
SoftwareX 25 (2024) 101613

Available online 23 December 2023
2352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PyPartMC: A Pythonic interface to a particle-resolved, Monte Carlo aerosol
simulation framework
Zachary D’Aquino a, Sylwester Arabas b, Jeffrey H. Curtis a, Akshunna Vaishnav c,
Nicole Riemer a,ω, Matthew West d
a Department of Atmospheric Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA
b Faculty of Physics and Applied Computer Science, AGH University of Krakow, Kraków, Poland
c Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA
d Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, USA

A R T I C L E I N F O

Dataset link: https://doi.org/10.5281/zenodo.7
662635

Keywords:
Python-to-Fortran interface
Particle-resolved aerosol simulation
Atmospheric modeling

A B S T R A C T

PyPartMC is a Pythonic interface to PartMC, a stochastic, particle-resolved aerosol model implemented
in Fortran. Both PyPartMC and PartMC are free, libre, and open-source. PyPartMC reduces the number of steps
and mitigates the effort necessary to install and utilize the resources of PartMC. Without PyPartMC, setting up
PartMC requires: working with UNIX shell, providing Fortran and C libraries, and performing standard Fortran
and C source code configuration, compilation and linking. This can be challenging for those less experienced
with computational research or those intending to use PartMC in environments where provision of UNIX
tools is less straightforward (e.g., on Windows). PyPartMC offers a single-step installation/upgrade process
of PartMC and all dependencies through the pip Python package manager on Linux, macOS, and Windows.
This allows streamlined access to the unmodified and versioned Fortran internals of the PartMC codebase from
both Python and other interoperable environments (e.g., Julia through PyCall). In particular, PyPartMC can be
set up to handle the time-stepping loop for PartMC simulations making it possible to couple PartMC with other
Python-interoperable packages, for either online diagnostics or additional simulation logic. Altogether, users
of PyPartMC can setup, run, process and visualize output of PartMC simulations using a single general-purpose
programming language.

Code metadata

Current code version 1.0.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00552
Code Ocean compute capsule None
Legal Code License GNU GPL v3.0
Code versioning system used git
Software code languages, tools, and services used C++, Fortran, C, Python, CMake, Jupyter
Compilation requirements, operating environments & dependencies Dependencies: SuiteSparse, SUNDIALS, CAMP, PartMC, pybind11-JSON, pybind11,

JSON-Fortran, nlohmann/json, netCDF
OS: Linux, macOS, Windows

Link to developer documentation/manual https://open-atmos.github.io/PyPartMC
Support email for questions please use GitHub issue tracker

1. Motivation and significance

Open-source software fosters collaboration and accountability
within the scientific community through joint development and mainte-
nance ventures that accelerate scientific discovery and progress [1–4].

ω Corresponding author.
E-mail address: nriemer@illinois.edu (Nicole Riemer).

The interoperability and accessibility of proven computational tools
produced through open-source projects can benefit from the develop-
ment of bindings to popular high-level, general-purpose programming
languages, such as Python. This helps in providing researchers with

https://doi.org/10.1016/j.softx.2023.101613
Received 16 August 2023; Received in revised form 22 November 2023; Accepted 7 December 2023

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://doi.org/10.5281/zenodo.7662635
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00552
https://open-atmos.github.io/PyPartMC
mailto:nriemer@illinois.edu
https://doi.org/10.1016/j.softx.2023.101613
https://doi.org/10.1016/j.softx.2023.101613
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101613&domain=pdf
http://creativecommons.org/licenses/by/4.0/


SoftwareX 25 (2024) 101613

2

Zachary D’Aquino et al.

a community of contributors and users to support individual research
pursuits. In this paper, we focus on the value of open-source software
and the provision of a robust Python interface to an established Fortran
codebase. The PyPartMC project documented in this paper has specific
applicability in the field of aerosol science; however, the outlined
design applies in general to the development of Pythonic interfaces
to existing open-source models implemented in Fortran.

PyPartMC is a free, libre, and open-source Pythonic interface to
the Fortran-implemented stochastic, particle-resolved aerosol model
PartMC [5], currently at version 2.7.0. PartMC simulates the micro-
physical processes that aerosol particles undergo during their lifetimes
in the atmosphere. These processes include new particle formation,
emission from primary sources, Brownian diffusion, aqueous chemical
processing, and removal by dry deposition and nucleation scavenging.
PartMC categorically tracks the chemical composition of each compu-
tational particle, allowing the user to comprehensively simulate the
mixing state and other physiochemical properties of an aerosol popula-
tion. PartMC typically runs in conjunction with a solver that simulates
the dynamic partitioning of semi-volatile organic and inorganic gases.

PartMC is a powerful open-source tool for simulating the dynamics
of aerosol populations; however, running a PartMC simulation requires
knowledge of shell and the use of a netCDF-Fortran library, which can
present a significant hurdle for those with less experience in compu-
tation or those intending to use PartMC on platforms less compliant
with the standard UNIX development environment. Current installa-
tion (or upgrade) of PartMC requires working command of Fortran
compilers, CMake, netCDF, and awareness of the exact directories for
a number of libraries on the user’s machine. This process can be tedious
and prone to errors due to the number of steps involved.

A primary motivating factor for developing PyPartMC is to remove
limitations to installation and setup of PartMC dependent on the indi-
vidual user’s computational background. PyPartMC offers streamlined
use of PartMC by providing a single-step installation process and flex-
ibility in selecting the libraries and frameworks, for example, Jupyter
and Dask [6] from the Python ecosystem, each individual user wishes
to apply cooperatively during independent execution of simulations
and routines based on PartMC. Prior to the development of PyPartMC,
auxiliary programs written in Fortran were necessary to process the
output from a PartMC simulation. In addition to providing a simpler
installation experience, PyPartMC saves users of PartMC from having
to code anything in Fortran. The interface capitalizes on many Python
functionalities, such as garbage collection and native data types. Over-
all, one of the aims of the project is to enable researchers using PartMC
to perform all tasks pertaining to setting up, running, post-processing
and analyzing simulations using a single programming language.

PyPartMC is available as source and pre-compiled packages
on pypi.org and can be installed at the command line via pip

install PyPartMC. In case pre-compiled binaries for a given hard-
ware or software configuration are unavailable, the pip install

command orchestrates compilation of the package. The continuous
integration (CI) setup maintained on the GitHub platform verifies
a consistent installation experience across Linux, macOS and Windows
platforms and is used for building pre-compiled packages. For Linux
builds, standarized ‘manylinux‘ environments are used to ensure com-
patibility with a wide range of systems. The source package ships
with all the dependencies included (maintained using git submodules
what streamlines updates and ensures version traceability). The binary
packages have all dependencies statically linked, further minimizing
installation environment constraints. The three-language (Fortran, C,
C++) build automation is handled through CMake and wired to the
Python package installation, making the process invisible to the user.
Test automation is achieved with pytest [7].

Python’s stature as a high-level, truly general-purpose programming
language with its outstanding readability and ease of learning appeals
to a much larger group of programmers that exceeds the size of the
more specialized Fortran community. Exposing the PartMC codebase

to the Python ecosystem enables individuals to take advantage of the
expansive community of Python developers and users that provide
support through online documentation and forums. These resources are
not as prolific in the smaller Fortran community. In general, a lower-
level language, like Fortran, requires more lines of code to accomplish
the same task in a higher-level language. A programmer’s productivity
is constrained by the number of lines of code needed to accomplish
a given task, and it has been shown that programmers write roughly the
same number of line of code per unit time independent of the language
used [8]. Consequently, tasks can be accomplished in shorter time
with less code using higher-level programming languages, like Python.
PyPartMC assists with comprehensibility and allows users to build code
to their personal specifications at the rate of a high-level language with
the performance boost of a low-level language.

All dependencies, such as SuiteSparse [9], SUNDIALS [10], Chem-
istry Across Multiple Phases (CAMP) [11], netCDF, and nlohmann/json
[12], are free, open-source, and maintained with versioned releases,
constituting a practical tool set for reproducible computational re-
search. Simplifying installation and setup of PartMC through a Pythonic
interface allows PyPartMC to be used to support the development of ro-
bust aerosol model benchmarking architectures. The ability to leverage
resources from the PartMC simulation suite while taking advantage
of existing libraries and frameworks that are ubiquitous in the scientific
community provides the necessary infrastructure for PyPartMC to par-
ticipate in the movement to improve STEM education through active
learning applications [13]. One of the technologies that facilitates
active learning by streamlining dissemination of interactive computa-
tional worksheets is Jupyter notebooks, which PyPartMC provides for
usage examples (see Section 4 below). Noteworthy, the employment
of Jupyter notebooks for active learning applications has already been
demonstrated in the very field of aerosol science [14].

2. Software description

2.1. Particle-resolved modeling with PartMC

PartMC (Particle Monte Carlo) is a stochastic, particle-resolved
aerosol box model, which resolves the composition of many individ-
ual aerosol particles within a well-mixed volume of air [5,15–17].
The documentation for PartMC can be found at http://lagrange.mechse.
illinois.edu/partmc/partmc-2.6.1/doc/html. Aerosol processes such as
coagulation, nucleation, emission, and deposition are implemented
in a Monte Carlo fashion, i.e., by sampling the population with ap-
propriate probabilities. Our particle-resolved approach uses a large
number of discrete computational particles (104 to 106) to represent
the particle population of interest. Each particle is represented by
a ‘‘composition vector’’, which stores the mass of each constituent
species within each particle and evolves over the course of a simulation
according to various chemical or physical processes. The ‘‘weighted
flow algorithm’’ [15,17] improves the model efficiency and reduces
ensemble variance by assigning each computational particle a number
concentration that this particle corresponds to. In contrast to other
particle-based methods used for example in cloud physics, PartMC does
not track the position of the computational particle in physical space.
To account for multi-phase chemical processes, PartMC needs to be
coupled to a chemistry code, e.g., the Model for Simulating Aerosol
Interactions and Chemistry (MOSAIC) [18] or CAMP [11]. PartMC has
been used in many applications as a box model, but has also been
coupled to the Weather Research and Forecast model (WRF) to simulate
aerosol processes and transport in a 3D model domain, with WRF as the
host model supplying the flow field. Since the particles’ locations in 3D
space are not stored, we use a stochastic sampling approach to move
particles between grid boxes [19].

http://pypi.org
http://lagrange.mechse.illinois.edu/partmc/partmc-2.6.1/doc/html
http://lagrange.mechse.illinois.edu/partmc/partmc-2.6.1/doc/html
http://lagrange.mechse.illinois.edu/partmc/partmc-2.6.1/doc/html


SoftwareX 25 (2024) 101613

3

Zachary D’Aquino et al.

Fig. 1. Schematic of architecture of PyPartMC depicting the coupling between Fortran, C and C++ internals and the user code written in Python or Julia.

2.2. Software architecture

PyPartMC is written in Fortran, C, and C++. Fortran wrappers of the
existing PartMC Fortran code are defined in the PyPartMC codebase
using the standard Fortran ISO_C_BINDING functionalities. These are
used in concert with a thin C-implemented wrapping layer to define
C++ bindings to PartMC Fortran datatypes and routines. The pybind11
framework is then used to build the Python API from these C++
bindings (see Fig. 1 for an overview of the design). PartMC has been
implemented in an object-oriented manner, leveraging Fortran derived
types which are extensively used throughout the modular PartMC
codebase. These derived types are exposed in the PyPartMC bindings as
Python classes. Unlike the case of black-box Python bindings to Fortran
code [e.g., as in 20], PyPartMC reveals the underlying internals of the
Fortran modules to Python users.

PyPartMC is a Pythonic interface that will be natural to use for those
familiar with the Python programming language but retains PartMC

jargon. Python garbage collection deallocates Fortran objects instan-
tiated through PyPartMC, ensuring user code is succinct and memory-
safe. Instantiation and deserialization of exposed PartMC structures are
handled using JSON-like data structures which provides an authentic
Pythonic experience. Users leverage Python’s built-in data types, syn-
tax, and comprehension to construct and store simulation parameters
which eliminates the need for any input text files used in typical PartMC
simulation executions.

PyPartMC has continuous integration workflows for Linux, macOS,
and Windows handled through GitHub Actions which verifies that any
new feature added to the project is checked through automated testing
and compiles successfully on all targeted platforms. Unit tests account
for a significant portion of the codebase and certify that developments
do not cause regressions by changing the behavior of previously work-
ing code. Test execution is orchestrated by pytest, and the PyPartMC
unit test suite assures information and execution pass as expected
between the wrapping code and PartMC internals. PartMC contains



SoftwareX 25 (2024) 101613

4

Zachary D’Aquino et al.

its own testing suite that checks the underlying physical processes and
their representations within the model.

Docstring-based PyPartMC API documentation is published on the
web at https://open-atmos.github.io/PyPartMC upon each pull request
merge. New versions of PyPartMC are easily disseminated thanks to au-
tomated uploads to pypi.org triggered by GitHub releases.

2.3. Software functionality

This software architecture preserves the performance advantages
of a Fortran-implemented codebase and allows PyPartMC to simul-
taneously serve as a C++ API to the PartMC Fortran internals. This
structure also circumvents the need for any temporary files and does
not require any additional routines to be added to the PartMC codebase
for interfacing.

The Python packaging infrastructure expedites dissemination of both
source and binary packages ensuring code version traceability for Py-
PartMC bindings, PartMC itself, and all other dependencies. Notewor-
thy, this – together with the employed static linkage of all dependencies
– effectively circumvents the notorious difficulties in disseminating
binary version of multi-dependency Fortran software rooted in the lack
of binary compatibility between compilers, and even between versions
of the same Fortran compiler [21].

The design also capitalizes on Python’s ability to integrate with
other languages, so PyPartMC can be called from alternative envi-
ronments. Similarly, PyPartMC can be used to couple PartMC with
simulation or diagnostics components implemented in other software
and hardware (e.g., GPU) solutions interoperable with Python. To this
end, PyPartMC provides the option to perform time-stepping within
PartMC simulations in Python, and this is one of the rationales for
designing the package as an API to PartMC internals rather than merely
wrapping PartMC solver control procedures. One of these environments
includes the Julia programming language which has been adopted
by many in the field of computational research, including aerosol
scientists [14]. An example employing PyPartMC from Julia (using
PyCall) is maintained in the PyPartMC README file on GitHub and
shown in Section 3 below (also see diagram in Fig. 1).

The design choice of building an API for PartMC rather than us-
ing shell wrappers eliminates overhead and allows for more freedom
in external coupling logic, providing the added benefit of supporting
adoption of new features added to PartMC with compiler static analysis
of the wrapping code. In cases where flags are read exclusively from
PartMC input text files, no new API elements are needed. PyPartMC
can simply be compiled against another version of PartMC to allow
access to newly added flags in the PartMC codebase; however, this may
not be possible if the interface were constructed in another manner.
Additionally, prior installation of PartMC is not required, static link-
age of PartMC and all dependencies ensures that the versions of the
wrapper, library and dependencies match.

PyPartMC currently offers access to a subset of PartMC functions
(approximately 20%). While the process of giving access to a larger
subset is still ongoing, not all functions will need to be given ac-
cess to. The choice of making functions available has been largely
user-driven; starting from the most fundamental functions (returning
particle masses), we added more recently functions that are related
to specific post-processing functionalities (such as computing critical
supersaturation and aerosol mixing state parameters).

Finally, regarding the performance of the implemented solution, it is
worth highlighting that the overhead of starting the Python interpreter,
loading the package and even (optionally) performing time-stepping
loop in Python is only noticeable in simulations with impractically
small state-vector sizes. Testing setups featuring 102 and 104 particles,
this constant overhead was measured to amount to roughly 10% and
1% of the process CPU time, respectively.

3. Basic examples in Python and Julia

Fig. 2 depicts how the identical task of randomly sampling particles
from an aerosol size distribution in PartMC can be done in three
different programming languages. Listing (a) presents Python code
employing PyPartMC. Listing (b) is an analogous code written in Julia
where PyPartMC is accessed using PyCall to fully interoperate with
Python. Listings (c-f) depict how this task is achieved using Fortran
native to PartMC. In this case, the parameters of the particle size
distribution are provided in external text files.

4. Illustrative examples (Jupyter notebooks)

PyPartMC ships with a collection of Jupyter notebook examples
with Python kernel displaying how PyPartMC can be leveraged to ac-
cess PartMC resources in a Python environment. In the README of the
PyPartMC repository, users can navigate to a collection of badges
corresponding to each example that will render the notebook with
nbviewer, execute in the cloud via Binder or Google Colab [22], or cre-
ate a standalone web application with Voilà. These example notebooks
work out of the box and constitute experiential and manageable tools
users can employ to explore the utility of the API and immediately
begin building on the provided code. The notebooks illustrate how
results obtained through PyPartMC based on PartMC simulations can
be contained in a web-based notebook and easily distributed with
minimal software and hardware dependencies. Example 1 showcases
the comparison of two different software packages that both calcu-
late the water uptake of aerosol particles. Example 2 illustrates the
simulation of a typical PartMC scenario and post- processing of the
raw data to obtain aggregate quantities that are common in aerosol
science. Example 3 illustrates the simulation of PartMC to supply
particle populations to an external Python package to compute aerosol
optical properties.

Example 1: Comparison with PySDM

This example compares PyPartMC directly to PySDM [23], another
package for simulating particle dynamics. Computational particles are
instantiated from a dry aerosol size distribution prescribed by inter-
active widget sliders. PyPartMC bindings pass information regarding
the environmental state, such as relative humidity and temperature,
size distribution parameters, and the hygroscopic parameter, kappa,
to PartMC internals to evaluate equilibrium state under the given
conditions. Shown in Fig. 3(a), the initial dry distribution and the
updated wet distribution predicted by PartMC are plotted alongside the
result from PySDM. The two result curves from PartMC and PySDM
look visually indistinguishable, however small numerical differences
exist in calculating droplet size after the equilibriation with ambient
relative humidity as shown in Fig. 3(b). This is to be expected given
that two different code bases were used. The use of a Jupyter note-
book with Python kernel allows figures to be easily produced and
downloaded using matplotlib [24]. This particular example showcases
the utility of employing PyPartMC to foster purposeful comparisons
between different modeling frameworks, facilitated by both packages
being exposed to Python and ready-to-use in a web-based notebook
with interactive output. Additionally, PyPartMC has been incorporated
into the PySDM v2 test suite to run automated checks against PartMC
for this same equilibrium example [25].

Example 2: Urban plume simulation

In another example, we implemented a modified scenario based
on [5] which considered an idealized urban plume. The scenario tracks
the evolution of an air parcel which is advected over an urban area.
During the advection process, the parcel experiences emissions of gases

https://open-atmos.github.io/PyPartMC
http://pypi.org


SoftwareX 25 (2024) 101613

5

Zachary D’Aquino et al.

Fig. 2. Code listings depicting basic usage of PartMC data structures and algorithms in: (a) Python through PyPartMC; (b) Julia through PyCall and PyPartMC; (c–f) Fortran.

and aerosols for 12 h. After 12 h of simulation, the emissions are
switched off and the parcel continues to evolve. The scenario pre-
sented here consists of gas and aerosol emissions, gas and aerosol
dilution with the background, and particle coagulation. This differs
from the case presented in [5] as gas phase chemistry, gas-aerosol
partitioning and aerosol thermodynamics were not included. Normally,
these components are incorporated by coupling the PartMC model with
MOSAIC [18]. However, since MOSAIC code is only available upon
request and not available as open source, we do not include it here.

In Fig. 4, we show the time evolution of the total aerosol number
and mass concentration. This figure is constructed by calling PyPartMC
functions that sum up the number concentrations and the total mass
concentration of each particle.

Fig. 5(a) shows the evolution of the initial aerosol size distribution
after 6, 12 and 24 h. This figure is constructed by calling functions
to compute particle dry diameters and acquire arrays of number con-
centrations associated with each computational particle. With these two
variables, a 1D histogram function is used to construct particle size
distributions. Fig. 5(b) shows the two-dimensional distribution of black
carbon mass fraction and particle dry diameter after 24 h of simulation
time. Here the PyPartMC API is used to compute arrays of particle
diameters and also acquire black carbon mass, total dry mass and
number concentration of each computational particle. To analyze the
data, a 2D histogram is created using arrays of dry diameters and black
carbon mass fraction with each computational particle weighted by its
respective number concentration.



SoftwareX 25 (2024) 101613

6

Zachary D’Aquino et al.

Fig. 3. (a) Initial dry size distribution (light blue) and distributions after water uptake from PyPartMC and PySDM (orange and black, respectively) evaluated at a temperature
of 295 Kelvin, relative humidity of 82%, and hygroscopicity parameter kappa of 1.1. Note that the solutions from PyPartMC and PySDM are almost identical, and the orange and
black curve are on top of each other. (b) Relative difference in wet diameter from PyPartMC and PySDM as a function of dry diameter. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Evolution of total number concentration and total mass concentration.

Example 3: Optical properties calculation using an external Python package

As a final example, we implemented a particle simulation where
we incorporated calls to an external library (PyMieScatt) that com-
putes the optical properties of particle scattering and absorption [26].
PyPartMC evolves the aerosol population and then computes the per-
particle core diameters and total diameters. Here Python controls the
timestepping using a ‘‘time block’’, which passes to Fortran a time
interval consisting of many time steps to simulate. For this example,
we chose a time block of 3600 s and an internal model time step
of 60 s. Upon completion of each time block, a function to compute
single-particle optics is called by passing the AeroState type, which is
a collection of AeroParticles. Inside this function, arrays of particle core
diameter and particle total diameter are constructed, and the entire
list of particles is iterated over to compute the scattering and absorp-
tion efficiency of each particle. Additionally, the function computes
bulk optical coefficients of scattering and absorption by computing
each particle’s cross sectional area multiplied by optical efficiencies
and weighted by each computational particle’s number concentration.
Overall, the involved arrays can be quite large, since they have the
dimension of 𝜔particles ε 𝜔species (on the order of 10,000 ε 20), and
having an API interface facilitates the analysis since it avoids exporting
to files using the wide range of data formats supported by Python li-
braries (including JSON, netCDF). Fig. 6 shows the results of computing
absorption efficiencies of all particles in the population at a given time.

This example shows how PyPartMC makes available a large quantity
of data in the Python environment that can be easily passed to other
Python libraries. Possibilities of external libraries include other optical
models as well as gas/aerosol chemistry and machine learning codes,
all of which may potentially feedback to the PyPartMC simulation
as applicable.

5. Impact

Removing limitations to and streamlining the use of PartMC with
PyPartMC will facilitate the dissemination of computational research re-
sults through independent execution of PartMC simulations, which
could prove advantageous during the peer review process. Additionally,
the ability to easily package examples, simple simulations, and results
in a web-based notebook allows PyPartMC to support the efforts
of many members of the scientific community, including researchers,
instructors, and students, with nominal software and hardware require-
ments.

Researchers familiar with Python can take advantage of the PartMC
simulation suite through the PyPartMC interface to tackle their own
unique research questions and interests without ever needing to know
about Fortran’s involvement, while still gaining access to PartMC inter-
nals (Fortran derived types exposed as Python classes). This distinction
makes the utility of the PartMC codebase more accessible and usable
to those outside of the scientific modeling enclave.

Python interfacing provides the added benefit of full access to
NumPy [27]. NumPy’s position as the foundational array programming
library for Python has supported research endeavors in numerous fields,
and its memory model makes passing and manipulating arrays between
Python, C, and Fortran straightforward [28]. It also facilitates the
integration of PartMC with Python-based machine learning platforms
such as PyTorch [29] as well as with other programming languages
through prominent Python-bridging tools (e.g., PyCall for the Julia
language, see Fig. 2).

More frequent comparisons between experiments, measurements,
and simulations to include PyPartMC guide further development and
collaborative improvements. Visible development contributes to trans-
parency in research and enables easy tracking of model performance
over time. The open-source nature of PartMC in conjunction with
PyPartMC’s flexibility in external coupling empowers users to modify
the code to suit their own unique research goals and tackle complex
scientific questions with any number of interoperable software libraries
and frameworks at their disposal.



SoftwareX 25 (2024) 101613

7

Zachary D’Aquino et al.

Fig. 5. (a) Number distributions 𝜀(𝜗) for the simulation with coagulation after 0, 6, 12 and 24 h. (b) Two-dimensional number distribution of black carbon dry mass fraction and
particle dry diameter after 24 h of simulation.

Fig. 6. Absorption efficiency of individual particles as a function particle diameter.
Each point represents an individual particle.

6. Conclusions

Open-source scientific projects strive to make research code more
accessible to the wider scientific community by mitigating the steps and
effort needed to apply these resources while simultaneously providing
the infrastructure necessary to couple with existing tools. Increasing
accessibility and usability of scientific software introduces more di-
versity to the community as researchers and students from various
backgrounds and institutions can implement and advance the same
project.

In this paper, we highlight the role of a Pythonic interface in making
an existing open-source aerosol model more accessible and usable
to those with less computational experience. Installation (or upgrade)
of PyPartMC and all dependencies is reduced to a single command, per-
mitting access to the functionalities of the PartMC codebase on Linux,
macOS, and Windows. Example Jupyter notebooks exhibit how Py-
PartMC may be used in a Python environment to assist in executing
meaningful comparisons between PartMC and other modeling frame-
works, paving the way for more robust model benchmarking exer-
cises. This capability also demonstrates the ease of replicating and
disseminating research results with PyPartMC.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

There is no associated dataset. Figures presented in the paper can
be independently recreated using code packaged with PyPartMC.
PyPartMC and all its dependencies are free/libre and open-source
software. Each release of the package is persistently archived at Zenodo:
https://doi.org/10.5281/zenodo.7662635.

Acknowledgments

This study was supported by the U.S. Department of Energy’s At-
mospheric System Research, an Office of Science Biological and En-
vironmental Research program, under grants DE-SC0021034 and DE-
SC0022130, and by the National Science Foundation, United States
under grant NSF-AGS 19-41110. SA acknowledges support from the
Polish National Science Centre (grant no. 2020/39/D/ST10/01220).

References

[1] Heistermann M, Collis S, Dixon M, Giangrande S, Helmus J, Kelley B, et al.
The emergence of open-source software for the weather radar community. Bull
Am Meteorol Soc 2015;96(1):117–28. http://dx.doi.org/10.1175/BAMS-D-13-
00240.1.

[2] Bangerth W, Heister T. What makes computational open source software libraries
successful? Comput Sci Discov 2013;6(1):015010. http://dx.doi.org/10.1088/
1749-4699/6/1/015010.

[3] Piva E, Rentocchini F, Rossi-Lamastra C. Is open source software about
innovation? Collaborations with the open source community and innova-
tion performance of software entrepreneurial ventures. J Small Bus Manag
2012;50(2):340–64. http://dx.doi.org/10.1111/j.1540-627X.2012.00356.x.

[4] Kogut B, Metiu A. Open-source software development and distributed innovation.
Oxford Rev Econ Policy 2001;17(2):248–64. http://dx.doi.org/10.1093/oxrep/
17.2.248.

[5] Riemer N, West M, Zaveri RA, Easter RC. Simulating the evolution of soot mixing
state with a particle-resolved aerosol model. J Geophys Res: Atmos 114(D9).
http://dx.doi.org/10.1029/2008JD011073.

[6] Rocklin M, et al. Dask: Parallel computation with blocked algorithms
and task scheduling. In: Proceedings of the 14th Python in science
conference, vol. 130. SciPy Austin, TX; 2015, p. 136, URL https:
//web.archive.org/web/20190429074549id_/http://conference.scipy.org/
proceedings/scipy2015/pdfs/matthew_rocklin.pdf.

[7] Krekel H, et al. pytest (2023, version 7.4.0), URL https://github.com/pytest-
dev/pytest.

https://doi.org/10.5281/zenodo.7662635
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1175/BAMS-D-13-00240.1
http://dx.doi.org/10.1088/1749-4699/6/1/015010
http://dx.doi.org/10.1088/1749-4699/6/1/015010
http://dx.doi.org/10.1088/1749-4699/6/1/015010
http://dx.doi.org/10.1111/j.1540-627X.2012.00356.x
http://dx.doi.org/10.1093/oxrep/17.2.248
http://dx.doi.org/10.1093/oxrep/17.2.248
http://dx.doi.org/10.1093/oxrep/17.2.248
http://dx.doi.org/10.1029/2008JD011073
https://web.archive.org/web/20190429074549id_/http://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://web.archive.org/web/20190429074549id_/http://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://web.archive.org/web/20190429074549id_/http://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://web.archive.org/web/20190429074549id_/http://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://web.archive.org/web/20190429074549id_/http://conference.scipy.org/proceedings/scipy2015/pdfs/matthew_rocklin.pdf
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest
https://github.com/pytest-dev/pytest


SoftwareX 25 (2024) 101613

8

Zachary D’Aquino et al.

[8] Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, et al.
Best practices for scientific computing. PLOS Biol. 2014;12(1):e1001745. http:
//dx.doi.org/10.1371/journal.pbio.1001745.

[9] Davis TA. Algorithm 1000: suitesparse:graphblas: graph algorithms in the lan-
guage of sparse linear algebra. ACM Trans. Math. Softw. 2019;45(4). http:
//dx.doi.org/10.1145/3322125.

[10] Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al.
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers. ACM
Trans Math Software 2005;31(3):363–96. http://dx.doi.org/10.1145/1089014.
1089020.

[11] Dawson ML, Guzman C, Curtis JH, Acosta M, Zhu S, Dabdub D, et al. Chemistry
across multiple phases (CAMP) version 1.0: an integrated multiphase chemistry
model. Geosci Model Dev 2022;15(9):3663–89. http://dx.doi.org/10.5194/gmd-
15-3663-2022.

[12] Lohmann N. JSON for Modern C++ (2022, version 3.11.2). URL https://github.
com/nlohmann.

[13] Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H, et
al. Active learning increases student performance in science, engineering, and
mathematics. Proc Natl Acad Sci USA 2014;111(23):8410–5. http://dx.doi.org/
10.1073/pnas.1319030111.

[14] Petters M. Interactive worksheets for teaching atmospheric aerosols and cloud
physics. Bull Am Meteorol Soc 2021;102(3):E672–80. http://dx.doi.org/10.1175/
BAMS-D-20-0072.2.

[15] DeVille REL, Riemer N, West M. Weighted flow algorithms (WFA) for stochastic
particle coagulation. J Comput Phys 2011;230(23):8427–51. http://dx.doi.org/
10.1016/j.jcp.2011.07.027.

[16] Curtis J, Michelotti M, Riemer N, Heath M, West M. Accelerated simulation
of stochastic particle removal processes in particle-resolved aerosol models. J
Comput Phys 2016;322:21–32. http://dx.doi.org/10.1016/j.jcp.2016.06.029.

[17] DeVille L, Riemer N, West M. Convergence of a generalized weighted flow
algorithm for stochastic particle coagulation. Comput Dyn 2019;1–18. http:
//dx.doi.org/10.3934/jcd.2019003.

[18] Zaveri RA, Easter RC, Fast JD, Peters LK. Model for simulating aerosol in-
teractions and chemistry (MOSAIC). J Geophys Res: Atmos 113(D13). http:
//dx.doi.org/10.1029/2007JD008782.

[19] Curtis JH, Riemer N, West M. A single-column particle-resolved model for
simulating the vertical distribution of aerosol mixing state: WRF-PartMC-
MOSAIC-SCM v1.0. Geosci Model Dev 2017;10:4057. http://dx.doi.org/10.5194/
gmd-10-4057-2017.

[20] van den Oord G, Jansson F, Pelupessy I, Chertova M, Grönqvist JH, Siebesma P,
et al. A python interface to the dutch atmospheric large-eddy simulation.
SoftwareX 2020;12:100608. http://dx.doi.org/10.1016/j.softx.2020.100608.

[21] Kedward LJ, Aradi B, !ertík O, Curcic M, Ehlert S, Engel P, et al. The state
of fortran. Comput Sci Eng 2022;24(2):63–72. http://dx.doi.org/10.1109/MCSE.
2022.3159862.

[22] Bisong E. Google colaboratory. In: Building machine learning and deep learning
models on google cloud platform. Springer; 2019, p. 59–64. http://dx.doi.org/
10.1007/978-1-4842-4470-8.

[23] Bartman P, Bulenok O, Górski K, Jaruga A, "azarski G, Olesik MA, et al.
PySDM v1: particle-based cloud modeling package for warm-rain microphysics
and aqueous chemistry. J Open Source Softw 7(72). http://dx.doi.org/10.21105/
joss.03219.

[24] Hunter JD. Matplotlib: A 2D graphics environment. Comput Sci Eng
2007;9(3):90–5. http://dx.doi.org/10.1109/MCSE.2007.55.

[25] de Jong EK, Singer CE, Azimi S, Bartman P, Bulenok O, Derlatka K, et al. New
developments in PySDM and PySDM-examples v2: collisional breakup, immersion
freezing, dry aerosol initialization, and adaptive time-stepping. J Open Source
Softw http://dx.doi.org/10.21105/joss.04968.

[26] Sumlin BJ, Heinson WR, Chakrabarty RK. Retrieving the aerosol complex re-
fractive index using pymiescatt: A mie computational package with visualization
capabilities. J Quant Spectrosc Radiat Transfer 2018;205:127–34. http://dx.doi.
org/10.1016/j.jqsrt.2017.10.012.

[27] Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D,
et al. Array programming with NumPy. Nature 2020;585(7825):357–62. http:
//dx.doi.org/10.1038/s41586-020-2649-2.

[28] Harris CR, Millman KJ, Van Der Walt SJ, Gommers R, Virtanen P, Cournapeau D,
et al. Array programming with NumPy. Nature 2020;585(7825):357–62. http:
//dx.doi.org/10.1038/s41586-020-2649-2.

[29] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
An imperative style, high-performance deep learning library. In: Advances
In Neural Information Processing Systems, vol. 32. Curran Associates, Inc.;
2019, p. 8024–35, URL http://web.archive.org/web/20200420235543/http:
//papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-
deep-learning-library.pdf.

http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.1145/3322125
http://dx.doi.org/10.1145/3322125
http://dx.doi.org/10.1145/3322125
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.5194/gmd-15-3663-2022
http://dx.doi.org/10.5194/gmd-15-3663-2022
http://dx.doi.org/10.5194/gmd-15-3663-2022
https://github.com/nlohmann
https://github.com/nlohmann
https://github.com/nlohmann
http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1175/BAMS-D-20-0072.2
http://dx.doi.org/10.1175/BAMS-D-20-0072.2
http://dx.doi.org/10.1175/BAMS-D-20-0072.2
http://dx.doi.org/10.1016/j.jcp.2011.07.027
http://dx.doi.org/10.1016/j.jcp.2011.07.027
http://dx.doi.org/10.1016/j.jcp.2011.07.027
http://dx.doi.org/10.1016/j.jcp.2016.06.029
http://dx.doi.org/10.3934/jcd.2019003
http://dx.doi.org/10.3934/jcd.2019003
http://dx.doi.org/10.3934/jcd.2019003
http://dx.doi.org/10.1029/2007JD008782
http://dx.doi.org/10.1029/2007JD008782
http://dx.doi.org/10.1029/2007JD008782
http://dx.doi.org/10.5194/gmd-10-4057-2017
http://dx.doi.org/10.5194/gmd-10-4057-2017
http://dx.doi.org/10.5194/gmd-10-4057-2017
http://dx.doi.org/10.1016/j.softx.2020.100608
http://dx.doi.org/10.1109/MCSE.2022.3159862
http://dx.doi.org/10.1109/MCSE.2022.3159862
http://dx.doi.org/10.1109/MCSE.2022.3159862
http://dx.doi.org/10.1007/978-1-4842-4470-8
http://dx.doi.org/10.1007/978-1-4842-4470-8
http://dx.doi.org/10.1007/978-1-4842-4470-8
http://dx.doi.org/10.21105/joss.03219
http://dx.doi.org/10.21105/joss.03219
http://dx.doi.org/10.21105/joss.03219
http://dx.doi.org/10.1109/MCSE.2007.55
http://dx.doi.org/10.21105/joss.04968
http://dx.doi.org/10.1016/j.jqsrt.2017.10.012
http://dx.doi.org/10.1016/j.jqsrt.2017.10.012
http://dx.doi.org/10.1016/j.jqsrt.2017.10.012
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1038/s41586-020-2649-2
http://web.archive.org/web/20200420235543/http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://web.archive.org/web/20200420235543/http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://web.archive.org/web/20200420235543/http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://web.archive.org/web/20200420235543/http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://web.archive.org/web/20200420235543/http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

	PyPartMC: A Pythonic interface to a particle-resolved, Monte Carlo aerosol simulation framework
	Motivation and significance
	Software description
	Particle-resolved modeling with PartMC
	Software architecture
	Software functionality

	Basic examples in Python and Julia
	Illustrative examples (Jupyter notebooks)
	Example 1: Comparison with PySDM
	Example 2: Urban plume simulation
	Example 3: Optical properties calculation using an external Python package

	Impact
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


