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ABSTRACT In this paper, we propose a novel and enhanced approach for crowd counting within the

domain of manatee monitoring, aiming to significantly improve efficiency and accuracy. The proposed

model achieves state-of-the-art results in the challenging task of manatee counting, simplifying the work

of scientists and experts in the field. Our model not only facilitates the identification and enumeration of

manatees in images and videos but also excels in scenarios that pose considerable challenges for human

observers. To enhance accurate counting of the manatee aggregation, we introduce a framework with three

key innovations to tackle the challenge: a new approach to generate density maps during the training process,

an augmented technique to balance the dataset, and a cross-domain solution to enhance overall performance.

The proposed two-dimensional Gaussian kernel offers a refined method for creating density maps, providing

a more robust foundation for the training phase. Additionally, we built a balanced and augmented dataset,

ensuring that the model is exposed to diverse and representative instances, thus improving its generalization

capabilities. Furthermore, we incorporate a cross-domain phase pretraining the model utilizing an image

dataset of wild animals to initialize the weights and further improve performance. Experiments and

comparisons, with respect to previously established CSRNET model presented in Wang et al. (2023),

demonstrate noteworthy improvements. Remarkably, our model achieves a Mean Absolute Error (MAE)

of nearly half compared to the rival approach, showcasing the substantial advancements achieved through

our refined methodology. This progress boosts the reliability of manatee counting in conservation efforts

and ecological research.

INDEX TERMS Machine learning, cross-domain learning, convolutional neural networks, crowd counting,

manatees.

I. INTRODUCTION

Crowd counting, a widely recognized task, involves the

automated counting of individuals, animals, or objects

within images or videos. Its importance extends across

diverse domains, with applications ranging from public safety

The associate editor coordinating the review of this manuscript and

approving it for publication was Mingbo Zhao .

and monitoring public spaces to human behavior analysis

and video surveillance. The evolution of this task from

its pioneering focus on people counting has led to the

development of numerous subtasks tailored to count specific

animals or objects.

In this paper, we focus on crowd counting with a specific

emphasis on manatees. Manatees, characterized by their

peaceful behavior, aquatic lifestyle, and herbivorous diet,
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pose a unique challenge for crowd counting. Notably, the

urgency of this task is underscored by the potential threat of

manatee extinction in Florida’s waters. The alarming statistic

of nearly 2000 manatee deaths between 2021 and 2022 [1],

attributed to boat collisions andwater pollution affecting their

seagrass habitat [2], highlights the pressing need for effective

monitoring and conservation efforts. Counting manatees

becomes intricate due to their characteristics. These gentle

creatures, are predominantly gray, making them susceptible

to blending into their surroundings, especially when situated

near the coast (Fig. 1). The challenge gets harder because of

their size changes. In fact, when the image shows a close-

up view, they look big, but when it shows a distant view, they

look small. Moreover, they often stay in groups, making them

hard to count because it’s difficult to tell where one animal

ends and another begins.

To solve this problem Wang et al. [10] proposed some

models trained on a dataset of labeled manatee that represent

the state of the art on this task. More specifically the three

proposed models were trained on the same dataset, using

different density map generation techniques: dots, lines, and

Anisotropic Gaussian kernel.

Our solution consists of a new method, more centered

on the whole manatee shape and the contrasts with the

background. Our method brings three key contributions: the

introduction of a novel kernel function designed to represent

density maps, the utilization of an augmented dataset to

enhance model generalization, and the incorporation of a

pretraining phase on a dataset featuring similar background

conditions.

More in detail, the introduction of the new kernel function

aims to direct the model’s attention towards the whole

bounding box, consequentially focusing on the entire animal

and its differentiation from the background. In addition, the

incorporation of a pretraining phase stems from the restricted

size of the dataset. By implementing a pretraining phase

on a similar dataset to initialize model weights, followed

by a fine-tuning phase on the target dataset, performance

outcomes are enhanced. Additionally, acknowledging the

dataset’s imbalance between images, we have chosen to

utilize data augmentation techniques. This strategy aims

to address the dataset’s imbalance, thus facilitating more

effective training and ultimately enhancing performance

across all categories, regardless of the abundance or scarcity

of animal instances within them.

For our pipeline, we employed the CSRNET model [13],

a choice motivated by its previous application in manatee-

related research as evidenced by the reference to the CSRNET

model in the prior study [10]. This deliberate choice not only

ensures continuity and comparability with earlier research

but also highlights the adaptability and efficacy of the

CSRNET model for addressing the challenges posed by

manatee detection tasks. The outcomes of our experiments

are highly promising, showcasing advanced and state-of-

the-art results in the domain of manatee detection. These

results underscore the effectiveness of our proposed method

FIGURE 1. Manatees crowd in the Blue Spring State Park, Florida (from
Manatee Dataset [33]).

in pushing the boundaries of performance for this specific

task.

II. RELATED WORKS

Early crowd-counting methods relied on conventional com-

puter vision techniques such as background subtraction [4],

blob analysis [3], and feature engineering, but these

approaches often struggled with complex scenes, varying

lighting conditions, and occlusions. Subsequently, density-

based methods emerged as a response to the limitations

of traditional approaches. These techniques focus on esti-

mating crowd density maps, utilizing methods like kernel

density estimation, Gaussian processes, and Markov random

fields [34]. While offering improved performance, these

methods still faced challenges with scale variations and

crowded scenes.

The advent of deep learning revolutionized crowd counting

by enabling automatic feature learning from raw data.

Convolutional Neural Networks (CNNs) and their variants,

such as VGG [14], ResNet [15], and DenseNet [16], have

demonstrated remarkable success in accurately counting

crowds. The use of pre-trained models, transfer learning,

and fine-tuning further enhanced the adaptability of deep

learning approaches to diverse datasets. One of the first deep

models for crowd counting was presented in 2015 [5], where

they use Convolutional Neural Networks for regression.

This method focuses on splitting the image into patches,

doing regression on each patch to have the number of

people present in each section, and, in the end, summing

them to obtain the number of people present in total in

the whole image. Another work proposed in the same year

by Zhang et al. [18], presents a method based on deep

convolutional neural networks (CNNs) to tackle the challenge

of crowd counting across diverse scenes. They proposed a

convolutional neural network (CNN), trained alternatively

with two related learning objectives, crowd density and crowd

count. This proposed switchable learning approach is able to

obtain a better local optimum for both objectives.

Alternatively, another end-to-end convolutional neural

network (CNN) architecture was proposed by Chong et al.

[19]. It takes a whole image as its input and directly
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outputs the counting result, and it takes advantage of

contextual information to predict both local and global

counts. In particular, they first feed the image to a pre-trained

CNN to get a set of high-level features, then the features are

mapped to local counting numbers using recurrent network

layers with memory cells. Sam et al. [20] proposed another

regression model based on switching convolutional neural

networks to leverage variation of crowd density within

an image to improve the accuracy and localization of the

predicted crowd count. The independent CNN regressors

are designed to have different receptive fields and a switch

classifier is trained to split the image in patches and relay each

crowd scene patch to the best CNN regressor.

MTCNN model, which is based on the work proposed by

Zhang et al. [6], uses density map prediction and it is one

of the first models to introduce a multi-column structure,

that refers to the three cascaded stages, each with its own

Convolutional Neural Network (CNN) architecture, working

together to achieve robust and accurate results. It became very

popular also because it doesn’t split the image in patches, but

analyzes the whole image and returns the predicted density

map.

Features available for crowd discrimination largely depend

on the crowd density to the extent that people are only seen

as blobs in a highly dense scene. This problem is faced by

Sam et al. [28], where presented a growing CNN that can

progressively increase its capacity to account for the wide

variability seen in crowd scenes. The model starts from a

base CNN density regressor, which is trained in equivalence

on all types of crowd images. In order to adapt to the huge

diversity, two child regressors are created, which are exact

copies of the base CNN. A differential training procedure

divides the dataset into two clusters and fine-tunes the child

networks on their respective specialties. Consequently, the

child regressors become experts on certain types of crowds.

The child networks are again split recursively, creating two

experts at every division. This hierarchical training leads to

a CNN tree, where the child regressors are more fine experts

than any of their parents. An additional interesting work is

presented by Ma et al. [29], who instead of building a new

model, used the Bayesian loss. Actually, they used a Bayesian

loss function for crowd counting, improving the accuracy by

utilizing point-level annotations to better guide the learning

process for predicting crowd densities.

PCC Net, by Gao et al. [21], represents a novel method for

crowd counting that accounts for perspective distortions in

images. They introduce the PCC Net, a spatial convolutional

network designed to handle the variations in crowd density

and perspective distortions commonly found in real-world

scenarios. Their approach improves the accuracy of crowd

counts by effectively modeling the spatial relationships and

perspective changes within an image. In fact, they designed

a perspective module to encode the perspective changes in

four directions, namely Down, Up, towards the Left, and

Right.

An additional intriguing approach based on VGG-16 is

proposed by Sindagi and Patel [23]. It utilizes VGG-16 as

a feature extractor and an inverse attention mechanism to

effectively identify and count individuals in crowded scenes.

By focusing on regionswith low attention, themodel achieves

improved accuracy in estimating crowd densities, even in

challenging scenarios.

One extra challenge in crowd counting is the varying scales

at which people appear, depending on their distance from the

camera. To address this issue, Varior et al. [24] proposed a

novel multi-branch scaleaware attention network that exploits

the hierarchical structure of convolutional neural networks

and generates, in a single forward pass, multi-scale density

predictions from different layers of the architecture. To aggre-

gate these maps into a final prediction, they present a new

soft attention mechanism that learns a set of gating masks.

An alternative proposal for the scale problem is presented

in Liu et al. [27], where a novel Deep Structured Scale

Integration Network (DSSINet) is presented. This newmodel

addresses the scale variation of people by using structured

feature representation learning and hierarchically structured

loss function optimization. A supplementary model, the

Attentional Neural Field (ANF), is proposed in the work by

Zhang et al. [25]. The ANF is an encoder-decoder network

composed of conditional random fields (CRFs) and an

attention mechanism. More in specific, conditional random

fields (CRFs) are present to aggregate multi-scale features,

to buildmore informative representations, and to better model

pair-wise potentials in CRFs incorporate a non-local attention

mechanism implemented as inter- and intra-layer attentions

to expand the receptive field to the entire image respectively

within the same layer and across different layers, which

captures long-range dependencies to conquer huge scale

variations. A further innovative network was proposed by

Liu et al. [26], the Cross-stage Refinement Network (CRNet).

It can refine predicted density maps progressively based on

hierarchical multi-level density priors. In particular, CRNet

is composed of several fully convolutional networks stacked

together recursively, so that the previous output is the next

input, and each of them serves to utilize the previous density

output to gradually correct prediction errors of crowd areas

and refine the predicted density maps at different stages.

Another creative approach was presented by Bai et al. [22],

which utilized an adaptive dilated convolutional network

combined with a self-correction supervision mechanism.

This method addresses the issue of varying crowd densities

by adaptively adjusting the dilation rates of convolutions,

allowing for more accurate feature extraction across different

scales. The self-correction supervision further refines the

counting accuracy by iteratively correcting the network’s

predictions.

Recently other state-of-the-art models were published,

each one obtaining great results in different types of datasets,

like DSNet [7], SASNet [8], and TransCrowd [9]. The

DSNet model, presented by Dai et al. [7], is composed of
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the initial ten layers of VGG-16, along with three dense

dilated convolution blocks (DDCBs) featuring dense residual

connections (DRCs). Additionally, three convolutional layers

are employed for the regression of crowd density maps. The

purpose of integrating the dilated convolution blocks with

dense residual connections is to enhance scale diversity and

broaden the receptive fields of features, enabling the model

to effectively address variations on large scales and achieve

precise estimation of density maps. The SASNet presented

in the work proposed by Song et al. [8], is based instead,

on a U-shaped backbone for feature extraction, to capture

diverse feature representations at multiple levels for a given

image. These features are input into an attention layer to

generate multi-level confidence maps and density maps.

In the final step, guided by the multi-level confidence maps,

the density maps are integrated at different levels through

a weighted average to derive the final result. TransCrowd,

presented by Liang et. al. [9], takes the initial image, splits

it into patches of a fixed size, and each patch is subjected

to linear embedding along with position embeddings. The

resulting sequence of feature embeddings is then passed

through a Transformer encoder, after it, a regression head

is employed to generate the count prediction. One more

transformer-based solution is developed by Lin et al. [30].

They proposed a graph-modulated transformer to enhance the

network by adjusting the attention and input node features

respectively based on two different types of graphs. Firstly,

an attention graph is proposed to diverse attention maps

to attend to complementary information, built upon the

dissimilarities between patches. Secondly, a feature-based

centrality encoding is proposed to discover the centrality

positions or importance of nodes.

Another trending field in crowd counting is semi-supervised

and unsupervised methods, due to the fact that supervised

crowd counting relies heavily on costly manual labeling,

which is difficult and expensive, especially in dense scenes.

Many works have been published on this topic, like

Crowdclip proposed by Liang et al. [31] and the work

presented by Ding et al. [32]. Crowdclip is based on the

idea that there is a natural mapping between crowd patches

and count text In fact, it uses the CLIP pre-trained vision-

language model, adjusting the image encoder by using

text prompts that rank crowd images based on ordinal

relationships. Instead in the Unsupervised Cross-Domain

work, they propose a cross-domain learning network to learn

the domain gaps in an unsupervised learning manner. More

in-depth it firsts explicitly measures the distances between

the source domain features and the target domain features

and aligns the marginal distribution of their features and

then removes domain-specific information from the extracted

features and promote the mapping performances of the

network.

In the realm of manatee counting, the state-of-the-art

model is presented in the paper written by Wang et al. [10].

This paper presents three different CSRNet models [13],

trained using three distinct methodologies for generating

density maps: dot representation, line representation, and

an Anisotropic Gaussian Kernel. However, each of these

approaches utilizes a 1-dimensional representation of the

manatee, which proves to be quite constraining. While

the Anisotropic Gaussian Kernel aims to represent the

manatee in a 2-D space, it has limitations because one

dimension consistently dominates, creating a slightly thicker

line, that essentially enlarges a little bit the 1-dimensional

representation. Furthermore, the dataset is labeled to optimize

this 1-dimensional encoding, although at the expense of

losing significant information.

For our study, we utilized the CSRNet model [13],

presented by Wang et al. [10] as one of the state-of-

the-art models for the manatee counting task, furthermore

facilitating easy comparison of the obtained results.

III. SYSTEM DESIGN

The typical method to approach a crowd-counting task,

applicable to various counting fields, involves starting to

generate density maps. This is achieved through encoding

techniques such as dots, lines, or occasionally kernel

functions, ensuring that the sum of the density map pixels

corresponds to the total count of objects in the image.

The model is then trained by inputting the original image

containing the objects to be counted and expecting a density

map as output. This initial approach is rudimentary, but it can

be enhanced by adding two additional stages to the procedure

and employing a 2-D kernel function for better density map

creation.

In this paper, we propose a novel and more robust pipeline.

Our enhancements focus on three main areas: density map

generation, data augmentation, and cross-domain learning

application. This methodology transcends specific domains,

making it adaptable to a wide range of counting tasks beyond

just manatees. Additionally, we include a detailed model

section to describe the functionality and implementation of

our pipeline.

A. DENSITY MAP GENERATION

Density maps are crafted by leveraging ground truth data.

We introduced an innovative kernel function for the gen-

eration of density maps, prioritizing the complete coverage

of bounding boxes. This adjustment enables the model to

shift its focus from a confined area in the middle of the

animal, like the dot or the line representations, to include

the entire body. Furthermore, the kernel function addresses

the differences in contrasts and color variations between the

object and its background. Our 2-D kernel function, rooted

in a Gaussian kernel, builds a shape for each bounding

box with higher values at central points and diminishing

values towards the edges. This design facilitates a nuanced

representation, ensuring that the sum normalizes to one

(Fig. 2). Furthermore, this approach results in a more

evenly distributed arrangement of pixels on the density map,

simplifying the model’s learning process.
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FIGURE 2. Example of our kernel function applied on a bounding
box(300 × 80 pixels). This image shows the spreading of the values,
higher in the center and near zero in the corners.

We center our attention on datasets containing bounding

boxes, where we consider the height and width of each

bounding box as hyperparameters. These bounding boxes

come in rectangular shapes, with dimensions that vary.

Consequently, we analyze the height and width of each

bounding box to devise a tailored representation that fully

captures its characteristics.

So, let width and height be parameters of the bounding box,

µ be the mean vector, σ be the standard deviation vector, and

(x, y) be the coordinates of the grid points, the 2D Gaussian

distribution is given by the Equation 1.

Gaussian(x, y) =
1

2πσxσy
exp

(

−
(x − µx)

2

2σ 2
x

−
(y− µy)

2

2σ 2
y

)

(1)

where:

- µx and µy are the mean values in the x and y directions,

respectively.

- σx and σy are the standard deviation values in the x and y

directions, respectively.

The mean vector µ is given by the Equation 2.

µ =

[

width

2
,
height

2

]

(2)

The standard deviation vector σ is given by the Equation 3.

σ =

[

width

4
,
height

4

]

(3)

Once calculated the Gaussian, we normalize it as show in

Equation 4.

Gaussian(x, y) =
Gaussian(x, y)

width−1
∑

x=0

height−1
∑

y=0

Gaussian(x, y)

(4)

This normalization ensures that the sum of all values in

the Gaussian distribution becomes 1, making it a probability

distribution over the defined grid.

Applying this formula to each annotated bounding box

results in a rectangular representation containing multiple

oval shapes. Each oval has pixels with uniform values, which

decrease from the center outward, creating a kind of big

faded ellipse as illustrated in Fig. 2. After normalization,

all the pixels that compose the representation sum to one,

maintaining the core idea of crowd-counting density maps.

This codification emphasizes the center of the bounding box,

where pixel values are highest, but also includes the entire

bounding box, capturing the full body of the animal and its

distinction from the background. The variation in pixel values

strikes a good balance for the model, focusing primarily on

the central part to identify the animal while also considering

the whole body. This helps the model better locate the animal

and increases the accuracy of the count, reducing potential

false positives or hallucinations.

B. DATA AUGMENTATION

To achieve optimal results in predicting density maps across

all scenarios, whether working with numerous or just a few,

it’s crucial to ensure balance in the training set. This entails

having a roughly equal number of images representing both

scenarios. Achieving such balance necessitates employing

data augmentation techniques, a well-established strategy in

computer vision [35].

Data augmentation involves generating new data from

existing ones. In the realm of images, this typically involves

applying various transformations such as random changes in

colors, brightness, rotation, and other factors to create new

images. This approach serves two main purposes: increasing

the number of samples within the dataset and enhancing the

diversity of training samples, consequently leading to a more

robust model.

For our specific application, we propose employing

random adjustments in brightness and contrast as part of

our data augmentation techniques. Notably, we avoided

stretching the density maps or modifying the images’ angle,

as altering these aspects would create new images not of

real-world occurrences, leading the model to learn irrelevant

information.

Consequently, to avoid introducing artifacts in our data,

the decision to adopt brightness and contrast changes for

improvement. These changes guarantee that the shape of

the animal is preserved and, with a careful choice of

hyperparameter, that no artifacts are introduced.

More in specific, the brightness adjustment increases or

decreases the brightness of an image by adding or subtracting

a constant value from each pixel’s RGB value.

Denote I (x, y) the intensity (brightness) of the pixel at

position (x, y) and c as the constant value added to adjust

brightness (this value should be random in a predefined

interval). Let’s underline that positive c will increase

brightness, while negative values will decrease it.

The formula for brightness adjustment is shown in the

Equation 5.

I ′(x, y) = I (x, y) + c (5)

The contrast adjustment, instead, changes the difference

in intensity between pixels, making the image more or less

vivid.
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Denote I (x, y) the intensity (brightness) of the pixel at

position (x, y), m as the mean intensity of the image, and f

as the contrast factor, where f > 1 increases contrast and

0 < f < 1 decreases contrast (this value should be random

in a predefined interval). The formula for contrast is shown

in the Equation 6.

I ′(x, y) = (I (x, y) − m) × f + m (6)

Here, (I (x, y) − m) adjusts the intensity relative to the mean

intensitym, then it’s scaled by the contrast factor f and finally,

the mean intensity m is added back.

In our specific case, the random values c and f are chosen

between 0.5 and 1.5. Such settings can keep the random field

big enough to generate different data and not generate biases

with duplicate images, but still limited to guarantee also that

no artifacts are introduced.

It is imperative to ensure these techniques are applied

ethically, specifically when dealing with sensitive ecological

research involving manatees. Special care is taken to ensure

that augmentation does not detract from the manatees’ repre-

sentation or contribute to biases that could negatively impact

conservation efforts. Our methods are checked to avoid any

potential harm to the understanding and preservation of

manatees.

C. MODEL ARCHITECTURE

After preparing the data and generating the density maps,

a pivotal decision, to make the pipeline work, lies in selecting

the appropriatemodel. Typically, in crowd-counting tasks, the

model is divided into two key components: feature extraction

and density map prediction.

The feature extraction stage is extremely important as it

is tasked with capturing crucial information from the image.

Typically, a pre-trained CNN architecture like VGG [14],

ResNet [15], or MobileNet [17] is employed for this purpose,

given their proficiency in extracting hierarchical features

from images. Once trained, this segment should isolate the

features relevant to the object of interest, enabling the model

to concentrate solely on counting the desired objects.

On the other hand, the second component focuses on

predicting the density map. It begins with convolutional

layers to further process the features obtained from the

first stage, facilitating the model in learning spatial patterns

and crowd relationships. Subsequently, upsampling layers,

such as transposed convolutions or bilinear upsampling, are

employed to gradually enhance the resolution of the feature

maps. The network ends with a regression layer responsible

for predicting the density map. Typically, this layer consists

of a single convolutional layer followed by an activation

function like ReLU to ensure non-negative density values.

In this process, starting from the features extracted in

the initial phase, the model constructs a density map that

accentuates the objects of interest. Specifically, the density

map is constructed by predicting the positions of the objects

and assigning higher values to their locations, while assigning

0 to areas where objects are absent. In our approach,

utilizing the 2-D Gaussian kernel function (presented in

Section III-A), the model aims to predict a Gaussian shape

resembling the object’s bounding box, with higher values

concentrated at the center and gradually decreasing towards

the edges. To generate this density map, the model considers

the dimensions of the original image and predicts the value

of the density for each pixel.

In this project, we selected the CSRNet network [13] cur-

rent state-of-the-art for counting manatees, as demonstrated

by Wang et al. [10], moreover, this decision enabled us to

compare our results with existing research. The CSRNet

comprises two main components, as outlined above: initially,

the first layers of the VGG16 net [14] finetuned on our

dataset, serve as a feature extractor, subsequently, convolu-

tional layers and final bilinear interpolation are employed to

generate density estimation and maintain alignment with the

original image dimensions.

To delve deeper, CSRNet takes as inputs the images

containing crowd scenes captured by cameras. These images

undergo the first ten Convolutional Neural Network (CNN)

layers for feature extraction, and, through this process, the

model identifies patterns and features relevant to crowd

density. Subsequently, the network estimates crowd density

across different image regions based on the extracted features,

and, in the end, it predicts the density at each pixel, generating

density maps as outputs.

During the training and testing phases, the model’s outputs

are compared with ground truth density maps generated using

the 2-D Gaussian kernel function to evaluate the level of the

predictions in case of test and to improve them in case of

training (this process is shown graphically in Fig. 3). This

is often made using the Mean Squared Error function or the

Mean Absolute Error function.

1) LOSS AND EVALUATION FUNCTIONS

A crucial aspect, following model selection, involves deter-

mining the appropriate loss and evaluation functions. In line

with the methodology detailed in the Wang et al. [10],

we opted for the Mean Squared Error (MSE) as our

loss function and the Mean Absolute Error (MAE) as the

evaluation metric. These functions are widely employed for

both loss calculation and evaluation in crowd-counting tasks,

ensuring the robustness and comparability of our results.

To elaborate, the Mean Squared Error (MSE) quantifies

the average squared difference between predicted and actual

values, and it’s calculated as shown in the Equation 7.

MSE =
1

n

n
∑

i=1

(Yi − Ŷi)
2 (7)

where n represents the number of images, Yi denotes the

actual density maps for the ith image, and Ŷi stands for the

predicted density map for the ith image.

On the other hand, the Mean Absolute Error (MAE)

provides an average magnitude of errors between predicted

and actual values, calculated as the mean of absolute
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FIGURE 3. Visual representation of the training process, showing the density map generated from the annotations (top) and predicted by the model
(bottom).

differences shown in the Equation 8.

MAE =
1

n

n
∑

i=1

|Yi − Ŷi| (8)

Again, n stands for the number of images, while Yi and Ŷi
represent the actual and predicted density maps for the ith

image, respectively.

D. CROSS-DOMAIN LEARNING

In the end, we implemented a cross-domain strategy,

specifically focusing on domain adaptation techniques, which

are widely utilized to address the challenge of limited labeled

data in the target domain. By leveraging labeled data from a

related source domain, this approach diminishes the need for

extensive labeled data specific to the target domain.

Domain adaptation involves transferring knowledge from

one domain to another, often distinct but connected. Con-

sequently, our methodology follows a two-step process:

initially, we pre-train the model on a source dataset closely

aligned with the target domain, and then, we fine-tune it on

the target dataset.

More in specific, the process begins with a labeled dataset,

where themodel is trained to learn patterns and features. After

the pretraining phase, the model is finetuned using the target

dataset. When applying the pre-trained model to a different

domain, such as the target dataset, disparities emerge due

to discrepancies between the two, which is known as the

‘‘domain shift’’ problem. For this reason, it is imperative to

choose a source dataset with similar backgrounds to those

in the target dataset, as backgrounds significantly influence

model learning. The pretraining phase it’s a very important

factor, most of all, in setting the weights of the first part

of the model, the feature extraction part (as presented in

Section III-C). In contrast, object shapes in the source domain

hold less significance, as they represent only a fraction of

the images and can be easily learned by the model. As a

consequence of this, in the source domain, the model gets

used to the dataset and starts localizing and counting the first

examples (also if with different shapes). In this phase it’s

not very important for the accuracy reached but the feature

extraction part, where the model learns how to recognize the

animals from the background. Once the model has reached

several epochs of pretraining or, if set, a threshold of accuracy,

it is finetuned in the target dataset. In this second phase,

the model applies what was learned in the source domain

to the new dataset. So it does not start from scratch but adapts

the knowledge that it has to the new domain, becoming more

expert to localize and count the requested target animal.

Formally, the source domain is denoted by S with

S = {(xsi , y
s
i )}

ns
i=1, where x

s
i denotes input data, ysi denotes

corresponding labels, and ns is the sample count. Similarly,

the target domain is denoted by T with T = {(x ti , y
t
i )}

nt
i=1,

where x ti represents input data, yti represents labels, and nt
is the sample count in the target domain dataset. Following

pretraining on the source domain S, we identify the optimal

model θ ′ (with minimal error) and fine-tune it on the target

domain T to obtain the final model θ∗, as illustrated in Fig.4.

IV. EXPERIMENTS AND RESULTS

In this section, we will conduct experiments in three distinct

areas. First, we will focus on manatees: our objective is

to train and test our model using the Manatee dataset.

Second, we will perform a cross-domain analysis, running

an ablation study and comparing results from two different

source domains. Finally, we will carry out generalization

experiments, where we apply our pretrained model to a

similar dataset, the Whale dataset, without fine-tuning, and

present the inference results.

A. EXPERIMENTS ON MANATEE DATASET

Our approach to the Manatee counting task involves the

method outlined in Section III on the Manatee dataset [33].

In contrast to previous approaches, such as those discussed in

Wang et al. [10], which primarily focused on narrow sections

of the manatee often confined to small bounding boxes in the

middle of its body, our methodology takes a different path.

To ensure accuracy and comprehensiveness, we carefully re-

annotated the entire dataset. This meticulous manual labeling

process resulted in novel and more reliable ground truth

labels, prioritizing the capture of the entire animal. These
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FIGURE 4. Domain adaptation scheme: pretrain the model (CSRNet) on source domain and fine-tune it on target domain.

FIGURE 5. Original image (left) and density map generated using our 2-D kernel function (right).

refined labels then formed the basis for generating our new

density maps, employing the 2-D kernel function described

in Section III-A (an example of a generated density map is

shown in Fig. 5).

In terms of the model selection, we opted for the CSRNET,

as explained in Section III-C, and we selected Mean Squared

Error (MSE) as the loss function and Mean Absolute

Error (MAE) as the evaluation function, as described in

Section III-C1.

Following the data preparation and model selection,

including the choice of model, dataset, loss function, and

evaluation criteria, we initiated the training phase.

The Manatee dataset [33] is made of 784 images in

total, so its quantity remains insufficient to effectively train

a deep model. To address this limitation, we adopted the

cross-domain technique outlined in Section III-D, dividing

the training process into two stages: pretraining and fine-

tuning.

For the pretraining phase, we opted, as source domain,

for the African Wildlife dataset from Kaggle [12], which

showcases various wild animals such as buffalos, elephants,

rhinos, and zebras (Fig. 6). Although these animals pos-

sess distinct shapes compared to manatees, they share

a commonality: they all dwell in natural settings with
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FIGURE 6. Images from the African Wildlife dataset from Kaggle [12].

backgrounds resembling those present in the Manatee

dataset [33].

This is a very important aspect for the domain shift

problem, so the adaptation of the pretrained model on this

domain to the target Manatee Dataset. This issue is managed

with the similar background images in both datasets and

a higher number of training epochs in the target domain,

to adapt it better to it.

This choice is intended to improve the model’s flexibility

and efficacy when fine-tuning the distinct features of manatee

images. Sowe selected 1504 random images from theAfrican

Wildlife dataset, resized them in 1280 × 720, and split them

into 1203 for Training, 150 for Validation, and 151 for Test

set.

During the pretraining stage, the model underwent training

on the African Wildlife dataset [12] for a total of 550 epochs,

achieving a Mean Absolute Error (MAE) of 3.98 on the

validation set. Given the nature of the African Wildlife

dataset, which predominantly features images with sparse

animal populations, this is considered a good outcome.

Typically, crowd-counting models excel with denser image

data; however, our primary interest wasn’t in maximizing

performance on this task. Instead, our focus shifted towards

the results of the fine-tuning stage.

Considering now the Manatee dataset [33] for the

finetuning phase comprises 784 images of manatees captured

from an aerial perspective above the water, and these

images are distributed into Training, Validation, and

Test sets, respectively 80% training and 10% valid and

test.

A significant issue arose from the fact that the Training set

consisted of 627 images, with only 247 (39.39% of the total

train images) featuring fewer than 5 manatees. The mismatch

posed a challenge for the model, limiting its accuracy in

predicting the number of manatees in images containing

only one or a few animals, due to the higher difficulties for

crowd-counting models to count when only a few samples

are present. To address this limitation, we implemented data

augmentation techniques, following the proposed pipeline in

Section III-B, applying random changes in brightness and

contrast (as shown in Fig. 7), utilizing PIL library [11],

to augment the samples with less than 5 manatees present.

As illustrated in Fig. 7, these random alterations not only

augment the dataset but also improve the visibility of

manatees in the images.

We constructed three distinct datasets for our experiment:

the original Manatee dataset [33], theManatee50 adding 50%

of augmented images containing less than 5 animals, and

the Manatee100 with 100% augmented images containing

less than 5 animals. The dataset dimensions are presented

in Table 1 together with the results of the finetuning phase

on each of them after 750 epochs. For better comprehension

and to align our results to the one presented by Wang et al.

[10], we divided the data into three primary groups: images

with a Low number of manatees (less than 5), Medium

manatee density images (between 5 and 20 manatees), and

High manatee density images (more than 20 manatees).

Table 1 highlights the challenges faced by the model

finetuned on the original Manatee dataset, particularly in

accurately identifying instances with few animals, such as in

the case of low manatee counts. Conversely, when trained

on the Manatee100, the model reached the convergence

point faster, after only 327 epochs, but it exhibits a strong

bias towards cases with low manatee counts, achieving high

accuracy due to the abundance of samples (56,52% of the

training set), but neglecting other groups.

Therefore, the most effective alternative appears to be

Manatee50 with only half of the images featuring a few

animals augmented (it has a number of images with less than

5 manatees equal to 49,33% of the training set). This dataset

strikes a balance between the representation of each group,

resulting in a more robust training process. Indeed, the model

trained on this dataset achieves the best overall performance

by focusing on all groups equally and reaching an MAE

of 1,69.

Table 1 illustrates significant and unexpected disparities,

particularly within theMedium andHigh groups, between the

original Manatee dataset and Manatee50. These differences

stem from the implicit instability observed during model

training for crowd-counting tasks. Specifically, in our training

process, we opted to preserve models with the lowest

Mean Absolute Error (MAE) across the Validation set.

Consequently, despite some models achieving even lower

MAE for the Low group, they were not retained because

the overall MAE on the validation set did not surpass

the best achieved. This decision, coupled with the training
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FIGURE 7. Examples of augmented images changing brightness and contrast (on the left the original image and on the right the augmented one).

TABLE 1. The table shows: the dimension of the Training set, the number of Low augmented samples, and results obtained on the Test set in Low (less
than 5 manatees images), Medium (between 5 and 20 manatees images), and High (more than 20 manatees per image) using CSRNet model trained for
750 epochs respectively on original Manatee dataset, 50% (dataset augmented with 50% of low image data on dataset) and 100% (dataset augmented
with 100% of low image data on dataset).

instability, led to results that were not consistently predictable

across various training instances. On the other hand, the best

MAE reached by the Manatee50 shows how balanced it is

between the groups and how much this aspect is important

to reach the best performances. The Mean Absolute Error

reached by the model training on Manatee50 is remarkably

impressive, indicating that our model’s predictions are off

by slightly more than one manatee and a half per image

on average. Indeed, as depicted in the last two rows of

Fig. 8, the predicted density maps closely match the ground

truths.

Moreover, for a comprehensive analysis of our achieved

results, we evaluated our top-performing model (fine-tuned

on Manatee50) on the test set, specifying the predicted

number of manatees for each group. The results, presented in

Table 2, demonstrate consistently low Mean Absolute Error

(MAE) across all groups. HigherMAE values observed in the

high manatee density group are solely attributed to the larger

number of animals in those images.

Examining the alignment between predicted and actual

manatee counts reveals a close correspondence across all

TABLE 2. Manatee counting results with respect to different densities
using the CSRNet model trained on Manatee50. Low, Medium, High
denote different levels of ground-truth manatee density in each image.

groups, affirming the model’s proficiency in predicting the

number of manatees. Despite the imbalanced distribution of

images per group in the test set, introduced by a randomized

Train-Validation-Test split to enhance reliability, balancing

the dataset by adjusting each group to include 19 images does

not alter the results. The model maintains its performance,

yielding a new test set error of 1.69, underscoring the model’s

consistency and reinforcing its status as state-of-the-art in this

task.

In the end, we compared our outcomes with those obtained

by Wang et al. [10]. As illustrated in Table 3, our model

achieved an improved MAE for each group as well as for the

entire test set, achieving a total MAE of 1.68. In contrast,
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FIGURE 8. Comparison of density maps from the test set using the state-of-the-art CSRNet models (dot, lines, and Anisotropic Gaussian), our and the
ground truth generated with the 2-D Gaussian kernel function.

TABLE 3. Experiment comparisons between the proposed method vs. a state-of-the-art manatee counting method published by Wang et al. [10].
Notation: dots: density maps created with dots, lines: density maps created with lines, anisotropy: density maps created with anisotropy Gaussian kernel.

previous state-of-the-art models typically yielded MAE

values of around 3, indicating a substantial improvement

of half the Mean Absolute Error and establishing a new

benchmark for the manatee counting task. This improvement

is also shown in Fig. 8, where is visible the difference

between the predictions made by our CSRNet model and

the preview ones. Our model, not only predicts counts that

closely match the actual number of manatees present but also

generates density maps that closely resemble the shape of the

ground truth. This significant enhancement is attributed to

the developed pipeline and the novel techniques applied in

data processing. Notably, the most significant advancement

introduced is the formulation of the 2-D kernel function,

which facilitates a more comprehensive representation of

the animals by spreading the values across the image. This

allows the model to gain a more accurate understanding of
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FIGURE 9. Comparison of density maps from the test set using our CSRNet and the ground truth generated with the 2-D Gaussian kernel function.
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FIGURE 10. Examples of the Malaria Dataset [36] (top row) and the Africa Wildlife Dataset [12] (bottom row).

TABLE 4. The table shows the results achieved from the CSRNet on the
Validation set after the pretraining phase (500 epochs) on the
corresponding dataset (second column: ‘‘Pretraining MAE’’) and after
the finetuning phase (750 epochs) on Manatee50 (third column: ‘‘MAE on
Manatee50’’).

the content of the bounding box. Additional examples to show

the accuracy of our model are reported in Fig. 9.

B. ABLATION STUDY ON CROSS-DOMAIN

The project faced major difficulties due to its cross-domain

learning. At first, we tried to train the model using a dataset

that included objects that have shapes resembling manatees.

We believed that the object’s shape would significantly

impact the model’s capacity to generalize well. However,

after carrying out the experiments, we realized that this

method did not yield the expected results. The key factor in

adjusting the model weights correctly during the fine-tuning

stage on the target domain was found to be the resemblance

in environment and background between the source and

target domains. This recognition changed our attention from

the form of the items to the situation in which they were

seen, emphasizing the significance of training the model on

datasets that closely resembled the environmental conditions

of the desired domain. This change was necessary to enhance

performance during the fine-tuning process and ultimately

enhance the accuracy and reliability of the model in spotting

manatees in their natural environment.

Two different datasets, the Malaria Dataset [36] and the

African Wildlife Dataset [12], are selected for validation.

As shown in Fig. 10, these datasets contain very different

images. The Malaria Dataset includes images of cells, which

can partially resemble manatees in shape since they are round

and sparse. However, the background is white, making it

quite different from the natural environment in the Manatee

Dataset. In contrast, the African Wildlife Dataset features

animals with shapes very different from manatees, but the

environment is quite similar, sharing similar colors and being

set in the wild.

The training phase was done by pretraining the CSRNet

model on each one of the two datasets. As shown in Table 4,

it reached an MAE (Mean Absolute Error) on the Validation

set of 5.02 in the Malaria Dataset and 3.98 in the African

WildLife after 500 epochs. The large difference in the Mean

Absolute Error is due to the fact that in the Malaria dataset,

there are a lot more cells to identify and predict rather than

animals in the African one, for this reason, theMAE is higher.

After the first phase, we tried to finetune the pre-trained

model in the target Dataset, the Augmented Manatee50 one.

After finetuning for 750 epochs, the model pre-trained on

the Malaria dataset reached a Mean Absolute Error on the

Validation set of 2.89, and the one pre-trained on African

WildLife of 1.40, as depicted in Table 4. This huge difference

shows that the hypothesis done before was correct, that is

to say, that the shape of the object is less important or

in most cases even irrelevant compared to the importance

of the background. So to have a good source domain to

apply cross-domain learning it’s absolutely mandatory that

the background is the same or very similar compared to the

one present in the source domain. For this reason for our main

experiment, we chose to use the African WildLife Dataset.

C. GENERALIZATION STUDY

To fully evaluate the strength of the proposed pipeline,

we tested our pre-trained model, trained on the Manatee
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FIGURE 11. Prediction of density maps on the test set of Whale Dataset [37] using our pretrained CSRNet and the ground truth generated with the 2-D
Gaussian kernel function (only for visual purposes).

dataset, on a similar domain: theWhale dataset [37]. This test

aimed to evaluate the generalization of the model’s acquired

knowledge to a similar environment. The Whale dataset was

chosen due to the similar top-down shape of manatees and

whales, providing a comparable visual perspective. However,

some images in the Whale dataset are significantly different

in backgrounds, as they were taken in the open sea, far from

the coast and most of the samples have only a few animals in

the scene, imposing challenges to our model.

Due to the limited number of samples in theWhale dataset,

we used its original training set to create the test set, which

comprised 77 images. The images were reshaped to match

the dimensions of those in the pre-trained model. After

running the inference, the model achieved a Mean Absolute

Error (MAE) of 2.06, demonstrating a good capability to

adapt to new tasks. The model performed well on images

with backgrounds similar to those in the Manatee dataset

but struggled with images that had significantly different

backgrounds. Although a model trained specifically on the

Whale dataset would likely achieve better performance, our

pre-trainedmodel still can serve as a strong baseline, showing

good generalization.

The results in Fig. 11 show that the model performs very

well on images similar to those in the Manatee dataset,

particularly in the first two rows. Specifically, the second

image, which has the exact same background as the original

target dataset, is predicted almost perfectly. On the other

hand, images with significantly different backgrounds are
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predicted less accurately. For example, in the last two

rows, the model predicts nearly 12 animals where there

are only two. The background plays a crucial role and can

easily mislead the model, resulting in incorrect predictions.

Additionally, in Fig. 11, we have included the density map of

the original image to provide a clearer visual understanding.

V. DISCUSSION

The current state-of-the-art models for this task, presented by

Wang et al. [10], are trained on theManatee Dataset, focusing

solely on localizing the center of the animal. These models

predict density maps generated using dot, line, or anisotropic

Gaussian notations. Each notation creates a codification

respectively with a dot, line, or slightly thicker line at the

center of the bounding box to identify the animal. While

Wang et al. achieved good overall results, encoding only

the center of the bounding boxes led to a significant loss of

information. Another limitation is introduced by the dataset

in fact the Manatee Dataset is made by a limited amount of

images, which doesn’t allow the model to generalize well

with new samples.

In this work, we proposed a pipeline to mitigate this

loss of information and address the limited data available.

Specifically, we introduced a new kernel function to encode

the entire bounding boxes without losing information,

ensuring the model focuses on the whole body of the

animal. Additionally, we re-labeled the dataset to create

more precise bounding boxes that encompass the entire

animal. Furthermore, to overcome the limited amount of

data, we implemented a cross-domain phase and applied

data augmentation techniques to train a more robust

model.

Ultimately, when comparing our proposed model with

previous state-of-the-art models, we achieved nearly half the

Mean Absolute Error on the test set, showing improvements

across all images, whether containing many or few samples.

These results demonstrate that our pipeline not only better

encodes all information during density map creation but also

effectively generalizes knowledge from the source domain to

the Manatee Dataset. Consequently, we consider our model

to be the new state-of-the-art for the manatee counting

task.

VI. CONCLUSION

This paper introduces an innovative pipeline designed to

enhance the performance of crowd-counting models, partic-

ularly in the task of counting manatees. The pipeline consists

of three key steps: generating density maps using a novel 2-D

kernel function, data augmentation for dataset balancing, and

cross-domain techniques to improve accuracy. More density

map predictions are available at the link on the GitHub

platform https://github.com/Matteozara/Manatee_count.git

together with the code to test and train the model.

While these steps have demonstrated promising results,

particularly in accurately predicting crowded images, chal-

lenges persist, notably in accurately counting images with

fewer and larger objects. Future efforts should focus on

generating images with fewer animals to better train the

model, possibly through fine-tuning Generative Adversarial

Networks (GANs) or Diffusion Models.

Additionally, there is a need to reduce the model’s

dimensions to enhance its speed and efficiency, thus facili-

tating real-time applications. This optimization would make

the model more accessible and user-friendly for scientists

working in the field of manatee or other animal conservation.
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