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Abstract

Pathogen transmission studies require sample collection over extended periods, which can be chal-
lenging and costly, especially in the case of wildlife. A useful strategy can be to collect pooled samples,
but this presents challenges when the goal is to estimate prevalence. This is because pooling can intro-
duce a dilution effect where pathogen concentration is lowered by the inclusion of negative or lower-
concentration samples, while at the same time a pooled sample can test positive even when some of
the contributing samples are negative. If these biases are taken into account, the concentration of a
pooled sample can be leveraged to infer the most likely proportion of positive individuals, and thus
improve overall prevalence reconstruction, but few methods exist that account for the sample mixing
process. We present a Bayesian multilevel model that estimates prevalence dynamics over time using
pooled and individual samples in a wildlife setting. The model explicitly accounts for the complete
mixing process that determines pooled sample concentration, thus enabling accurate prevalence esti-
mation even from pooled samples only. As it is challenging to link individual-level metrics such as age,
sex, or immune markers to infection status when using pooled samples, the model also allows the
incorporation of individual-level samples. Crucially, when individual samples can test false negative, a
potentially strong bias is introduced that results in incorrect estimates of regression coefficients. The
model, however, can account for this by leveraging the combination of pooled and individual samples.
Last, the model enables estimation of extrinsic environmental effects on prevalence dynamics. Using
a simulated dataset inspired by virus transmission in flying foxes, we show that the model is able to
accurately estimate prevalence dynamics, false negative rate, and covariate effects. We test model
performance for a range of realistic sampling scenarios and find that while it is generally robust, there
are a number of factors that should be considered in order to maximize performance. The model
presents an important advance in the use of pooled samples for estimating prevalence dynamics in a
wildlife setting, can be used with any biomarker of infection (Ct values, antibody levels, other infection
biomarkers) and can be applied to a wide range of host-pathogen systems.
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Introduction

When monitoring and studying pathogen transmission over time, it is essential to estimate
prevalence dynamics. Prevalence, defined as the proportion of individuals in a population that
tests positive for the current (e.g., presence of a pathogen or its genetic material) or past (e.g.,
antibody presence) presence of an infectious organism, is a key metric, yet can be difficult to es-
timate. The reason for this is that it is almost never feasible to test every individual in population,
which means prevalence needs to be estimated from a population subset. As a result, methods
are needed to estimate prevalence from imperfect data due to constraints in the number and
quality of samples.

Sampling will depend on constraints (logistical, technical, individual availability, monetary),
and different sampling strategies can be used to maximize the number of individuals being sam-
pled (Restif et al., 2012; Truscott et al., 2019). One such strategy is to pool samples, either by
combining samples collected from different individuals (which reduces resource investments in
testing and collection; Dorfman, 1943), or by collecting samples that already consist of material
from multiple individuals (e.g., monitoring of SARS-CoV-2 in sewage; McMahan et al., 2021). In
studies of wildlife disease this latter approach is relatively common, for example when collecting
fecal droppings in a den or cage containing multiple animals (Truscott et al., 2019), or when col-
lecting water samples in a lake or in wastewater (Dalu et al., 2011). An important drawback of
the latter approach to pooling is that the sample cannot be linked to individual-level data, except
indirectly under certain controlled conditions (McMahan et al., 2017).

Individual samples provide the highest-resolution information, as they allow additional indi-
vidual-level data to be collected, including body measurements, estimates of sex and age class,
and a wide range of biomarkers such as antibodies, blood proteins or other infections. These
additional data are highly valuable as they can be used to learn more about correlates and dri-
vers of infection. Depending on the study system, however, there can be several challenges to
collecting and interpreting individual samples. A first is that the collection and processing of
individual samples can be costly — in terms of effort, time or monetary resources — which lim-
its sample sizes and temporal/spatial resolution. It can also be difficult to capture and sample
individuals, for example when dealing with species that are elusive or live in low-density popu-
lations. Another challenge can arise when individuals do not shed a pathogen continuously but
intermittently because of fluctuating pathogen concentrations. For example, the rodent Masto-
mys natalensis is known to shed arenavirus in varying concentrations (Borremans et al., 2015).
Intermittent shedding means that it is possible to collect a negative sample or a sample with
an undetectable pathogen concentration even though the individual can be considered infec-
tious, leading to false negative results with regards to determining whether or not an individual
is infectious.

A powerful study approach is to optimize the trade-off between sampling cost and data res-
olution by collecting both pooled and individual-level samples. This is commonly done in bat
pathogen studies, where samples are collected from individual bats using net captures — which
enables the collection of high-quality samples and associated individual variables — as well as
from multiple bats simultaneously using plastic sheets placed under roosts (Burroughs et al.,
2016; Field et al., 2015; Giles et al., 2021). This approach is particularly useful when the goal is
to estimate prevalence dynamics.

When estimating prevalence, the use of pooled samples presents two well-known challenges,
both resulting from the fact that multiple individuals contribute to the same sample. The first
challenge is that a pooled sample can test positive regardless of how many of the contributing
individual are actually positive. As a result, the proportion of positive pooled samples can be bi-
ased upwards, leading to over-estimates of prevalence (Giles et al., 2021). The second challenge
is the opposite of the first, and is the fact that a pooled sample can test negative even when
one or multiple contributing individuals are positive. This can arise when the sample is diluted
by negative samples, causing the concentration of the positive sample(s) to lower and fall be-
low a detection threshold (which is called the dilution effect in pooled/group/composite testing
literature; Wein and Zenios, 1996). Assay sensitivity will be an essential factor in how low the
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diluted concentration can be before it can no longer be detected. Several approaches have been
suggested to deal with these two challenges (Cleary et al., 2021; Wein and Zenios, 1996), the
most recent of which presents a Bayesian mixture model approach that can account for both at
the same time under certain conditions (Self et al., 2022). Most studies on the analysis of pooled
samples focus on testing protocols for cost reduction, with the goal of eventually identifying the
positive individuals (Aldridge et al., 2019; Dorfman, 1943; Mutesa et al., 2021). Perhaps for this
reason, few methods have been developed for explicitly using pooled samples to estimate preva-
lence in the population (Cleary et al., 2021; Coldn et al., 2001; Giles et al., 2021; Hoegh et al.,
2021; Scherting et al., 2023), and even fewer have attempted to use the actual concentration
of the infectious agent (or another biomarker like antibody concentration) in the pooled sample
to estimate how many of the contributing individuals are positive (Cleary et al., 2021; Self et al.,
2022; Zenios and Wein, 1998). A particular challenge arises when the underlying distribution of
test values does not follow a standard-family (e.g. Gaussian) distribution, even though this is the
most common situation, especially for wildlife populations (Edson et al., 2019; Nhat et al., 2017).
Few methods exist that can incorporate such distributions, and to our knowledge none provide
a method for numerically calculating the full probability distribution of test values, instead using
approximation methods (Self et al., 2022; Zenios and Wein, 1998). Leveraging the information
present in the concentration of the infectious agent in pooled samples instead of only using
binary negative/positive information can lead to significant improvements in the estimation of
prevalence, particularly in the case of disease surveillance in wildlife populations.

We present a multilevel Bayesian modeling approach to estimate infection prevalence simul-
taneously from both individual and pooled samples, explicitly using the concentration of the in-
fectious agent in pooled samples and thereby accounting for the biological mixing process that
generates pooled sample concentrations. The model presents two key advances: first, the ability
to estimate the false negative rate ensures that the effect coefficients of infection covariates
can be estimated correctly, as these can otherwise be strongly affected by the presence of false
negative samples. The second is the introduction of an algorithm that enables the full numerical
calculation of the probability density function of concentrations in pooled samples.

Model use and performance is presented using simulated data inspired by a bat-pathogen
study system, but we highlight that this approach can be used for any situation in which preva-
lence fluctuations are estimated from pooled samples with a known (or estimated) number of
contributing individuals, especially when combined with individual samples. To illustrate the
broader relevance, and test how the model performs under different conditions, we included rel-
evant scenarios that each resemble a realistic biological situation. The approach presented here
is particularly useful when the goal is not to identify which specific individuals are positive but to
determine prevalence in the population, because there is no need to re-test de-pooled samples.
Examples include monitoring SARS-CoV-2 prevalence (Cleary et al., 2021; Scherting et al., 2023),
estimating prevalence in wastewater if the number of contributing individuals can be estimated
(Dalu et al., 2011), assessing pathogen prevalence in the animal production industry (Evers and
Nauta, 2001), or estimating pathogen prevalence in wildlife populations (Fontoura-Goncalves
et al., 2023). Note that while the example presented here focuses on infection prevalence, the
model can also be applied to other biomarkers such as antibodies.

Methods

The main goal of this study is to estimate the true, unknown, proportion of pathogen-positive
individuals over time, from both pooled and individual samples. Each of these types of samples
presents a challenge for estimating prevalence, but also an opportunity, as outlined in Table
1. Note that the focus is on "naturally” pooled samples, where collection was not done directly
from individuals, as opposed to "technically" pooled samples that were pooled intentionally after
collection from individuals.

Here, we simulated data inspired by existing studies on flying foxes for research on temporal
virus dynamics (Burroughs et al., 2016; Field et al., 2015; Giles et al., 2021). For the reasons
mentioned above, bat virus studies often use field sampling designs that rely heavily on the
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Table 1 - Sample types and their different challenges and advantages for estimating

prevalence.

Sample type Challenge Advantage Example

Pooled. Number of positives Sample multiple indi- Blood sample pooling to re-
unknown; Number of viduals at once. Lower duce testing costs; Urine col-
contributors possibly collection/testing lected from sheets under a bat
unknown; Dilution ef- cost per individual. roost.
fect.

Individual. False negatives possi- Additional individual Samples collected in combina-
ble. measurements tion with individual data such

as sex, age and body weight;
Urine, blood samples and body
measurements collected from
captured bats.

collection of pooled urine and fecal samples under bat roosts (Field et al., 2015). A sampling
design that incorporates pooled samples will be more beneficial for some wildlife species than
for others, but there are no inherent limitations to which species this approach could be applied
to. We chose to use simulated data only, as the goal of this study is to present and test a model
to estimate prevalence, which can be done optimally when all underlying parameters are known
and different scenarios can be generated. This makes it possible to determine how well the model
is able to estimate the known parameters and prevalence dynamics for a range of scenarios. The
simulated datasets are described below at the end of the Methods section.

The model is described in three parts, representing the multilevel/hierarchical nature of the
model (1). The two main parts, a model for estimating prevalence from individual samples and
a model for estimating prevalence from pooled samples, are linked by a third model of true,
unobserved prevalence dynamics. We used a Bayesian multilevel model (also called a hierarchical
model), as this provides a solid framework for linking the different model components, modeling
unobserved latent parameters, incorporating prior knowledge through prior distributions, and
providing posterior distributions of parameter estimates that show the uncertainty. While not
done here, it would be straightforward to include an additional observation model that takes
into account observation/measurement errors.

Modeling individual samples

Individual (/) test result (negative or positive for biomarker presence) was modeled as a binary
variable y; (O = negative, 1 = positive) using a Bernoulli distribution:

1
(1) yi ~ Bernoulli <(1 —¥) 1+ exp(—(Byg + X ﬁ))) |

where 1 is the false negative rate that accounts for the lower prevalence resulting from the pres-
ence of false negative samples, and the remainder of the equation is a logistic regression, where
By is a varying intercept specific to each time at which individuals were sampled, X is a n x k
matrix containing k covariates of n individuals, and 8 is a 1 x k matrix of regression coefficients.
The logistic regression component allows estimating the correlation between individual-level co-
variates (e.g., biomarkers, age, body weight) and infection status. Prevalence 6"? at each time
point can in theory be calculated by taking the integral of /ogitfl(ﬁt[,-] + X B) over all covariates,
but because this becomes highly computationally expensive when there is more than one co-
variate it is much more efficient to use a numerical approximation. Here, we used Monte Carlo
integration (Gelman et al., 2013), where z random samples are generated for each covariate from
their distribution and the mean of the logistic function calculated at all sample combinations is
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A Prevalence over time 9 --- estimated
t --- observed data
0;
Prevalence at time t,
estimated using
information from C Prevalence from individual samples
A,Band C
u=
Can estimate correlations gind
with prevalence, e.g. ¢
environmental conditions gind
t
B Prevalence from pooled samples
. Yi= X=
th] Infection status Covariate values of individual i
q (neg/pos) (age, weight, immune marker
J . Lo .
Gt[j] O of individual i value, ...)
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' Number of Number of
Ct value of o Lo False negative Effect estimates of
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pooled Lo rate (across covariates (across
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sample j N all individuals) all individuals
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Figure 1 - Multilevel model. A Gaussian Process model of prevalence (A) ensures that
prevalence is estimated smoothly over time, using information about prevalence from
the two other models (highlighted in red). Model (A) is able to test correlations between
prevalence fluctuations and other variables such as temperature and precipitation. Model
(B) illustrates the model that estimates prevalence from pooled samples, using the Ct
value and number of contributing individuals as input data. Model (C) uses individual-
level data to estimate prevalence, and enables estimating correlates of infection status.

the prevalence estimate 0" for time t:
(2) gind — / logit ™ (Beg + X - B)p( Z logit ™ (Begy + X; - B).

Random samples for each covariate are generated from their respective distributions. Here,
covariates were modeled using a normal distribution, where the mean and standard deviation
are included as parameters in the model. Finally, #i"? is used to estimate overall prevalence 6,
(as shown below in the section describing the true prevalence model).

The probability of an individual being positive, even when testing (false) negative, can be
calculated using the inverse logit function,

1
+ _
Q) F = T ep— (3l + X))’

where individual shedding probability is informed by an individual's covariate value(s) and
prevalence at the time it was sampled. When there is a correlation between shedding status and
one or more individual-level covariates, the predicted infection status can be used to identify
which individuals may have tested false negative.

The prior distribution for ¢ can be a beta distribution as it is bounded by O and 1. Because
in many cases low false negative rates will be more likely, this could be a weakly informative
distribution such as Beta(1,2). The prior for 3; can be a weakly normal distribution such as
Normal(0, 10). The prior distributions for the regression coefficients 8 will depend on the covari-
ate and the way in which their correlation with shedding status is modeled, but in many cases
this can be a weakly informative normal distribution such as Normal(0, 10) when using scaled
covariates.

Modeling pooled samples

The goal of this model is to estimate the proportion of positive bats using the Ct value of
a pooled sample. The analysis of pooled samples can be challenging, leading to a large body of
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studies on pooled testing (also called group testing or composite testing, depending on the field)
addressing the different problems related to pooled samples (Cleary et al., 2021; Self et al., 2022;
Wein and Zenios, 1996). Most studies have focused on pooled testing in the context of labora-
tory assay cost reduction, where the main challenge is to find the optimal number of samples to
pool given an expected proportion of positives (Dorfman, 1943). An evolving challenge that is
more applicable for understanding transmission dynamics is how to estimate the proportion of
positive individuals. A number of approaches have been proposed for this, with many based on
the model presented by Coldn et al. (2001):

m=(1-(1-0)"),

where 7 is the probability that a pooled sample tests positive, 6 is prevalence, and n is the
number of samples in the pool. Parameter 7 can then be used to model Z ~ Bernoulli(w), where
Z is a binary observed variable indicating whether or not the pooled sample is positive. This
implementation has, for example, been proposed as a way to model prevalence dynamics over
time for SARS-CoV-2, in combination with individual data (Scherting et al., 2023). This approach
has two key limitations however. A first is that above a certain combination of pool size and
prevalence (around 50%), most pooled samples will be positive, resulting in large uncertainty
intervals surrounding the prevalence estimates. A second weakness is that this approach does
not account for the fact that the concentration of pathogen is diluted by samples containing a
lower concentration, including negative samples. This dilution effect has proven to be particularly
difficult to address (Zenios and Wein, 1998).

To date, most approaches have used binary test data for estimating prevalence using pooled
samples (Coldén et al., 2001; Hoegh et al., 2021; Mutesa et al., 2021). Most assays, however, pro-
vide quantitative data, which are then turned into a binary negative/positive result based on a
threshold value, and the additional information provided by the quantitative assay is lost. This
guantitative information offers opportunities, however, that can address both limitations of the
binary approach. Although few studies have developed methods to use the full quantitative test
results for estimating prevalence from pooled samples (Cleary et al., 2021; Zenios and Wein,
1998), the work by Self et al. (2022) in particular has shown how promising this approach can
be. They used a Bayesian mixture model approach to estimate prevalence, taking into account
the dilution effect based on the distribution of biomarker values (e.g. pathogen concentration)
of negative and positive samples. A crucial part of these approaches is the use of a probability
density function of positive test values. The methods in Cleary et al. (2021) and Self et al. (2022)
provide a useful approach for estimating these. To complement these approaches, we provide
an algorithm to numerically calculate this probability density function so that it covers all possi-
ble combinations of numbers of positive and negative individuals while taking into account the
underlying distribution of test values in the population.

We modeled pooled samples using their cycle threshold (Ct) value, a measure of the concen-
tration of viral genetic material obtained using qRT-PCR (lower Ct value = higher concentration).
The virus concentration in a pooled urine sample is determined by three key factors that influ-
ence the final pooled concentration: (1) proportion of positive bats, (2) concentration of virus
shed by each positive bat, (3) relative urine volumes collected from each bat. Here we focus
on the first two factors, and assume that the volumes collected from each bat are equal. In or-
der to estimate the proportion of positive bats using the Ct value, it is necessary to calculate a
probability distribution of Ct values for pooled samples, as this in turn enables calculating the
likelihood of observing certain values given a combination of parameter values. A Ct probabil-
ity distribution can be calculated by combining two key parts, a standard binomial probability
density function (to take into account prevalence) and an ad-hoc distribution of probabilities of
observing a pooled Ct value given a combination of negative and positive bats:

" C; ~ PooledCt(N;, 0,3),

where ; is the Ct value of pooled sample j, N; is the total number of bats contributing to
sample J, Gfﬁ.]‘" is prevalence at the time sample j was collected, and
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N; _
(5) PooledCt = > (NJ> Ot (1= 0b,e1)) "~ P(Gjlqy, ;).

q;j=0 /

Here, (’(\g)efm(l — Op,¢1;7)"I~ is the binomial probability of observing g; positive out of N;
contributing individuals in pooled sample j, given a prevalence 0. P(Cj|q;j. N;) is the probability
of observing Ct value ; given g; positive out of N; individuals. g; and 6,[; are the estimated
parameters, while N; and C; are observed. This equation closely matches equation 2 in Zenios
and Wein (1998).

Prior to model fitting, P(C;|q, N) must be calculated for each possible combination of g, N;
and G;, which is done according to the following algorithm:

1. Determine all possible combinations (with repetition) of g possible Ct values and N; — gq
negative values.

2. For each combination:

— 2.1. Transform the Ct values of the positive samples to virus concentrations (conversion
based on laboratory controlled testing, or testing of a range of individual samples).

— 2.2. Calculate the mean virus concentration.

— 2.3. Back-transform the mean virus concentration to its corresponding Ct value. Round
up the Ct value to the next integer to mimic detection in RT-PCR (a concentration even slightly
higher than a certain Ct value will not be detected until the next PCR cycle).

3. Count the number of combinations that result in Ct value C, and divide by the total num-
ber of combinations. This is Ct observation probability P(C;|q, N;), without accounting for preva-
lence in the population.

All code used for the calculation of the probability distributions can be found in Supplemen-
tary Information.

There are a number of important considerations when calculating P(Cj|q, N;). A first is that
while the algorithm assumes that each Ct value (in step 1) is equally likely, this is rarely the
case. The distribution of Ct values in a population rarely follows a uniform distribution, and can
instead follow many possible non-standard distributions (e.g., a skewed distribution when low
concentrations are more likely). These distributions can also change over time and with changing
biological conditions (Lunn et al., 2023). When this is the case, probability P(Cj|q, N;) can be
calculated by first calculating the total probability of each combination, then taking the sum of
the total probabilities of all combinations that result in Ct value C, and dividing this by the sum
of all total probabilities of all combinations. When the underlying Ct distribution changes over
time, or under certain conditions, P(Cj|q, N;) must be calculated for each of these situations.
Individual samples, if collected, can be used to inform this distribution.

A second consideration is that urine volume is assumed to be equal for all N contributing
bats. If this is not the case, the combinations can be corrected by normalizing for volume in
the sample. This step requires knowledge of the volumes contributed by each individual. While
this is possible in situations where samples are pooled after collection from individuals, this is
unrealistic in field conditions. In this situation, the most parsimonious solution is to assume that
all bats contributed equally to a pooled sample. This will of course rarely be the case, but variation
in contributed volumes should not affect inference as long as it is not biased. Such biases could
arise if infected bats, or bats shedding lower or higher virus concentrations, excrete different
volumes than others. It is possible however to account for this when calculating P(Cj|q, N;) if
there is a model of how this bias occurs.

A third consideration is computational burden, which enforces a limit on the number of Ct
values and the number of contributing bats. This is due to the fact that for each possible Ct value
of a pooled sample, a probability is calculated for each possible combination % of Ct val-
ues C and individuals N. For example, in a simple situation where only 2 Ct values are possible,
and a sample has 3 contributing individuals, the probability of observing a certain Ct value of

the pooled sample must be calculated for % = 4 combinations. For more realistic numbers
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of 15 possible Ct values and 10 individuals, this becomes 1,961,256 combinations, increasing
exponentially and rapidly reaching a maximum computationally feasible limit around combina-
tions above 15 Ct values and 15 individuals. There are solutions for this, however. One solution
would be to discretize Ct values into larger intervals (e.g., [21-24), [24-26), etc.), and/or setting
all numbers of individuals above a certain maximum value equal to that value. This would lower
the number of possible combinations and reduce computation time to feasible levels. Another
solution, which would not require discretizing biomarker values or limiting the number of con-
tributing individuals, would be to approximate the Ct probability distribution using Monte Carlo
simulation/sampling (Kroese and Rubinstein, 2012) to generate a large number of random com-
binations of all values (versus numerically calculating every possible combination). While these
solutions are likely to still result in good prevalence estimates, this will depend on the situation
and should be tested with simulations prior to model fitting. We recommend taking these pool
size requirements into account during the field experimental design process.

A full working example of the procedure to calculate the Ct probability distribution is pro-
vided in Figure 2.

& W | |7 Eeme-w
Z Pobs
21 22

Ct 0 21 3 0.157 +0.150 + ...
Gc 0 7,364,635 7,364,635 4,909,756
P(obs) - 0.004 0.004 0.045 Y.0.048 +0.053 + ...+ 0.157 + 0.150 + ... + 0.134

= 0.044

Ct 0 21 22 23 ©)
Gc 0 7,364,635 3,971,284 3,778,640 — 0
P(obs) - 0.024 0.029 0.053 6 =20% m%

Npos ~ Binomial(Neotar, 6)

Ct 0 34 37 36 P(Nyos = 2 |Neotar = 3,6 = 0.2)
Ge 0 2,400 376 926 — 0.096
P(obs) - 0.074 0.083 0.157 =V

(D)
Ct 0 34 38 36 —
Gc 0 2,400 203 868 P (Ct) - ?
P(obs) - 0.074 0.076 0.150

P(Ct = 36|Npys = 2,Npppq = 3,6 = 0.2)

Ct 0 39 39 40 =0.044 x 0.096
Gc 0 109 109 73 =0.0042
P(obs) - 0.067 0.067 0.134

Figure 2 - lllustration of how the probability of observing a Ct value in a pooled sample
is calculated. In the example, we want to calculate the probability of observing a Ct of 36
with 2 out of 3 positive bats and 20% prevalence in the population. First (A), the pooled
Ct value is calculated for every possible combination (with repetition) of 1 negative and
2 positive bats. For each combination, the Ct values (In scale) are converted to genome
copies (Gc) so that the pooled concentration can be calculated on a linear scale. The
pooled genome copy concentration is then converted back to a Ct value, rounding up to
the next integer to emulate the RT-PCR detection process. Next, for each combination
of Ct values the corresponding probability of observing the pooled value is calculated
by summing the respective individual probabilities that are estimated from the Ct distri-
bution in individual bats. The probabilities corresponding with the target value of 36 are
then summed and divided by the sum of all probabilities, to get an overall probability of
observing Ct 36 (B). This probability is multiplied by overall prevalence in the population.
The probability of observing 2 out of 3 positive individuals given a prevalence of 20% is
then calculated (C) and multiplied by the probability of observing Ct 36 to get the final
Ct probability given 20% prevalence and 2 out of 3 positive individuals (D). This example
was randomly chosen for illustration purposes, and these steps are repeated for each
possible combination of Ct values and contributing individuals.
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Modeling true prevalence in the population over time

The final model component is a model of 8; dynamics, which explicitly incorporates the infor-
mation about prevalence from individual and pooled samples through their respective models.
This is possible because prevalence parameter 6; is leverages information from both models,
which further ensures that each of those two model components can benefit from the informa-
tion about prevalence contained in the other. For pooled samples this is done as part of the Ct
probability distribution, while for individual samples this is done using a hierarchical structure,
where

(6) 0" ~ Beta(6;r, (1 — 0:)r),

where « is the precision parameter for the beta distribution, modeled using a weakly infor-
mative prior such as Gamma(2,0.04). Prevalence 60; changes over time t in a smooth way where
prevalence will be more similar for times that are close together than for those that are farther
apart. This temporal autocorrelation can be modeled in a variety of ways, and the choice of which
model to use will depend on the research questions of interest. If the goal is to estimate preva-
lence dynamics over time, relatively simple smoothing functions can be used such as splines,
weighted average or kernel functions (Maxted et al., 2012). If the goal is to model the underlying
biological dynamics, it will be necessary to develop a more complex transmission model (Funk
et al., 2018). Here, we used a relatively simple Gaussian Process (GP) smoothing function, which
uses a Gaussian kernel to model prevalence over time. This approach was based on the one used
in Scherting et al. (2023).

A GP is a time continuous stochastic process { X; }+c where the set of variables
X¢ = (X1, ..., Xen)™ is @ multivariate Gaussian random variable (i.e., every combination of
(X1, .-, Xtn) has a univariate Gaussian distribution). Because 6; € [0, 1], a transformation must
be used to map the real support of X; to the [0, 1] interval, for which we used the inverse probit
function ®(-). We did this by modeling a latent prevalence process W := {W;}:c, and trans-
forming this to prevalence 6; = ®(W;). As prevalence and the form of the unobserved dynamic
process are unknown, we used a GP prior on W with a covariance function that enables interpo-
lation of prevalence over time (i.e., smoothing). There are multiple options for suitable covariance
functions. Here, we used the exponentiated quadratic covariance function, which includes pa-
rameters for both the amplitude (lengthscale ¢) and the oscillation speed (o2) of the smoothing
process,

(7) Q = Cov(t, t'|o% () = o?exp <_(t_t/)2>
' ’ 202 '

W; thus becomes W; ~ GP(0, Q), a zero-mean GP that allows independent modeling of
the mean, which is useful for modeling the effect of covariates on prevalence, as 6; becomes
0: = ®(W: + 1), where i can be any regression model.

A useful property of the covariance function is that by fitting the lengthscale parameter (¢), we
can learn from the data how prevalence covaries over time is: the covariance between prevalence
values separated by a time interval ¢ will be exactly aQexp(ng;) = o%exp(—31) = 020.61, for an
interval of 2¢ this will be o2exp(—%") = 020.14, and so on.

The prior distributions for parameters o and ¢ can be any continuous positive distribution.
We used a truncated normal distribution for o (Normal(0, 1), with O as lower bound for sampling)
and an inverse gamma distribution for ¢ (InverseGamma(2.5, 150)). All priors used for model fitting
can be found in the code in Supplementary Information.

Testing model performance using simulated data

To test how well the model can estimate parameters under various circumstances, we simu-
lated datasets that resemble realistic infection sampling scenarios. These datasets consisted of
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individual-level samples (collected directly from captured bats) and pooled urine samples (col-
lected using a sheets under a roost), collected at certain time intervals (e.g., Burroughs et al.,
2016; Field et al., 2015; Giles et al., 2021). We created a main simulated dataset that resembles
a common situation with regards to sample size and temporal resolution and was used as a point
of reference for all analyses. To test model performance in different scenarios this main dataset
was adapted in a number of ways that are described below.

For the main dataset, an autocorrelated fluctuating prevalence time series was generated for
a time period of 300 (an arbitrary number, where the unit can be, but is not restricted to, days)
time points using a b-spline function with knots at times 1, 100, 200 and 300. Coefficients for
the b-spline function were chosen so that the function would result in reasonable prevalence
fluctuations, not based on a specific system but useful for testing model performance under a
range of sample availability scenarios (Figure 3). Ten sampling sessions were selected to occur
evenly between times 1 and 300. At each sampling session, 50 individual-level catch samples
and 50 pooled samples were generated. The infection status (negative/positive) of each indi-
vidual sample was generated using a Bernoulli distribution with success probability equal to
(1- z/;)logitfl(ﬁt[,-] + X - B) (Figure 3A), where false negative rate i) was set to 0.1 (i.e., 10% of
positive samples test negative). The 3; values were generated by taking the logit of simulated
prevalence at time t. One covariate was simulated by drawing random samples from a standard
normal distribution. This covariate was then used to simulate outcome variables (infection status)
for three different coefficients. Because the same 3; values were used for the three coefficients,
this resulted in three different sets of outcome variables (Figure 3B), each with their own slightly
different prevalence curve, which is a consequence of changes in prevalence due to the addition
of X3 to the intercept term.

For each pooled sample, a Ct value was generated in four steps (Figure 3C). First, the number
of bats contributing to the sample was simulated using a negative binomial distribution with size
30 and mean 2.3 (which results in a range between 1 and 10, with most numbers around 1 to 4).
Next, each of the contributing bats was randomly assigned an infection status using a binomial
distribution with success probability equal to prevalence at the corresponding sampling session.
Then a Ct value was generated for each individual bat, with negative bats receiving a Ct value of
0 and positive bats receiving a Ct value randomly drawn from a non-standard, realistic probability
distribution of Ct values. Last, the resulting Ct value of the pooled sample was calculated by first
converting each individual Ct value to number of genome copies (Lunn et al., 2023), calculating
the mean number of genome copies (including the negative samples), and re-converting this
mean of the pooled sample to a Ct value. Note that while a Ct value is generated for individuals
contributing to a pooled sample, the individuals used for the "individual sample" model described
in the previous paragraph only have a negative or positive status, and not a Ct value. When
required it is possible to add an observation process layer to the model that explicitly models the
classification of sample into negatives or positives based on the concentration, as for example
shown in Self et al. (2022) and Zenios and Wein (1998).

Main dataset simulation parameters are summarized in Table 2. Additionally, we show the im-
portance of accounting for false negative individual samples when estimating covariate effects
by fitting a model that does not include the false negative rate parameter. Last, to test model per-
formance under different scenarios of data availability, we generated additional scenarios that
are outlined in Table 3, including examples of when these scenarios can occur. Details and results
for these scenarios are provided in Supplementary Information, including combined scenarios.

Model implementation and code

All coding was done in R (R Core Team, 2022). Model fitting was done with Stan (Stan De-
velopment Team, 2022b) using R package rstan (Stan Development Team, 2022a). Plotting was
done using packages ggplot2 (Wickham, 2016), ggridges (Wilke, 2021), patchwork (Pedersen,
2022) and Rcolorbrewer (Neuwirth, 2022). Prevalence splines were generated using the pack-
age splines (R Core Team, 2022). Ct value probability distribution generation used the package
Rccpalgos (Wood, 2022). Supplementary information (including all code) is available online at
https://doi.org/10.5281/zenodo. 11520773 (Borremans, 2024).
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Table 2 - Overview of the parameters used for the main simu-

lated dataset

Parameter

Value

Times

Number of sampling sessions
Timing of sampling session
Individual samples per session
Pooled samples per session
Infection data of individual samples
Infection data of pooled samples

False negative rate

Individual covariate, strong
correlation

Individual covariate, moderate
correlation

Individual covariate, no
correlation

Ct distribution used to simulate
pooled Ct values

300 (arbitrary) time units
10

Every 34 time units

50

50

Binary (negative or positive)
Concentration (Ct value)

10% of positive individual samples
tests negative

Effect estimate = 3.3

Effect estimate = 1.8

Effect estimate = -0.06

Skewed low to high (details in
Supplementary Information)
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Figure 3 - Simulated data. Black dots show true prevalence in the population, which was
used to generate samples for 10 sessions over a period of 300 time points. Panel A shows
individual negative (blue) and positive (red) samples, with false negative samples shown
as red triangles. Panel B shows boxplots and data points for three simulated covariates
for individual samples, with correlations being strong (top), moderate (middle) and ran-
dom (bottom). Panel C shows pooled negative (blue) and positive (blue to red gradient
corresponding with Ct value) samples. Note that infection data are binary (neg/pos) for
individuals, and concentrations (Ct values) for pooled samples.

Results

Shedding prevalence dynamics estimated using the combined pooled and individual data
closely matched the true dynamics, with true prevalence consistently falling within the poste-
rior distribution (Figure 4A). All individual and prevalence covariate coefficients were estimated
correctly except for the model excluding the false negative rate parameter, where the correct
coefficient was 3.3 but the posterior mean estimate was 2.3 (95% Crl: 1.9-2.6). (Figure 4B-D).
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Table 3 - Simulated scenarios to test model performance. Details and model fit re-
sults are provided in Supplementary Information.

Scenario Details and examples

Pooled data only Only pooled samples are used for model fitting. 1) not estimated. This sit-
uation occurs when it is not possible not collect any individual data. Exam-
ple: collecting wastewater samples for COVID-19 monitoring (McMahan
et al, 2021).

Individual data only Only individual samples are used for model fitting. 1) not estimated. This
situation is the most common when sampling populations. Example: cross-
sectional sampling for monitoring arenavirus prevalence in rodents (Mar-
ién et al., 2020).

Irregular sampling The timing of sampling sessions is not regular, resulting in uneven time
gaps between sessions. This situation occurs when regular sampling is
not possible, or when sampling sessions need to be canceled due to condi-
tions. Example: gaps in influenza A monitoring time series due to political
instability (Tun Win et al., 2017).

Low sample sizes Lower sample sizes (20 instead of 50 for each sample type) per session.
This situation occurs when it is not possible to sample many individuals.
Example: logistically challenging captures of lions for canine distemper
virus monitoring (Viana et al., 2015).

Ct distribution The distribution of Ct values used to calculate the likelihood for pooled

mismatch sample Ct values is different from the true distribution used to simulate
pooled Ct values. This situation can occur when the distribution of Ct
values in the population is not well known. Example: small numbers of
positive samples in individual bats make it difficult to describe the viral
load distribution of filoviruses (Leendertz et al., 2016).

Pool contribution An error is added to the number of individuals contributing to a pooled
count error sample. This situation occurs when it is difficult to count or estimate the
number of individuals contributing to a pooled sample. Example: environ-
mental sampling for Leptospira sp. prevalence estimation (Pui et al., 2015).

Prevalence dynamics A number of different, uncommon prevalence fluctuations are used to sim-

shape ulate the data. This situation occurs because prevalence dynamics can
vary strongly depending on many factors. Example: measles prevalence
dynamics exhibiting multi-annual cycles of varying magnitude (Ferrari et
al., 2008).

Prevalence covariate A covariate that correlates with prevalence is estimated using Gauss-
ian Process regression. Example: climate can drive inter-annual cycles of
cholera transmission (Koelle et al., 2005).

The model correctly estimated false negative rate (1) regardless of which covariate was used
(Figure 4C).

When using only pooled data the model was still able to capture the true dynamics, while
prevalence estimated using only individual data resulted in under-estimates. (Figure 5A-B). The
false negative rate could not be estimated in the absence of pooled data as there was no addi-
tional source of information to provide information about true prevalence over time.

When sampling sessions were timed irregularly, or when there were fewer sessions, preva-
lence was still estimated well but with a higher degree of uncertainty between larger time gaps
(Figure 5C and Supplementary Information). For regular sampling with low sample sizes preva-
lence dynamics were still captured reasonably well overall, exhibiting increased variability that
resulted in an over-estimation of the false negative rate parameter (Figure 5D). Asynchronous
sampling of pooled and individual sessions resulted in prevalence dynamics that were very similar
to those of the main simulated dataset (Supplementary Information). When combining irregular
and asynchronous sampling with lower sample sizes or with fewer sampling sessions prevalence
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Figure 4 - Model outputs for the main simulated dataset. (A) shows the distribution of
fitted prevalence curves (cloud of 6,000 iterations from 5 chains) with 50% credible in-
terval band overlaid. The black dots are the simulated prevalence values. The proportion
of positive pooled and individual samples in each sampling session is shown using dia-
mond and plus shapes, respectively. Panels (B) to (D) show the posterior distributions
(95% credible intervals in orange) for two covariates (where B and C differ in whether or
not false negatives were accounted for), and panel (E) shows the posterior distribution
for the false negative rate 1), with black dots indicating the true values.

dynamics exhibited higher degrees of uncertainty due to the lower sample size or during larger
time gaps without available samples (Supplementary Information).

A mismatch of the Ct distribution in the population (i.e., the Ct distribution used to con-
struct P(Cj|q, N;) did not correspond with the distribution used to simulate Ct values for pooled
samples, see Supplementary Information for details) had a noticeable effect on the estimated
prevalence dynamics (Figure 5E). Specifically, the model tended to overestimate prevalence, par-
ticularly during peaks, despite overall good performance. This effect was less pronounced when
the distribution was less different from the true distribution (Supplementary Information). The
model was not sensitive to moderately misspecified counts of the number of individuals con-
tributing to a pooled sample (Figure 5F; 30% of the data were off by N = 1, 20% by N = 2), but
was more strongly affected by large misspecifications (80% wrong by 1 or 2, 80% wrong by 1 to
5; Supplementary Information).

Last, the shape of the prevalence dynamics did not affect the model’s ability to estimate
prevalence, as long as data were available to inform the fluctuations (5G and Supplementary
Information). For example, the dynamics in Figure 5H have an initial peak that was not predicted
by the model because this peak occurred between two sampling sessions.

Discussion

Sample pooling offers major benefits through collecting data from multiple individuals at the
same time, lowering costs for collection and testing, and enabling the use of samples that would
otherwise be disregarded (such as sewage or fecal/urine under bat roosts or in animal dens;
Dalu et al. (2011), Field et al. (2015), and McMahan et al. (2021)). This study presents a Bayesian
modeling approach that enables the estimation of prevalence dynamics from both pooled and
individual samples by leveraging infection concentration of infectious agent in the pooled sam-
ples, allowing the distribution of infection concentrations to be any shape, and accounting for
false negative results.

The model is able to successfully reconstruct prevalence dynamics for a wide range of eco-
epidemiological scenarios. Model performance was tested for a range of relevant scenarios of
infection dynamics and sampling schemes including irregular prevalence fluctuations, irregular
timing of sampling and misspecified counts of individuals contributing to the pooled samples,
and combinations of multiple scenarios. The model performs well when only one sample type
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Figure 5 - Fitted prevalence curves for different simulated scenarios. All scenarios used
the same sample types, sizes and sessions as the main scenario shown in Figure 2, ex-
cept where indicated. Session prevalence of pooled and individual data is shown using
diamond and plus shapes, respectively. Black dots show true prevalence in the popula-
tion. Specifics for each scenario are: (A) only pooled data; (B) only individual data; (C)
sampling sessions are unevenly spaced over time; (D) lower sample sizes (20 per sample
type) per session; (E) the Ct distribution used to simulate Ct values of pooled samples was
not the same as that used to calculate the Ct probability distribution in the model, with
the shapes inverted (i.e. low Ct values more likely); (F) an incorrect number of individuals
contributing to a pooled sample was provided to the model for 50% of pooled samples;
(G) and (H) data were simulated using irregular, unconventional prevalence dynamics.

was provided, which is particularly encouraging in the case of pooled samples, as it shows that
field studies targeting only pooled samples would still allow precise reconstruction of prevalence
dynamics. These results highlight the key strengths of the model: the explicit modeling of the
mixing process in pooled samples allows accurate estimation of prevalence even when using only
pooled samples, and the inclusion of pooled samples also enables correcting for the prevalence
estimation bias in individual samples introduced by false negatives when both sample types are
available. False negative rate is an epidemiological parameter commonly neglected in wildlife
studies, yet important for inferring dynamics of infection at the individual level. In the model,
estimation of false negative rates is made possible by the explicit integration of information
about prevalence included in both data types. Importantly, accounting for false negative results
ensures that covariate coefficients in individual-level regression models are estimated correctly,
which we show would otherwise lead to estimation errors (Figure 4C). Lower sample sizes and
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large gaps between sampling sessions increased uncertainty, indicating that these are important
factors to consider for study design.

The model introduces an algorithm to empirically calculate the probability distribution of ob-
serving a certain infection biomarker (here Ct from qRT-PCR) value given the estimated preva-
lence in the population and the number of individuals that contributed to the sample. This prob-
ability distribution enables the calculation of a likelihood for the biomarker values of the pooled
samples. This approach for calculating a probability distribution can be adapted to other sys-
tems (e.g., analyzing pooled SARS-CoV-2 samples for monitoring prevalence) and other biomark-
ers (e.g., antibodies, blood chemistry). The approach can incorporate any non-standard family
distribution of the biomarker. Encouragingly, we found that the model is quite robust against
misspecifications of the underlying biomarker distribution. The calculation of this probability
distribution function relies on a correct determination of the distribution of biomarker values
in the population. We found that assuming a distribution that differs strongly from the real dis-
tribution can result in biased prevalence estimates. We therefore recommend an in depth prior
exploration of biomarker distribution in the population, as well as a sensitivity analysis to assess
how different realistic shapes of the distribution affect model output.

Prevalence reconstruction is a goal for many epidemiology and disease ecology studies, but
this is often done as a necessary step towards learning what the drivers of pathogen transmis-
sion are. Such drivers can be intrinsic, such as individual immunity, herd immunity, individual
variation in shedding, or behavior/movement (which can affect contact/transmission rates), or
extrinsic, such as temperature and rainfall affecting pathogen survival, food availability affecting
individual stress (which in turn affects immune competence, susceptibility and shedding). The
modeling framework provides a way to incorporate and statistically test the effect of such co-
variates on the individual and the population/prevalence level. This enables testing of hypothe-
ses about intrinsic or extrinsic drivers of infection, thereby contributing to a more mechanistic
understanding of infection dynamics, beyond the phenomenological patterns. This also enables
the development of models to predict prevalence.

The current model formulation has a number of requirements. Firstly, the model uses esti-
mates of the number of individuals that contributed to a pooled sample. While the model is
robust against moderately misspecified counts, we find that errors have to be within reasonable
limits. However, when these counts are unknown or uncertain, this can be incorporated in the
model by specifying a prior distribution of the number of individuals contributing to a pooled
sample based on available data. A second model requirement is that the distribution of biomarker
values, which are used to calculate the biomarker probability distribution of pooled samples, is
assumed to be constant over time. Although this can be a reasonable baseline assumption, re-
cent work suggests this may not always be the case (Lunn et al., 2023). Therefore, it is possible
to adapt the model using a time-dependent probability distribution when pathogen shedding
concentrations are known or suspected to be higher during certain periods. We recommend an
in-depth analysis of the distribution of biomarker values in wild individual samples over time to
determine whether the probability distribution used in the model needs to be time-dependent.

The model presented here provides a way to simultaneously leverage pooled and individ-
ual samples to accurately estimate the true underlying prevalence of infection in a population.
It introduces a way to explicitly account for the biological mixing/dilution process in pooled
samples, and ensures that individual covariate effects can be estimated correctly when false
negative results are possible (this requires the use of both pooled and individual samples). The
model is also shown to be robust against common issues associated with field-based data col-
lection, such as observation noise and the often unknown shape of the underlying prevalence
fluctuations. Crucially, this approach enables the accurate reconstruction of prevalence dynam-
ics even when using pooled samples only, which is encouraging for designing lower-cost sam-
pling strategies. The application of this model can directly enhance the efficacy and efficiency
of bio-surveillance efforts by increasing inference and prediction. This is of particular interest in
the case of wildlife that hosts pathogens of concern for human and animal health in geographical
areas of high spillover risk.
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