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Multiterminal Josephson junctions (MTJJs), devices in which a normal metal is in contact with
three or more superconducting leads, have been proposed as artificial analogs of topological crystals.
The topological nature of MTJJs manifests as a modulation of the quasiparticle density of states
(DOS) in the normal metal that may be probed by tunneling measurements. We show that one
can reveal this modulation by measuring the resistance of diffusive MTJJs with normal contacts,
which shows rich structure as a function of the phase differences {ϕi}. Our approach demonstrates
a simple yet powerful technique for exploring topological effects in MTJJs.

The superconducting proximity effect, where a nor-
mal metal (N) acquires superconducting properties when
placed in good electrical contact with a superconduc-
tor (S), is characterized by the charge-transfer process
at the NS interface. A normal electron incident on the
boundary is retro-reflected as a hole producing a corre-
lated pair in S, a process known as Andreev reflection.
In the case of a clean normal metal connected to two
superconductors, Andreev reflection at the NS interfaces
results in discrete quasiparticle energy levels within the
normal metal. The energy of these Andreev bound states
is periodic in the phase difference between superconduct-
ing contacts ϕ similar to the periodicity of the electronic
dispersion in a one-dimensional crystal with crystal mo-
mentum k. This similarity has led to the suggestion of
creating artificial analogs of n dimensional crystals with
a normal metal in contact with n + 1 superconductors
with n distinct phase differences {ϕi}, with predictions
that the resulting band structure may be topologically
non-trivial [1]. The ability to access different topological
regions simply by tuning the phase differences {ϕi} is an
attractive feature of this system. In the ballistic case,
theory predicts topologically distinct gapped regions in
the “momentum” space defined by the phases {ϕi} sepa-
rated from each other by regions where the gap closes, as
well as quantized conductance between the superconduct-
ing contacts in the gapped regime in direct analogy with
real topological materials [1–3]. While the modulation
of the gap has been observed in tunneling measurements
[4, 5], quantized conductance in transport measurements
has not been observed to our knowledge [6–8].

If the normal metal is diffusive, one does not expect
well-defined Andreev levels. In this case, the topological
behavior is tied to the winding numbers of the phase of
the quasiclassical Green’s function describing the prox-
imitized normal metal [9–11]. A modulation of the quasi-
particle DOS with the phases {ϕi} is also predicted, with
different gapped regions in the quasiparticle DOS defined
by unique topological indices separated by regions where
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the gap closes. Tunneling measurements on a diffusive
device with three superconducting contacts have indeed
shown the predicted modulation of the DOS with the
phases ϕ1 and ϕ2, albeit only along the line ϕ2 = −ϕ1

as the phase modulation was achieved using a uniform
external magnetic field [9].

In our experience, fabricating devices for tunneling
measurements is challenging; it is easier to fabricate de-
vices for electrical transport measurements. The initial
theoretical studies for diffusive systems were for a normal
metal connected only to superconducting contacts where
the modulation of the DOS is uniform throughout the
normal metal. To perform electrical transport measure-
ments on the proximity-coupled normal metal itself, one
also needs to attach normal contacts. In this case, the
DOS is no longer uniform in the normal metal but varies
as a function of position between the normal contacts.
Nevertheless, with appropriately designed devices, there
can be a region in the diffusive normal metal where the
DOS mimics the DOS of a device with only supercon-
ducting contacts. More interestingly, measurements of
the resistance of the entire device reflect this DOS [12].
This is demonstrated in Fig. 1, which shows the DOS
and resistance of a diffusive normal metal with three su-
perconducting contacts and two normal contacts (Fig.
1(a)) as a function of the phase differences ϕ1 and ϕ2

between the superconducting contacts, calculated using
the quasiclassical superconducting Green’s function tech-
nique. The parameters used in this simulation are based
on Sample 1 of this study: details of the calculations can
be found in the End Matter and in Ref. 12. The DOS
at the juncture of the normal metal wires (Fig. 1(b))
is very similar to the earlier predictions for diffusive nor-
mal metals connected to only 3 superconducting contacts
[9, 10], with a large modulation of the DOS and gap clos-
ings at specific points in the phase space. Calculations
of the resistance between the two normal reservoirs (Fig.
1(c)) closely track this DOS, with the resistance achiev-
ing its normal state value Rn when the gap in the DOS
closes, although there is more structure in the resistance
in comparison to the DOS.

The modulation of the DOS and resistance with {ϕi}
reflects the changes in the retarded Green’s function Ĝ
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FIG. 1. (a) Schematic of the sample used for the numerical simulations. Gold represents the normal metal, with the squares
being the normal contacts, while blue represents the superconducting contacts. A voltage V is applied symmetrically between
the two normal contacts. The phases of the superconducting contacts are specified as shown. (b) Density of states at the Fermi
energy N(0) at the junction of all the normal wires normalized to the normal state value N0 as a function of the phase differences
ϕ1 and ϕ2 (c) Low temperature resistance R between the two normal contacts normalized to the normal state resistance Rn.

that describes the proximitized normal metal. Ĝ
R
can be

parameterized by two complex parameters θ and χ [13]

Ĝ
R
=

(︃
cos θ sin θ eiχ

sin θ e−iχ − cos θ

)︃
. (1)

Here, θ and χ characterize the strength of the supercon-
ducting pair correlations and their gauge-invariant phase,
respectively. θ = π/2 at a superconducting contact and
vanishes at a normal contact, while χ is set at the super-
conducting contacts by the imposed phases {ϕi}. In the
proximitized normal metal, θ and χ will vary between
these values. As pointed out by Strambini et al. [9], the
resulting state in the proximitized normal metal can be
mapped on the northern hemisphere of a Bloch sphere,
with θ representing the polar and χ representing the az-
imuthal angle. The equator of the Bloch sphere repre-
sents the fully gapped (superconducting) state while the
North pole represents the normal state. In terms of tran-
sitions between topologically distinct states, Strambini et
al. define the gapless state for their geometry as when-
ever the vector defining the Green’s function does not
lie on the equator, i.e., when θ < π/2. As our device
has normal contacts in addition to superconducting con-
tacts, θ will approach some maximum value θmax < π/2
but never equal π/2 in the proximitized normal metal.
Nevertheless, the overall behavior of θ and χ is similar
to that expected in a diffusive metal with only supercon-
ducting contacts [9, 10], with the gapless state now being
defined by θ < θmax. This is demonstrated in Fig. 2(a)
and (b), which shows the real parts of θ and χ in the
center of the wire of Fig. 1(a) as a function of ϕ1 and
ϕ2 (the imaginary parts are effectively zero to numerical
accuracy). There are regions with large θ corresponding
to the gapped areas in Fig. 1(b). Following the conven-
tion of Ref. [9], we label these regions with topological
indices (n1n2) corresponding to the winding numbers of
the phases ϕ1 and ϕ2, as shown in Fig. 2(a). These re-
gions are separated by narrow sections where θ ∼ 0 and

χ = 0, corresponding to the areas of phase space where
the system approaches the normal state. One can map
trajectories between adjacent minima in this phase space
on the Bloch sphere shown in Fig. 2(c). The blue tra-
jectory in Fig. 2(c) corresponds to the blue trace in Fig.
2(a) from the minimum specified by the winding numbers
(00) to the minimum specified by the winding numbers
(11), while the red trajectories correspond to going from
(00) to (-11). In the case of the blue trajectory, both θ
and χ vary, while for the red trajectory χ is always 0, and
hence the red trajectory on the Bloch sphere appears an
arc of a meridian. Note that for both trajectories, as men-
tioned earlier, the maximum value of θ is θmax ∼ 0.36π
rather than 0.5π as would be expected for a MTJJ with
no normal contacts. In addition, the blue trajectory does
not approach the north pole of the Bloch sphere corre-
sponding to the completely normal state, while the red
trajectory does (twice, in fact, although this is not dis-
cernible as χ is always 0). The reason for this can be seen
from Fig. 2(a) where the blue line passes a local maxi-
mum in the DOS but not regions corresponding to θ = 0.
θmax can be pushed closer towards π/2 by decreasing the
distance between the superconducting contacts and the
junction of all the normal wires, but it will never equal
π/2 due to the presence of the normal contacts. How-
ever, the main point is that both trajectories shift from
the maximum value of θmax ∼ 0.36π corresponding to
the gapped state in going between minima identified by
different winding numbers.

This analysis shows that resistance measurements on
proximity-coupled devices are an attractive route to ex-
plore topological effects in diffusive MTJJs. To this end,
we fabricated and measured three devices based on the
geometry of Fig. 1(a) for this study: we discuss the
results for two (Sample 1 and Sample 2) for which we
have the most complete sets of data. These two devices
differed slightly in sample dimensions as well as in the
thickness of the normal metal (see the Supplementary
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FIG. 2. (a) (b) Real part of θ (a) and χ (b) as the junction of all the normal wires (see Fig. 1(a)) as a function of ϕ1 and
ϕ2. (n1n2) in (a) identify the topological indices that characterize different gapped regions. (c) Mapping of the blue and red
trajectories shown in (a) on the Bloch sphere where the polar angle represents ℜ θ and the azimuthal angle represents ℜ χ,
and where the north pole denotes the completely normal state.

Materials for details; details of the fabrication can be
found in the End Matter). Figure 3(a) shows a SEM im-
age of Sample 1. In order to independently and statically
vary the phase between the superconducting contacts and
thus map out the entire phase space {ϕ1, ϕ2}, the super-
conducting contacts were connected to form two loops
through which a magnetic field could be threaded by on-
chip field coils generating a flux, as shown schematically
in Fig. 3(a). The area of each flux loop was ∼ 5 µm ×
50 µm. Measurements on a device in which one flux loop
was broken showed that each field coil coupled only to its
respective flux loop, with no measurable flux coupled to
the other loop within the range of field coil drive currents
used.

The resistance of the device was measured with stan-
dard 4-terminal low-frequency ac lock-in techniques with
a modified Adler-Jackson resistance bridge [14] using low-
frequency (< 120 Hz) ac excitation currents of ampli-
tudes of ∼ 1 µA. The ac excitation current was chosen
experimentally to optimize the signal to noise without
modifying the measured response. Field coil bias was
provided by two home-built current sources driven by
separate Agilent synthesizers. To avoid interference from
line-frequency noise, the battery-operated first-stage pre-
amplifiers were placed in a µ-metal shielded enclosure
attached to the cryostat.

Two length scales in the normal metal determine the
overall dimensions of the devices: the electron phase co-
herence length Lϕ and the superconducting coherence

length ξN =
√︁

ℏD/kBT [13]. Here T is the tempera-
ture and D = (1/3)vF ℓ the electronic diffusion coeffi-
cient, vF being the Fermi velocity and ℓ the elastic scat-
tering length of the electrons in the normal metal. Fits
to the weak localization magnetoresistance (MR) [15] of
co-deposited Au meander wires gave Lϕ in excess of 7 µm
at base temperature (∼ 20 mK), so that the devices were
entirely phase coherent in the measurement temperature
range. Sheet resistance measurements of the devices gave
ξN ∼ 0.5µm/

√
T , with T in Kelvin. Thus ξN ∼ 3 µm

at base temperature, also larger than the lengths of the
normal metal wires in the samples.

Ideally, one would like the length of the normal metal
wires between the superconducting contacts and the node
at which these wires meet to be as short as possible in or-
der to maximize the proximity effect and push the value
of θ close to π/2, corresponding to the fully gapped state
as discussed above. However, this leads to hysteresis in
the response as a function of the flux threaded through
each flux loop, as the large critical current of the prox-
imitized region coupled with the self-inductance of the
flux loops results in screening of the externally applied
flux. In the first device we measured (Sample 1), the
length between superconducting contacts L was ∼ 1 µm,
and the resistance traces of this device at base temper-
ature were indeed hysteretic (see Supplementary Mate-
rials). The critical current of the proximitized region
depends exponentially on the ratio L/ξN [16]. Since ξN
decreases with increasing temperature, we can reach a
non-hysteretic regime by raising the temperature. The
lowest temperature at which this should occur is when
L ∼ ξN . Although we cannot directly measure the crit-
ical current between the superconducting contacts, from
a comparison of the period of the oscillations seen at base
temperature to the range over which no oscillations are
observed on switching the sweep direction of the field
coil, one can roughly estimate the temperature at which
L ∼ ξN . From the data shown in the Supplementary, we
estimated this temperature to be ∼600 mK for Sample
1.

Figure 3(b) shows the resistance of Sample 1 as a func-
tion of the current Idc1 through one field coil at a few
different values over a narrow range of the current Idc2
through the other field coil at a temperature of 600 mK.
Clear periodic oscillations as a function of Idc1 are ob-
served that evolve systematically with Idc2, with no hys-
teresis. The oscillations in general show an asymmetric,
double-peaked structure, with the asymmetry evolving
as Idc2 is varied over a narrow range. The peaks appear
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FIG. 3. (a) False-color SEM image of Sample 1. Gold (blue) corresponds to Au (Al). The scale bar is 1 µm. The schematic
shows the superconducting (Al) flux loops attached to the superconducting contacts, as well as the on-chip Al field-coils (green).
The leads used for the 4-terminal resistance measurement are labeled. (b) Resistance of Sample 1 as a function of coil bias Idc1
at a few different values of Idc2 at 600 mK. (c) Contour map of the resistance in ohms of Sample 1 at 600 mK as a function of
idc1 and Idc2. Vertical dotted lines show cuts corresponding to Idc2 = 73 µA and Idc2 = 54 µA in (b). (d), (e) Contour map of
the resistance of Sample 2 at 300 mK and 30 mK, respectively.

to merge into a single maximum for Idc2 = 54 µA. To ob-
tain the full phase diagram, we swept Idc1 over the range
shown in Fig. 3(b) while stepping Idc2 sequentially to
obtain the contour map shown in Fig. 3(c). Small cur-
rent offsets likely arise from the remanent field of the su-
perconducting solenoid of the dilution refrigerator. The
contour map shares similar features with the results of
the simulation shown in Fig. 1(c), with structure that is
periodic in both Idc1 and Idc2. Each period corresponds
to one superconducting flux quantum Φ0 = h/2e through
an individual flux loop. As with the simulations, there
are central areas of low resistance separated by regions
of higher resistance. In particular, there are localized,
periodic regions of high resistance; these correspond to
the diagonal line shown in Fig. 1(c), and are responsible
for the evolution of the traces with Idc2 seen in Fig. 3(b).

While the structure is similar, there are also signifi-
cant differences. First, while the unit cell of the struc-
ture in the simulations of Fig. 1(c) is roughly elliptical
in shape, it is rhomboidal in the experimental data seen
in Fig. 3(c). Second, a key feature of the simulations
is that the maxima in resistance (and correspondingly
the maxima in N(0)) occur not at the points defined by
ϕ1, ϕ2 = (2n + 1)π (marked with the cross on the diag-
onal line in Fig. 1(c)), but at pairs of points in phase

space a short distance away along a diagonal (marked
with filled circles in Fig. 1(c)). In the experimental data,
these diagonals of high resistance can be observed, but
the maxima in resistance do appear to occur at field coil
currents corresponding to ϕ1, ϕ2 = (2n + 1)π. In the
simulations, the regions of high resistance are connected
to each other by narrow strips in phase space where the
resistance almost reaches its maximum value. The ex-
perimental data also shows similar strips, but the resis-
tance does not approach the maximum resistance seen
near ϕ1, ϕ2 = (2n+1)π. These regions correspond to the
(almost) symmetrical double peaked oscillations shown
in Fig. 3(b) for Idc2 = 49 µA. Indeed, it should be noted
that the experimental data are perhaps more similar the
results for an alternate geometry discussed in Ref. [12]
which differs from Fig. 1(a) in that there are regions
along the path in the normal metal between the nor-
mal reservoirs where the injected quasiparticle current
overlaps with the induced supercurrent between the su-
perconducting contacts. The wires in the experimental
sample have finite width, unlike the idealized geometry
of Fig. 1(a), so that there is some overlap between the
quasiparticle current and the induced supercurrent. Fi-
nally, we note the absence of the local resistance maxi-
mum in the experimental data present at the center of
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Fig. 1(c). We believe this might be due to the mea-
surement averaging over the small decrease in resistance
immediately prior to the peaks.

To confirm the reproducibility of these results, we fab-
ricated and measured a second set of devices of the same
design. In order to make measurements at the base tem-
perature of our refrigerator without encountering hys-
teresis as noted above, these devices were fabricated with
a length L ∼ 2 µm between the superconducting con-
tacts. Figures 3(d) and (e) show the phase diagrams for
one of these devices (Sample 2) at 300 mK and 30 mK
respectively. These data are similar to those of Sam-
ple 1 shown in Fig. 3(c), except that the distinct max-
ima seen at ϕ1, ϕ2 = (2n + 1)π are no longer visible.
Sample 2 shows only diagonal lines of high resistance,
more consistent with the simulations. There is no sig-
nificant difference in the structure of the phase diagram
between 30 mK and 300 mK, although the overall resis-
tance is higher as expected, and the modulation of the
resistance is larger at higher temperatures (5.2% com-
pared to 2.7%). This is consistent with the numerical
simulations (see Supplementary Materials).

The results of the simulations shown in Fig. 1 are
obtained by imposing the phases {ϕ1, ϕ2} at the super-
conducting contacts and the voltage at normal contacts
before calculating the currents through all normal metal
wires. In general, the phases ϕi need to be determined
self-consistently by applying the usual flux quantization
condition for each flux loop [17]

ϕi + 2π
Φi

Φ0
=

∮︂
∇ϕ · dl = 2πni (2)

where ni is the topological index introduced by Stram-
bini et al. [9], ϕi is the (gauge-invariant) phase differ-
ence between the superconducting contact and the ref-
erence contact (ϕ = 0) and Φi is the net flux enclosed
by the corresponding loop. If the self-inductance Li of
the flux loop is not negligible, Φi is not equal to the flux
Φext generated by the on-chip field coils, but is given
by Φi = Φext − LiIsi, Isi being the supercurrent flow-
ing through the flux loop. In the experiments, we es-
timate the self-inductance of each flux loop to be ap-
proximately 0.1 nH and the screening supercurrents to
be on the order of µA based on prior experience with
similar proximity coupled devices [18], so that the flux
generated can be an appreciable fraction of Φ0. We
have clearly seen this screening effect in Sample 1 at
low temperatures (see Supplementary Materials). In or-
der to take the effects of the screening current into ac-
count, we have simulated the DOS and resistance of the
device of Fig. 1(a) by self-consistently calculating the
phases ϕ1 and ϕ2 on each superconducting contact using
Eqn. (2). Theoretically, the maximum value of the crit-
ical supercurrent in a SNS junction in the long junction
limit is Ic ∼ 10.82Ec/eRn assuming perfectly transpar-
ent normal-metal/superconductor interfaces [16]. Here
Ec = ℏD/L2 is the Thouless energy, L being the length

of the normal metal between the two superconductors.
In previous experiments, we have found that the criti-
cal current is typically a factor of ∼ 20 smaller than this,
likely due to the fact that the interface transparency is fi-
nite [18]. Since the numerical simulations, which assume
perfect normal-metal/superconductor interfaces, overes-
timate the supercurrents in our device, we use a corre-
spondingly smaller value of the self-inductances Li in our
simulation. The results of these simulations are shown in
Fig. 4, where now the x and y axes represent the normal-
ized external flux coupled to each flux loop. The overall
structure is similar to that seen in Fig. 1, with an ellipti-
cal region in the center of each cell where the DOS is at
a minimum with correspondingly smaller resistance, but
the detailed structure is modified. In particular, the tran-
sitions between these minima are broader, in line with
our experimental observations. While a more accurate
agreement between theory and experiment would likely
require taking into account the inevitable asymmetries
in the flux loops as well as the different transparencies of
each normal-superconducting interface, it is clear that it
is important to take into account the self-inductance of
the flux loops in such devices. Regardless, we note that
the overall topological structure is similar to that of Fig.
1 and is thus robust against such perturbations.

In conclusion, we have measured the resistance of diffu-
sive three-terminal Josephson junctions as a function of
the two independent superconducting phase differences
imposed by on-chip field coils. The resistance shows a
rich structure as a function of these phase differences,
reflective of the topological nature of the underlying
anomalous superconducting Green’s function. The over-
all structure of the phase diagram is consistent with nu-
merical predictions based on the quasiclassical theory of
superconductivity, although the detailed structure is dif-
ferent, likely due to the finite linewidths in the device and
screening effects arising from the finite self-inductance
of the flux loops used to generate the superconducting
phases. Our results demonstrate the power of using elec-
trical transport measurements with normal contacts to
explore the physics of MTJJs, including potentially in
ballistic devices where a different class of topological ef-
fects is predicted.
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End Matter
Numerical Simulations

The simulations for this paper were performed by solv-
ing the quasiclassical equations of superconductivity in
the Keldysh formulation, which allows one to obtain solu-
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(a) (b)

FIG. 4. (a), (b) Normalized DOS and resistance, respectively, for the geometry of Fig. 1(a) determined by calculating the
phase on the superconducting contacts self-consistently using Eqn. (2).

tions for the superconducting Green’s functions (the Us-
adel equation) as well as for the quasiparticle distribution
functions (the kinetic equations) [13]. The equations are
conveniently solved using the software package developed
by Pauli Virtanen [19]. Details of these numerical calcu-
lations can be found in Ref. [12]. In brief, for the simula-
tions shown in Figs. 1 and 2, referring to the schematic in
Fig. 1(a), we set the phase of one superconducting con-
tact to 0 without loss of generality, and assign phases ϕ1

and ϕ2 to the remaining two superconducting contacts.
A small voltage bias V is applied symmetrically between
the two normal contacts. The normal-superconducting
contacts were assumed to be perfectly transparent. So-
lution of the Usadel equation enables one to determine
the normalized density of states at any point along the
normal wire, and in particular at the junction of all the
normal wires, which is what is plotted in Fig. 1(b). So-
lution of the kinetic equations allows one to calculate the
quasiparticle current flowing into the normal contact and
from this the normalized resistance between the normal
contacts plotted in Fig. 1(c). The parameters used in
the simulations are based on the dimensions and film pa-
rameters of Sample 1. In particular, the Thouless energy
Ec = ℏD/L2 which sets the energy scale of the proximity

effect is determined by the length L of the normal wire
between the voltage probes (see Fig. 3(a)).
For the self-consistent calculation whose results are

shown in Fig. 4, the Usadel ad kinetic equations were
solved iteratively until the condition given by Eqn. (2)
was satisfied.
Device Fabrication
Devices included in this study were fabricated us-

ing e-beam lithography on Si substrates with a 1 µm
SiO2 insulating layer. All features were patterned in
MMA/PMMA bilayers using a Tescan MIRA 4 electron
microscope onto which ultra pure Au and Al films were
deposited in an Edwards thermal evaporator used ex-
clusively for 99.999% (5N) Au and Al source material.
Separate lithographic steps were used for the Au and Al
films. Prior to the Au deposition, an in situ O+

2 plasma
etch was used to clean the substrate. Additionally, to
ensure high NS interface transparency, an in situ Ar+

plasma etch was performed immediately prior to a de-
position of Al, leaving only enough time to pump back
to a base pressure of 8 × 10−7 torr. The devices were
cooled in an MX100 Oxford dilution refrigerator within
hours of the Al deposition to prevent degradation of the
NS interfaces.
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