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A B S T R A C T

We propose a method for determining the density of space charge trapped at grain boundaries in polycrystalline 
solid state ionic conductors. The method is an extension of the earlier proposed Linear Diffusion Model (LDM) 
that relies on the impedance spectra-derived current-voltage characteristics of grain boundaries. The utility of 
the extended LDM version is demonstrated to successfully and nondestructively obtain values for the space 
charge density trapped at the grain boundaries in a variety of oxygen ion conductors including Sr-doped LaGaO3, 
Y-doped CeO2, and Gd-doped CeO2, and proton conductors including Sr-doped LaNbO3 and Y-doped BaZrO3. For 
all cases, the density of the space charge trapped at the grain boundaries was <0.2C/m2, corresponding to a 
fraction of electron charge per unit cell. The proposed technique, while it lacks the ability to determine the 
thickness of the grain boundary core when much smaller than the Debye length, it can be used to distinguish 
between space charge vs insulating layer contributions to the grain boundary resistance.

1. Introduction

Grain boundaries in polycrystalline solid ionic conductors typically 
occupy only a small volume fraction of the solid. However, they often 
play a crucial role in influencing the overall electrical resistivity [1–3]. 
This phenomenon is particularly evident in oxygen-ion and proton 
conductors, which are fundamental components of solid oxide ion based 
fuel/electrolysis cells [1,4–7], technologies considered vital for future 
clean energy needs. Gaining a comprehensive understanding of grain 
boundary resistivity in oxygen and proton-conducting ceramics is 
therefore paramount [8,9]. The complexity of the issue is heightened by 
the fact that grain boundary resistance in a given material may stem 
from various sources, making the nature and source of grain boundary 
resistance a subject of intense debate in the field of Solid State Ionics 
[10–12].

Interpreting grain boundary resistance presents a significant chal
lenge since, in addition to electrical interactions, various other contri
butions have been proposed [10–17]. Grain boundary resistance 
reportedly can have two distinct contributions: (i) charge trapped in the 

grain boundary core, causing a space charge region in the adjacent grain 
(Fig. 1) [1,4–6,8,9,18–23], and (ii) physical obstructions due to insu
lating secondary phases or disordered layers [19,20]. While advanced 
Transmission Electron Microscopy (TEM and TEM holography) tech
niques [19–22,24] can often provide important information about spe
cific grain boundaries, they are limited in being able to provide an 
overall picture of the broad distribution of grain boundaries that are 
found in typical polycrystalline ceramics. This is exacerbated by the fact 
that it is not clear whether the selected interfaces studied by TEM are 
representative of the actual current paths taken by the ions. As such, 
developing macroscopic methods that enable one to directly quantify 
the properties of grain boundary interfaces relevant to the charge 
transport path is vital for the systematic interpretation of their influence 
on performance. In the following, we discuss how impedance spectros
copy data, and their analysis by the linear diffusion model (LDM), can be 
used to obtain a clearer understanding of the sources of grain boundary 
resistance in given solid electrolyte materials.

We begin by considering the case in which the grain boundary 
resistance is dominated by space charge barriers. Based on the Schottky 
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formalism applied to grain boundaries in polycrystalline ionic conduc
tors [25], Maier and Fleig [26] proposed a method (hereafter RR 
method) to determine the grain boundary potential based on the ratio of 
grain boundary to bulk resistivity. The RR method requires an imped
ance spectrum with clearly identifiable RC elements representing con
tributions from both grain boundaries and grain interiors. We 
subsequently developed an alternative approach, the linear diffusion 
model (LDM), which provides a more accurate quantitative determina
tion of the grain boundary potential [15,27–32]. Although requiring 
multiple impedance spectra, LDM can reliably differentiate between 
contributions from space charge-induced grain boundary resistance 
versus those arising from physical obstructions [30].

The main objective of the current work is to show that the extended 
LDM models allows one to accurately determine the grain boundary 
potential, as well as the density of trapped states within the grain 
boundary cores, the latter not accessible via the RR methods.

2. Linear diffusion model (LDM)

The LDM was initially designed to explain the cause of the current- 
voltage characteristics (I-V curves) of grain boundaries in poly
crystalline solid state ionic conductors. The process of extracting the I-V 
curves from impedance spectra is well established. It necessitates the 
acquisition of impedance spectra under constant bias and subsequent 
analysis of changes incurred by bias to the RC-elements corresponding to 
the grain boundaries (see, for example, Fig. 4 in ref. [33] and the sub
sequent application of this technique in [27–32,34]).

The LDM is based on a set of four assumptions, the applicability of 
which were previously discussed [27–32]:

(a) The charges in the grain boundary core are permanently trapped 
and are not influence by applied field.

(b) The grain boundary charge, Qgb, is concentrated in the grain core, 
with half-thickness of d. We approximate the charge distribution as a 
Gaussian function; however, the exact shape does not affect the field 
distribution if d is no larger than the Debye length: 

LD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
ε⋅ε0⋅kB⋅T
(z⋅q)

2⋅C0

√

(1) 

where q is the elemental charge, z the relative charge of the mobile ions, 
ε the dielectric permittivity, ε0 the dielectric permittivity of vacuum and 

C0 the concentration of mobile ions in the grain interiors.
c) The diffusion coefficient D of the mobile ions remains fixed within 

both the grain interiors and grain boundaries for a given temperature 
and doping level. The blocking of ionic current flux results from the 
induced electric field, due to the presence of the trapped charge at the 
grain boundary, given by the spatial distribution ngb(x). This assump
tion, however, is valid only for the case of grain boundaries being free of 
contaminants and disordered layers. It is important to emphasize, 
however, that the LDM is also valid for cases of contaminated grain 
boundaries and, in conjunction with the RR method, is capable of 
separating space charge contributions to the grain boundary resistance 
from other sources. This case was considered in detail in Ref. [30].

d) All species are assumed to follow Boltzmann statistics, which al
lows the ionic mobility, μ, to be related to the diffusion coefficient, D, via 
the Einstein-Smoluchowski equation μ = D/Vth, (where) 

Vth = k⋅T/(z⋅q) (2) 

is the thermal voltage. This assumption is somewhat controversial 
given that most ionic conductors cannot be treated as dilute solutions 
with perfectly independent moving ions (more sophisticated treatments 
can be found in refs [10–16]). However, the assumption of a Boltzmann 
distribution is sufficient for the LDM to yield a set of practically 
important and easily verifiable predictions based on the numerical so
lution of the well-known transport Eq. [35–37]. It relates the electric 
field, ϕ, current density, j, and density of trapped charge ngb(x): 

ϕʹ́ (x) −
(
ϕʹ(x) − 1 + ngb(x)

)
⋅ϕ(x) +

∂
(
ngb(x)

)

∂x
− j = 0 (3) 

For practical purposes, this equation is given in dimensionless form. 
The normalization constants are:

(i) distance given in units of Debye length (Eq. (1));
(ii) electric field given in units of E0 = Vth/LD;
(iii) current density given in units of J0 = D

LD
⋅C0⋅z⋅q;

(iv) trapped charge density given in units of C0 and expressed as 

ngb(x) = a
δ

̅̅
π

√ exp
(

− (x/δ)
2

)
, (where) 

a =
Qgb

C0⋅q⋅z⋅LD
=

Qgb
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C0⋅ε⋅ε0⋅C0⋅T

√ and δ = d
/

LD (4) 

a &δ being the two values defining the grain boundary in dimen
sionless units, corresponding to Qgb, and d in real dimensions. To avoid 
the problem of considering the interface between electrodes and ionic 
conductors, we considered an infinite chain of identical grains of length, 
l. Then the boundary conditions have a simple form of constraints 
requiring continuity of electric field and its derivative between the 
grains: ϕ(0) = ϕ(l) and ϕʹ(0)=ϕʹ(l), where l is the length of the grain and 
the grain boundary can be positioned anywhere within [0; l] interval. 
Numerical solutions of Eq. (3) give three very specific experimentally 
verified predictions:

1. If plotted in coordinates ln (current) vs ln (Ugb/Vth), I-V curves 
have at least two distinct linear regions (Fig. 3). For Ugb/Vth <1, the 
slope of the I-V curves is strictly 1, which implies that current is directly 
proportional to applied voltage: I∝Ugb. Thus, LDM predicts that at low 
voltages, GBs behaves as resistors, i.e., an “Ohmic” regime. Above a 
transition region at 1<Ugb/Vth<10, increase in applied voltage results in 
the appearance of a second linear region on the log-log plot. This second 
linear region at 10<Ugb/Vth<80 has a slope, n, larger than 1, so that the 
current is proportional to a power of applied voltage: I∝Un

gb, a “super- 
Ohmic” regime (Fig. 3). For higher voltages, the charge trapped in the 
grain boundary may be fully compensated by the ionic current, i.e., the 
amount of charge injected becomes larger than the charge trapped in the 
grain boundary core (see Fig. 2c in ref. [31]. Then, the I-V curve be
comes again Ohmic, I∝Ugb. This is a relatively rare, but possible case (see 
for instance section 4.4). The overall resistance of the sample in this 
regime is then defined by part of the grain boundary resistance not 

gb

2

Fig. 1. Schematic of charge distribution in a grain boundary: charge trapped in 
grain boundary core (BC) repels mobile ions forming a space charge depleted of 
charge carriers. The thickness of the space charge layer is at least a few LD, 
much larger than the thickness of the core, dreal, usually only one or two atomic 
layers thick. The scheme is given for the case of positive charge carriers and 
positive charge trapped, while the immobile dopants are negatively charged. 
This corresponds to the cases considered in this work. Reversal of the sign of the 
charge does not affect the results of the calculation. The maximum value of the 
potential, Ψgb, is the grain boundary potential.
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related to space charge and by the resistance of the grain interior (bulk). 
2. The slope, n, of the super-Ohmic region (I∝Un

gb) is directly related to 
the value of the grain boundary potential of the super-Ohmic region 
[31]: 

φgb = Ψ gb
/
Vth = n

/
fKL (5) 

where fKL = 0.41 (~
[ ̅̅̅

2
√

− 1
]
) is a previously determined empirical 

factor [31]. It was obtained by plotting the slope of the super-Ohmic 
regime of the simulated I-V curves against the grain boundary poten
tial, expressed in units of the thermal voltage (Vth). The factor remains 
constant across the practically important range of grain boundary po
tentials (in units of Vth), from approximately 2 to at least 40, regardless 
of the values of Q and d, as long as a given pair of Q and d results in the 
same grain boundary potential.

3. If no significant release of trapped space charge occurs, the slope n 
decreases with temperature as 

Crit = T⋅
(
n − fKL

)
= const. (6) 

This criterion also implies that the absolute values of the grain 
boundary potential, Ψ gb, remain constant with temperature, while the 
value of φgb decreases as 1/T because Vth~T. If the condition holds 
(Crit = const), LDM is valid and Eq. (5) can be used to determine the 
grain boundary potential.

While the LDM based on Eq. (3) has been highly successful in 
explaining the I-V curves of grain boundaries and extracting values of 
the grain boundary potential, it has, until now, faced challenges in 
extracting the values of Qgb and d. This limitation arises from the fact 

that Eq. (3) cannot be solved analytically. For a given material, each pair 
of Qgb and d leads to a well-defined value of the grain boundary potential 
Ψ gb. However, Ψ gb at a given temperature may correspond to an infi
nitely large number of pairs Qgb and d. Therefore, determining Ψ gb from 
one set of Qgb and d is an ill-posed task. Nevertheless, as we demonstrate 
below, by using a set of values determined at different temperatures, this 
task becomes achievable.

3. Mathematical background

Solving Eq. (3) numerically for the practically important values of a 
and δ in dimensionless space produces a smooth (all derivatives are 
continuous) surface φgb(a, δ) (Table 1, Fig. 2a), which implies that 
φgb(a, d) can be approximated locally in quadratic form. Indeed, fitting 
the surface with Matlab leads to the expression: 

φgb(a, d) =
Ψ gb

Vth
= S⋅a⋅δ + B⋅a2 + 1 (7) 

where 

S = − 0.282
(

i.e.
1̅̅

̅̅̅̅
4π

√

)

and B = 0.125 (8) 

(i.e. 1/8) are empirical dimensionless constants.
For values of the grain boundary potential Ψgb > 4Vth, the accuracy 

of the fit is better than 1 % (Fig. 2a, Table 1). The accuracy deteriorates 
for the cases if Ψ gb < 4Vth (Fig. 1b) corresponding to small values of 
trapped charge Qgb and large thicknesses of the grain boundary core 

Fig. 2. (a) Values of the grain boundary potential in dimensionless units φgb = Ψgb/Vth as a function of normalized grain boundary charge, a, and grain boundary 
core thickness δ = d/LD. The surface is smooth, allowing it to be approximated locally in quadratic form. (b) the relative error of fit to (7), for small values of δ, φgb.

Table 1 
Values of φgb as a function of a and d obtained by solving Eq. (3) numerically as described in ref. [31].

a\d 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.3 0.1

6.0 ​ ​ ​ ​ ​ ​ 3.8 4.7 5.1 5.3
8.0 2.0 2.4 3.0 3.7 4.6 5.6 6.7 7.9 8.4 8.7
10.0 3.4 4.3 5.3 6.5 7.9 9.3 10.7 12.1 12.8 13.1
12.0 6.0 7.4 8.9 10.6 12.2 13.9 15.6 17.3 18.2 18.6
14.0 9.9 11.8 13.7 15.6 17.6 19.6 21.6 23.5 24.5 25.0
16.0 15.0 17.2 19.5 21.7 24.0 26.2 28.5 30.7 31.9 32.4
18.0 21.2 23.7 26.3 28.8 31.3 33.9 36.4 39.0 40.2 40.9
20.0 28.4 31.3 34.1 36.9 39.7 42.5 ​ ​ ​ ​
22.0 36.7 39.8 42.9 46.0 ​ ​ ​ ​ ​ ​
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(few LD). These cases, however, are of little practical interest because 
they occur if Qgb is small in comparison to the bulk carrier concentration 
and/or is distributed over a large distance, δ > LD (Table 1). For these 
cases, the resistance of the grain boundaries does not contribute 
significantly to the overall resistance of a given sample. The quadratic 
form of Eq. (7) can be rewritten using the explicit values for a and δ: 

a⋅δ =
Qgb⋅d

T
z⋅q

ε⋅ε0⋅k
and a2 =

Q2
gb

T
1

C0⋅ε⋅ε0⋅k
(9) 

The first multiplier in these expressions contains the variables 
describing the grain boundaries and the second multiplier depends only 
on the properties of the material: z-charge of the charge carriers, 
C0-concentration of the charge carriers in bulk and ε is dielectric 
permittivity. For a given material these parameters are known and can 
be abbreviated as constants: 

C1 =
z⋅q

ε⋅ε0⋅k
and C2 =

1
C0⋅ε⋅ε0⋅k

. (10) 

Then the grain boundary potential in real dimensions looks as: 

Φgb

Vth
= S⋅C1

Qgb⋅d
T

+ B⋅C2
Q2

gb

T
+ 1, (11) 

At a given temperature, this is an equation with two variables Qgb and 
d. Since Φgb

Vth 
can be determined directly from the impedance spectroscopy 

data as the slope of the I-V curves (an example in Fig. 3), d
(
ln

(
Igb

) )
/d

(
ln 

(
Ugb

) )
= n=fKL

Φgb
Vth

, Eq. (11) allows the determination of Qgb and d if the 
impedance spectroscopy measurements are performed at two or more 
temperatures using a standard least squares method (LSM). The quality 
of the data for this procedure is defined by the criteria in Eq. (6), 
demanding that Qgb and d not change with temperature.

One has to note that for d<<LD, the I-V curves and the grain 
boundary potential do not depend on values of d (Eq. (11), Table 1, 
Fig. 2). Therefore, as an approximation for d<<LD one can take: 

Qgb appr =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
Φgb

Vth
− 1

)

⋅
1

B⋅C2
⋅T

√

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

8⋅T⋅C0⋅ε⋅ε0⋅k⋅(n/fkl − 1)

√

(12) 

Even though this equation allows determination of the charge den
sity trapped at the grain boundaries using only an I-V curve acquired at a 
single temperature, it is limited to the condition, d<<LD, which while 
highly common (see below), is not always satisfied. Moreover, Qgb appr is 
valid only if the criterion given in Eq. (6) is fulfilled. Therefore, mea
surements conducted at a minimum of two different temperatures, are 
necessary. An additional utility of Qgb appr is that it can serve as an initial 
approximation while performing LSM-fitting on the data at multiple 

temperatures.

4. Practical implementation

To illustrate, we have applied this approach to the data that we 
previously published within the framework of the development of the 
LDM.

4.1. Case 1: 1 Mol% Sr doped LaGaO3

We begin with the case of the oxygen ion conductor 1 mol% Sr doped 
LaGaO3 (LSG1) considered in ref. [28] with ε ≈ 26 [38], z = 2, volume 
of unit cell Vol = 0.236 nm3 [39], concentration of oxygen vacancies 
C0 = 2.55⋅1020 cm−3 and LD within the range of 0.25 nm (250 ◦C) to 
0.275 nm (350 ◦C), less than a unit cell size. LSG1 is viewed as one of the 
rare materials in which the current across the grain boundary has been 
verified to be exclusively limited by space charge. For this material, the 
values of the grain boundary potential determined with RR and LDM 
match perfectly (Fig, 4 in ref. [28]). The value of Crit, calculated with 
Eq. (6), varies by less than 2 % in the measured temperature range, 
indicating that all five points are suitable for analysis. From the physical 
parameters of the material, one obtains C1 = 1.08⋅1014 m⋅K

C and C2 =

1.24⋅106
(

m2

C

)2

K. The approximated value for Qgbappr = 0.165 C
m2, ac

cording to Eq. (12), for all temperatures, with values of Crit (Fig. 3b) 
varying less that 1.6 % between 250 ◦C and 350 ◦C, indicating that no 
trapped charge is released within this temperature range. The LSM 
yields an excellent fit for Qgb = 0.166 C

m2≈Qgbappr and d<<LD. An analysis 
of Eq. (11) with this value of Qgb = 0.166 C

m2, shows that the first term 
becomes <10 % of the second term already for d = 0.1 nm. Therefore, 
the fact that the best fit is achieved for d⟶0, strongly suggests that the 
trapped charge is confined to one atomic plane. As a way to visualize the 
charge distribution, one can consider the average concentration of 
charge per unit cell as σunit≈ Qgb⋅Vol2/3/q = 0.19 electron charge per 
unit cell at the interface between two neighboring grains (Fig. 1). The 
approximation of Vol2/3 for the “area of the unit cell cross section” is 
used because LaGaO3 is not cubic.

4.2. Case 2: 1 Mol% Y doped CeO2

The case of 1 mol% Y doped CeO2 (YCO1) was considered in ref. [31] 
(Fig. 4a). YCO1 is an oxygen ion conductor like LSG1 (z = 2). For this 
material ε ≈ 24, unit cell size 0.541 nm, and C0 = 2.23⋅1020⋅cm−3. The 
constants in Eq. (11) are calculated to be C1 = 1.09⋅1014 m⋅K

C and C2 =

Fig. 3. (a) Experimental I-V curves for 1 mol% Sr-doped LaGaO3 from ref. [28] the continuous curves are simulated for Qgb = 0.166 C/m2 and d = 0.01 nm (b) The 

experimental values of n for various temperatures, grain boundary potential in units of φgb =
Φgb
Vth

, with best fit values and deviation of the best fit values from 
experimental data. The fit is not sensitive to the value of d, leading to d < 0.05 nm (δ << LD). Ψ gb for the whole temperature range remains constant 207 ± 1 mV, as 
predicted by LDM
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1.35⋅106
(

m2

C

)2

K. The measurements were performed at 300, 325, 350 

and 375 ◦C; at all temperatures the I-V curves followed the predictions of 
LDM with both Ohmic and super-Ohmic regimes visible (Fig. 4a). The 
values of Crit, however, remain nearly constant for the first three tem
peratures (300, 325, 350 ◦C) with less than 0.2 % spread, while at 375 ◦C 
the value of Crit changes by ≈ 15 % indicating that at this temperature 
some trapped charge is released (Fig. 4b). For the first three points the 
initial approximation for the density of the trapped charge is Qgbappr =

0.142 C
m2. LSM fitting to the first three temperature points also suggests 

that Qgb = Qgbappr = 0.142 C
m2 and d<<LD. The value of LD at these tem

peratures is ≈ 0.26 nm, which is about half of a unit cell, leading to the 
suggestion that the space charge is trapped within one monolayer be
tween the grains with the density σunit = 0.13 electrons per unit cell.

4.3. Case 3: The effect of contaminants on grain boundary properties

It is of a particular interest to examine the approach described above 
to a grain boundary contaminated by a second phase described in ref. 
[30]: 3 mol% Gd-doped CeO2 (GDC3) contaminated with 500 ppm of 
SiO2 precipitated at the grain boundaries (Fig. 5a). For this case, the 
main contribution to the grain boundary resistance does not come from 
the space charge. Indeed, there is a large difference between the grain 
boundary potential calculated using the RR and LDM models (130 mV 
according to LDM and 500 mV according to RR [30]). The concentration 
of mobile charge carriers for 3GDC is higher C0 = 7.58⋅1020⋅cm−3, C1 is 

the same and C2 = 4.45⋅105
(

m2

C

)2

K, is smaller than that for YCO1, 

respectively. The difference in the value of Crit are less than 4 % between 
all temperatures examined (325 ◦C to 400 ◦C), which implies that all the 
points are to be included in the optimization. A higher concentration of 
charged carriers leads to a much smaller Debye length, 0.15–0.16 nm; 
nevertheless the LSM optimization indicates that the best fit is obtained 
for Qgb = Qgbappr = 0.21 C

m2 and d<<LD, with the difference between the 
simulated and the actual values of φgb less than 3 % (Fig. 5b). Appar
ently, SiO2 precipitating at the grain boundaries does not decrease the 
space charge density, as it is ≈ 0.2 electron charge per unit cell for case 
with SiO2, which is even higher that for YCO1 (section 4.2).

4.4. Case 4: Grain boundary of proton conductor Sr-doped LaNbO4

Analyzing a grain boundary for proton conductors is more difficult 
because the concentration of mobile ions in proton conductors which 
depends on the degree of hydration, is not known precisely, even in the 
case when thermal gravimetric analysis is performed (see for instance 
[40,41]). This poses a problem of knowing the values of C0 and, there
fore, LD. Another problem is that proton transport across grain bound
aries is very sensitive to factors other than space charge (see refs [42–46] 
for BaZrO3 and refs. [47] [48,49] for Sr-doped LaNbO4). In the example 
of 0.5 mol% Sr-doped LaNbO4 given in our earlier work [29], the second 
Ohmic region in the I-V curves is observed (Fig. 6a). This is the region in 
which the space charge at the grain boundaries is completely compen
sated by injected charge carriers (see the LDM analysis of this case in ref. 
[31]) and the current is limited by other factors, proving that the main 
contribution to the grain boundary resistance is not defined by the space 
charge [30,31]. The difference between the values of the grain boundary 

Fig. 4. (a) Experimental I-V curves for 1 mol% Y-doped ceria from Ref. [31] The continuous curves are simulated for Qgb = 0.141 C/m2 and d = 0.01 nm; (b) The 

experimental values of n for various temperatures, grain boundary potential in the units of φgb =
Φgb
Vth

, the best fit values and the deviation of the best fit value from the 
experimental data. The fit is not sensitive the value of d leading to d < 0.01 nm (δ << LD, which for this case only 0.15 nm, i.e. < than 1/3rd unit cell). Ψ gb for the 
300–350 ◦C temperature range is 173 ± 1 mV.

Fig. 5. (a) Experimental I-V curves for 3 mol% Gd-doped CeO2 with deliberately introduced 500 ppm of SiO2 precipitated at grain boundaries from ref. [30]. The 
continuous lines are simulated for Qgb = 0.21 C/m2 and d=0.01 nm. (b) The experimental values of n for various temperatures, grain boundary potential in the units 
of φgb =

Φgb
Vth

, the best fit values and the deviation of the best fit value from the experimental data. Ψgb for the whole temperature range is 129 ± 5 mV.
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potential derived by the RR method (>0.6 V) and with the LDM (<0.2 V) 
are particularly large (see Fig. 4 in ref. [29]). Nevertheless, the slopes “n” 

for the sample follow the behavior of LDM near perfectly: with Crit 
values differing only ~2 % for the whole temperature range, indicating 
that the charged trapped at the grain boundaries is not released by 
heating from 200 ◦C to 275 ◦C (this case is in detail considered in ref. 
[30]). Calculating Qgb using Eq. (11) or even obtaining approximate 
values using Eq. (12), requires the value of C0, which is unknown. 
However, since Qgbappr ∝

̅̅̅̅̅̅
C0

√
, one can make a useful estimate. If the 

material (z = 1, ε=20, Vol = 0.34 nm3) is assumed to be fully hydrated, 
then C0 = 5.9⋅10−19 cm−3, Qgbappr =Qgb=0.0415 C

m2 with d < <LD. This 
clearly indicates that even if the material is fully hydrated, the charge 
density at the grain boundaries is much smaller than for the case of 
oxygen ion conductors. Assumption of only 5 % hydration reduces the 
value of Qgb by a factor 

̅̅̅̅̅̅
20

√
≈ 4.5 to 0.0093 C

m2.

4.5. Case 5: Grain boundary of proton conductor 2 mol% Y-doped 
BaZrO3

Y-doped BaZrO3, mentioned in ref. [32], presents the most difficult 
case for analysis because even though the shape of the I-V curves follows 
the predictions of the LDM (Fig. 7), the value of Crit is not constant. This 
suggests that the trapped charge at the grain boundaries is not constant 
within this temperature range. Moreover, the value of the slope does not 
decrease with temperature, it increases, with the simplest explanation 

that some water loss occurs, leading to a decrease in proton concen
tration and, thereby, an increase in the grain boundary potential (see the 
analysis based on the hydration energy in ref. [32]). This limits the 
quantitative applicability of the LDM model. However, some conclu
sions can still be made since the I-V curves clearly show both Ohmic and 
super-Ohmic regions.

(i) The difference between the grain boundary potential estimated 
using the LDM and RR methods is particularly large: LDM predicts 
0.3–0.4 V, while RR predicts nearly 1 V (see Fig. 7 in ref. [32] and refs. 
[45,50]) indicating that the major contribution to the grain boundary 
resistance does not come from the space charge.

(ii) The data in ref. [32] (Fig. 7) were collected after hydration at 
300 ◦C for a prolong period of time (more than four weeks and a very 
small samples was used 1.3 × 2.2 × 0.2 mm3), which suggests that the 
initial degree of hydration was close to 100 %. This leads to Qgbappr =

0.15 C/m2. According to the thermodynamic data (see Fig. 3b in ref. 
[32] calculated on the basis of the thermodynamic data in ref. [51]), the 
degree of hydration at 450 ◦C is expected to drop to ≈ 72 %, which, if 
used to calculate Qgbappr , again yields the same value of 0.15 C/m2. This 
strongly suggests the trapped charge at the grain boundaries undergoes 
only minor changes even though a considerable water loss takes place. 
Moreover, even though the space charge is non-negligible, it is not the 
main contributor to the grain boundary resistance.

a) b)

Fig. 6. (a) Experimental I-V curves for 1 mol% Sr-doped LaNbO3, the data form ref. [29]. If full hydration is assumed, the best fit is achieved for Qgb = 0.04 C/m2 and 
d << 0.01 LD nm. (b) The experimental values of n for various temperatures, grain boundary potential in the units of φgb =

Φgb
Vth

, the best fit values and the deviation of 
the best fit value from the experimental data. Ψ gb for the whole temperature range remains constant 86 ± 0.5 mV, as predicted by LDM

Fig. 7. (a) Experimental I-V curves for 2 mol% Y-doped BaZrO3 from ref. [32]. The continuous lines are given for guidance only. No simulation is possible because 
the concentration of protons varies with temperature. (b) The experimental values of n for various temperatures, grain boundary potential in the units of φgb =

Φgb
Vth

. Eq. 
(5) used given Crit is not constant.
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5. Concluding remarks

The analysis based on LDM is sufficient to make a quantitative esti
mate of the grain boundary characteristics. The accuracy of the space 
charge density estimate depends on a number of factors: (a) The quality 
of the impedance spectroscopy data and the accuracy of determining the 
slopes of the super-Ohmic regime “n". In general, these values have at 
least a few percent of uncertainty. (b) Changes in the trapped charge 
density as a function of temperature can be estimated using the value of 
Crit (Eq. (6)). Variations in these values impose a limit on the accuracy of 
the estimate. Apparently, these sources of the error are larger than the 
error in fitting the solutions (Eq. (7)). In this view, one safely assumes 
that the accuracy of the estimates of Qgb for the cases 4.1 to 4.4 is better 
than 10 %.

Determination of the thickness of the grain boundary core by 
application of LDM is not possible, because unless d ≈ LD or d > LD, the 
grain boundary potential is only weakly dependent on the value of d. 
The analysis given above shows that for all materials reported, d < LD 
even if LD is only a fraction of a unit cell.

In conclusion, one can emphasize the general utility of that the LDM- 
based method for determining the space charge trapped at the grain 
boundaries in ionic conductors non-destructively and without require
ment of complex instrumentation.
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