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Abstract—Data-driven soft sensing enables to monitor and
control complex industrial processes in real-time. Whereas recent
data stream mining algorithms bolster predictive modeling on
soft sensing data, which increment in volume and vary in feature
dimensions, they operate mainly in closed-world settings, where
all class labels must be known beforehand. This is restrictive in
practical applications like semiconductor manufacturing, where
new wafer defect types emerge dynamically in unforeseeable
manners. This study aims to advance online algorithms by
allowing learners opt to abstain from make prediction at certain
costs. Our key idea is to establish a universal representation space
aligning feature dimensions of incoming points while delineating
a geometric shape underpinning them. On this shape, we min-
imize the region spanned by points of known classes through
optimizing the trade-off between empirical risk and abstention
cost. Theoretical results rationalize our universal representation
learning design. We benchmark our approach on six datasets,
including one real-world dataset of wafer fault-diagnostics col-
lected through chip manufacturing lines in Seagate. Experimental
results substantiate the effectiveness of our proposed approach,
demonstrating superior performance over six state-of-the-art
rival models. Code and datasets are openly accessible via an
anonymous link: https://github.com/X1aoLian/OWSS.

Index Terms—Data Streams, Online Learning, Open-World
Learning, Optimal Rejection, Soft Sensing, Industrial Machine
Learning

I. INTRODUCTION

Soft sensing abounds in smart factories [1], allowing for

real-time monitoring of multivariate dynamics through map-

ping easy-to-measure auxiliary parameters, such as temper-

ature, pressure, or flow rates, into descriptive but hard-to-

measure features like reaction rates or material properties [2].

Particularly in semiconductor manufacturing, traditional phys-

ical sensors are often inadequate for capturing the complex

and time-varying interplay among materials with precision and

scalability [3]. Soft sensing excels in modeling and controlling

key chemical and structural features of material amalgamation

at various stages such as metal deposition, photoresist coating,

lithography, and etching [4]–[6].

Recently, soft-sensing models bias towards data-driven fash-

ion [2], [7] due to their superior modeling accuracy and

little reliance on expert knowledge. For example, Seagate’s

wafer manufacturing fault-diagnostic task can be casted into

∗
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Fig. 1: Seagate wafer manufacturing pipeline using soft-

sensing. Metrology for hard-to-measure metrics (target

classes) are induced from raw sensory signals (features).

Detailed results are reported in Section VI.

a classification paradigm, as shown in Figure 1, using soft-

sensory features to predict wafer defects [8], [9]. Despite

being effective, existing learning methods mainly fail short

in respecting two unique traits of soft sensing data. First, the

data are generated in real time and at scale [10], where the

continuous data influx over time can overwhelm traditional

methods with memory and computation overheads [11]–[13].

Second, the feature space describing soft-sensing data can vary

and is open [14], [15]. To wit, after some periods, old sensors

will wear out or become obsolete, causing pre-existing features

to fade away; while, new sensors are deployed, continuously

presenting new features to the classifier [16], [17].

To tame the streaming and dynamic nature of soft-sensing

data, one may consider adapting the recent Utilitarian Online

Learning (UOL) models [15], which overcome two primary

challenges. First, for new features that just emerge, they are not

described by sufficient number of data points, thus initializing

new model will end up with weak classifier. Second, for

old features that fade away, ignoring the classifier trained on

them results in missing information and a significant waste of

previous data collection and processing efforts. UOL addresses

these issues by establishing feature correlation, so as to 1)

expedite new model convergence through optimal parameter

initialization, and 2) leverage missing model information via

old feature reconstruction. Alas, despite thriving in data stream

analytics [16], [18]–[23], most UOL studies postulate a closed-

world classification setting, which is restrictive in practice.

Specifically, the data streams in soft-sensing are likely to

introduce data points belonging to new and unknown classes.
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Such classes are often not predefined. For example, during

semiconductor production, some wafer defect types can be

entirely novel, such as those introduced by material impurities

in electroplating and lithography [4], [5]. Given the rapid

advancements in material science and the sophisticated inter-

play of materials, enumerating all possible defect types before

starting the learning process is next to impossible. Predicting

such novel defective patterns into known classes will incur

substantial economic loss [6].

Surprisingly, although supporting varying feature spaces

and detecting new classes [24] are two important aspects in

streaming data analytics, no method has been developed to

support the both. This study aims to fill this critical gap by

exploring a new learning problem, which we term Open-World

Soft Sensing (OWSS). Unlike a traditional classifier tending

to make overly confident yet incorrect predictions on unknown

points, our OWSS builds online learner that can abstain from

decision-making in the rounds that instances from unknown

classes are most likely to emerge. The idea conveys practical

implications; for instance, the cost of abstention in wafer

production, which may be that of additional physical tests

or deferring to human inspection, is often more acceptable

than letting suspicious chips flow into critical systems, such

as medical diagnosis, hedge funds, or weapon control.

A major challenge lies in balancing the trade-off between

empirical risk and abstention cost in an online fashion [25],

[26]. In particular, the online learner, which observes and

predicts each instance only once without back-tracking, may

behave in two distinct ways: it can be aggressive, focusing

solely on abstention cost and categorizing all instances into

known classes; or it can be conservative, concentrating only

on empirical risk and classifying most instances as unknown.

In both cases, the online learner tends to make larger number

of erroneous predictions compared to its hindsight optimal

competitor, incurring considerable regret [11], [27]. To address

this problem, we propose to optimize the trade-off by opti-

mizing a bi-objective function, which minimizing the larger

cost in an alternating manner until an equilibrium is reached.

However, this optimization necessitates that instances from

an open and varying feature space must be organized into

a geometric structure [28], [29] where they share the same

dimension. Note, data points arriving at different time steps

may exist in disparate feature sets, making it challenging to

measure their distances directly. we draw insights from UOL

studies [15], [16] to discover a universal feature representation

that consolidates all emerging feature information. This allows

us to identify the geometric structure in the universal space

by mapping incoming data points onto it, enabling consistent

distance measurements across uniform dimensions.

Specific contributions of this paper are as follows:

1) This is the first study to explore the OWSS problem,

where the online learner faces an input sequence living

in open feature space and carrying unknown classes.

2) We propose a novel online algorithm to tackle the OWSS

problem, which provably enjoys a tight generalization

risk bound by learning the universal feature space in

incremental fashions. Our algorithm and its theoretical

analysis are presented in Sections IV and V, respectively.

3) Extensive experiments are conducted on five benchmark

datasets and one real-world dataset from Seagate, which

is for defect wafer diagnostics in semiconductor manufac-

turing lines. Our algorithm outperforms six state-of-the-

art competitors, with results documented in Section VI.

II. RELATED WORK

A. Data-Driven Soft Sensing Approaches

Soft sensors become increasingly integral in smart factories

for process monitoring, quality prediction, and other critical

industrial functions [1], [2]. Traditional soft sensing techniques

were developed in knowledge-based fashions [30], [31], re-

quiring domain experts to engineer a set of rules mapping raw

and auxiliary time-series to descriptive soft-sensing features.

Recent advances in big data analytics and increased compu-

tational capabilities have revolutionized the sensing paradigm,

spurring a stride of studies exploring machine learning and

data mining algorithms for soft sensing.

Seminal data-driven soft-sensing techniques include using

Auto-Encoders for deep feature representation extraction and

addressing issues of missing data [32], [33]. Likewise, Con-

volutional Neural Networks are opted for processing grid-like

data to capture local feature dynamics or for transforming

signals in the frequency domain [34], [35]. Recurrent Neu-

ral Networks are leveraged for variables exhibiting strong

temporal dependencies, respecting sequential nonlinearity of

industrial processes [36], [37]. To model correlations among

soft sensors, recent advances exploit Transformers [9] and

Graph Neural Networks [8]. Despite such array of data-driven

soft-sensing models, there remains considerable scope to meet

the dynamic needs of industrial processes. Existing studies

often struggle to adapt to the fast-paced changes inherent

in these settings, where new sensory features and previously

unseen defect types can frequently arise. To keep these models

effective, a repetitive cycle of data collection, model training

and testing, and industrial deployment becomes necessary

whenever there is a change in feature or label sets, leading

to substantial inefficiencies in terms of time and resources

previously invested. Desirably, a more agile model that can

continuously learn and adapt to these ever-changing environ-

ments without the need for retraining would revolutionize the

approach to soft sensing in industrial applications.

B. Utilitarian Online Learning

Online Learning (OL) enables predictive modeling from

streaming data by building local empirical risk minimizers for

future inputs at each time step [13], [27]. Utilitarian Online

Learning (UOL) [15] extends OL by relaxing the assumption

of a fixed feature space, allowing for a more adaptable learning

environment. While UOL may seem related to the problem

of concept-drift [38], where statistical properties of features

evolve while the feature count per instance remains fixed

they notably differ. Early appearance of UOL study can be
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traced back to [39], with successive explorations [16], [19]–

[21], [40]–[43] ever since. Existing UOL studies mainly strive

to solve two ill conditions incurred by the feature space

dynamics. First, the emergence of new features that lack

sufficient data for training results in slow convergence, with

the learning coefficients boiling down to educated guesses,

leading to predictive bias and errors [19], [42]. Second, when

previously observed features become unobserved, the fact that

the trained models cannot use past coefficients means that

predictions may rely on less informative features with high

missing rates [16], [20].

To overcome these challenges, UOL research has pursued

three main learning strategies. The first leverages passive-

aggressive learners [44] to redistribute learning coefficients

from existing to new features within a margin-maximization

regime [19], [41], [45], [46]. The second involves joint learn-

ing of the predictive model and feature correlation through

online alternating steps to jump-start the learning of new

features and reconstruct unobserved ones, thus expediting con-

vergence [16], [20], [43], [47]. The third manages an ensemble

of weak learners for each feature, updating or discontinuing

learners based on their performance in estimating correspond-

ing feature statistics [23], [39]. Nonetheless, most UOL studies

focus on binary classification only, not accounting for the

emergence of an unknown, new class within a streaming

continuum. A more recent UOL study [48] considered this

setting, but it assumes that instances of the new class are

known immediately with ground-truth labels, and the difficulty

is to resolve the one-shot learning challenge. Thus, the setting

of [48] diverges from our OWSS problem, where instances

from new classes are not known a priori, and the learner

must discern whether a misclassification pertains to an existing

class or an unknown one. It is noteworthy that recent studies

addressing label scarcity [22], [42] do not fully address our

OWSS challenge as well, because their focus remains on

generating pseudo-labels to expedite online semi-supervised

learners, but the classes of pseudo-labels remained binary.

C. Open-World Machine Learning

Conventional machine learning approaches typically ad-

here to a closed-world assumption, where the class labels

remain constant across training and testing phases [25], [49],

[50]. Open World Learning (OWL) challenges this paradigm

by identifying test samples that likely originate from novel

classes [26]. Representative applications of OWL have been

predominantly domain-specific. In computer vision, Open-Set

Recognition frameworks [25], [49], [51] use a one-vs-rest

scheme to detect unseen objects without label assignment

on the images housing them. Similarly, in natural language

processing, Open Class classification approaches [52], [53]

employ clustering techniques to discern unknown classes as

anomalies within established document groups. These OWL

methods are tailored to the characteristics of their respective

data modalities. Moreover, the majority of OWL studies pre-

sume an offline training setting.

Notably, Learning with Rejection (LwR) models [54], [55]

sometimes viewed as a subset of OWL do not align with the

unique demands of our OWSS problem. LwR incorporates a

rejection mechanism that effectively sidelines data instances

at high risk of misclassification, with the presumption that

misclassifications predominantly occur between two classes,

such as data points residing within hard margins. Unfortu-

nately, LwR relies on traditional classifiers that default an

unlimited region volume for each known class, neglecting

the fact that misclassifications may also occur beyond the

seemingly correct side of the boundary. The further a point

is from a decision boundary, the more confidently an LwR

classifier will predict its class, even if the point is an outlier.

Such high-confidence mis-classifications are a critical flaw

when encountering unknown classes. Furthermore, the current

OWL studies are predicated on the availability of a complete

feature set beforehand, incompatible with our setting. In our

OWSS problem, the feature set specified at the initial stages of

learning could transform into an entirely different feature space

over time [16], [21], rendering distance-based (e.g., clusters or

margins) methods impractical.

III. PRELIMINARY

Problem Statement. Let {xt, yt}
T
t=1 be an input sequence of

length T , where a point xt := [f1, . . . , fdt
]¦ ∈ R

dt arriving at

t-th step is a dt-dimensional feature vector. In an open feature

space, the dimension of xt can increment (i.e., dt > dt−1) or

decrement (i.e., dt < dt−1), due to the new feature emerging

and old feature vanishing, respectively. Denoted by Yk and Yu
the labels of known and unknown classes, respectively. To ease

notation, we define an instance space X = {Rd1 ∪ . . . ∪Rdt}
that records emerged features up to any t-th round. Any feature

fi before this round thus must be a member of X .

At each round, the learner ht receives a data point xt and

makes an immediate decision - whether this point should

learned or abstained. An adversary observes the decision

and reveal the true label yt, returning a feedback by the

following rule. If the prediction decision is made, the feedback

is an instantaneous risk ℓ(ht) = ℓ(yt, ht(xt)) revealing the

discrepancy between the prediction and the ground-truth label,

gauged by the adversary; otherwise, the learner incurs a cost

of abstention c(xt). Based on the two types of feedback, the

learner updates to ht+1 and gets ready for the next round. Our

goal is to find a series of learners h1, . . . , hT that minimizes

the cumulative loss over T rounds, defined as follows.

min
h1,...,hT

T
∑

t=1

{

ℓ(ht) if ht predicts but ht(xt) ̸= yt

c(xt) if ht abstains
, (1)

where we will follow prior art [56] to assume throughout that

the abstention cost c(xt) is a known constant and c(xt) <
ℓ(ht) if yt ∈ Yu, which makes sense because otherwise an

optimal yet trivial solution of Eq. (1) would be to never abstain.

The designs of the learner ht and the abstain loss c(xt) are

elaborated in detail in Section IV-B.
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emprical risk (ER):

Universal Feature Representation  

Fig. 2: A bird’s eyes view of our OWSS approach. At each time step, a data point xt carrying possibly new and unobserved

old features is encoded by a bipartite feature-instance graph, thereby projected onto a universal representation space as a

universal feature representation zt = ϕ(xt) with aligned dimension (Section IV-A). An abstention function r( ·) is learned

through optimizing the tradeoff between empirical risk ℓ(ht) and abstain cost c(xt), determining whether the classifier ht

should predict xt or simply abstain (Section IV-B).

IV. THE OWSS APPROACH

A. Learn Universal Feature Representations

To tame the feature space dynamics, we aim to find a

mapping ϕ : R
dt 7→ U that projects arriving instances onto the

universal feature space U ∈ R
k, aligning their dimensions and

generating universal feature representations. For any feature

fi ∈ X that has ever emerged up to the t-th round, we

associate it with a feature embedding vector fi ∈ R
k. We tailor

objectives to learn feature embedding based on two intuitions.

First, we desire the universal space U to increment by dynam-

ically incorporating new feature embeddings, which capture

the semantic meanings of the emerged features. However,

as new feature embeddings are randomly initialized, a joint

learning of both old and new features can be at risk of washing

out the learned information in the old feature embeddings.

We propose to disentangle the interplay among features, so

as to update each embedding vector independently. To do

that, we foster an addition relationship between the feature

embeddings and data instances after mapping onto U , namely

zt := ϕ(xt) =
⊕dt

i=1

(

fi » fi

)

, where ∀fi ∈ xt denotes the

features carried by xt. Denoted by · and » are element-wise

addition and product operators, respectively.

Second, we note that the co-occurrence patterns of fea-

tures can reveal valuable information, beyond their semantic

meanings. As the frequency of old features decreases over

time in an open feature space, the co-occurrence of their

combinations is expected to diminish as well. However, the

persistent co-occurrence suggests their significance despite this

decline in some cases. Revisit the soft-sensing data stream

in semiconductor manufacturing; while some combinations

of features are nearly impossible, some coincide with high

possibility. To wit, a wafer cannot show defective signal in

etch-condition check but pass in electroplating; rather, the two

sensory features both indicate the quality of uniformity of

wafer are mostly likely to fail or pass at once. To capture

such feature co-occurrence patterns, we draw insights from

geometry-aware representation learning [57] to model feature

embeddings in a bipartite feature-instance graph, where co-

occurrence features are immediate neighbours. The graph

consists of two sets of nodes: the projected points {zt}
T
t=1

and the feature embeddings {fi}
|X |
i=1 as shown in Figure 2.

Message-passing in the graph is defined:

min
Θ,{fi}

1

T

T
∑

t=1

∥

∥

∥
zt − GCN(A, {fi},Θ)

∥

∥

∥

2

2
, (2)

where the matrix Θ parameterizes the graph and its (i, t)-
th entry ¹i,t denotes learning weight of the t-th data point

to be represented by the i-th feature embedding. The graph

adjacency A encodes the feature co-occurrence, such that

the immediate neighbors of zt are the features carried by

its original vector, namely fi ∈ N (zt) if fi ∈ xt. In this

work, we leverage graph convolutional network (GCN) with

two hidden layers to implement the message passing, i.e.,

GCN(A, {fi},Θ) = Ã
(

lap(A)H¦Θ
)

, where Ã( ·) denotes a

non-linear activation such as ReLU [58], lap( ·) = D
(−1/2)( ·+

I)D(−1/2) computes the graph Laplacian (with D and I

being the degree and identify matrices, respectively), and

H ∈ R
dt×k := [· · · , fi, · · · ]

¦ is a matrix that stacks the

feature embedding vectors neighboring zt.

Each node in GCN aggregates feature information from

neighboring nodes in each layer, allowing nodes to represent

both their own features and those of their local neighbors.

With two layers, the GCN captures both direct and indirect

feature relationships. In the first layer, feature nodes aggregate

information from the point nodes that carry them, and for

the second layer, these feature nodes can then indirectly

exchange information with each other through the point nodes

that previously aggregated their information, allowing for a

more comprehensive understanding of feature co-occurrence

patterns in an open feature space.

B. Optimally Abstain from Unknown Class

The dimension of any incoming instance in the universal

space U becomes the same, thus making the distance mea-

surement between points possible. This allows to uncover the

geometric shape on which the regions covered by instances of

known classes are tightly bounded. The learner ht is realized

by an abstain decision learner r( ·), which investigates the

shape and makes the abstain decision. This involves taking

a projected point zt and determining whether it belongs to

a known or unknown class. This suggests to tailor an online
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binary classification task, we can envision that r(zt) g 0 if

yt ∈ Yk and r(zt) < 0 if yt ∈ Yu.

The problem now is how to train r( ·) to achieve the trade-

off between aggressive and conservative without observing the

true label yt. Our idea is to learn r( ·) a kernel function such

that, the larger the absolute value |r(zt)|, the more confidently

the function approximates the location of point xt on the

geometric shape, falling into one of the following two cases:

1) the point belongs to the known-class region of minimum

radius D or 2) the point is from an unknown class and far

away from all the knowns. We formulate this idea into a bi-

objective minimization problem as follows.

min
ht,r

T
∑

t=1

1[(r(zt)g0)'(ℓ(ht)>0)] + ¼1[(r(zt)<0)'(c(xt )>0)], (3)

where we jointly train the online abstain decision leaner rt and

the adversary classifier returning the feedback. The indicator

1[ · ] returns 1 if the argument is true and 0 otherwise. The

parameter ¼ absorbs the scale difference between the empirical

risk and abstention cost. Intuitively, the second term in Eq. (3)

requires to minimize the rounds in which the learner abstains

(r(zt) < 0), as the cost c(xt) > 0 holds ∀t ∈ T . The first term

requires that, if the learner predicts (r(zt) > 0), the prediction

ht(xt) = yt ∈ Yk. From a geometric perspective, optimizing

Eq. (3) leads to a new representation space of input points, as

shown in the rightmost panel of Figure 2, wherein the region of

known classes (bounded by radius D) is tuned by including

a maximal number of points over which the current learner

ht can make correct predictions. This results in an integer

programming task, which provably has no effective solution

in an online setting [59].

To circumvent the challenge, we instead optimize the sur-

rogate loss [56] that convexifies Eq. (3), defined as a minimax

problem:

min
ht,r

1

T

T
∑

t=1

max

{

ℓ(ht) +
¼ · r(zt) +D

2¼− 1
, ¼

(

1−
r(zt)−D

2¼− 1

)

, 0

}

,

(4)

where ℓ(ht) is extended to the first term and c(xt) is repre-

sented as the second term. ¼ > 1/2 is a tunable coefficient.

As the value of ¼ goes larger, a smaller value of r(zt)
will suffice to hold 1) the second term is more than 0,

¼ − ¼r(zt)/(2¼ − 1) > 0; 2) the first term is smaller than

the second one, 2¼r(zt)/(2¼ − 1) − ¼ < 0, i.e., the second

term of Eq. (4) will be minimized, which is w.r.t. the abstain

decision function r( ·) only. Note, minimizing the second term

is equivalent to maximize r(zt), encouraging the learner to

make more predictions rather than abstention. In practice,

one can chose to lower the value of ¼ if the abstention cost

is less significant than misclassification. One such example

would be in defective semiconductor detection, assuming chips

for medical devices or weapon control, which has almost no

tolerance to predictive errors and thus ¼ must be set small for

spotlighting more suspicious patterns to avoid mistakes.

A constant D in the first and second terms of Eq. (4) defines

the minimum radius of the known-class region. This is vital

early in the learning process when r( ·) may not perform

Algorithm 1: The proposed OWSS Algorithm

Initialize : d0 = 0, radius D, coefficient ¼ > 1/2,

GCN parameter Θ, feature embedding

matrix H0 := [· · · , fi, · · · ]
¦ ∈ R

d1×k,

learner ht

1 for t = 1, . . . , T do

2 Receives xt = [f1, . . . , fdt
]¦ ;

3 if dt ⩾ dt−1; // observe new feature ft
4 then

5 Initialize feature embedding fdt
∈ R

k ;

6 Expend Ht ←
[

Ht−1 : fdt

]

;

7 Map zt ← ϕ(xt) =
⊕dt

i=1

(

fi » fi

)

;

8 if r(zt) < 0 ; // learner abstains

9 then Incurs c(xt) ;

10 else // learner predicts

11 Suffer risk ℓ(ht) if ht(zt) ̸= yt // adversary

observes label yt and returns

feedback /* Apply ADMM [60] for

optimization */

12 Optimize Eq. (2) w.r.t. Θ and {fi}, keeping ht

fixed ;

13 Optimize Eq. (4) w.r.t.

optimally due to limited training data. An ineffective r( ·),
unable to correctly identify potentially unknown instances,

leads to substantial empirical risk. This setup poses a challenge

for optimization: the learner ht struggles to discern whether

the feedback is due to incorrect classifications within known

classes or a failure to abstain. By constraining D, we direct the

optimization to initially focus on lowering r(zt), prompting

more frequent abstention in the initial stages while ensuring

accurate predictions for known classes. Additionally, a larger

D decreases the likelihood that the second term becomes

negative as r(zt) increases. This encourages the model to make

more predictions when empirical risk is low, making the first

term of Eq. (4) negligible.

The second term of Eq. (4) will stop to be minimized in two

cases. 1) An increasing r(zt) will hold ¼ < ¼ ·r(zt)/(2¼−1),
making the second term negative. 2) More predictions means

more misclassifications, accumulating empirical risk ℓ(ht) and

making ℓ(ht)+2¼r(zt)/(2¼−1)−¼ > 0, letting the first term

of Eq. (4) take over. The minimization of the first term will

reduce both ℓ(ht) and r(zt), enhancing classification accuracy

for known classes and encouraging abstention. Its optimization

stops when the abstention cost of r(zt) falls below a threshold,

thereby activating the second term. Thus, optimization alter-

nates between the two terms, shifting focus as one surpasses

the other, until an equilibrium is reached and both terms fall

below zero, concluding the optimization process. Main steps

of our OWSS are summarized in Algorithm 1.

V. THEORETICAL ANALYSIS

We analyze the generalization error bound to validate:

5245

Authorized licensed use limited to: Florida Atlantic University. Downloaded on April 01,2025 at 18:16:45 UTC from IEEE Xplore.  Restrictions apply. 



RQ1. Will the incremental universal representation result in

the minimization of the empirical risk?

We let h1, . . . , ht ∈ H be the online learner searched within

a hypothesis space H. Empirical risk for any learner is:

ϵRk(h, f) = Ezt∼Rk

[

|h(zt)− f(zt)|
]

, ∀t ∈ [1, T ],

where the error difference between h(·) and any other predic-

tor f(·) is calculated. When f(·) indicates the real data-label

distribution, the risk can be abbreviated as ϵRk(h). At t+1

time step, a new feature is observed and the universal space

R
k
t starts to incorporate information carried by it, and being

updated to R
k
t+1. The risk of the learner of predicting instances

from the old space R
k
t is defined as ϵ

R
k
t
(h), while its risk for

instances in the new space R
k
t+1 is defined as ϵ

R
k
t+1

(h). The

optimal joint learner h∗ causing the minimal errors in both

spaces is defined h∗ = argminh∈Hϵ
R

k
t
(h) + ϵ

R
k
t+1

(h). The

combined error µ of the optimal learners is µ = ϵ
R

k
t
(h∗) +

ϵ
R

k
t+1

(h∗). We then have:

Theorem 1. Denoted by ϵ
R

k
t
(h) and ϵ

R
k
t+1

(h) the empirical

risks suffered by using h to predict samples in R
k
t and R

k
t+1,

respectively. Let H be a hypothesis space with VC dimension

d. Write |Rk
t | and |Rk

t+1| as subsets of samples drawn from

R
k
t and R

k
t+1, respectively, both of size n. For any ¶ ∈ (0, 1),

with probability at least 1− ¶,

ϵ
R

k
t+1

(h) f ϵ
R

k
t
(h) +

1

2
dH∆H

(

|Rk
t |, |R

k
t+1|

)

+ 4

√

d log (2n) + log
(

2
¶

)

4n
+ µ,

(5)

where dH∆H gauges the H-divergence between two sets of

samples.

Remark. The bound suggested by Theorem 1 establishes

a relationship between the H-divergence distance of two

spaces R
k
t and R

k
t+1 and the empirical risk difference made

by the same learner on two spaces. Despite both spanning

a k-dimensional space, R
k
t+1 is evolved from R

k
t through

integrating a new feature. This bound indicates that the ad-

ditional risks associated with the universal representation are

solely influenced by the distance between the original and

the incremented spaces. The more closely the updated latent

space, shaped by the feature inclusion, aligns with the original

space, the fewer prediction errors the universal representation

will incur. This reasoning aligns with our proposition that the

emergence of new features can aid in acquiring superior learn

representations, overweighing its possibility of introducing

noise, thereby enhancing its discriminant power. We deduce

that if this new feature evolves the universal representation

space by less than 1
2dH∆H

(

R
k
t ,R

k
t+1

)

, our OWSS algorithm

can enjoy an O(
√

(1/n)d log n) generalization risk that will

diminish as more observed data points (n → ∞), thus the

answer for question RQ1.

VI. EXPERIMENTS

A. Benchmark Setup

1) Seagate Soft-sensing Dataset: The dataset is generated

from and provided by the Seagate manufacturing lines housed

in Minnesota and Ireland factories, originally containing 1)

high-dimensional time-series data sensed from various manu-

facturing processes, and 2) categorical variables relevant to the

process descriptions. Figure 1 shows the manufacturing lines

with soft-sensing capacity. To wit, an Al2O3-TiC (AlTiC for

short) wafer undergoes a series of manufacturing stages, which

encompass polishing, deposition, lithography, etching, and so

on. The soft sensors spreading over these stages take in the raw

auxiliary time-series and output in total 94 descriptive features.

At each time snapshot, the observed data point represents the

wafer quality condition described by those features, as new

soft-sensory variables emerging and old features expiring.

Subsequent to each of these pivotal steps, the wafer is

subjected to a rigorous quality control assessment, employing

precision metrology tools to evaluate critical quality indi-

cators (KQIs). These KQIs encompass a range of critical

measurements, including wafer thickness, surface roughness,

film thickness, adhesion strength, pattern alignment, and etch

depth, among others. Each KQI serves as a class label, with

certain internal threshold determining whether the AlTiC wafer

passes or fails at the assessment. To uphold stringent data

security standards, KQIs are anonymized through a numerical

coding system. In our study, three KQIs are identified to proxy

the two known and one unknown classes.

2) Synthetic Datasets: We selected five benchmark

datasets to evaluate the generalizability of our method. These

include musk, optdigits, and satimage from UCI [61], Reuter

for document classification [62], and MNIST for handwritten

digit classification [63]. For UCI datasets and MNIST with

fixed feature dimensions, we follow prior studies [21], [50]

to simulate our open-world streaming setting. We split each

dataset into 10 chunks, where the i-th chunk contains i×10%
of the features. The entire data matrices are shuffled for

each repeated experiment to enable cross-validation. In Reuter,

documents in Italian and Spanish are set as two known classes,

while English documents serve as the unknown sample. In

MNIST, digits 1, 2, . . . ,7 represent seven known classes, and

digits 8, 9, 10 are the unknowns. In satimage, four known

classes are identified. The statistics of these datasets, along

with Seagate, are shown in the table below. The last column

shows the ratio of samples belonging to known and unknown

classes. For example, in the satimage dataset, (2|2|1|1) : 6
means that the ratio among four known classes is 2 : 2 : 1 : 1
and the ratio between known and unknown class is 6 : 6.

No. Dataset # Samples # Features (Yk) : Yu

1 Seagate 11,800 94 (3 | 3) : 1

2 musk 2096 166 (10 | 10) : 1
3 optdigits 3919 64 (3 | 3) : 1
4 Reuter 5000 21,531 (2 | 2) : 1

5 satimage 6435 36 (2 | 2| 1| 1) : 6
6 MNIST 10,000 784 (1 | . . . | 1) : 3
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3) Evaluation Metric: We employ three metrics for our

comparative study. First, we introduce the Known-Class Cu-

mulative Accuracy (KCCA), which measures the classifica-

tion accuracy for instances identified as belonging to known

classes. Assuming m instances are predicted as coming from

known classes by the learner, KCCA is calculated as

KCCA =
1

m

m
∑

t=1

Jyi = ŷiK, ∀ŷt ∈ Yk,

The purpose of KCCA is to assess the expected accuracy

of instances classified as known. This metric decreases if

more instances from unknown classes are incorrectly identified

as known, or if errors are made in predicting known-class

instances. To evaluate our capability to detect instances from

unknown classes, we utilize a confusion matrix:

ŷt ∈ Yu ŷt ∈ Yk
yt ∈ Yu True Positive (TP) False Negative (FN)

yt ∈ Yk False Positive (FP) True Negative (TN)

This matrix aids in calculating the New-Class Detection Recall

(Recall = TP/(TP + FN)) and the F1-score (F1-Score =
2TP/(2TP + FP + FN)), where a higher Recall indicates

effective detection of instances from the new class. It is

important to note that both KCCA and Recall tend to be more

favorable when the learner predicts fewer instances, typically

marking the majority of the data sequence as unknown. In

these cases, the F1-Score score is comprehensive and de-

creases when many instances are deemed unknown.

4) Compared Methods: OWSS pioneers the problem of

online learning with open feature spaces and unknown classes.

Benchmarking the comparative study is challenging, because

the existing models cannot address our OWSS problem well.

To level the comparison, we identify six state-of-the-art rival

models, and two variants of our approach for ablation study.

They include: 1) OCO [64] that draws a baseline, training

a linear classifier on the input data sequence and learns

each new feature from scratch. 2) OSLMF [65] is an online

learning method dealing with open feature space under a semi-

supervised setting. It classifies all instances into known classes

in a forcible manner. 3) GraSSNet [8] requires a tailored

graph neural network (GNN) for detecting defective wafers

by learning the relationship among multiple sensory features

and KQIs. 4) ECOD [66] calculate the empirical cumulative

distribution and tail probability for each data feature, offering a

low-cost, parameter-free method without the need for distance

calculations. 5) LUNAR [67] enhances LOF using a graph

neural network to model each data point and its neighbors. 6)

ORCA [50] requires a long period of pre-training on known

classes, thus can make accurate predictions on known classes

and avoid assigning samples of unknown classes to them

based on an uncertainty-based adaptive margin maximization.

7) OWSS-GR (Graph Representation) is used to validate the

tightness of Theorem 1, so as to rationalize our universal

representation learning method. OWSS-GR leverages the pre-

trained GNN in GraSSNet to align the dimension of input

sequence. 8) OWSS-IF (Idle Features) pads missing features

vectors with zero values instead of learning representations.

5) Experimental Setup: We benchmark all experiments on

a machine equipped with an Intel Core i9-13700K CPU and an

NVIDIA GeForce RTX 3090 GPU. We implement the com-

pared methods ECOD and LUNAR based on a public pytorch-

based libraries Pyod [68]. Regarding hyper-parameters, for the

compared methods, we leverage the parameter sets reported in

their corresponding references if available; for ours, we grid-

search for the optimal parameter sets, which are detailed in

our public repository along with the model structures.

B. Results and Findings

We extrapolate from experimental results in Tables I and II

and Figures 3 and 4 to answer the research questions (RQs).

RQ2. How does our OWSS compare with the state-of-the-art

models in terms of empirical performance?

We make seven observations to answer this question. First, our

OWSS achieve the best performance in all three metrics on

six benchmark datasets. Our method can abstain from making

predictions on most unknown-class instances with 82.5%

Recall on average across all six five datasets. Meanwhile, the

average F1-Score with 45.9% ensure the accurate detection

is not at the high cost of not predicting a large amount of

know-class instances. On average, OWSS outperforms six

rival models (i.e., OCO, OSLMF, ECOD, and ORCA) by

22.3%, 44.4%, and 14.4% in terms of KCCA, Recall, and

F1-Score, respectively. Second, compared to linear methods

aiming at classifying known classes like OCO, OWSS enjoys

significantly higher KCCA, such as Seagate dataset as shown

in Figure 3a, indicating that our proposed universal represen-

tation learning can capture non-linear interplays among soft-

sensory features, onto which the data points are projected for

better linear separability. Such KCCA superiority of OWSS

can also be observed in other datasets, reflecting our model’s

improved performance after excluding the interference of

unknown classes. Third, we note that the performance of

our OWSS is on a par with OSLMF with a 20.9% KCCA

difference (OWSS is higher). Despite that OSLMF also aligns

time-varying feature dimensions in a latent space, it cannot

single out instances from unknown classes, thereby incurring

additional empirical risk by erroneously predict unknown-

class points into known classes. Forth, compared to the offline

outlier detection algorithms ECOD and LUNAR, which detect

unknown classes as outliers and thus cannot classify known

classes, our method not only accurately classifies known

classes but also achieves an average improvement of 59.5%

and 18.2% in F1 and Recall, respectively.

Fifth, GraSSNet is also adept at modeling nonlinear soft-

sensory feature interactions in the Seagate dataset, powered

by the strong representation capability of GNN architecture;

however, GraSSNet cannot perform well in streaming settings,

resulting in inferior KCCA performance compared to online

models, underperforming OCO, OSLMF, and our OWSS by

21.6%, 26.2%, and 37.1%, respectively. The variant OWSS-

GR with this GNN architecture fails to converge and detect
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TABLE I: Comparative results (mean ± standard deviation) on all four datasets in 3 metrics, averaged from 10 repeats. Not

applicable (N/A) model on specific settings are indicated and justified in the footnote below table. Best results are bold.

Dataset Metric OCO OSLMF GraSSNet ECOD LUNAR ORCA OWSS-GR OWSS-IF OWSS

Seagate
KCCA .681± .004 .708± .006 .421± .001 N/A‡ N/A‡

.326± .000 .722± .013 .814± .002 .817± .003

Recall N/A∗ N/A∗ N/A∗
.177± .000 .272± .003 .500± .000 .201± .016 .448± .007 .452± .005

F1-Score N/A N/A N/A .232± .000 .329± .005 .251± .000 .313± .015 .343± .003 .396± .002

musk
KCCA .574± .004 .622± .081 .392± .002 N/A N/A .459± .000 .487± .001 .728± .005 .756± .002

Recall N/A N/A N/A .108± .000 .402± .004 .500± .000 .029± .009 .843± .033 .921± .006

F1-Score N/A N/A N/A .097± .000 .254± .011 .214± .000 .052± .003 .184± .019 .262± .002

optdigits
KCCA .645± .005 .708± .018 .437± .001 N/A N/A .312± .000 .664± .001 .758± .022 .789± .010

Recall N/A N/A N/A .109± .000 .170± .007 .500± .000 .145± .000 .786± .019 .871± .033

F1-Score N/A N/A N/A .138± .000 .200± .006 .332± .000 .228± .000 .374± .011 .432± .028

Reuter
KCCA .798± .001 .687± .040 N/A N/A N/A .325± .000 N/A†

.827± .004 .934± .001

Recall N/A N/A N/A .124± .000 .144± .009 .500± .000 N/A†
.501± .005 .889± .001

F1-Score N/A N/A N/A .168± .000 .192± .013 .292± .000 N/A†
.337± .004 .442± .002

∗ For OCO, OSLMF, and GraSSNet, N/A is indicated in Recall and F1 as they cannot detect unknown classes and classify all instances as known, resulting
in zero Recall. Removing these values prevents skewing average performance calculations, avoiding an unfair disadvantage for OCO, OSLMF, and
GraSSNet. For ECOD and LUNAR, N/A is also indicated for the same reason as they can only detect unknown class and cannot classify known classes.
‡ For ECOD and LUNAR, N/A is indicated in KCCA as they only detect known classes as outliers, without the capability to distinguish known classes.
† OWSS-GR fails to work on the Reuter dataset due to its high feature dimension and sparsity, resulting in over-smoothed node representations, which has
been also discussed in [69]. For the same reason we remove its extremely low values of KCCA, Recall, and F1 to prevent skewed comparison.
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Fig. 3: Performance trends in terms of KCCA and F1-Score of seven methods from three datasets.

the unknown class on datasets with small column (e.g., musk

and optdigits) in online fashion with small recall and f1-score

values, as shown in Table I and Figure 3e and 3f. Besides,

GraSSNet cannot work on datasets with large features (e.g.,

Reuter), as its parameters increase exponentially as the number

of features increases. Sixth, although ORCA possesses the

modeling capability to detect new classes, it requires massive

offline pretraining over known-class samples to let the model

warm up to capture tight boundaries. In online setting, ORCA

fails to converge and ends up with 0.5 recall on average,

meaning that it either treats all instances as unknown class, or

it will make prediction on all data points, thereby incurring

the worst KCCA performance across all datasets. Seventh,

the consistent performance of our method OWSS on five

benchmark datasets and that on Seagate attests to its effective

generalization across various domains.

RQ3. How effective is the tradeoff between empirical risk and

abstention cost optimized?

Figure 4 depicts the data distribution of the Seagate dataset,

with samples from two known classes (blue and red) and one

unknown class (green). As shown in its left panel, known-

class samples in the universal space can be separated by a

linear boundary when the model is tasked solely with the

classification of known classes. Both blue and red points

situated further from this boundary are considered to be

classified with greater confidence. However, when samples

from the unknown class are likewise mapped into this space,

these green points are dispersed throughout the space. Notably,

those that are positioned far from the boundary are also clas-

sified by the model into known classes with high confidence,

resulting in an increased empirical risk. Our OWSS method

refines this approach by optimally abstaining points from the

unknown class. As depicted in the right panel, instead of a

single linear classification boundary, our method creates tighter

boundary for each known class, where the points from two

known classes in the universal space are gathered to form

two clusters, with sample density increasing closer to the

centers, indicated by progressively darker colors. As a result,

a sample is considered to possess higher confidence only as it

nears the center. When samples from the unknown class are

reconstructed in this space, these green points find themselves

isolated outside the two clusters, thus abstained. Compared to

the OWSS-IF variant, OWSS slightly outperform by 4.2%

on average which we can also observe from Figure 3a, 3b,

and 3c. However, OWSS-IF outperforms OCO and OSLMF

by 10.7% and 10.1%, respectively, which substantiates the

effective optimization of the trade-off.

RQ4. What is the impact of the number of known classes?

We leverage the results from satimage and MNIST to answer

this question, documented in Table II reduced from Table

1 because OSLMF and GraSSNet are tailored for binary

classification and can only be extended to multiclass settings

using one-vs-one or one-vs-all strategies [71]. Such strategies

mainly decompose class combinatorics have no impact on

evaluating the challenging of delineating and bounding the

regions spanned by known-class data points, as our OWSS

does in Figure 4. Due to page limits, we precluded the

comparison with them and reduce Table II. In comparison with
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UnknownClass 1 Class 2

Fig. 4: Isomap visualization [70] of data points before (left)

vs. after (right) our universal representation on Seagate dataset.

Left: Binary classifier forcibly predicts unknown points (green)

into the known class regions 1 (blue) & 2 (red). Right: Our

OWSS model minimizing the volume of two known-class

regions abstains from predicting unknowns. The unknown

green points lean toward the red ones because the red points

represents defective wafers, and all unknowns are likely de-

fective, making them align more with the class 2 (defective)

rather than the class 1 (qualified).

TABLE II: Results on MNIST and Satimage, reduced from

Table I, as OSLMF and GraSSNet are binary classifiers.

Metric OCO ORCA OWSS

satimage
KCCA .339± .015 .259± .000 .553± .012

Recall N/A .500± .000 .912± .026

F1-Score N/A .382± .000 .601± .020

MNIST
KCCA .447± .034 .083± .000 .708± .019

Recall N/A .500± .000 .908± .068

F1-Score N/A .215± .000 .623± .035

OCO and ORCA, we can first observe that ORCA still presents

a terrible performance with its randomness under no pre-train

setting. Second, while our OWSS experiences a decrease in

KCCA values with the increasing number of known classes,

it still exhibits an improvement of 15% compared to the

OCO on average. Third, withing increasing number of knonw

classes, our OWSS remains the detection ability, proved by

recall values of 91.2% and 90.8% on satimage and MNIST,

respectively. This is because, in the presence of more classes,

our method still tends to learn the tight boundary for each

known class, and abstain any data points with low confidence,

as evident from reduced F1-Score values. Despite the decrease,

our model still achieves an average of 61.2% F1-Score values

on two datasets, indicating its efficacy. In general, for a

multi-class problem new experimental results validate that our

proposed OWSS approach still remains its effectiveness and

outperforms two competitors OCO and ORCA.

VII. CONCLUSION

This paper explored a new learning problem of Open-World

Soft Sensing (OWSS), where predictive models are built upon

input sequences characterized by varying feature dimensions

and potential emergence of unknown classes. Our key idea to

solve OWSS is to construct a universal representation space,

on which the model learns to abstain from decision-making

when presented data points that may represent unknowns. We

tailor an objective function that optimizes the tradeoff between

such abstention cost and empirical risk, arriving equilibrium

when the regions spanned by know-class points on the univer-

sal space are tightly bounded. Theoretical and experimental

results substantiate the effectiveness of our proposal.

ACKNOWLEDGEMENT

This work has been supported in part by the National

Science Foundation (NSF) under Grant Nos. IIS-2441449, IIS-

2236578, IOS-2446522, IIS-2236579, IIS-2302786 and IOS-

2430224, and also supported in part by the Commonwealth

Cyber Initiative (CCI).

REFERENCES

[1] Y. Jiang, S. Yin, J. Dong, and O. Kaynak, “A review on soft sensors
for monitoring, control, and optimization of industrial processes,” IEEE

Sensors Journal, vol. 21, no. 11, pp. 12 868–12 881, 2020.
[2] Q. Sun and Z. Ge, “A survey on deep learning for data-driven soft

sensors,” IEEE Transactions on Industrial Informatics, vol. 17, no. 9,
pp. 5853–5866, 2021.

[3] L. H. Chiang, E. L. Russell, and R. D. Braatz, Fault detection and

diagnosis in industrial systems. Springer Science & Business Media,
2000.

[4] K. H. Yeoh, K.-H. Chew, T. L. Yoon, R. Rusi, and D. Ong, “Strain-
tunable electronic and magnetic properties of two-dimensional gallium
nitride with vacancy defects,” Journal of Applied Physics, vol. 127, no. 1,
2020.

[5] A. Azarov, A. Galeckas, C. Mieszczyński, A. Hallén, and A. Kuznetsov,
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