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Paying attention to the SARS-CoV-2
dialect : a deep neural network approach
to predicting novel protein mutations

Check for updates

Magdalyn E. Elkin & Xingquan Zhu

Predicting novel mutations has long-lasting impacts on life science research. Traditionally, this
problem is addressed through wet-lab experiments, which are often expensive and time consuming.
The recent advancement in neural language models has provided stunning results in modeling and
deciphering sequences. In this paper, we propose a Deep Novel Mutation Search (DNMS) method,
using deep neural networks, tomodel protein sequence for mutation prediction.We use SARS-CoV-2
spike protein as the target and use a protein languagemodel to predict novel mutations. Different from
existing researchwhich is often limited tomutating the reference sequence for prediction, we propose
a parent-child mutation prediction paradigm where a parent sequence is modeled for mutation
prediction. Because mutations introduce changing context to the underlying sequence, DNMS
models three aspects of the protein sequences: semantic changes, grammatical changes, and
attention changes, each modeling protein sequence aspects from shifting of semantics, grammar
coherence, and amino-acid interactions in latent space. A ranking approach is proposed to combine
all three aspects to capture mutations demonstrating evolving traits, in accordance with real-world
SARS-CoV-2 spike protein sequence evolution. DNMS can be adopted for an early warning variant
detection system, creating public health awareness of future SARS-CoV-2 mutations.

Since its emergence in December 2019, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) has become a major global public health
concern1–3. As SARS-CoV-2 moves from pandemic to endemic, questions
arise to what the future evolutionary changes will be. SARS-CoV-2 is a
positive-sense single-stranded ribonucleic acid (+ssRNA)virus,whichhas a
higher rate of mutation compared to double-stranded RNA viruses and
DNA viruses4. Nevertheless, SARS-CoV-2 encodes a proof-reading
mechanism that results in a lower mutation rate relative to other ssRNA
viruses, such as influenza (-ssRNA virus), HIV and Hepatitis C (both
+ssRNA viruses)5–8. The mutation rate of SARS-CoV-2 has been recorded
as 1.87 × 10−6 nucleotide substitutions per site per day5. Adaptive evolution
in protein coding sequences is often expressed by the dN=dS ratio, which
measures rate of non-synonymous mutations, (dN), to synonymous
mutations (dS). Synonymous mutations do not alter the amino acid
sequence and are largely presumed to be neutral mutations, while non-
synonymousmutations (which alter amino acid sequences)may experience
selection9. For SARS-CoV-2, this ratio has been estimated as 0.563; which
shows approximately half of non-synonymousmutations are lost as natural
selection eliminates deleterious mutations3,5.

Sources of mutations can be due to random RNA replication
errors and host-mediated mutations7,10. Apolipoprotein B mRNA
editing catalytic polypeptide-like enzymes (APOBECs) are cytidine
deaminases involved in innate immune responses responses against
viruses and introduce a characteristically high C-U nucleotide sub-
stitutions in ssRNA viruses4, including SARS-CoV-27,10. APOBECs
play an important role in viral evolution, and are associated with
immune escape and drug resistance4. The high rate of C-U mutations
in SARS-CoV-2 introduce extra complexities with SARS-CoV-2 evo-
lution, the mutations may be a large source of the non-synonymous
mutations7, and some of these mutations have been shown beneficial
to viral fitness10. Repeated C-U mutations and reversions also may
cause convergence7; where mutations arise independently in separate
lineages, a strong indicator of positive selection and a path towards
dominate mutations11.

Mutations in the spike surface glycoprotein (i.e. spike protein), are of
major importance because the spike protein mediates attachment of the
virus to host receptors through the receptor-binding domain (RBD) and is
the major target of neutralizing antibodies12,13. Many spike mutations that
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have become predominate have been shown to improve viral fitness. This
can be due to methods such as increased viral survival, increased trans-
missibility, and immune detection evasion. For example, the mutation
D614G in the spike protein has advantages for infectivity and transmissi-
bility by increasing receptor binding avidity13,14. This mutation quickly
became dominant worldwide6,7. Othermutations in the Spike protein, such
as E484K andN439Khave been recorded as escapemutations, as they evade
immune detection responses by reducing antibody neutralization8,13,14.
OmicronBA.2 sublineages have convergedwithmultiplemutations inRBD
residues (R346, K444, L452, N450, N460, F486, F490, Q493, and S494);
creating a “variant soup”with combinations leading to increasedfitness and
waves of infectivity15.

Singular advantageous mutations often accumulate in variant strands,
leading to classifications ofVariant ofConcern (VOC) orVariant of Interest
(VOI); VOCs and VOIs are variant strands of SARS-CoV-2 that contain
mutations with notable changes in biological characteristics with potential
impacts on transmissibility and immunity13. VOCshave ahigher alert status
and are classified with stronger evidence of negative clinical impact16.

Future variants of SARS-CoV-2 should be expected to arise as the
virus becomes endemic. Positive selection for SARS-CoV-2 will drive
variants for increased transmissibility, longer duration of infection, and
ability to evade immune responses. Thus may enable transmission to
previously immunized populations leading to new waves of infection5,7.
Thus, anticipating future variants is a great public health concern. Early
detection systems can create a proactive response for immune therapies,
vaccines, and provide an understanding of future mutation consequences
impact on viral spread7.

Predicting evolution is a difficult task, as evolutionary models face
many complications including broad potential host range, animal trans-
missibility, and large degrees of randomness. However evolutionarymodels
canaid in exploringpossible evolutionarypaths 5,17. The sequence space for a
given protein has an infeasible number of evolutionary paths17. Proteins are
built using 20 standard amino acids from the genetic code. Thus a given
proteinwith lengthNhas a total number of 20Npossible combinations.Wet-
lab experiments can be used to generate the protein and investigate the
resulting phenotype, however these are time-consuming and costly and
can’t be feasibly done for all exhaustive combinations18. Methods such as
Deep Mutational Scanning (DMS) are able to generate large-scale muta-
genesis datasets to assess a broad range of amino acid mutations19. While
DMS can analyze thousands of mutations in a single viral protein com-
prehensively, it also has disadvantages. The large scale of DMS may com-
promise data accuracy andDMSdatasets have an inherent degree of noise20.

Computational studies can be conducted as a complement for wet-lab
experimentation. Computational studies can give insights on likely amino
acid mutations which guide wet-lab experimentation. And in turn, phe-
notype information derived from DMS datasets can aid computational
studies.

A number of computational and machine learning studies have been
conducted on SARS-CoV-2. These include analyzing SARS-CoV-2 muta-
tions based on biochemical properties21 or transmissibility22,23; forecasting
future emerging VOCs16,24,25; generating novel epitope protein sequences18;
sitemutation prediction26; conservation prediction27; and identifying escape
mutations28.

While the above listed studies all target SARS-CoV-2 proteinmutation
analysis, other computational studies have been conducted targeting
nucleotide mutations. Previous studies have targeted predicting nucleotide
mutation rates29–31; predictingmutable sites/positions30–32; and prediction of
recurrent mutations driven by host factors33.

Prediction of mutation rates and mutable nucleotide sites/positions
can aid protein mutation analysis by identifying general trends in rates and
mutation “hotspots”. In addition, found dominant trends of codon changes
can help identify the likely future amino acid changes. However, it has been
noted that amino acid changes in the spike protein are more difficult to
predict using nucleotide data (compared to mutations in M-Pro, a protein
involved in replication). A listed potential source for this difficulty is that

predicted mutations may be deleterious and not observed in the spike
protein30.

The above-mentioned studies are a small subset of the multitude of
computational studies conducted targeting varying aspects of SARS-CoV-2
mutations. In this study, we aim to model SARS-CoV-2 spike protein
mutations using protein language models and protein sequence data alone.

Natural Language Processing (NLP) methods have shown to tre-
mendously benefit bioinformatics and protein research34,35, such as the
AlphaFold36 which predicts protein structures using sequences. Protein
sequences are analogous to sentences in human languages, where proteins
are represented by a sequence (sentence) that can be broken down into the
underlying amino acid tokens (words). Human language and protein
sequences also both share information completeness. Using NLP methods
with human language, we’re able to derive information such as sentiment,
topics, clauses, etc. Similarly, NLPmethods with protein sequences are able
to determine protein information such as structure and function, as this is
directly encoded by the amino acid sequence34. In addition to protein lan-
guage models (trained on amino acid language), Codon language models
have shown benefits for protein engineering37. With Codon language
models, the underlyingnucleotide sequence is brokendown to the 64-codon
alphabet, which translates to the 20 amino acids, or a stop sequence. The
codonalphabet is degenerate,withmultiple codons encoding a single amino
acid; however, it was shown that synonymous codon information can aid
protein folding prediction, making codon language models beneficial for
specific types of downstream tasks37.

A common task in NLP is to predict a word given an input sentence
context. Language models trained on a large number of texts learn the
grammar rules of the language to guide word prediction for coherent and
grammatical sentences. An equivalent task in protein research may be
to predict an amino acid (word) given an input sequence (sentence)
context. In order to this, a language model produces posterior prob-
abilities for all amino acid tokens at a specified position in the protein
sequence. The probability values represent how well a given amino acid
(word) obeys the “grammar” of biological rules learned by the protein
language model28.

Language models are also frequently tasked with creating a word (or
sentence) embeddingof an input tokenor sentence. Embeddings are vectors
that encode the language model’s representation of the input sequence.
Language models trained on a given language corpus attempt to represent
semantically similar concepts with similar vector representations
(embeddings)34. The difference between two separate semantic embeddings
represents the degree of semantic similarity between the two sequences.

Protein language models have previously displayed useful applications
in protein sequence design and generation38,39; mutation effect predictions40–43;
forecasting emerging variants16,24; site mutation prediction26; and are able to
identify likely escape mutations28. Our work expands on previous methods
from Hie et al. to utilize language models for protein evolution. In the
previous study, they created Constrained Semantic Change Search (CSCS) to
identify likely escape mutations using the reference sequence. CSCS uses a
mutation’s grammaticality and semantic change to create a ranked value28.
Grammaticality is the defined as the probability of an amino acid at a given
position and determines if the amino acid obeys the biological rules (gram-
mar) of the protein sequence. Semantic change is the difference in the
embedding of the reference sequence to the mutated sequence.

In this study, we present DNMS (Deep Novel Mutation Search), a NLP
approach to predicting amino acid mutations. Deep refers to usage of a
transformer model (a deep neural network architecture). We utilize a
Bidirectional Encoder Representation from Transformer (BERT) model
that was trained on protein sequences44. The protein BERT (ProtBERT)
model was pre-trained on 216million proteins in theUniRef100 database45.
The pre-trained ProtBERT model can be said to have learned the language
of proteins from diverse species. We fine-tune ProtBERT to SARS-CoV-2
spike protein sequences, which is akin to refining themodel on the dialect of
SARS-CoV-2 spike protein. We create a SARS-CoV-2 sequence database
from the NCBI database from December 2019 up to January 2023. Using a
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cutoff date of January 1st, 2022, we create training and test sequences. The
cutoff date represents a date in time where we can utilize information
learned from all sequences collected to predict future mutations.

We define a novel mutation as one that has not previously been
recorded in a sequence database. Each protein sequence in our database has
a date of collection. We record the first date of a mutation from the mini-
mum collection date of sequences containing the mutation. A novel
mutation is one that first was recorded in a test sequence, i.e. the first
recorded collection date is after the cutoff: January 1st, 2022.

Our goal is to predict novel amino acid substitution mutations; this
goal differs from previous research as our ground truth mutations are
previouslyunobservedmutations that havenotoccurredyet.Ourprediction
method involves a Mutation Search considering all possible amino acid
substitution mutations for a given spike protein of interest. For each
potential mutation, we use the fine-tuned ProtBERT model to calculate
Grammaticality, Semantic Change and Attention Change. Grammaticality
is theposterior probability of themutated amino acid at the givenposition, it
measures how well the mutation obeys the SARS-CoV-2 spike protein
grammar, which the fine-tuned ProtBERTmodel has refined the dialect of.
Semantic Change measures the difference in embedding space between the
sequence of interest and the mutated sequence (sequence with an intro-
duced mutation); this is a measure of similarity between two sequences.
Attention change measures difference in attention weights between the
sequence of interest and the mutated sequence; this is another measure of
similarity from how the model is paying attention to the two sequences.
Lastly, DNMS combines the three language model calculations with a
ranking scheme to identify the most likely novel mutations.

Our target is any previously unrecorded amino acid substitution
mutation in the SARS-CoV-2 spike protein sequence. And using DNMSwe
hypothesize that this can achieved using sequence data alone. Proteins
followbiological rules encoded by the amino acid sequence. The pre-trained
ProtBERTmodel has learned global biological language rules and is refined
to SARS-CoV-2 spike dialect with fine-tuning. Mutations that obey these
rules, will have corresponding higher grammaticality, the posterior prob-
ability of an amino acid at a given position given an input sequence. The
protein language model infers statistical patterns of biological protein lan-
guage rules resulting in identifying likely aminoacids at givenpositions.This
is similar to predicting an English word in a sentence given the surrounding
sentence context. While fine-tuning helps refine specific patterns in SARS-
CoV-2 spike protein, the downside is the model may be “over-fitted” to the
training sequences and ultimately produce low probabilities for alternate
amino acids, especially at positions with low genetic diversity in the training
sequences. Thus we also use two measures of similarity, Semantic Change
and Attention Change. These are measures of similarity between the
sequence of interest (being mutated) and the mutated sequence (with an
introduced amino acid substitution). Semantic Change measures the dif-
ference in embedding spacebetween the two sequences;AttentionChange is
difference in attention weights (from attention heads in the transformer
model) between the two sequences. As we are measuring single amino acid

substitutions at a time, themutated sequence will have a small change in the
SARS-CoV-2 spike protein, and will result in a sequence that will be largely
similar to the sequence of interest, as sequences with small changes in spike
protein are typically clustered together in groups/clades. In DNMS, we rank
all possible single-point amino acid substitutions to identify those with high
grammaticality, low Semantic Change and low Attention Change. We
hypothesize this can identify likely futuremutations as those that obey rules
of biological grammar, and are most similar to the sequence of interest.

While our target is based on genotype mutations based on sequence
data alone,wehaveno inferenceon the resultingphenotype changesof these
mutations. A single identified likely future mutation may have a neutral
impact and not represent a relevant event in viral mutation. However,
identifying likely future novel mutations may have applications in early
variant warning detection systems. Computational studies that can identify
likely future mutations can guide wet-lab experimentation towards the
resulting mutated sequence to assess the resulting phenotypic character-
istics. In our study, we identify single amino acid substitutions. While a
single amino acid substitution may not lead to increased fitness alone; as
seen with Omicron BA.2 sublineages, where the number of mutations in
specific RBD residues correlates with increased fitness15. With all current
circulating sequences, it would be infeasible to assess all single-point amino
acid substitutions in wet-lab experimentation to assess future fitness con-
sequences, where as computational studies for early warning detection
systems can complement these with analyzed likelihood. In addition, a
computational study that can identify the same likely future mutation over
different lineages can aid in understanding evolutionary trends toward
future emerging variants.

Previous studies on forecasting future emergingvariants relyheavily on
knowledge of current variants16,24,25. This limits the predictive value of such
models, as it requires the variants to be known and recorded prior to pre-
diction. Similarly,models based on singular adaptive traits, (transmissibility
or escape potential) are often insufficient basis for predictions, reducing
model complexity andpredictivepower17.Our approachdiffers fromrelated
work by Zhou et al.26 in that we use a sequence timeline-based sampling
method in order to derive a true novel mutation test set that represents
previously unseen mutations. Predicting previously unobserved mutations
is theoretically an intractable problem.But the benefit has great implications
for early and quick anticipation of likely future mutations.

Evolution is a continuous process. Over time,mutations have occurred
and become predominant. This changes the dialect of SARS-CoV-2 spike
protein that the ProtBERTmodel was trained on. The reference sequence is
used for comparison to measure genetic diversity and record future muta-
tions; the reference sequence is also commonly used in computational
studies to analyze mutations. However, the reference sequence doesn’t
contain the genetic diversity that our language model was trained on, thus
doesn’t have the proper context in order to accurately predict future
amino acid changes. Using DNMS, we demonstrate that mutating a parent
sequence in a phylogenetic tree has a greater advantage indetermining likely
future mutations. Fig. 1 visualizes the difference between (a) mutating the

Fig. 1 | Visualization of an example phylogenetic tree to demonstrate differences
between (a)mutating the reference sequence and (b)mutating a parent sequence.
The blue circles represent sampled sequences, the green circle is the reference
sequence (Wuhan-Hu-1), and the pink circles represent inferred internal nodes,
which become parent sequences to leaf nodes (sampled sequences). The ancestral

path of a given node can be traced back to the reference sequence. Sequences inherit
mutations (marked with diamond shapes) from their ancestral path. Each diamond
represents a uniquemutation; the pink diamond represents a novel mutation, which
has a first collection date after the cutoff point (gray dashed line).
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reference sequence and (b) mutating a parent sequence with an example
phylogenetic tree. The green circle is the reference sequence. Pink circles
represent inferred internal nodes, which become parent sequences to leaf
nodes, represented by blue circles, which are sampled sequences in the
database S. Mutations are represented by diamonds. A gray dashed line
shows a cutoff point, where everything prior to the cutoff point can be used
for training and novelmutations that occur after the cutoff point we wish to
predict for. Sequence ~x1 is pre-cutoff and part of the training data. Sequence
~x2 is post-cutoff and represents the first collection date of a sequence with
the pink diamondmutation. Since this is after the cutoff, the pink diamond
is a novel mutation that we aim to predict. In the case where red and yellow
mutations have become predominant in the training dataset (and have
become part of the dialect of the spike protein language), themodel will give
more weight to these mutations when mutating the reference sequence, as
the predominant mutations aren’t a part of the context of the reference
sequence. Consequently, a model may predict previously recorded and
predominant mutations when mutating the reference sequence. Addition-
ally, the similarity between the reference sequence and the sequence ~x2 will
be decreased, as the reference sequence doesn’t have the inheritedmutations
that occurred prior to cutoff. Thus instead wemutate a parent sequence, x2,
which ismore representative of sequences circulating around the time of the
cutoff that may mutate in the future.

In our approach, DNMS takes parent sequences from a phylogenetic
tree that has child sequences with novel mutations (previously unrecorded
in pre-cutoff) andmutates the parent sequences in silico in order to predict
the futuremutations. The contextual information from the parent sequence
is used to calculate the grammaticality of potential mutations, and which
mutated sequences are closest in semantic embedding and attention. These
future likely mutations are determined by the ranking objective of DNMS.
Thus we hope our methods can be adopted for public health awareness of
future SARS-CoV-2 mutations, while providing a cohesive framework for
collecting and analyzing SARS-CoV-2 sequences and a novel application of
ProtBERT for future mutation prediction.

Our main contributions are as follows:
• We create a process for sequence data collection, analysis and pre-

diction for novel mutation prediction that can be easily adopted for
public health awareness.

• We demonstrate that fine-tuning a pre-trained language model to the
dialect of SARS-CoV-2 protein sequences can predict likely novel
mutations.

• We demonstrate that context matters in the prediction; mutating a
parent sequence to predict future novel mutations has better perfor-
mance compared to mutating the reference sequence.

• We demonstrate that attention weights have predictive power for
mutations. Additionally, adding addition weights, semantic change
and grammaticality proprieties of potential novel mutations has the
best predictive performance.

• We investigate the correlation between protein language model cal-
culations relationship with wet-lab experiments.

Results
Method summary
In this paper, we introduce a new method, Deep Novel Mutation Search
(DNMS) to find future novel amino acid substitution mutations in SARS-
CoV-2 spike protein. “Deep” refers to the usage of a multi-layer language
model (ProtBERT) to analyze potential mutations (search) for the most
likely future previously unseen (novel) by calculating grammaticality,
semantic change and attention change given a sequence of interest. Fig. 2
shows a summary of DNMS.

For a given SARS-CoV-2 spike protein sequence,wemutate in silico all
possible single-point amino acid substitutions. For each mutated sequence,
we use the fine-tuned ProtBERT model to calculate the probability of the
mutated amino acid at the given position. The difference in embedding
space from the given sequence and the mutated sequence is also calculated.
These are referred to as grammaticality and semantic change, respectively, as
reported by Hie et al.28. Our method advances previous research by ana-
lyzing attention in a protein transformer model with regards to a given
sequence and a mutated sequence. Previously, attention in protein trans-
former models have been shown to be associated with structural and
functional properties of proteins46. However, to the best of our knowledge,
attention analysis hasn’t been applied for mutation prediction.

As our objective is to find the most likely single amino acid substitu-
tions that will occur in the future,we hypothesize that themutated sequence
will have similarity to the sequence of interest, as sequences with small

Fig. 2 | Summary of Deep Novel Mutation Search (DNMS).DNMS starts with① an
input sequence being fed into ProtBERT ②. From ProtBert DNMS extracts ③ the
attention matrix A; ④ a protein semantic embedding Z; and ⑤ output posterior
probability. DNMS calculates ③' Attention Change, ④' Semantic Change and
⑤' Grammaticality for every single point amino acid substitution for the input
sequence. In this example, two mutations are visualized at position i = 4, where the
input sequence has token L, xi = L. The two mutations are L4A and L4E, denoted by
~xi . ⑤' Grammaticality, denoted with pð~xijXkÞ, for the two mutations are calculated
from the posterior probability output from ProtBERT,⑤. Grammaticality is a
measure of statistical patterns learned from the fine-tuned ProtBERT model. For

each mutation, we pass into ProtBERT the mutated sequence, ~Xk½~xi� which repre-
sents the input sequencewith the introducedmutation at position i.③'We obtain the
attention matrix for the mutated sequence, A½~xi�, and calculate Attention Change
(change from A), ΔA, which is a measure of similarity. ④' We obtain a protein
semantic embedding for the mutated sequence, Z½~xi�, and calculate Semantic
Change (change from Z), ΔZ, which is an additional measure of similarity. ⑦ DNMS
combines the rankings of Semantic Change, Grammaticality, andAttentionChange;
prioritizing high Grammaticality, and low Semantic Change and Attention Change.
Future novel mutations are discovered using DNMSð~xi;XkÞ.
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changes in the spike protein are typically clustered together within a group
or clade. Additionally, the mutated amino acid should largely obey the
grammar rules of the protein sequence, where such rules are learned by the
ProtBERTmodel that wasfine-tuned on the specific dialect of SARS-CoV-2
spike proteins. DNMS ranks all possible single-point amino acid substitu-
tions to determine the ones with highest grammaticality, lowest semantic
change and lowest attention change. These represent mutations that obey
the grammar rules, and are closest in similarity to the sequence of interest
and are determined to be the most likely future mutations.

Sequence dataset
The SARS-CoV-2 sequence database, S, consists of sequences from
December 2019 up to January 2023. After data filtering steps (see Supple-
mentary Fig. 1) and retaining only unique spike sequences, the final
sequence database has a total of n= 35, 943 sequences. Using a cutoff date of
January 1st, 2022, n = 15, 871 sequences are pre-cutoff and
n = 20, 072 sequences are post-cutoff. We classify a mutation as being
“novel” if it has not previously been seen in a sequence fromdatabaseS. The
first collection date of a sequence given a particular mutation records when
the mutation is novel. From the post-cutoff sequences, there are n = 987
novel mutations. Because the cutoff date is around the emergence of
Omicron clades, the large majority (98%) of the test set mutations are
Omicron specific. The number of sequences collected over time and the
mutations in the training and test sets are shown in Fig. 3.

In order to derive parent-child relationships, the sequence database is
used to build a phylogenetic tree using Nextstrain47. Supplementary Fig. 2
shows a subset of the phylogenetic tree; the full phylogenetic tree is shown in
Supplementary Fig. 3.

Visualizations of sequence groups
In order to understand protein semantics and attention weight values w.r.t.
sequence groups (clades) we display t-SNE clustering in Fig. 4. The top row,
Fig. 4a, b, displays t-SNE clustering of full protein embeddings. The bottom
row, Fig. 4c, d, displays t-SNE clustering of protein attention weight
matrices. The left panel, Fig. 4a, c, shows all sequences, samples are labeled
according to WHO or Nextstrain clade label. Nextstrain clades are labeled
first based on the year (19 for 2019, 20 for 2020, etc.) and then subgroups
defined with a single letter. For simplicity, 19A-B combines 19A and 19B;
and 20A-F combines 20A, 20B, 20C, 20D, 20D, 20E and 20F. Due to the
large number of sub-Omicron groups, the right panel, Fig. 4b, d, highlight
Omicron subgroups, colored by Nextstrain clade label.

Generally, sequenceswithin a clade andwithin sub-groups ofOmicron
are clustered together, with separations shown for both protein embedding
values and attention weight matrices. This clustering of sequences within a
clade together indicate that the protein language model is able to generate a
semantic representation of a sequence that accurately reflects the genetic
encoding or meaning of the sequence, as sequences in a clade are typically

similar genetically.Additionally, the clusteringwith attentionweights shows
that the model is paying attention to sequences within a clade similarly.
Together, the t-SNE clustering demonstrates the ability of protein semantics
and attention weights for similarity measures.

As newmutations arise that are inherited from a parent to a child, it’s
likely that the child sequence will be in the same clade as the parent, espe-
cially when only considering single-point amino acid changes. Our
hypothesis for determining future mutations is that the mutated sequence
will have similar semantic representations and attention weights as the
sequence of interest. The two sequences will have similar structure and
genetic characteristics andwill likely be in the same clade or grouping. Fig. 4
demonstrates that the ProtBERTmodel is able to represent this similarity by
creating protein embeddings and have attention weights that place the
genetically similar samples close in embedding space. Thus Fig. 4 shows
validity to our DNMS ranking objective.

Variant fitness analysis
In order to analyze the relationship between the ProtBERT model calcula-
tions for mutations and mutational fitness, a deep mutational scanning
(DMS) wet-lab experiment formutations in the SARS-CoV-2 spike protein
receptor-binding domain (RBD) is obtained from Cao et al.48. Using DMS
data collected for the reference sequence, and two Omicron samples from
sublineages BA.1 andBA.2, we compared grammaticality, semantic change,
attention change and DNMS values for the mutations in the RBD with
fitness values in the DMS dataset. The DMS dataset represents wet-lab
experimental fitness values of ACE2 receptor binding affinity and RBD
expression, which is a measurement of protein stability49. For both binding
and expression, negative values suggest a deleterious mutation and positive
values indicate enhanced binding/expression; higher values indicate higher
viral fitness.

Figure 5 displays correlation between the language model calculations
and the viral fitness for the reference sequence, a BA.1 sequence and a
BA.2 sequence. For all three variants of SARS-CoV-2, grammaticality and
DNMS show a positive correlation with viral fitness; semantic change and
attention change both show negative correlation with viral fitness. All
correlations were found to be statistically significant with a Bonferroni-
corrected p-value of less than 0.05. Supplementary Figs. 4, 5, and 6 show
correlation scatter plots for the three sequence experimental fitness and
language model calculations.

Between the fitness scores for binding and expression, the language
model correlations are shown to be stronger for expression. Indicating that
the language model calculations, particularly grammaticality, are more
indicative of protein stability effects of mutations than binding effects.
Grammaticality represents the probability values of a singlemutationwhich
demonstrates the mutation obeying the grammar rules of a protein.
Mutations that affect the stability of the protein may then be disobeying
these grammar rules as learned by the ProtBERT model.

Fig. 3 | Sequences collected over time and number of mutations in training and
test sets. The left side graph shows the number of unique sequences collected per
date. The red line indicates the cutoff date (January 1st, 2022). A novel mutation is
based on the first collection date of a sequence that contained said mutation. Right-

hand graph shows the number of substitution mutations in the training set, where
the first date was before the cutoff vs number of substitutionmutations in the test set,
where first date is after cutoff.
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With respect to mutation binding effects, it’s been shown that many
mutations show neutral or enhanced ACE2 binding affinity, many of
these may have corresponding constraints for protein stability50. This
suggests a mutation may be disobeying the grammar rules of the protein,
and in turn have a detrimental effect on expression, but still can show
enhanced ACE2 binding. Binding affinity is also dependent on the ACE2
receptor, which may have flexible methods of attachment with SARS-
CoV-2. Our language model has no prior information of the ACE2
interface, which results in decreased correlation of output probability
values against binding effects.

For RBD expression, the correlation of grammaticality is higher with
BA.1 and BA.2 compared to the reference sequence. Due to the high cir-
culation of Omicron sequences,moreOmicron sequences will be present in

the training set. The fine-tuned ProtBERT model effectively adjusts the
SARS-CoV-2 dialect learned with a stronger bias towards Omicron
sequences and subsequently shows a higher predictive value towards
mutation protein stability effects for these sequences. Changing the context
of the protein being mutated (BA.1 and BA.2 vs reference) has benefits for
mutation prediction.

Grammaticality and DNMS are associated with higher experimental
fitness; additionally, higher semantic change and higher attention change
values are associated with lower experimental fitness values. Together, this
gives more support to our ranking scheme of prioritizing high grammati-
cality values and small attention change and small semantic change for
mutation prediction. DNMS combines these rankings for mutations and
ultimately we prioritize higher DNMS scores for mutation prediction.

Fig. 4 | Visualization of sequence groups (clades). t-SNE clustering of Protein Embedding Values (a, b) and AttentionWeight Matrices (c, d). All sequences are shown in
(a, c), colored by WHO label or Nextstrain clade label; and Omicron subclades are highlighted in (b, d), colored by Nextstrain clade label.

Fig. 5 | DMS experimental results of ACE2 receptor binding andRBD expression
for RBDmutations correlation with grammaticality, semantic change, attention
change and DNMS calculated from ProtBERT model. Only mutations with
experimental DMS values are considered. For the reference sequence, n = 3802

mutations have ACE2 receptor binding values, and n = 3798 mutations have RBD
expression values for BA.1, n = 3819 mutations are included; for BA.2, n = 3801
mutations are included. All correlationswere found to be statistically significantwith
a Bonferroni-corrected p-value of less than 0.05.
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Comparison against previous work
In order to compare our resultswith previous work byHie et al.28, we obtain
their biLSTM language model outputs of Grammaticality and Semantic
Change using the reference sequence as the sequence of interest to mutate.
We calculate AUC performance using these values with treating our test set
of n = 987 mutations as ground truth mutations.

Figure 6 presents AUC scores and ROC curves for CSCS with the
previous biLSTM model. First we consider the original ranking method
(Fig. 6a), where semantic change is ranked from highest to lowest. In their
previous study, this ranking method was used in order to find protein
sequences that had greatest semantic changes which reflect a conformation
change in the protein in order to produce an escape mutation, as their
objective was solely to identify likely escape mutations. However, this
ranking objective doesn’t hold true when searching for novel mutations. To
test our new ranking objective, we use an adjusted CSCS, with an updated
ranking method (Fig. 6b), where semantic change is ranked from lowest to
highest. Updating the ranking method shows a high performance
improvement for Semantic Change alone and consequently the CSCS
combined calculation of Semantic Change and Grammaticality.

These results indicate that when testing for novel future mutations,
lower semantic change should be prioritized over higher semantic change.
Switching the ranking scheme essentially flips the semantic change ROC
curve frombelowAUC= 0.5 (randomguessing) to aboveAUC= 0.5. These
preliminary results together with the variant fitness analysis correlations
give further validity to our DNMS ranking objective.

While adjusting the ranking method, (Fig. 6b), does show an
improvement in performance, the AUC scores are still notably low. The
biLSTMmodel was trained on spike protein sequences in the Coronavidae
family towards the beginning of the pandemic (2021)28. Consequently, the
model wasn’t fine-tuned on the specific dialect of SARS-CoV-2 spike pro-
tein up to our cutoff point (January 1st, 2022). The lower performance here
can also be attributed to the model lacking the context of predominate
mutations that may aid novel mutation prediction.

In subsequent sections, we utilize an “adapted” version of CSCS that
utilizes a different similarity metric calculation (ℓ2 norm vs ℓ1 norm), the
updated ranking scheme for semantic change and utilizes a ProtBERT
model. The inclusion of the “adapted” CSCS is to compare the difference
between Grammaticality + Semantic Change and Grammaticality +
Semantic Change + Attention Change (DNMS). For simplicity sake, the
term “CSCS” will be used to refer to the adapted version of CSCS.

Deep novel mutation search results
InDNMS, we take a parent sequence from a phylogenetic tree andmutate it
in silico to obtain all possible single-point amino acid substitutions. From
the parent sequence, we calculate the protein (semantic) embedding and
attention weight matrix from the ProtBERT model. For each mutation, we
calculate the posterior probability (grammaticality) output from the

ProtBERT model given the parent sequence input. For each mutated
sequence with a single amino acid change, we calculate protein embedding
and attention weightmatrix. Semantic change is calculated as the difference
from the parent sequence embedding to the mutated sequence embedding.
Attention change is calculated as the difference from parent sequence
attention matrix and mutated sequence attention matrix. Ground truth
mutations are those in the child sequence(s) that were first recorded post-
cutoff. Parent sequences are selected for those that have child sequence(s)
with novel mutations. For a baseline comparison, we repeat the process
using the reference sequence and all novel mutations in the test set.

In order to visualize the acquisition ranking objective of DNMS,
Supplementary Fig. 7 displaysGrammaticality, SemanticChange,Attention
Change for a single parent sequence that had n = 234 unique mutations in
the test set, novel mutations are marked with a red star.

For the n = 987 novelmutations in the test set, we record themutation
frequency, which is defined as the number of times a sequence contained
that mutation in sequence database S. A histogram showing the count of
mutations at different frequencies is shown in Fig. 7. Where the majority of
mutations only were recorded in database S once. With the wide genetic
surveillance of SARS-CoV-2, it’s potential that a single recorded mutation
may be deleterious or largely neutral. While mutations with high frequency
may also be neutral, they have a less chance of being deleterious, as dele-
terious mutations are quickly lost. Because of this, we first demonstrate our
resultswithDNMSusing an increasing threshold. Each step of the increased
threshold excludesmutations if the frequency is below the threshold. In this
way, we’re able to visualize results for mutations that are of higher interest
(greater frequency).

We compare five separate methods, Grammaticality, Semantic
Change, Attention Change, CSCS (Grammaticality + Semantic Change)
and DNMS (Grammaticality + Semantic Change + Attention Change)

Fig. 6 | CSCS calculated fromHie et al.28 biLSTMmutating the reference sequence and tested against the n= 987 novel mutations in the test set.A gray line indicates
AUC=0.5, which is equivalent to random guessing. In (a) the original ranking method is shown and (b) shows an updated ranking method.

Fig. 7 | Distribution of mutation frequency in the test set. Histogram showing
number of mutations in the test set against the mutation frequency.
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against test set mutations in increasing frequency thresholds in Fig. 8. At
point 100, all mutations are included. At each point in the graph, any
mutation with a frequency lower than the threshold is excluded. In
general, DNMS outperforms all methods except for a select few mutation
frequency threshold sets. As DNMS contains all singular components
(Grammaticality, Semantic Change, Attention Change), when one
method shows poorer performance, the entire performance can show a
corresponding decrease. In general, the addition of all three components
shows the highest performance, as DNMS is able to utilize all available
information.

To compare the five methods against the baseline reference sequence
experiment vs. the parent sequence experiment in Table 1. We report two
averages, a “global” average, simply an average of all single mutation results
and a threshold average, the average of results collected over increasing
thresholds (as displayed in Fig. 8). A star indicates where a method is
significantly higher (p < 0.05) than the corresponding reference baseline
experiment after a Bonferroni-corrected t-test.

In general, methods have higher performance in the parent sequence
experiment, with all methods being significantly higher when considering
the threshold average. Additionally, the combined methods (CSCS and
DNMS) perform higher than the singlemethods (grammaticality, semantic
change and attention change); withDNMShaving the highest performance
of all methods.

In order to compare the methods against each other, we perform a
Friedman test comparing the methods against different datasets.

First, we consider each individual parent sequence (n = 359) tested as
individual datasets. A Friedman test demonstrates a significant difference
between the fivemethods, χ2F ¼ 152:642, p=5.53e−32. TheNemenyi post-
hoc test, using α = 0.05, results in Fig. 9a demonstrates that DNMS is the
highest performant method, followed by CSCS, Attention Change, Gram-
maticality and Semantic Change.

Second,we consider the average ofAUCscores over differentmutation
frequency thresholds as individual datasets (n = 32 separate threshold
groups). A Friedman test demonstrates a significant difference between the
fivemethods, χ2F ¼ 80:575, p=1.32e−16.TheNemenyi post-hoc test, using
α = 0.05, results in Fig. 9b demonstrates that DNMS is the highest perfor-
mant method, followed by CSCS, Attention Change, Semantic Change and
Grammaticality.

In the critical difference diagrams in Fig. 9, groups of methods that are
not statistically significantly different are grouped together with a bar. Thus
in Fig. 9a, Grammaticality and Semantic Change are not statistically sig-
nificantly different and in Fig. 9 CSCS and Attention Change are not sta-
tistically significantly different, etc.

Together, these results demonstrate the superiority of DNMS com-
pared to all other methods and also a higher performance for CSCS. This
indicates one calculation alone (Grammaticality, Semantic Change or
Attention Change) is not as performant as combining the information for
novel mutation prediction.

Predictions for specific spike mutations of interest. To highlight
specific individual mutation results, we identify mutations in the test set
that are listed as spikemutations of interest for variants classified as VOC
and/or VOI. Current VOCs, VOIs, Variants under monitoring and de-
classified variants for SARS-CoV-2 and individual spike mutations of
interest can be found at the European Centre for Disease Prevention and
Control (ECDC) website, https://www.ecdc.europa.eu/en/covid-19/
variants-concern. From this site, we confirmed four mutations in our
test set are spike mutations of interest for variants classified as VOIs:
D339H, K444T, N460K, and S486P. Additionally, we include mutation
F486V, as it as a defining mutation for the Pango lineage BA.4 and BA.5.
Both lineages are Omicron-descendent sublineages and were classified as
VOC by ECDC from May 2022 until March 2023. Pango lineages are a
hierarchical family tree naming convention to help identify unique sub-
groups within a larger classification system51. Current constellations (a
collection of mutations found in a Pango lineage) for lineages of concern
and genomically interesting regions can be found at https://github.com/
cov-lineages/constellations.

For the five highlighted mutations, Supplementary Table 1 lists the
mutation, the mutation w.r.t. the reference, the first date the mutation was
found in a sequence in S, the frequency of the mutation and its biological
significance. Fig. 10 displays results for the five mutations, which shows
averaged methods over all tested parent sequences that contained the cor-
responding mutation. All mutations are from Omicron sublineages.

Except formutationsN460Kand S486P,DNMS is able to achieve over
0.9 AUC, indicating our method would be beneficial to predict clinically
significant future mutations.

Comparison of transformer models. DNMS uses the term Deep to
illustrate the usage of a deep transformer model, with multiple layers,
each layer requires at least one attention head.With a transformermodel,
we’re able to calculate the three components of DNMS, Grammaticality,
Semantic Change and Attention change. In this paper and the results
presented in earlier sections, we validate our method using a ProtBERT
model, however other protein transformer models could be used in place
of ProtBERT.

To validate our choice in ProtBERT, we test two other pre-trained
protein transformermodels, known as Evolutionary ScaleModeling (ESM).
We investigate two ESMmodels, a 12 layer transformer model (ESM1 t12)
and a 34 layer transformer model (ESM1 t34)52.

The ESMmodels arefirst fine-tuned similarly to our ProtBERTmodel.
We then check performance of the models by mutating the reference
sequence and testing performance with the 987 mutations. We report
the results of ProtBERT vs. ESM in Supplementary Fig. 8 which displays the
global mutation average AUC against the reference sequence.

We show thatperformance for SemanticChange andAttention change
is similar between the three models, except for ESM1 t34, with lower

Fig. 8 | AUC scores for the different methods compared against increasing
mutation frequency threshold. At each increase of the threshold, mutations with
frequency lower than the threshold are excluded.

Table 1 | Average AUC results over all mutations (Global
Average) and over increasing thresholds (Threshold Average)
for the Baseline Reference and Parent Sequence
experimental setups

Reference sequence Parent sequences

Global Threshold Global Threshold
Average Average Average Average

Grammaticality 0.6606 0.6458 0.6961* 0.7298*

Semantic Change 0.6338 0.5935 0.6680 0.7617*

Attention Change 0.6105 0.6670 0.6572* 0.7884*

CSCS 0.6923 0.6675 0.7300 0.7948*

DNMS 0.6974 0.6923 0.7360 0.8228*

A star * indicates where a method was significantly higher, (p < 0.05) than the reference baseline
experiment after a Boneferonni corrected t-test.
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performance in attention change. Notably Grammaticality has lower per-
formance with ESM1 t12 and in ESM1 t34, leading to dramatically
decreased AUC in CSCS and DNMS for the ESM models.

While any protein transformermodel is valid for ourDNMSapproach,
these results validate our choice in ProtBERT.

Discussion
In this study, we aim to predict previously unseenmutations in SARS-CoV-
2 spike protein using a fine-tuned language model that has learned the
dialect of SARS-CoV-2 spike proteins. Potential mutations are ranked in
order to determine those that have high grammaticality (posterior prob-
ability) and are similar to the protein of interestwith lowest semantic change
and attention change.When visualizing semantic embedding and attention
matrices, we show that the language model is able to separate sequence
groups, indicating similarity canbe inferredwith small semantic change and
attention change. Viral fitness analysis demonstrates that high grammati-
cality is associatedwith higher viralfitness, while small semantic change and
attention change are associatedwithhigher viralfitness. For futuremutation
prediction, these are combined together in DNMS to create an acquisition
ranking that prefers high grammaticality, low semantic change and atten-
tion change. Our statistical tests demonstrate that DNMS is superior for
novel mutation prediction, as it combines all available information for the
prediction.

Context matters
Changing the context of the protein of interest being predicted from the
reference sequence to a parent sequence has higher performance as the
reference sequence doesn’t contain many of the mutations in sequences in
the training set used for fine-tuning ProtBERT. For example, the mutation
D339H at position 339, went through multiple steps in spike protein evo-
lution, G339D -D339H.While the end amino acidH is still being predicted
in the reference and a given parent sequence, the context of that prediction
(G vsD) has changed. Additionally, there are many surroundingmutations
that have occurred changing the context of the prediction. A known
mutation that became predominate is D614G, thismutation isn’t present in

the reference sequence, but predominate in the training sequences. Thus
when searching for novel mutations against the reference sequence, muta-
tionD614Gmaybehighest rankedas thefine-tunedmodel ismorebiased to
this mutation. Consequently, the acquisition ranking for the mutations we
are truly interested in (novel, unseen mutations) are decreased and the
performance is lower.

Mutation fitness analysis
Our language model is purely predicting mutations based on the sequence
data alone. There is no information given towards viral fitness of amutation
aside from indirectly by observing dominate mutations at a given position.
As seen from the viralfitness correlation values, the languagemodel outputs
are more associated with RBD expression, a measure of protein stability,
than ACE2 binding, which can be more variable due to the ACE2 receptor.
While we analyzed correlation between ProtBERT calculations and variant
fitness data, ourmaingoal in this studywas todeterminewhatmutations are
likely to happen in the future, not necessarily what the effect of those
mutations will be. Variant effects are often epistatic, the accumulation of
multiple substitutions often modify the effects of other mutations49,53.
Because of this, when new mutations arise, it may be difficult to determine
the resulting phenotype effects of any singular mutation. Thus when
searching for novel mutations, it may be difficult to determine which
mutations will have high clinically significance. Early variant detection
models than can be useful to determine whichmutations are likely to occur
in the future, which can aid wet-lab experimentation to determine the
functional effects of the mutation.

Applications for early variant detection system
In order to build a true early variant detection system, we utilize all novel
n= 987mutations that occurred after the cut-off date and had not been seen
before in the training dataset. Due to the global pandemic, there was an
unprecedented amount of genomic data captured for any virus7. With the
high amount of genomic surveillance, it’s likely that any single mutation
recorded in our sequence database may have only occurred once or twice,
suggesting it might have been a deleterious or largely neutral mutation. The

Fig. 9 | Critical Difference (CD) Diagram showing statistical differences of AUC scores against five language model calculation methods. Critical Difference Diagram
comparing methods based on (a) individual n = 359 parent sequences (CD=0.322) and (b) n = 32 mutation thresholds (CD=1.08).

Fig. 10 | Highlighted mutation AUC scores. AUC
scores for Grammaticality, Semantic Change, and
Attention Change, CSCS, DNMS for five individual
specific spike mutations of interest.
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majority of our test set mutations occurred at low frequencies, with almost
half of the test set occurring only once. While we don’t have explicit fitness
data on all mutations in our test set, we infer advantage by the frequency in
our sequence database. In theory, the fitness advantage of a mutation is
expressed by increased representation in a viral lineage11. While a mutation
with high frequency may also be neutral, it’s less likely for the mutation to
be deleterious, as deleterious mutations are quickly lost. Thus we demon-
strate predictive results against increasing threshold mutation test set. The
increase inAUC from the threshold average compared to the global average
suggests that overall all methods are more performant against mutations
with potentially higher significance. With each step of the mutation fre-
quency threshold, less mutations are considered, which highlights a weak-
ness in some methods with variability in predictive performance for a few
mutations. In particular, mutation N460Kwith frequency 3400 shows poor
performance in grammaticality AUC. As grammaticality is a component of
CSCS and DNMS, those methods also show a decrease in performance for
this singlemutation. However, attention change and semantic change AUC
is high forN460K,which results in better performance forDNMScompared
to CSCS. Together this shows that all three components (grammaticality,
semantic change and attention change) are important for novel mutation
predictions. Overall, grammaticality AUC is most variable when consider-
ingmutations at increasing thresholds. The posterior probability valuesmay
be variable for a few factors including lack of genetic variance in the training
dataset at a given position. When looking at the entropy of positions in the
training setwrt the performance of languagemodel calculations at the same
positions, see Supplementary Fig. 10, we do notice that at higher entropy
levels (higher genetic diversity), grammaticality showsahigherperformance
trend. This indicates without observed changes in amino acids at any given
position, the model may be too over-fit to the training data and will give
lower probability to any given amino acid at a position.Whereas the overall
global context of the sequence can still provide meaningful information
towards the similarity calculations of semantic change and attention change.
Due to thehighpredictive value of grammaticality overall themajority of the
test set mutations, the overall average performance of DNMS is higher with
giving higher weight to grammaticality in the calculation. However, con-
sidering single mutations such as N460K, it suggests a different weighting
scheme may be beneficial to consider for some mutations.

Limitations and Future Direction
While our method has shown high predictive power for novel amino acid
substitutions, it does not account for deletion and insertion mutations. In
viral sequences, substitution mutations are the large majority of muta-
tions compared to deletions and insertions54. In terms of a language
model, a substitution is the equivalent of a token changing to a different
token. For a deletion mutation, it could be modeled using a deletion
token, “-”; however this isn’t ideal for the ProtBERT model, which wasn’t
pretrained on sequences that contained this token. The deletion token
doesn’t contain inherent biological significance other than comparison to
the reference sequence. The ProtBERT model can accurately determine
patterns and semantic meaning from sequences of different lengths, thus
the deletion token can be removed and two sequences of different lengths
(with different deletion tokens) can be accurately compared without the
explicit deletion token, by the surrounding sequence context alone.
Without a deletion token, a deletion mutation is the equivalent as
removing a token and shifting all tokens forward a single position.
Similarly, an insertion mutation would be inserting a token and shifting
all tokens backwards. While the methods of semantic change and
attention change could be calculated similarly as for substitution muta-
tions, modeling grammatically would be a more difficult task. Instead of
considering the posterior probability of a single amino acid change at a
given position, you would need to consider the posterior probability of
amino acid changes of all tokens following the deletion/insertion which
essentially shift the tokens at the affected positions. Ultimately, other
methods such as generative protein models may be better suited to
investigate deletion and insertion mutations.

Methods
Sequence data
SARS-CoV-2 nucleotide sequences are collected from NCBI Genebank up
to January 11th, 2023. These are filtered for completed annotated sequences
with non-ambiguous collection dates and a release date only after two
months of the collectiondate.As the collectiondate is required for recording
the first time a single mutation occurred, it is important to have high con-
fidence in a sequence’s collection date. Redundant nucleotide sequences
(same per collection year and month) are removed.

Further filtering steps are performed including removing sequences
with less than 29,000 bases and unknown nucleotide content greater than
0.05%. Additionally, sequences are filtered if the translated spike protein
contained non-ambiguous amino acids. Lastly, Nextclade55 is used to filter
sequences for other quality issues. The end dataset contains 670,191
nucleotide sequences. Since this is an overwhelming amount of sequences
and our concern is with the spike protein sequence, we further filter
sequences to those that represent unique spike sequences (taking the first
collected sequence). The end result is 35,943 sequences that represent
unique spike proteins. These sequences and their collection date are shown
in Fig. 3. The final 35,943 sequences are used to build our Nextstrain tree.

Of the final nucleotide dataset, 208,613 are pre-cutoff which represent
15,871 unique spike sequences. This set of sequences proved to be toomany
for fine-tuning the ProtBERTmodel. Thus we limit the training set to spike
sequences that were observed at least twice in the data set. The end result is
6,256 unique spike sequences to fine-tune ProtBERT.

Variant fitness data
Inorder to analyze the relationshipbetween the languagemodel calculations
and variant fitness, we obtain a DMS experimental dataset fromCao et al.48.
ACE2 binding and RBD expression values are downloaded from https://
github.com/jianfcpku/convergent_RBD_evolution; where we obtain bind-
ing and expression values for mutations in the RBD for three variants:
reference sequence, BA.1 and BA.2.

To produce the language model calculations, for the reference we
utilize Wuhan/Hu-1/2019. BA.1 (EPI_ISL_10000028) and BA.2
(EPI_ISL_10000005) are obtained from the GISAID database56. We use the
Nextclade55 tool to align the nucleotide sequences to the reference and save
the resulting translated SARS-CoV-2 spike protein for inputs into the lan-
guagemodel. Fromeachof the three sequences,we calculate grammaticality,
semantic change and attention change for all the RBDmutations that have
corresponding experimental binding and/or expression values. In order to
analyze the relationship between our language model calculations and the
fitness values, we calculate the correlation and use a statistical test to
determine significance.

Phylogenetic tree
Ourphylogenetic tree is builtwithNextstrain47. TheNextstraindatapipeline
includes data filtering, alignment and masks certain positions that are
known to show artifacts. A maximum likelihood phylogenetic tree is then
built using IQ-Tree57; and refined using TimeTree58. In the refinement step;
TimeTree infers ancestral sequences, resolves polytomies (when internal
node is connected to more than three different nodes), and creates a time
scaled phylogeny.

For theNextstrainbuild, the 35,943nucleotide sequences,which canbe
translated to unique spike protein sequences, are used to build the phylo-
genetic tree. Due to some filtering steps, the end tree has 35,818 leaf nodes
(from sampled sequences) and 24,052 internal nodes. Supplementary Fig. 3
displays the full phylogenetic tree.

In the Nextstrain phylogenetic tree, internal nodes are inferred
ancestral nodes, created using maximum likelihood methods. The leaf
nodes are samples from the sequenced database. Internal nodes are “Parent”
sequences of the “Child” leaf node. In DNMS, we mutate the parent
sequences to predict novel mutations that are recorded in child leaf nodes.
Node data from Nextstrain includes a list of mutations inherited from root
(reference) to the node. In this way, we’re able to re-create the parent nodes
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bymutating the reference sequencewith the given list ofmutations.Deletion
mutations are common, but our language models have not been trained on
tokens to denote deletions (i.e. “-” token). Thus for deletion mutations, we
simply remove the deleted amino acid from the re-constructed parent
sequence.

Protein language model
Our method utilizes a pre-trained Bidirectional Encoder Representation
from Transformers (BERT) model44. Pre-trained transformer models have
many useful applications with fine-tuning to utilize transfer learning in
downstream tasks. As previously shown with the Tasks Assessing Protein
Embeddings (TAPE) collection of benchmark protein tasks, self-supervised
pre-trained transformermodels showedhighest performance for a variety of
protein prediction problems59.

In this work, we use ProtBERT, previously pre-trained by Elnaggar
et al. on UniRef100 database, which covers 216 million proteins from all
areas of life45. UniRef100 clusters sequences fromUniProt database at 100%
sequence identity, ultimately removing duplicate sequences60.

ProtBERT is aMasked LanguageModel (MLM). TheMLM replaces a
certain token with a [MASK] token and has an objective to recover the
original token based on the full (left and right) context of the sequence. In
contrast with a left-to-right model, such as a Long-Short-Term-Memory
(LSTM)model, which attempts to determine a token given the left context.
With Bi-directional LSTM (BiLSTM), the left-to-right context is con-
catenated with right-to-left context. However, these are still only trained
with a single component of the context44. Thus BERT models have an
advantage in that they are trainedwith the full context of the input sequence.

During pre-training 15% of tokens are randomly corrupted and the
model is tasked to predict the selected tokens. If a token is selected for
corruption, there’s an 80%chance of being replacedwith a [MASK] token; a
10% chance of replacing the token with a random token and 10% chance of
keeping the token unchanged. Replacement with [MASK] token requires
the transformer model to keep a contextual representation of every input
token for the objective of recovering the original token. Replacing the
[MASK] token with a random token (with a 10% chance) removes a
potentialmismatchbetweenpre-training andfine-tuning tasks andutilizing
the original token (with a 10% chance) allows a bias towards the true
observed value44.

ProtBERTwas pre-trained for 300,000 steps for sequences with length
N= 512 and then another 100,000 steps for sequenceswith lengthN < 2000.
This allowed the model to learn useful representations from shorter
sequence first formore efficient training on longer sequences later. Learning
rate was set to 0.002 with weight decay of 0.01 and utilized the Lamb
optimizer45.

To fine-tune ProtBERT, we utilize the bio-transformers python
wrapper (https://github.com/DeepChainBio/bio-transformers/). Fine-
tuning allows us to use our training sequences to update model para-
meterswith abias towards SARS-CoV-2 sequences. If thepre-trainedmodel
is said to learn the global language of proteins over all areas of life, the fine-
tuned model is analogous to learning the specific dialect of SARS-CoV-2
spike protein sequences. In this way, we’re able to obtain a model that’s
learned the protein grammar rules and specific patterns unique to SARS-
CoV-2 spike proteins.

During fine-tuning, 2.5% of tokens are randomly selected for cor-
ruption; with a 80% chance of being replacedwith the [MASK] token and a
10% chance of being replaced with a random token. Fine-tuning utilized
n = 6, 256 unique spike sequences that represent sequences which had
frequency greater than 1 from the pre-cutoff sequence dataset. Training
lasted for four epochs.

The ProtBERT model is shown in Supplementary Fig. 11. Input is a
protein sequence of length N amino acids. The sequence is tokenized and
encoded to feed into a 30 layer transformermodel, eachwith 16 heads. Each
head uses a self-attentionmechanism61. Attentionweights frompulled from
each layer of the transformer model; ProtBERT has 30 layers and 16 heads,
thus the attention weights have an initial size of (30, 16,N,N). The weights

aremaxpooled tocreate an attentionmatrix of size (N,N). Individual hidden
layers have a size of 1024 and the last hidden layer produces N amino acid
embeddings of size 1024. These are concatenated to create a semantic
protein embedding of size (N, 1024). For amino acid probability values, the
amino acid embeddings are fed into a fully connected classification layer
that utilizes the Gaussian Error Linear Unit (GELU) activation function,
equation (1)62, and normalizes outputs prior to a softmax layer to produce
probabilities for all 20 amino acids at a given position.

GELU ðxÞ ¼ x �PX�N ð0;1Þ½X < x� ð1Þ

ESM model. To compare our ProtBERT model against other protein
transformer models, we obtain pre-trained ESMmodels from Rives et al.
201952.

The first model, ESM1 t12 is a 12-layer transformer model, trained on
UniRef50 representative sequences,which clustersUniProt at 50%sequence
identity52. The second model, ESM1 t34 is a 34-layer transformer model
trained on UniRef10052, similarly to the pre-trained ProtBERT model.

Bothmodelswerefine-tunedwith the samen=6, 256 sequences aswth
the ProtBERT model.

Formal problem formulation
Notation. After collecting and filtering SARS-CoV-2 nucleotide
sequences, we obtain a nucleotide databaseN . Nucleotide sequences are
utilized to build the Nextstrain tree and are translated to create our spike
protein sequence database, denoted by S. As the nucleotide sequence
encodes multiple other proteins, there may be a large number of dupli-
cates of spike proteins inS. Thus we only use unique spike proteins forS,
with taking the sequence of earliest collected date in the case of duplicates.
For simplicity sake, the term “sequence” is used in this paper to denote a
protein sequence, unless otherwise explicitly stated.

A protein sequence in sequence database S is denoted by xk, where k
denotes the kth sequence. Protein sequences consists of a set of tokens xi,
xk = (x1, …, xN); where xi ∈ Σ; Σ denotes the alphabet of the amino acid
sequences; i denotes the ith token in xk, where i ∈ [N] and N denotes the
length of sequence xk.

The sequenceWuhan-Hu-1, AccessionNo. NC_045512.22, represents
the first published sequence SARS-CoV-2 sequence and is referred to as the
reference sequence and denoted by xref. Sequences xk are mapped to xref
which becomes the root of the phylogenetic tree and a method to record
variant mutations.

For any amino acid sequence xk, we use ~xk½~xi� to denote a next strand
mutated sequence of xk, mutated through mutation ~xi; where
~xk½~xi� ¼ ð. . . ; xi�1; ~xi; xiþ1; . . .Þ. Token ~xi denotes an amino acid sub-
stitution at position i from sequence xk compared to sequence ~xk. xk can
either be the reference sequence, xref, or a sequence along the ancestry path
from xref to ~xk.

A single mutation, ~xi ¼ ½a : L : b�, is denoted by a tuple with three
values a L and b. a and b denotes the original and mutated amino acid
respectively, and L denotes the actual location of the mutation in the
sequence.

In practice, next strands often have a varying set of mutations, thus a
mutant sequence of xk is denoted by ~xk where ~xk ¼ ð~x1; . . . ; ~xN Þ and the set
ofmutations are tokens in~xk that are in the sameposition as~xk anddisagree.
The set of mutations between xk and ~xk are denoted by Eq. (2).

Mðxk; ~xkÞ ¼ f~xij~xi ≠ xig ð2Þ

Given a sequence database S, with sequences first aligned to reference
sequence, xref, we use ωð~xiÞ to denote the frequency of mutation ~xi. This
indicates the number of times that a mutated sequence, ~xk containing ~xi,
(~xk½~xi�), appears in the sequence database and ~xi refers to mutated amino
acid x at position i in xref. The frequency of a mutation, ωð~xiÞ, can be
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calculated as shown in Eq. (3).

ωð~xiÞ ¼
X

~xk ½~xi�2S
1 ð3Þ

For sequences in the database S, their collection date t represents the
date the sequence was sampled from the host. The collection dates are used
to build training and test sets based on a cutoff point. For the entire data
collected from a period t0 to T, where T represents the last date a sampled is
collected.The cutoff point is denotedby τ, such that t0< τ<T. Thepre-cutoff
dataset, Spre consists of samples that have a collection time point, tk for the
kth sample, before cutoff τ. The post-cutoff dataset, Spost contains samples
with a collection time point after τ.

Spre ¼ fxk 2 Sjt0 ≤ tk<τg; Spost ¼ fxk 2 Sjτ ≤ tk ≤Tg ð4Þ

The test set mutations are denoted by Mtest. Mutations are recorded
against the reference sequence, thus Mtest represents the set of mutations
that are variants of the reference sequence and are first recorded in
sequences in Spost and not recorded in Spre, i.e. novel mutations.

Mtestðxref ;SpostÞ ¼ f~xij~xi ≠ xi; ~xk½~xi� 2 Spost; ~xk½~xi� =2Spreg ð5Þ

The sequence dataset denoted by Stest, used for novel mutation pre-
diction, contains parent sequences from the Nextstrain tree and a special
case of the reference sequence. A parent sequence, xk, is counted in the set
Stest if the next strand sequence (child sequence), ~xk contains a mutation in
the test set,Mtest. Thus the novel mutation is present in the child sequence,
~xk, but not parent sequence, xk.

Stest ¼ fxk 2 Sj~xi 2 Mðxk; ~xkÞ; ~xi 2 Mtestg ð6Þ

In order to build the set of sequences used to fine-tune ProtBERT,
Strain, we used a subset of Spre, where sequences have a frequency greater
than 1 from the translated protein sequences in nucleotide sequence setN .
This represents more common and higher fittest members of pre-cutoff
samples. For a given protein sequence, xk, let gk represent the nucleotide
(genomic) sequence in N that translates to (encodes) xk. The sequence
frequency can be described with equation (7).

ωðxkÞ ¼
X
gk2N

gkencodesxk

1 ð7Þ

Thus our training dataset, Strain, can be described with the following:

Strain ¼ fxk 2 SprejωðxkÞ > 1g ð8Þ

Problem statement. Our goal is to identify novel spike protein amino
acid substitutions inMtest. As our methods are intended for single point
amino acid substitutions, insertion and deletion mutations are not a part
of Mtest or considered as ground truth mutations.

In order to identify novel mutations, we prioritize mutations if they
have corresponding large posterior probabilities (grammatically acceptable
tokens), and have similar similarity to the sequence of interest, as measured
by semantic embedding and attention values.

In DNMS, a sequence xk is selected for mutating if the next strand
sequence ~xk½~xi� has any mutation ~xi in Mtest. In practice, xk may have
multiple next strand sequenceswith different singlemutations and/or a next
strand that has multiple mutations. In either case, we consider all future
single point amino acidmutations as the ground truth set that occur in next
strand sequence(s) from xk.

Given a sequence xk that we wish to predict mutations in Mtest, we
mutate xk in silico; we build the candidate set of mutations for prediction,
PðxkÞ, that contain every single point amino acid substitution for all

positions i = 1 to N, the length of the sequence.

PðxkÞ ¼ f~xijxi 2 xk; ~xi ≠ xi; x 2 Σg ð9Þ
For each mutation in PðxkÞ, we create a mutated sequence xk½~xi� that

contains the single point amino acid substitution ~xi, such that
~xk½~xi� ¼ ðx1; . . . ; xi�1; ~xi; xiþ1; . . . ; xN Þ. The following section defines the
language model calculations used for prediction.

Language model calculations. For the sequence of interest, xk, we first
require a vector representation of all tokens xi from i = 1 toN, denoted as
ei, to create X0, which represents the input, in a vectorized matrix, to the
first layer in the transformer model.

X0 ¼ fe1; e2; . . . ; eNg
A transformermodel consists of L layers, where the input to the layer ℓ,

Xℓ is the output of the previous layer (or X0 if ℓ = 1).

X‘ ¼ f ‘�1ðX‘�1Þ
The function fℓ represents the layer ℓ transformation on inputX. Layer

transformations are accomplished using a multi-headed attention function
(MHAttention) which utilizes W‘, the collection of attention head
weights for layer ℓ. A layer’s transformation is shown in equation (10). The
final output of layer ℓ additionally includes layer normalization and the
GELUactivation function, equation (1). For amore in-depth discussion and
useful pseudocode on transformer models, please see ref. 62.

f ‘ðXÞ ¼ X þ MHAttentionðXjW‘Þ ð10Þ
A single attention head calculates Query, Q, Key, K and V matrices

from input X and input from previous layer Xℓ−1 as described in equation
(11). WhereWq,Wk,Wv are the weight matrices for query, key and value
respectively andbq,bk,bv are bias terms for query, key andvalue respectively.

Q ¼ WqX þ bq; K ¼ WkX‘�1 þ bk; V ¼ WvX‘�1 þ bv; ð11Þ
Aquery vector in querymatrixQmaps a given token in inputX, while

the key and value vectors map the surrounding tokens in context of the
input. The product,QKT represents the contribution of each token to each
other token in the sequence. The output of the attention head is an updated
value matrix, V0, shown in equation (12), where dk is the dimension of key
factors. For amulti-headed attentionmechanism, this process is repeatedH
times, where H is the number of heads. Each head has an output that is
concatenated together and multiplied by another weight matrix to obtain
the output of the multi-head attention function.

V0 ¼ softmax
QKTffiffiffiffiffi

dk
p

 !
V ð12Þ

The dot product ofWq andWk, query and keyweights respectively, are
also known as the score weights, the strength of the weights measure the
relevance of each key-value pair to the query. In our modelWh

‘ represents
the score weights of the hth attention head in layer ℓ. A singleWh

‘ matrix is
size (N, N) and normalized row-wise such that each row adds to 1.

For the 30 layer transformer, each with 16 attention heads, we extract
thematrixW,W 2 R30× 16×N ×N . For a long sequence, individual attention
weights may be very small, as each row is normalized to add to 1 in each
individual Wh

‘ matrix. Thus we use max-max pooling to obtain attention
matrix A, A 2 RN ×N . Where cell Ai,j is the maximum attention weight
(and importance) the ith tokenhad to the representation of the jth token for
all layers.

A ¼ max
30

‘¼1
max
16

h¼1
Wh

‘
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For the sequence of interest, xk, Ak represents the attention matrix after
passing input xk. For all mutated sequences, ~xk½~xi� in PðxkÞ, A½~xi� denotes
the attention matrix after passing input ~xk½~xi� to the ProtBERT model. We
calculate the change in attention with equation (13), denoted by ΔA½~xi�,
which represents the similarity in attention matrices calculated with the ℓ2
norm.

ΔA½~xi� ¼k A� A½~xi� k2 ð13Þ
Conceptually, ΔA½~xi� represents a degree of similarity in how the

model is “paying attention” to a sequence and a potential mutation of the
sequence. Similar attention weights between two sequences indicate they
share similar patterns. As our objective is to find the most likely future
mutation, we desire thisweight to be small in determining futuremutations.

The output of the last layer in the transformer model produces N
amino acid embedding vectors, each of size 1024, the hidden layer size in the
model. These values are concatenated to create Z, Z 2 RN × 1024, which
denotes the protein embedding. For simplicity, we refer to the full model
(including tokenizing and vectorizing input xk) as fs(xk). Thus for the
sequence of interest we’re mutating, Z = fs(xk), is the resulting protein
embedding of the input sequence xk. For all mutated sequences ~xk½~xi� in
PðxkÞ, Z½~xi� denotes the mutated protein embedding after passing input
~xk½~xi� to the ProtBERT model, Z½~xi� ¼ f sðxk½~xi�Þ.

Z is a numerical embedding of the input sequencexk and represents the
protein semantics. In our goal to find likely futuremutations in sequence xk,
we calculate the semantic change, ΔZ½~xi� with equation (14) which repre-
sents similarity in semantics fromthe sequenceof interest toagivenmutated
sequence with the ℓ2 norm.

ΔZ½~xi� ¼k Z� Z½~xi�k2 ¼k f sðxkÞ � f sðxk½~xi�Þk2 ð14Þ
The output of the transformer model, Z, is then fed into a final clas-

sification layer with weightsWf and bias bfwhich uses the GELU activation
function, equation (1), this creates classification layer output, Xc.

Xc ¼ GELUðWfZþ bf Þ

The classification layer output,Xc is normalized and fed into a final softmax
layer with un-embedding weights, Wu. The final output is a probability
distribution, P; which consists of probability values for tokens in the
alphabet, with lengthNΣ over the length of input sequence, xkwith lengthN,
P 2 ð0; 1ÞNΣ ×N .

P ¼ softmaxðWuXcÞ

For a given token x at the ith position, p(xi∣xk) denotes the posterior
probability of the token at that position given input sequence xk. Prob-
abilities are calculated using forward mode, where a single forward pass of
the input sequence is fed into the transformer model to output posterior
probabilities.

pðxijxkÞ ¼ pðxijx1; . . . ; xi; . . . ; xN Þ ð15Þ
For all mutations in PðxkÞ, probability values are calculated by

inputting sequence xk. The grammaticality of the mutation, pð~xijxkÞ
represents the probability of mutated amino acid ~x at the ith position. This
value represents the likelihood of the amino acid at the position and
represents how well the mutation confers to the grammar rules of the
protein learned by the language model.

CSCS: constrained semantic change search. In this section, we dis-
cuss the influential method, Constrained Semantic Change Search
(CSCS) introduced by Hie et al.28 In the original paper, they utilized a
biLSTM model trained on SARS-CoV-2 spike protein and homologous
Betacoronavirus sequences.

The original published CSCS method is shown in equation (16), with
another minor difference of using the ℓ1 norm in the semantic change
calculation, (equation (14)).

CSCS0ð~xi; xkÞ ¼ rankðΔZ½~xi�Þ þ β×rankðpð~xijxkÞÞ ð16Þ
Where β is a weighting parameter, in their study and results discussed

in Section 2.5, β = 1.
From preliminary results discussed in the paper, it was found this

ranking method isn’t as performant for novel mutation search, thus we
adjust the ranking in an adjusted CSCS calculation. The function rank(x)
ranks the items in array x from highest to lowest. We use rank( − x) to
demonstrate a ranking of items in array x from lowest to highest.

To do a comparison against CSCS and DNMS, we use an adjusted
version of CSCS, defined in equation (17), where we use the ℓ2 norm in
semantic change calculation, and adjust the ranking scheme to best fit our
objective. Additionally we add α weighting parameter for semantic change
calculation. In results comparison ofDNMSandCSCS, the adjusted version
in equation (17) is utilized.

CSCSð~xi; xkÞ ¼ α×rankð�ΔZ½~xi�Þ þ β×rankðpð~xijxkÞÞ ð17Þ
DNMS: deep novel mutation search. DNMS is formally defined in
equation (18), where we combine grammaticality, semantic change and
attention change rankings.

DNMSð~xi; xkÞ ¼ α×rankð�ΔZ½~xi�Þ þ β×rankðpð~xijxkÞÞ
þ γ×rankð�ΔA½~xi�Þ

ð18Þ

Where α, β, and γ are weighting parameters for Semantic Change,
Grammaticality and Attention Change respectively. To determine what
values are best fitting for the weighting parameters, we performed a grid
search and determined that α = 1.5, β = 3.0 and γ = 1.0 show the best results
for DNMS. The same α and β values are used for CSCS, equation (17) for a
fair comparison.

Performancecalculations. All possiblemutations, ~xi 2 PðxkÞ, are given
an acquisition ranking, based onDNMSð~xi; xkÞ, aDNMS, where the highest
scores ofDNMSð~xi; xkÞ are given priority and identified as themost likely
candidates for future novel mutations.

aDNMSð~xi; xkÞ ¼ rankðDNMSð~xi; xkÞÞ ð19Þ
Similarly for CSCS, we calculate the acquisition ranking based on

CSCSð~xi; xkÞ.

aCSCSð~xi; xkÞ ¼ rankðCSCSð~xi; xkÞÞ ð20Þ
For grammaticality,we consider the rankofprobabilityvalues alone for

acquisition ranking, as shown in equation (21).

agramð~xi; xkÞ ¼ rankðpð~xijxkÞÞ ð21Þ
Similarly for semantic change andattention change, equations (22) and

(23) respectively, we consider the ranking for those values separately, but
smaller values are prioritized and ranked higher than higher values. Note
these ranking values are all components of DNMSð~xi; xkÞ, without the
weighting parameters.

asemð~xi; xkÞ ¼ rankð�ΔZ½~xi�Þ ð22Þ

aattnð~xi; xkÞ ¼ rankð�ΔA½~xi�Þ ð23Þ
For each method, all mutations ~xi 2 PðxkÞ are given a corresponding

acquisition ranking score, ai for range i = 1 toM, whereM represents length
of possible mutation set, PðxkÞ;M ¼ jPðxkÞj. This is the same as N × 19;
whereNdenotes the lengthof (xk) and19 represents 19 potential aminoacid
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mutations, ~xi, for the ith position in (xk). Acquisition rankings range from 1
toM, where the highest value represents the most likely mutations as spe-
cified by the method and 1 represents the least likely mutations. Starting
from 1 toM, increasing thresholds are created. At each threshold, we regard
all mutations with rank lower than the threshold as positive class (future
mutation) and compare these to the ground truth future novel mutations,
thus we’re able to calculate a true positive rate and a false positive rate.
Plotting the false positive rate vs. true positive rate, we can achieve the
receiver operating characteristic (ROC) curve. The AUC is the area under
the ROC curve. For AUC values, if the acquisition ranking is perfect, all
positive class samples (future mutations) will be ranked higher than the
negative class and AUCwill equal 1. Deviations from this ranking decrease
AUC; and AUC value of 0.5 indicates random ranking.

Statistics and reproducibility
In order to determine if methods differ with statistical significance, a
Friedman test is done comparing the methods results first on different
parent sequences, and second on average AUC scores over different
mutation frequency thresholds.

A Friedman test is a non-parametric version of the repeated-measures
ANOVA63. The test considers ranks for each data set (different parent
sequence or different mutation frequency threshold results) separately,
methods are ranked from highest AUC to lowest AUC.

For k methods tested on n datasets, equation (24) determines the
average ranks of the jthmethod,where rji is the rank of the jthmethodon the
ith dataset.

Rj ¼
1
n

Xn
i¼1

rji ð24Þ

The null hypothesis states that there is no difference between algo-
rithms, thus their average ranks (Rj) over different datasets will not be
different63. Thus the Friedman statistic„ χ2F is shown in equation (25).

χ2F ¼ 12n
kðkþ 1Þ

Xk
j¼1

R2
j �

kðkþ 1Þ2
4

" #
ð25Þ

In our analysis, we compare k = 5 different methods first on
n=359 separatedatasets (parent sequences) thenn=32mutation frequency
threshold averages.

After rejecting the null-hypothesis, that methods are equivalent, we
continue to perform a Nemenyi post-hoc test for comparing all methods to
each other. Two methods are significantly different if the average ranks
differ by at least the critical difference (CD), as defined in equation (26).
Where qα is the Studentized range statistic, with k= 5methods and α= 0.05,
qα = 2.72863.

CD ¼ qα

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðkþ 1Þ

6n

r
ð26Þ

To display the results from the Nemenyi post-hoc test, we display
Critical Difference diagrams in Fig.9. Where methods are ranked in des-
cending order of performance with methods on the left (closer to 1) having
higher performance. Two methods are statistically significantly different if
their average ranks differ by at least the CD value. Methods that are not
statistically significantly different are grouped together with a bar.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Data used in analysis can be downloaded as instructed in our code reposi-
tory: https://github.com/maggieelkin/CovMutation. We provide the

required data to reproduce analysis andfigures as published. Source data for
figures and analysis is also provided in Supplementary Data 1–8.

We also make use of publicly available databases and tools:
• NCBI Virus for SARS-CoV-2 Nucleotide sequences: https://www.
ncbi.nlm.nih.gov/labs/virus/vssi/#/

• Nextclade CLI for alignment and mutation information55: https://
docs.nextstrain.org/projects/nextclade/en/stable/index.html

• Grammaticality and Semantic Change values for mutations against
the reference sequence from biLSTM language model trained by Hie
et al.28 downloaded from: https://github.com/brianhie/viral-
mutation

• Fitness single-residue DMS of Spike RBD from Cao et al.48 down-
loaded from: https://github.com/jianfcpku/convergent_RBD_
evolution and also available at https://github.com/maggieelkin/
CovMutation.

Code availability
All code used in analysis is written in Python and available in our code
repository: https://github.com/maggieelkin/CovMutationand onZenodo at
https://doi.org/10.5281/zenodo.1401534464. Where we also provide links to
raw and processed data and our fine-tuned ProtBert model. We provide
examples of usage to reproduce analysis and figures as published.
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