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Abstract—Data-driven soft sensing enables to monitor and
control complex industrial processes in real-time. Whereas recent
data stream mining algorithms bolster predictive modeling on
soft sensing data, which increment in volume and vary in feature
dimensions, they operate mainly in closed-world settings, where
all class labels must be known beforehand. This is restrictive in
practical applications like semiconductor manufacturing, where
new wafer defect types emerge dynamically in unforeseeable
manners. This study aims to advance online algorithms by
allowing learners opt to abstain from make prediction at certain
costs. Our key idea is to establish a universal representation space
aligning feature dimensions of incoming points while delineating
a geometric shape underpinning them. On this shape, we min-
imize the region spanned by points of known classes through
optimizing the trade-off between empirical risk and abstention
cost. Theoretical results rationalize our universal representation
learning design. We benchmark our approach on six datasets,
including one real-world dataset of wafer fault-diagnostics col-
lected through chip manufacturing lines in Seagate. Experimental
results substantiate the effectiveness of our proposed approach,
demonstrating superior performance over six state-of-the-art
rival models. Code and datasets are openly accessible via an
anonymous link: hitps://github.com/X1aoLian/OWSS.

Index Terms—Data Streams, Online Learning, Open-World
Learning, Optimal Rejection, Soft Sensing, Industrial Machine
Learning

I. INTRODUCTION

Soft sensing abounds in smart factories [1], allowing for
real-time monitoring of multivariate dynamics through map-
ping easy-to-measure auxiliary parameters, such as temper-
ature, pressure, or flow rates, into descriptive but hard-to-
measure features like reaction rates or material properties [2].
Particularly in semiconductor manufacturing, traditional phys-
ical sensors are often inadequate for capturing the complex
and time-varying interplay among materials with precision and
scalability [3]. Soft sensing excels in modeling and controlling
key chemical and structural features of material amalgamation
at various stages such as metal deposition, photoresist coating,
lithography, and etching [4]-[6].

Recently, soft-sensing models bias towards data-driven fash-
ion [2], [7] due to their superior modeling accuracy and
little reliance on expert knowledge. For example, Seagate’s
wafer manufacturing fault-diagnostic task can be casted into
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Fig. 1: Seagate wafer manufacturing pipeline using soft-
sensing. Metrology for hard-to-measure metrics (target
classes) are induced from raw sensory signals (features).
Detailed results are reported in Section VI.

a classification paradigm, as shown in Figure 1, using soft-
sensory features to predict wafer defects [8], [9]. Despite
being effective, existing learning methods mainly fail short
in respecting two unique traits of soft sensing data. First, the
data are generated in real time and at scale [10], where the
continuous data influx over time can overwhelm traditional
methods with memory and computation overheads [11]-[13].
Second, the feature space describing soft-sensing data can vary
and is open [14], [15]. To wit, after some periods, old sensors
will wear out or become obsolete, causing pre-existing features
to fade away; while, new sensors are deployed, continuously
presenting new features to the classifier [16], [17].

To tame the streaming and dynamic nature of soft-sensing
data, one may consider adapting the recent Utilitarian Online
Learning (UOL) models [15], which overcome two primary
challenges. First, for new features that just emerge, they are not
described by sufficient number of data points, thus initializing
new model will end up with weak classifier. Second, for
old features that fade away, ignoring the classifier trained on
them results in missing information and a significant waste of
previous data collection and processing efforts. UOL addresses
these issues by establishing feature correlation, so as to 1)
expedite new model convergence through optimal parameter
initialization, and 2) leverage missing model information via
old feature reconstruction. Alas, despite thriving in data stream
analytics [16], [18]-[23], most UOL studies postulate a closed-
world classification setting, which is restrictive in practice.

Specifically, the data streams in soft-sensing are likely to
introduce data points belonging to new and unknown classes.
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Such classes are often not predefined. For example, during
semiconductor production, some wafer defect types can be
entirely novel, such as those introduced by material impurities
in electroplating and lithography [4], [5]. Given the rapid
advancements in material science and the sophisticated inter-
play of materials, enumerating all possible defect types before
starting the learning process is next to impossible. Predicting
such novel defective patterns into known classes will incur
substantial economic loss [6].

Surprisingly, although supporting varying feature spaces
and detecting new classes [24] are two important aspects in
streaming data analytics, no method has been developed to
support the both. This study aims to fill this critical gap by
exploring a new learning problem, which we term Open-World
Soft Sensing (OWSS). Unlike a traditional classifier tending
to make overly confident yet incorrect predictions on unknown
points, our OWSS builds online learner that can abstain from
decision-making in the rounds that instances from unknown
classes are most likely to emerge. The idea conveys practical
implications; for instance, the cost of abstention in wafer
production, which may be that of additional physical tests
or deferring to human inspection, is often more acceptable
than letting suspicious chips flow into critical systems, such
as medical diagnosis, hedge funds, or weapon control.

A major challenge lies in balancing the trade-off between
empirical risk and abstention cost in an online fashion [25],
[26]. In particular, the online learner, which observes and
predicts each instance only once without back-tracking, may
behave in two distinct ways: it can be aggressive, focusing
solely on abstention cost and categorizing all instances into
known classes; or it can be conservative, concentrating only
on empirical risk and classifying most instances as unknown.
In both cases, the online learner tends to make larger number
of erroneous predictions compared to its hindsight optimal
competitor, incurring considerable regret [11], [27]. To address
this problem, we propose to optimize the trade-off by opti-
mizing a bi-objective function, which minimizing the larger
cost in an alternating manner until an equilibrium is reached.
However, this optimization necessitates that instances from
an open and varying feature space must be organized into
a geometric structure [28], [29] where they share the same
dimension. Note, data points arriving at different time steps
may exist in disparate feature sets, making it challenging to
measure their distances directly. we draw insights from UOL
studies [15], [16] to discover a universal feature representation
that consolidates all emerging feature information. This allows
us to identify the geometric structure in the universal space
by mapping incoming data points onto it, enabling consistent
distance measurements across uniform dimensions.

Specific contributions of this paper are as follows:

1) This is the first study to explore the OWSS problem,
where the online learner faces an input sequence living
in open feature space and carrying unknown classes.

2) We propose a novel online algorithm to tackle the OWSS
problem, which provably enjoys a tight generalization

risk bound by learning the universal feature space in
incremental fashions. Our algorithm and its theoretical
analysis are presented in Sections IV and V, respectively.
3) Extensive experiments are conducted on five benchmark
datasets and one real-world dataset from Seagate, which
is for defect wafer diagnostics in semiconductor manufac-
turing lines. Our algorithm outperforms six state-of-the-
art competitors, with results documented in Section VI.

II. RELATED WORK
A. Data-Driven Soft Sensing Approaches

Soft sensors become increasingly integral in smart factories
for process monitoring, quality prediction, and other critical
industrial functions [1], [2]. Traditional soft sensing techniques
were developed in knowledge-based fashions [30], [31], re-
quiring domain experts to engineer a set of rules mapping raw
and auxiliary time-series to descriptive soft-sensing features.
Recent advances in big data analytics and increased compu-
tational capabilities have revolutionized the sensing paradigm,
spurring a stride of studies exploring machine learning and
data mining algorithms for soft sensing.

Seminal data-driven soft-sensing techniques include using
Auto-Encoders for deep feature representation extraction and
addressing issues of missing data [32], [33]. Likewise, Con-
volutional Neural Networks are opted for processing grid-like
data to capture local feature dynamics or for transforming
signals in the frequency domain [34], [35]. Recurrent Neu-
ral Networks are leveraged for variables exhibiting strong
temporal dependencies, respecting sequential nonlinearity of
industrial processes [36], [37]. To model correlations among
soft sensors, recent advances exploit Transformers [9] and
Graph Neural Networks [8]. Despite such array of data-driven
soft-sensing models, there remains considerable scope to meet
the dynamic needs of industrial processes. Existing studies
often struggle to adapt to the fast-paced changes inherent
in these settings, where new sensory features and previously
unseen defect types can frequently arise. To keep these models
effective, a repetitive cycle of data collection, model training
and testing, and industrial deployment becomes necessary
whenever there is a change in feature or label sets, leading
to substantial inefficiencies in terms of time and resources
previously invested. Desirably, a more agile model that can
continuously learn and adapt to these ever-changing environ-
ments without the need for retraining would revolutionize the
approach to soft sensing in industrial applications.

B. Utilitarian Online Learning

Online Learning (OL) enables predictive modeling from
streaming data by building local empirical risk minimizers for
future inputs at each time step [13], [27]. Utilitarian Online
Learning (UOL) [15] extends OL by relaxing the assumption
of a fixed feature space, allowing for a more adaptable learning
environment. While UOL may seem related to the problem
of concept-drift [38], where statistical properties of features
evolve while the feature count per instance remains fixed
they notably differ. Early appearance of UOL study can be
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traced back to [39], with successive explorations [16], [19]-
[21], [40]-[43] ever since. Existing UOL studies mainly strive
to solve two ill conditions incurred by the feature space
dynamics. First, the emergence of new features that lack
sufficient data for training results in slow convergence, with
the learning coefficients boiling down to educated guesses,
leading to predictive bias and errors [19], [42]. Second, when
previously observed features become unobserved, the fact that
the trained models cannot use past coefficients means that
predictions may rely on less informative features with high
missing rates [16], [20].

To overcome these challenges, UOL research has pursued
three main learning strategies. The first leverages passive-
aggressive learners [44] to redistribute learning coefficients
from existing to new features within a margin-maximization
regime [19], [41], [45], [46]. The second involves joint learn-
ing of the predictive model and feature correlation through
online alternating steps to jump-start the learning of new
features and reconstruct unobserved ones, thus expediting con-
vergence [16], [20], [43], [47]. The third manages an ensemble
of weak learners for each feature, updating or discontinuing
learners based on their performance in estimating correspond-
ing feature statistics [23], [39]. Nonetheless, most UOL studies
focus on binary classification only, not accounting for the
emergence of an unknown, new class within a streaming
continuum. A more recent UOL study [48] considered this
setting, but it assumes that instances of the new class are
known immediately with ground-truth labels, and the difficulty
is to resolve the one-shot learning challenge. Thus, the setting
of [48] diverges from our OWSS problem, where instances
from new classes are not known a priori, and the learner
must discern whether a misclassification pertains to an existing
class or an unknown one. It is noteworthy that recent studies
addressing label scarcity [22], [42] do not fully address our
OWSS challenge as well, because their focus remains on
generating pseudo-labels to expedite online semi-supervised
learners, but the classes of pseudo-labels remained binary.

C. Open-World Machine Learning

Conventional machine learning approaches typically ad-
here to a closed-world assumption, where the class labels
remain constant across training and testing phases [25], [49],
[50]. Open World Learning (OWL) challenges this paradigm
by identifying test samples that likely originate from novel
classes [26]. Representative applications of OWL have been
predominantly domain-specific. In computer vision, Open-Set
Recognition frameworks [25], [49], [51] use a one-vs-rest
scheme to detect unseen objects without label assignment
on the images housing them. Similarly, in natural language
processing, Open Class classification approaches [52], [53]
employ clustering techniques to discern unknown classes as
anomalies within established document groups. These OWL
methods are tailored to the characteristics of their respective
data modalities. Moreover, the majority of OWL studies pre-
sume an offline training setting.
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Notably, Learning with Rejection (LwR) models [54], [55]
sometimes viewed as a subset of OWL do not align with the
unique demands of our OWSS problem. LwR incorporates a
rejection mechanism that effectively sidelines data instances
at high risk of misclassification, with the presumption that
misclassifications predominantly occur between two classes,
such as data points residing within hard margins. Unfortu-
nately, LwR relies on traditional classifiers that default an
unlimited region volume for each known class, neglecting
the fact that misclassifications may also occur beyond the
seemingly correct side of the boundary. The further a point
is from a decision boundary, the more confidently an LwR
classifier will predict its class, even if the point is an outlier.
Such high-confidence mis-classifications are a critical flaw
when encountering unknown classes. Furthermore, the current
OWL studies are predicated on the availability of a complete
feature set beforehand, incompatible with our setting. In our
OWSS problem, the feature set specified at the initial stages of
learning could transform into an entirely different feature space
over time [16], [21], rendering distance-based (e.g., clusters or
margins) methods impractical.

III. PRELIMINARY

Problem Statement. Let {x;, y,g}tT:1 be an input sequence of
length T, where a point x; := [f1,..., f4,] € R% arriving at
t-th step is a d;-dimensional feature vector. In an open feature
space, the dimension of x; can increment (i.e., dy > d;_1) or
decrement (i.e., d; < d;—1), due to the new feature emerging
and old feature vanishing, respectively. Denoted by ), and )/,
the labels of known and unknown classes, respectively. To ease
notation, we define an instance space X = {R% U...UR%}
that records emerged features up to any ¢-th round. Any feature
fi before this round thus must be a member of X.

At each round, the learner h; receives a data point x; and
makes an immediate decision - whether this point should
learned or abstained. An adversary observes the decision
and reveal the true label y;, returning a feedback by the
following rule. If the prediction decision is made, the feedback
is an instantaneous risk £(h;) = {(y;, hi(x¢)) revealing the
discrepancy between the prediction and the ground-truth label,
gauged by the adversary; otherwise, the learner incurs a cost
of abstention c(x;). Based on the two types of feedback, the
learner updates to h;y1 and gets ready for the next round. Our
goal is to find a series of learners hq, ..., hp that minimizes
the cumulative loss over 1" rounds, defined as follows.

{

where we will follow prior art [56] to assume throughout that
the abstention cost c¢(x;) is a known constant and c(x;) <
e(hy) if y¢ € Yy, which makes sense because otherwise an
optimal yet trivial solution of Eq. (1) would be to never abstain.
The designs of the learner h; and the abstain loss ¢(x;) are
elaborated in detail in Section I'V-B.

[ e(hy)

c(xt)

if h; predicts but hy(x;) # y:
if h; abstains

)

)
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Fig. 2: A bird’s eyes view of our OWSS approach. At each time step, a data point x; carrying possibly new and unobserved
old features is encoded by a bipartite feature-instance graph, thereby projected onto a universal representation space as a
universal feature representation z; = ¢(x;) with aligned dimension (Section IV-A). An abstention function 7(-) is learned
through optimizing the tradeoff between empirical risk ¢(h;) and abstain cost ¢(x;), determining whether the classifier h;

should predict x; or simply abstain (Section IV-B).

IV. THE OWSS APPROACH
A. Learn Universal Feature Representations

To tame the feature space dynamics, we aim to find a
mapping ¢ : R?% s U that projects arriving instances onto the
universal feature space U € R¥, aligning their dimensions and
generating universal feature representations. For any feature
fi € X that has ever emerged up to the ¢-th round, we
associate it with a feature embedding vector f; € R*. We tailor
objectives to learn feature embedding based on two intuitions.
First, we desire the universal space U/ to increment by dynam-
ically incorporating new feature embeddings, which capture
the semantic meanings of the emerged features. However,
as new feature embeddings are randomly initialized, a joint
learning of both old and new features can be at risk of washing
out the learned information in the old feature embeddings.
We propose to disentangle the interplay among features, so
as to update each embedding vector independently. To do
that, we foster an addition relationship between the feature
embeddings and data instances after mapping onto U/, namely
z; = ¢(xy) = @f;l (fi ©f;), where Vf; € x; denotes the
features carried by x;. Denoted by & and © are element-wise
addition and product operators, respectively.

Second, we note that the co-occurrence patterns of fea-
tures can reveal valuable information, beyond their semantic
meanings. As the frequency of old features decreases over
time in an open feature space, the co-occurrence of their
combinations is expected to diminish as well. However, the
persistent co-occurrence suggests their significance despite this
decline in some cases. Revisit the soft-sensing data stream
in semiconductor manufacturing; while some combinations
of features are nearly impossible, some coincide with high
possibility. To wit, a wafer cannot show defective signal in
etch-condition check but pass in electroplating; rather, the two
sensory features both indicate the quality of uniformity of
wafer are mostly likely to fail or pass at once. To capture
such feature co-occurrence patterns, we draw insights from
geometry-aware representation learning [57] to model feature
embeddings in a bipartite feature-instance graph, where co-
occurrence features are immediate neighbours. The graph
consists of two sets of nodes: the projected points {z;}Z_;

and the feature embeddings {fz}‘i{l1 as shown in Figure 2.

Message-passing in the graph is defined:
T

1

BT 2
where the matrix © parameterizes the graph and its (¢,t)-
th entry 6;; denotes learning weight of the ¢-th data point
to be represented by the i-th feature embedding. The graph
adjacency A encodes the feature co-occurrence, such that
the immediate neighbors of z; are the features carried by
its original vector, namely f; € N (z;) if f; € x;. In this
work, we leverage graph convolutional network (GCN) with
two hidden layers to implement the message passing, i.e.,
GCN(A, {f;},0) = o(lap(A)HT©), where o(-) denotes a
non-linear activation such as ReLU [58], lap(-) = D(~1/2) (. +
I)D(-/2) computes the graph Laplacian (with D and I
being the degree and identify matrices, respectively), and
H ¢ Ré4*k .= [... f;.--]T is a matrix that stacks the
feature embedding vectors neighboring z;.

Each node in GCN aggregates feature information from
neighboring nodes in each layer, allowing nodes to represent
both their own features and those of their local neighbors.
With two layers, the GCN captures both direct and indirect
feature relationships. In the first layer, feature nodes aggregate
information from the point nodes that carry them, and for
the second layer, these feature nodes can then indirectly
exchange information with each other through the point nodes
that previously aggregated their information, allowing for a
more comprehensive understanding of feature co-occurrence
patterns in an open feature space.

2
) 2
2

2: — GCN(A, {f}, @)‘

B. Optimally Abstain from Unknown Class

The dimension of any incoming instance in the universal
space U/ becomes the same, thus making the distance mea-
surement between points possible. This allows to uncover the
geometric shape on which the regions covered by instances of
known classes are tightly bounded. The learner h; is realized
by an abstain decision learner r(-), which investigates the
shape and makes the abstain decision. This involves taking
a projected point z; and determining whether it belongs to
a known or unknown class. This suggests to tailor an online
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binary classification task, we can envision that r(z;) > 0 if
yr € Vi and 7(z¢) < 0 if y¢ € Y.

The problem now is how to train r(-) to achieve the trade-
off between aggressive and conservative without observing the
true label y;. Our idea is to learn 7(-) a kernel function such
that, the larger the absolute value |r(z)|, the more confidently
the function approximates the location of point x; on the
geometric shape, falling into one of the following two cases:
1) the point belongs to the known-class region of minimum
radius D or 2) the point is from an unknown class and far
away from all the knowns. We formulate this idea into a bi-
objective minimization problem as follows.

T

min D L) 20 >0)] T AL () <onex) >0 ()
Tot=1

where we jointly train the online abstain decision leaner 7; and
the adversary classifier returning the feedback. The indicator
1;.) returns 1 if the argument is true and O otherwise. The
parameter A absorbs the scale difference between the empirical
risk and abstention cost. Intuitively, the second term in Eq. (3)
requires to minimize the rounds in which the learner abstains
(r(z¢) < 0), as the cost ¢(x;) > 0 holds V¢ € T The first term
requires that, if the learner predicts (r(z;) > 0), the prediction
hi(x¢) = y+ € Y. From a geometric perspective, optimizing
Eq. (3) leads to a new representation space of input points, as
shown in the rightmost panel of Figure 2, wherein the region of
known classes (bounded by radius D) is tuned by including
a maximal number of points over which the current learner
h; can make correct predictions. This results in an integer
programming task, which provably has no effective solution
in an online setting [59].

To circumvent the challenge, we instead optimize the sur-
rogate loss [56] that convexifies Eq. (3), defined as a minimax
problem:

1= A-r(z¢) + D r(z¢) — D
rﬁl,f}T;maX{g(htH A1 A(1- oA — 1 ): 0}

(C))
where £(h;) is extended to the first term and c(x;) is repre-
sented as the second term. A > 1/2 is a tunable coefficient.
As the value of )\ goes larger, a smaller value of r(z)
will suffice to hold 1) the second term is more than O,
A — Ar(z¢)/(2XA — 1) > 0; 2) the first term is smaller than
the second one, 2Ar(z;)/(2A — 1) — X < 0, i.e., the second
term of Eq.(4) will be minimized, which is w.r.t. the abstain
decision function r(-) only. Note, minimizing the second term
is equivalent to maximize r(z;), encouraging the learner to
make more predictions rather than abstention. In practice,
one can chose to lower the value of X if the abstention cost
is less significant than misclassification. One such example
would be in defective semiconductor detection, assuming chips
for medical devices or weapon control, which has almost no
tolerance to predictive errors and thus A must be set small for
spotlighting more suspicious patterns to avoid mistakes.

A constant D in the first and second terms of Eq. (4) defines
the minimum radius of the known-class region. This is vital
early in the learning process when r(-) may not perform

Algorithm 1: The proposed OWSS Algorithm

Initialize : dy = 0, radius D, coefficient A > 1/2,
GCN parameter O, feature embedding
matrix Ho := [+, f;, -] € Raxk,
learner h;

1fort=1,....,T do

2 | Receives x; = [f1,..., fa,]" ;

3 if di >d;,_1; // observe new feature f;
4 then

5 Initialize feature embedding f;, € R* ;

6 L Expend Hy + [H,_; : f3,] ;

7 | Map 2 + ¢(x) =D, (fi OF) ;
8

if r(z;) <0; // learner abstains
9 then Incurs c¢(x;) ;
10 else // learner predicts

u | Suffer risk ¢(hy) if hy(z) #y // adversary
observes label y; and returns

feedback /* Apply ADMM [60] for
optimization %/
12 Optimize Eq.(2) w.r.t. © and {f;}, keeping h;

fixed ;
13 Optimize Eq. (4) w.r.t.

optimally due to limited training data. An ineffective r(-),
unable to correctly identify potentially unknown instances,
leads to substantial empirical risk. This setup poses a challenge
for optimization: the learner h; struggles to discern whether
the feedback is due to incorrect classifications within known
classes or a failure to abstain. By constraining D, we direct the
optimization to initially focus on lowering r(z;), prompting
more frequent abstention in the initial stages while ensuring
accurate predictions for known classes. Additionally, a larger
D decreases the likelihood that the second term becomes
negative as r(z;) increases. This encourages the model to make
more predictions when empirical risk is low, making the first
term of Eq. (4) negligible.

The second term of Eq. (4) will stop to be minimized in two
cases. 1) An increasing r(z;) will hold A < A-r(z:)/(2A—1),
making the second term negative. 2) More predictions means
more misclassifications, accumulating empirical risk ¢(h;) and
making ¢(h;)+2Ar(z¢)/(2A—1)— X > 0, letting the first term
of Eq.(4) take over. The minimization of the first term will
reduce both £(h;) and r(z:), enhancing classification accuracy
for known classes and encouraging abstention. Its optimization
stops when the abstention cost of r(z;) falls below a threshold,
thereby activating the second term. Thus, optimization alter-
nates between the two terms, shifting focus as one surpasses
the other, until an equilibrium is reached and both terms fall
below zero, concluding the optimization process. Main steps
of our OWSS are summarized in Algorithm 1.

V. THEORETICAL ANALYSIS

We analyze the generalization error bound to validate:
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RQ1. Will the incremental universal representation result in
the minimization of the empirical risk?

We let hy,...,h; € H be the online learner searched within

a hypothesis space H. Empirical risk for any learner is:

gk (h, f) = Eg, gk [|h(zt) — f(zt)|], vt € [1,T],
where the error difference between h(-) and any other predic-
tor f(-) is calculated. When f(-) indicates the real data-label
distribution, the risk can be abbreviated as erx(h). At t+1
time step, a new feature is observed and the universal space
RF starts to incorporate information carried by it, and being
updated to R¥ " 1. The risk of the learner of predicting instances
from the old space R¥ is defined as e (h), while its risk for
instances in the new space RY,, is defined as €R¥, (h). The
optimal joint learner h* causing the minimal errors in both
spaces is defined h* = argming ¢y epr(h) + eRécﬂ(h). The
combined error  of the optimal learners is v = ey (h*) +

€RY, , (h*). We then have:

Theorem 1. Denoted by e (h) and ERiﬁrl(h) the empirical
risks suffered by using h to predict samples in RY and R¥ 1
respectively. Let H be a hypothesis space with VC dimension
d. Write |Rk | and |R}, .| as subsets of samples drawn from
RY and R}, ,, respectively, both of size n. For any & € (0,1),
with probability at least 1 — 6,

epr (h) < egr(h) + dHAH (\R B ‘Rt+1|)

t41
4\/dlog (2n) + log (3) N

®)

in s

where dyny gauges the H-divergence between two sets of
samples.

Remark. The bound suggested by Theorem 1 establishes
a relationship between the H-divergence distance of two
spaces R} and R}, and the empirical risk difference made
by the same learner on two spaces. Despite both spanning
a k-dimensional space, RY,; is evolved from R} through
integrating a new feature. This bound indicates that the ad-
ditional risks associated with the universal representation are
solely influenced by the distance between the original and
the incremented spaces. The more closely the updated latent
space, shaped by the feature inclusion, aligns with the original
space, the fewer prediction errors the universal representation
will incur. This reasoning aligns with our proposition that the
emergence of new features can aid in acquiring superior learn
representations, overweighing its possibility of introducing
noise, thereby enhancing its discriminant power. We deduce
that if this new feature evolves the universal representation
space by less than Zday (RF,Rf, ), our OWSS algorithm
can enjoy an O(4/(1/n)dlogn) generalization risk that will
diminish as more observed data points (n — ©0), thus the
answer for question RQ1.

VI. EXPERIMENTS
A. Benchmark Setup

1) Seagate Soft-sensing Dataset: The dataset is generated
from and provided by the Seagate manufacturing lines housed
in Minnesota and Ireland factories, originally containing 1)
high-dimensional time-series data sensed from various manu-
facturing processes, and 2) categorical variables relevant to the
process descriptions. Figure 1 shows the manufacturing lines
with soft-sensing capacity. To wit, an AlxO3-TiC (AITiC for
short) wafer undergoes a series of manufacturing stages, which
encompass polishing, deposition, lithography, etching, and so
on. The soft sensors spreading over these stages take in the raw
auxiliary time-series and output in total 94 descriptive features.
At each time snapshot, the observed data point represents the
wafer quality condition described by those features, as new
soft-sensory variables emerging and old features expiring.

Subsequent to each of these pivotal steps, the wafer is
subjected to a rigorous quality control assessment, employing
precision metrology tools to evaluate critical quality indi-
cators (KQIs). These KQIs encompass a range of critical
measurements, including wafer thickness, surface roughness,
film thickness, adhesion strength, pattern alignment, and etch
depth, among others. Each KQI serves as a class label, with
certain internal threshold determining whether the AITiC wafer
passes or fails at the assessment. To uphold stringent data
security standards, KQIs are anonymized through a numerical
coding system. In our study, three KQIs are identified to proxy
the two known and one unknown classes.

2) Synthetic Datasets: We selected five benchmark
datasets to evaluate the generalizability of our method. These
include musk, optdigits, and satimage from UCI [61], Reuter
for document classification [62], and MNIST for handwritten
digit classification [63]. For UCI datasets and MNIST with
fixed feature dimensions, we follow prior studies [21], [50]
to simulate our open-world streaming setting. We split each
dataset into 10 chunks, where the i-th chunk contains 7 x 10%
of the features. The entire data matrices are shuffled for
each repeated experiment to enable cross-validation. In Reuter,
documents in Italian and Spanish are set as two known classes,
while English documents serve as the unknown sample. In
MNIST, digits 1, 2, ...,7 represent seven known classes, and
digits 8, 9, 10 are the unknowns. In satimage, four known
classes are identified. The statistics of these datasets, along
with Seagate, are shown in the table below. The last column
shows the ratio of samples belonging to known and unknown
classes. For example, in the satimage dataset, (2|2|1|1) : 6
means that the ratio among four known classes is 2:2:1: 1
and the ratio between known and unknown class is 6 : 6.

No. | Dataset | # Samples | # Features | (Vk) : Vu

1 | Seagate | 11,800 | 94 | (313):

2 musk 2096 166 (10 | 10

3 optdigits 3919 G| 3)

4 Reuter 5000 21 531 2| 2

5 satimage 6435 36 212 1\ 1

6 MNIST 10,000 784 a].. 3
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3) Evaluation Metric: We employ three metrics for our
comparative study. First, we introduce the Known-Class Cu-
mulative Accuracy (KCCA), which measures the classifica-
tion accuracy for instances identified as belonging to known
classes. Assuming m instances are predicted as coming from
known classes by the learner, KCCA is calculated as

1 — . X
KCCA = — § lvi = 4:], V9. € k.
t=1

The purpose of KCCA is to assess the expected accuracy
of instances classified as known. This metric decreases if
more instances from unknown classes are incorrectly identified
as known, or if errors are made in predicting known-class
instances. To evaluate our capability to detect instances from
unknown classes, we utilize a confusion matrix:

‘ Ut € Yu Ut € Yk
Yyt € Yo | True Positive (TP) False Negative (FN)
ys € Vi | False Positive (FP) True Negative (TN)

This matrix aids in calculating the New-Class Detection Recall
(Recall = TP/(TP + FN)) and the Fl-score (F1-Score =
2TP/(2TP + FP + FN)), where a higher Recall indicates
effective detection of instances from the new class. It is
important to note that both KCCA and Recall tend to be more
favorable when the learner predicts fewer instances, typically
marking the majority of the data sequence as unknown. In
these cases, the F1-Score score is comprehensive and de-
creases when many instances are deemed unknown.

4) Compared Methods: OWSS pioneers the problem of
online learning with open feature spaces and unknown classes.
Benchmarking the comparative study is challenging, because
the existing models cannot address our OWSS problem well.
To level the comparison, we identify six state-of-the-art rival
models, and two variants of our approach for ablation study.

They include: 1) OCO [64] that draws a baseline, training
a linear classifier on the input data sequence and learns
each new feature from scratch. 2) OSLMF [65] is an online
learning method dealing with open feature space under a semi-
supervised setting. It classifies all instances into known classes
in a forcible manner. 3) GraSSNet [8] requires a tailored
graph neural network (GNN) for detecting defective wafers
by learning the relationship among multiple sensory features
and KQIs. 4) ECOD [66] calculate the empirical cumulative
distribution and tail probability for each data feature, offering a
low-cost, parameter-free method without the need for distance
calculations. 5) LUNAR [67] enhances LOF using a graph
neural network to model each data point and its neighbors. 6)
ORCA [50] requires a long period of pre-training on known
classes, thus can make accurate predictions on known classes
and avoid assigning samples of unknown classes to them
based on an uncertainty-based adaptive margin maximization.
7) OWSS-GR (Graph Representation) is used to validate the
tightness of Theorem 1, so as to rationalize our universal
representation learning method. OWSS-GR leverages the pre-
trained GNN in GraSSNet to align the dimension of input
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sequence. 8) OWSS-IF (Idle Features) pads missing features
vectors with zero values instead of learning representations.

5) Experimental Setup: We benchmark all experiments on
a machine equipped with an Intel Core i9-13700K CPU and an
NVIDIA GeForce RTX 3090 GPU. We implement the com-
pared methods ECOD and LUNAR based on a public pytorch-
based libraries Pyod [68]. Regarding hyper-parameters, for the
compared methods, we leverage the parameter sets reported in
their corresponding references if available; for ours, we grid-
search for the optimal parameter sets, which are detailed in
our public repository along with the model structures.

B. Results and Findings

We extrapolate from experimental results in Tables I and II
and Figures 3 and 4 to answer the research questions (RQs).
RQ2. How does our OWSS compare with the state-of-the-art

models in terms of empirical performance?

We make seven observations to answer this question. First, our
OWSS achieve the best performance in all three metrics on
six benchmark datasets. Our method can abstain from making
predictions on most unknown-class instances with 82.5%
Recall on average across all six five datasets. Meanwhile, the
average F1-Score with 45.9% ensure the accurate detection
is not at the high cost of not predicting a large amount of
know-class instances. On average, OWSS outperforms six
rival models (i.e., OCO, OSLMF, ECOD, and ORCA) by
22.3%, 44.4%, and 14.4% in terms of KCCA, Recall, and
F1-Score, respectively. Second, compared to linear methods
aiming at classifying known classes like OCO, OWSS enjoys
significantly higher KCCA, such as Seagate dataset as shown
in Figure 3a, indicating that our proposed universal represen-
tation learning can capture non-linear interplays among soft-
sensory features, onto which the data points are projected for
better linear separability. Such KCCA superiority of OWSS
can also be observed in other datasets, reflecting our model’s
improved performance after excluding the interference of
unknown classes. Third, we note that the performance of
our OWSS is on a par with OSLMF with a 20.9% KCCA
difference (OWSS is higher). Despite that OSLMF also aligns
time-varying feature dimensions in a latent space, it cannot
single out instances from unknown classes, thereby incurring
additional empirical risk by erroneously predict unknown-
class points into known classes. Forth, compared to the offline
outlier detection algorithms ECOD and LUNAR, which detect
unknown classes as outliers and thus cannot classify known
classes, our method not only accurately classifies known
classes but also achieves an average improvement of 59.5%
and 18.2% in F1 and Recall, respectively.

Fifth, GraSSNet is also adept at modeling nonlinear soft-
sensory feature interactions in the Seagate dataset, powered
by the strong representation capability of GNN architecture;
however, GraSSNet cannot perform well in streaming settings,
resulting in inferior KCCA performance compared to online
models, underperforming OCO, OSLMF, and our OWSS by
21.6%, 26.2%, and 37.1%, respectively. The variant OWSS-
GR with this GNN architecture fails to converge and detect
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TABLE I: Comparative results (mean + standard deviation) on all four datasets in 3 metrics, averaged from 10 repeats. Not
applicable (N/A) model on specific settings are indicated and justified in the footnote below table. Best results are bold.

Dataset | Metric | 0Co | OSLMF GraSSNet | ECOD | LUNAR ORCA | OWSS-GR | OWSS-IF | OWSS
KCCA .681 £.004 | .708 &£ .006 | .421 4+ .001 N/AY N/AT .326 £.000 | .722 £.013 | .814 +.002 | .817 4+ .003
Seagate | Recall N/A* N/A* N/A* 177 £.000 | .272 £ .003 | .500 4 .000 | .201 &+ .016 | .448 +.007 | .452 + .005
F1-Score N/A N/A N/A 1232 +.000 | .329 £.005 | .251 4+.000 | .313 +.015 | .343 +£.003 | .396 + .002
KCCA 574 +.004 | .622 4+ .081 | .392 4+ .002 N/A N/A 459 +.000 | .487 4+ .001 | .728 +.005 | .756 4+ .002
musk Recall N/A N/A N/A .108 £ .000 | .402 £ .004 | .500 4 .000 | .029 &+ .009 | .843 £ .033 | .921 + .006
F1-Score N/A N/A N/A .097 +.000 | .254 £ .011 | .214 4+.000 | .052 +.003 | .184 +.019 | .262 + .002
KCCA .645 +.005 | .708 £.018 | .437 4+ .001 N/A N/A .312+£.000 | .664 £+ .001 | .758 +.022 | .789 4+ .010
optdigits | Recall N/A N/A N/A .109 £ .000 | .170 £ .007 | .500 4 .000 | .145 4 .000 | .786 £+ .019 | .871 + .033
F1-Score N/A N/A N/A .138 +.000 | .200 =+ .006 | .332 4 .000 | .228 +.000 | .374 +.011 | .432 + .028
KCCA .798 £+ .001 | .687 £ .040 N/A N/A N/A .325 £ .000 N/AT .827 +£.004 | .934 +.001
Reuter Recall N/A N/A N/A .124 +.000 | .144 £ .009 | .500 4 .000 N/AT 501 £.005 | .889 +.001
F1-Score N/A N/A N/A .168 +£.000 | .192 £.013 | .292 4+ .000 N/At .337+£.004 | .442 + .002

* For OCO, OSLMF, and GraSSNet, N/A is indicated in Recall and F1 as they cannot detect unknown classes and classify all instances as known, resulting

in zero Recall. Removing these values prevents skewing average performance calculations, avoiding an unfair disadvantage for OCO, OSLMF, and
GraSSNet. For ECOD and LUNAR, N/A is also indicated for the same reason as they can only detect unknown class and cannot classify known classes.

¥ For ECOD and LUNAR, N/A is indicated in KCCA as they only detect known classes as outliers, without the capability to distinguish known classes.

T OWSS-GR fails to work on the Reuter dataset due to its high feature dimension and sparsity, resulting in over-smoothed node representations, which has
been also discussed in [69]. For the same reason we remove its extremely low values of KCCA, Recall, and F1 to prevent skewed comparison.
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Fig. 3: Performance trends in terms of KCCA and F1-Score of seven methods from three datasets.

the unknown class on datasets with small column (e.g., musk
and optdigits) in online fashion with small recall and f1-score
values, as shown in Table I and Figure 3e and 3f. Besides,
GraSSNet cannot work on datasets with large features (e.g.,
Reuter), as its parameters increase exponentially as the number
of features increases. Sixth, although ORCA possesses the
modeling capability to detect new classes, it requires massive
offline pretraining over known-class samples to let the model
warm up to capture tight boundaries. In online setting, ORCA
fails to converge and ends up with 0.5 recall on average,
meaning that it either treats all instances as unknown class, or
it will make prediction on all data points, thereby incurring
the worst KCCA performance across all datasets. Seventh,
the consistent performance of our method OWSS on five
benchmark datasets and that on Seagate attests to its effective
generalization across various domains.

RQ3. How effective is the tradeoff between empirical risk and
abstention cost optimized?

Figure 4 depicts the data distribution of the Seagate dataset,
with samples from two known classes (blue and red) and one
unknown class (green). As shown in its left panel, known-
class samples in the universal space can be separated by a
linear boundary when the model is tasked solely with the
classification of known classes. Both blue and red points
situated further from this boundary are considered to be
classified with greater confidence. However, when samples
from the unknown class are likewise mapped into this space,
these green points are dispersed throughout the space. Notably,
those that are positioned far from the boundary are also clas-

sified by the model into known classes with high confidence,
resulting in an increased empirical risk. Our OWSS method
refines this approach by optimally abstaining points from the
unknown class. As depicted in the right panel, instead of a
single linear classification boundary, our method creates tighter
boundary for each known class, where the points from two
known classes in the universal space are gathered to form
two clusters, with sample density increasing closer to the
centers, indicated by progressively darker colors. As a result,
a sample is considered to possess higher confidence only as it
nears the center. When samples from the unknown class are
reconstructed in this space, these green points find themselves
isolated outside the two clusters, thus abstained. Compared to
the OWSS-IF variant, OWSS slightly outperform by 4.2%
on average which we can also observe from Figure 3a, 3b,
and 3c. However, OWSS-IF outperforms OCO and OSLMF
by 10.7% and 10.1%, respectively, which substantiates the
effective optimization of the trade-off.

RQ4. What is the impact of the number of known classes?

We leverage the results from satimage and MNIST to answer
this question, documented in Table II reduced from Table
1 because OSLMF and GraSSNet are tailored for binary
classification and can only be extended to multiclass settings
using one-vs-one or one-vs-all strategies [71]. Such strategies
mainly decompose class combinatorics have no impact on
evaluating the challenging of delineating and bounding the
regions spanned by known-class data points, as our OWSS
does in Figure 4. Due to page limits, we precluded the
comparison with them and reduce Table II. In comparison with
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[® Class 1@ Class2 @ Unknown|

Fig. 4: Isomap visualization [70] of data points before (left)
vs. after (right) our universal representation on Seagate dataset.
Left: Binary classifier forcibly predicts unknown points (green)
into the known class regions 1 (blue) & 2 (red). Right: Our
OWSS model minimizing the volume of two known-class
regions abstains from predicting unknowns. The unknown
green points lean toward the red ones because the red points
represents defective wafers, and all unknowns are likely de-
fective, making them align more with the class 2 (defective)
rather than the class 1 (qualified).

TABLE II: Results on MNIST and Satimage, reduced from
Table I, as OSLMF and GraSSNet are binary classifiers.

| Metric \ 0COo \ ORCA \ OWSS
KCCA .339+.015 .259 4+ .000 553 +£.012
satimage Recall N/A .500 + .000 912 + .026
F1-Score N/A .382 £ .000 .601 +.020
KCCA 447 4+ .034 .083 £ .000 .708 £+ .019
MNIST Recall N/A .500 £ .000 .908 +.068
F1-Score N/A .215 £+ .000 .623 +.035

OCO and ORCA, we can first observe that ORCA still presents
a terrible performance with its randomness under no pre-train
setting. Second, while our OWSS experiences a decrease in
KCCA values with the increasing number of known classes,
it still exhibits an improvement of 15% compared to the
OCO on average. Third, withing increasing number of knonw
classes, our OWSS remains the detection ability, proved by
recall values of 91.2% and 90.8% on satimage and MNIST,
respectively. This is because, in the presence of more classes,
our method still tends to learn the tight boundary for each
known class, and abstain any data points with low confidence,
as evident from reduced F1-Score values. Despite the decrease,
our model still achieves an average of 61.2% F1-Score values
on two datasets, indicating its efficacy. In general, for a
multi-class problem new experimental results validate that our
proposed OWSS approach still remains its effectiveness and
outperforms two competitors OCO and ORCA.

VII. CONCLUSION

This paper explored a new learning problem of Open-World
Soft Sensing (OWSS), where predictive models are built upon
input sequences characterized by varying feature dimensions
and potential emergence of unknown classes. Our key idea to
solve OWSS is to construct a universal representation space,
on which the model learns to abstain from decision-making
when presented data points that may represent unknowns. We
tailor an objective function that optimizes the tradeoff between
such abstention cost and empirical risk, arriving equilibrium
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when the regions spanned by know-class points on the univer-
sal space are tightly bounded. Theoretical and experimental
results substantiate the effectiveness of our proposal.
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