γ̇∗ > 0.3 to maintain nearly constant ϕ (red curve

and circles). (inset) Inertial number, I = γ̇d/
√

P/ρ vs. γ̇∗ for
constant (black) and increasing (red) P0.

of 10 s to ensure that most fine particles reach the lower
wall. Simulation times for smaller R at lower γ̇∗ are in-
creased so that the fraction of fine particles re-mobilized
by shear induced rearrangement is sufficient for accurate
measurement of vp. For example, the simulation time is
increased up to 100 s for R < 6 and γ̇∗ < 10−3. Fine-
particle motion is characterized by the mean vertical ve-
locity, vp = ⟨vi⟩, or percolation velocity, and the RMS

velocity, vrms = ⟨
√
(vp − vi)2⟩, where vi is the vertical

velocity of fine particle i and brackets indicate ensemble
and temporal averaging.

The majority of simulations presented in the paper use
the following parameters: bed particle average diame-
ter d = 5mm with 10% uniform polydispersity, accelera-
tion due to gravity g = 9.81m s−2, restitution coefficient
e = 0.8, friction coefficient µ = 0.5, and densities of bed
(ρ) and fine particle (ρf ) are both 2 500 kgm−3. Addi-
tionally, d, g, e and ρf are varied in other simulations
to explore their effects on the percolation velocity. The
simulations use the Hertz contact model with a Young’s
modulus of 5× 107 Pa, and a Poisson’s ratio of 0.4. The
simulation time step is 5 × 10−6 s to ensure numerical
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stability even for the largest size ratios and highest shear
rates that are examined.

Previous studies indicate that decreasing ϕ increases vp
in both static [24] and flowing systems [42]. Increasing
γ̇∗ ≡ γ̇

√
d/g with constant P0 = 1200Pa ∼ 10ρgd [hori-

zontal black line in Fig. 1(b)] increases bed dilation which
decreases ϕ [black circles in Fig. 1(b)] for γ̇∗ > 0.3, while
the inertial number of the bed particles, I = γ̇d/

√
P/ρ,

increases linearly [inset of Fig. 1(b)]. In the expression
for I, P is the normal stress of bed particles averaged over
a 40d-thick layer in the middle of the bed. For γ̇∗ ≳ 1,
I tends towards dilute collisional flow [43]. To minimize
changes in the pore size distribution due to shear-driven
variation in ϕ [24] and to keep the maximum ϕ value
closer to that for dense flow, P0 is increased by a factor
of 40 with increasing γ̇∗ over the range 0.3 < γ̇∗ < 4
as indicated in the figure. This procedure keeps ϕ in
the range 0.57 < ϕ < 0.58 [red curve and red circles
in Fig. 1(b)] and the inertial number in the dense flow
range, ∼ 10−4 < I <∼ 0.3.

Vertical velocity—Figure 2 plots the scaled fine-
particle vertical velocity, v∗p = −vp/

√
gd, versus scaled

shear rate, γ̇∗ = γ̇
√
d/g, for 2 ≤ R ≤ 10. As in static

beds, fines always percolate downward on average even
at the largest γ̇∗, and v∗p increases monotonically with
increasing R for all γ̇∗. However, the γ̇∗-dependence of
v∗p is strongly R-dependent. First, for size ratios in the
static-bed passing regime (R > 6.5 > Rt0 here due to
overburden-pressure-driven deformation and polydisper-
sity of bed particles that decreases the minimum pore
throat diameter relative to rigid monodisperse bed par-
ticles [23]), v∗p initially remains constant at its static-bed

value as γ̇∗ is increased from zero. Hence, vp ∝
√
gd

for R ≳ Rt. However, above γ̇∗ ≳ 0.03, v∗p decreases
with increasing γ̇∗. Second, for size ratios in the static-
bed trapping regime (R ≤ 6.5), v∗p increases from zero
with increasing γ̇∗, similar to segregation with R ≲ 2 [8–
10, 12]. However, v∗p reaches a maximum near γ̇∗ ∼ 0.1
and then decreases toward zero with further increase in
γ̇∗. Note that a previously observed γ̇-independence of
vp for R ≈ 2.5 [32] results from that study’s limited
shear rate range, 0.04 < γ̇∗ < 0.14, which serendipitously
brackets the peak in vp about which vp is nearly constant
(e.g., see R = 2 data in Fig. 2). To test the nondimen-
sionalization of vp and γ̇, Fig. 2 also includes data where
d and g differ from the values used in the other simula-
tions. This additional data (magenta symbols) overlays
the data for d = 5mm and g = 9.81m/s2 at the corre-
sponding R values, indicating that the scaling of vp and
γ̇ is correct in both low and high γ̇ regimes.

The value of γ̇∗ where v∗p begins to drop decreases

with increasing R (dashed curve), e.g., γ̇∗ ≈ 0.14 for
R = 2, while γ̇∗ ≈ 0.03 for R = 6.5. This sensitiv-
ity to R along with the decrease in vp with increasing
γ̇ for γ̇∗ ≳ 0.1 is due to increasing fine-particle veloc-
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FIG. 2. Scaled fine-particle vertical velocity, v∗p = −vp/
√
gd,

vs. scaled shear rate, γ̇∗ = γ̇
√

d/g, for various particle size ra-
tios, R, gravitational accelerations, g, and bed particle diam-
eters, d, with restitution coefficient e = 0.8. Volume fraction
of large particles is kept nearly constant (0.57 < ϕ < 0.58)
by increasing the overburden pressure, P0, as γ̇ is increased.
Magenta symbols indicate data for d ∈ {2.5, 10, 15}mm and
g ∈ {4.91, 19.62, 29.43}m/s2 at γ̇ = 1 s−1 for R ≤ 6 and for
1 ≤ γ̇ ≤ 100 s−1 for R = 7 that validate the scaling. Dashed
black curve approximates maximum v∗p location for different
R. Error bars for selected cases indicate standard error of vp.
Red curves are predictions of the low-shear-rate regime model
(Eq. 2) for R = 3, 6, and 7.

ity fluctuations (characterized by vrms), which frustrate
percolation and increase with increasing R or γ̇∗, as de-
scribed later. In static beds, a similar decrease in vp is
observed with increasing e for both 4 ≤ R ≤ Rt [24] and
R > Rt [16, 18, 20, 24].

Figure 2 and previous work in static beds [24] suggest
that fine-particle percolation in sheared beds depends on
three mechanisms: geometric trapping, which is possi-
ble when R < Rt; bed particle rearrangement due to
shear; and fine-particle velocity fluctuations, which frus-
trate percolation. The basics are as follows. First, fines
with R < Rt that are trapped re-mobilize due to shear-
driven bed rearrangements at a rate that is proportional
to γ̇ and increases with R, since passable voids are gen-
erated at a higher rate for smaller fines. Second, the
average time to pass a passable-void increases with in-
creasing excitation of the fines, i.e., vrms. Consequently,
at high shear rates, where trapping times are short for
R < Rt and vrms is large (vrms ∝ γ̇) for all R, vp decreases
with increasing γ̇.

Low-shear-rate regime—To better understand the
dominant physics and develop a model for vp in this
regime, we start with the percolation depth model for

R < Rt in static beds, p(∆y) ∝ P
∆y
d

p , where p(∆y) is the
probability that a fine particle falls a distance ∆y or more
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from its starting height without becoming trapped, and
Pp represents the probability of a fine passing through
a randomly selected pore throat, which is equivalent to
the fraction of constrictions with diameters larger than
df [24]. In static beds, p(∆y) is the proportion of fine-
particle trajectories that exceed a depth ≥ ∆y, assuming
that the passage of fines through consecutive pore throats
is independent [24, 44]. Since untrapped fines percolate
with mean velocity vp,s = −c1

√
gd [24], p(∆y) can be

reformulated as a function of time using ∆y = −vp,st as

p(t) ∝ P
−vp,st

d
p , where p(t) is the probability that a fine

particle is untrapped after time t. The average vertical
velocity over t is then

vp =
vp,s
t

∫ t

0

p(t′) dt′ ∝ d

t lnPp

(
1− P

−vp,st

d
p

)
. (1)

For sheared systems, we assume that the time in-
terval between significant bed rearrangements scales as
tb = c2(R)γ̇−1. Substituting tb for t in Eq. 1 gives vp
as a function of shear rate, bed structure (via Pp) and
its variation (via c2), bed particle diameter, and gravita-
tional acceleration:

vp =
dγ̇

c2 lnPp

(
1− P

c1c2
√

g

γ̇2d

p

)
. (2)

This relation is alternatively expressed as

v′p =
vp
vp,s

= γ̇′ [1− exp (−1/γ̇′)] , (3)

where γ̇′ = −Cγ̇
√
d/g with C−1 = c1c2 lnPp as the sin-

gle model parameter. Eq. 2 exhibits the appropriate lim-
iting behaviors under its assumption that vrms is small:
i) as γ̇ → ∞ (tb → 0), vp → vp,s ∝

√
gd for all R; ii)

as γ̇ → 0, vp ∝ dγ̇ for the trapping regime (R < Rt) as
in most shear-driven percolation models for small R [8–
10, 12] and is independent of g; iii) in the passing regime
(R > Rt, Pp = 1) vp ∝

√
gd independent of γ̇ as in i).

To compare Eq. 2 to our data, we determine Pp by
characterizing the pore throat size distribution using De-
launay triangulation [24, 45, 46]. For ϕ ≈ 0.58, Pp is
nearly independent of shear rate for γ̇∗ ≲ 0.1, and in-
creases from 0.17 to 0.93 as R is increased from 2 to 6.
From [24], c1 = 0.09

√
R for ϕ ≈ 0.58 and e = 0.8. Fits

of Eq. 2 to simulation results for three R values obtained
by adjusting the one free parameter, c2, match the sim-
ulation data at low γ̇∗, as shown in Fig. 2 (solid curves).
The inset in Fig. 3 indicates that Pp increases with R
and c2 decreases with R, as expected.

All data in Fig. 2 is compared to the universal form
of the model (Eq. 3) in Fig. 3, which plots the vertical
velocity scaled by the untrapped vertical velocity from
the static bed, v′p = vp/vp,s, versus the rescaled shear
rate γ̇′ = −Cγ̇∗. Data for all R as well as varying g
and d (magenta) collapse onto the model prediction (red
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FIG. 3. Fine-particle vertical velocity scaled by vertical ve-
locity of untrapped fines in static bed, vp/vp,s, vs. rescaled
shear rate, γ̇′, showing collapse of all data (symbols) from
Fig. 2 in the low-shear-rate-regime onto the prediction of Eq. 3
(red curve). Data include varying R (symbols), and g and d
(magenta) for ϕ ≈ 0.58 and e = 0.8. Passing regime data
(R > 6.5) fall on the right boundary since γ̇′ = ∞. Inset: Pp

(left: black circle) and c2 (right: red triangle) vs. R.

curve) in the low-shear-rate region. For free-sifting cases
(R > 6.5), γ̇′ = ∞ since Pp = 1, and the corresponding
symbols fall on the far right of Fig. 3 and approach v′p = 1
(yellow star) in the low-shear-rate regime.

High-shear-rate regime—When v∗p for γ̇∗ ≳ 0.1 is plot-
ted versus γ̇∗ on a log-scale in Fig. 4(a), it is clear that
v∗p ∝ 1/γ̇∗ for γ̇∗ ≳ 0.4 and various R, g and d. This be-
havior is related to increasing fine-particle velocity fluctu-
ations, which frustrate percolation. To demonstrate the
relation between γ̇∗ and vrms, Fig. 4(b) plots the scaled
vertical root-mean-square velocity fluctuations of fines,
v∗rms = vrms/

√
gd, versus γ̇∗ for various R. For context,

v∗rms for bed particles (×) increase linearly with γ̇∗, as
would be expected from the corresponding increase in
inter-particle collisions. Similarly, for γ̇∗ ≳ 0.4, v∗rms ∝ γ̇∗

for all R, indicating that fine-particle velocity fluctua-
tions are driven by the bed-particle velocity fluctuations
in the high γ̇∗ regime. In comparison, for γ̇∗ ≲ 0.1,
gravity-driven fluctuations dominate, so that v∗rms is ei-
ther constant (free-sifting, R > 6.5) or decreases slower
than γ̇∗ (trapping, R ≤ 6.5) because v∗rms is an average
over trapped (smaller bed-driven fluctuations) and un-
trapped (larger gravity-driven fluctuations) states. Sim-
ulations with different g and d values at R = 7 [magenta
triangles in Fig. 4(b)] confirm the scaling of vrms with γ̇
and indicate that vrms is g-independent where v∗rms ∝ γ̇∗

but proportional to
√
gd where v∗rms is constant.

For all γ̇∗, v∗rms is larger for larger R and approaches
a limiting curve for large R, as Fig. 4(b) shows. Addi-
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FIG. 4. (a) Scaled fine-particle vertical velocity, v∗p = −vp/
√
gd, varies inversely with scaled shear rate, γ̇∗ = γ̇

√
d/g. (b)

Scaled fine-particle RMS velocity fluctuations, v∗rms = vrms/
√
gd, increase linearly with γ̇∗ for γ̇∗ ≳ 0.4. Bed particle data

(×) shown for comparison. (c) v∗p varies inversely with v∗rms for various shear rates, and restitution coefficients, e (colors as
indicated). Data in (a-c) includes various size ratios 2 ≤ R ≤ 10 (symbols), and g and d values (magenta) as in Fig. 2.

tional simulations with fine-particle density varied by two
orders of magnitude (250 kgm−3 to 2.5× 104 kgm−3) at
constant R change vrms by < 7% (vp is also minimally
affected), indicating that the increase in vrms with in-
creased R is due to decreased fine-particle diameter (i.e.,
smaller fines are less constrained by bed particles than
larger fines) rather than decreased fine-particle mass.

Having demonstrated the linear dependence of vrms on
shear rate at high γ̇, Fig. 4(c) tests our hypothesis that
the mean vertical velocity decreases with increasing vrms.
Indeed, the data show that v∗p ∝ 1/v∗rms when v∗rms ≳ 0.4
for all R. In dimensional form, vp ∝ gd/vrms ∝ g/γ̇,
where the linear dependence of vp versus γ̇ on g alone
at high γ̇ contrasts with the low-shear-rate scaling of vp
with

√
gd in the free-sifting regime and with d alone in

the trapping regime. Equally significant, Fig. 4(c) also
includes data for varying restitution coefficient between
bed and fine particles, 0.2 ≤ e ≤ 1, for R = 5 and 7. Low
restitution reduces vrms for large γ̇ such that different
combinations of e and γ̇ producing the same vrms yield
the same vp. Hence, vrms determines vp in the high shear-
rate regime (γ̇∗ ≳ 0.4).

Discussion—This study of gravity-driven percolation
of single non-cohesive fine particles in sheared granu-
lar beds reveals different dominant physics at low and
high shear rates. For low shear rates, γ̇

√
d/g ≲ 0.1,

as γ̇ increases from zero, bed-particle rearrangements
due to shear reduce fine-particle trapping to increase the
mean vertical velocity, vp. A statistical model of this
mechanism (Eqs. 2 or 3) accurately predicts vp for a
wide range of conditions. In the high-shear-rate regime,
γ̇
√
d/g ≳ 0.1, increasing γ̇ results in increasing fine-

particle velocity fluctuations which frustrate percolation
such that vp ∝ 1/vrms ∝ 1/γ̇ (Fig. 4).

Beyond its relevance to macroscale percolation,
gravitational-field-driven transport of fines in sheared
large-particle beds shares intriguing similarities with
electric-field-driven conduction in solids, where conduc-

tivity is the product of mobility and carrier concentra-
tion, see, e.g., [47]. For R > Rt, the granular system
is metal-like in that fine-particles are never trapped and
their mobility decreases with increasing vrms [Fig. 4(c)].
The v∗p ∝ 1/v∗rms dependence for fine-particle mobility is
analogous to lattice scattering in the Drude model [48]
for electron transport due to an electric field, E. In the
model, the mean electron momentum is p = mev = qEτ,
where me and q are the electron mass and charge, respec-
tively, and τ is the time between collisions with lattice
particles. Replacing v with vp, qE/me with g, and τ with
d/vrms (since the fine-particle mean free path is propor-
tional to d) yields the observed scaling vp ∝ gd/vrms for
fines. The near constant v∗p region evident in Fig. 2 for
R ∈ {7, 10} and γ̇∗ ≲ 0.1 occurs because vrms ̸= 0, even
at γ̇∗ = 0 in static beds, due to O(

√
gd) velocity fluctu-

ations during free sifting. It is only when γ̇∗ > 0.1 that
shear-induced fluctuations of O(dγ̇) become significant
enough relative to

√
gd that vp decreases.

For R < Rt, the granular system is semiconductor-
like in that the fraction of time fine-particles are un-
trapped increases with γ̇, analogous to the increase in
electron-concentration in the conduction band of an n-
type semiconductor with increasing temperature due to
ionization. For sufficiently large γ̇∗, fines are effectively
never trapped, resembling the saturation region in doped
semiconductors where carrier concentration is constant,
and vp ∝ 1/vrms as for the metal-like R > Rt case due to
enhanced scattering. The R = 6.5 case is notable in that
with increasing γ̇∗, “saturation” occurs before vrms be-
gins to increase [see above and Fig. 4(b)] and mobility to
decrease, resulting in a plateau in vp for 0.01 < γ̇∗ < 0.05.

This work only begins to explore the intriguing physics
of fine-particle percolation in driven granular systems,
and many questions and challenges remain. For instance,
our model and scalings accurately capture the depen-
dence of vp on γ̇, d, and g, but understanding how
to incorporate e and R as well as cohesion in expres-
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sions for v∗p and vrms is likely to be non-trivial, although
analogies with conduction in solids may be fruitful, as
outlined above. Additionally, extending our single-fine-
particle-limit results to finite fine-particle concentrations,
cf , would also be valuable and potentially analogous to
strongly correlated electron systems. Preliminary heap
flow simulations with R > 4 and global cf up to 30%
exhibit high-shear regions with local cf < 5% where in-
sights from the single-fine-particle limit are likely applica-
ble, but also low-shear regions, where fines pack densely
around large particles, forming a continuous fine-particle
phase that greatly reduces their vertical mobility.
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