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The state of the aerosol: Musings on mixing state
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ABSTRACT

Each particle of an atmospheric aerosol is composed of multiple chemical components, and
a variety of particle compositions are present within a particle population. This fact poses
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unique challenges to modelers and experimentalists who strive to ultimately quantify the

impact of aerosols on human health and on climate. This editorial lays out some fundamen-
tals for how to think about the aerosol state and explores implications of the emergent

aerosol property called aerosol mixing state.

1. Introduction

It takes a village to characterize the atmospheric aerosol:
not only do we have to consider particle size and com-
position, but also other characteristics such as shape, vis-
cosity, phase, hygroscopicity, and refractive index. Not
surprisingly, there is no one instrument that can charac-
terize all facets of the atmospheric aerosol. At the same
time, aerosol models have to make considerable simplifi-
cations in representing aerosols to remain computation-
ally tractable.

A defining property of an aerosol is that particles are
generally mixtures of different organic and inorganic com-
ponents, as realized by Junge (1952). These mixtures often
arise already at the time of emission, and then evolve fur-
ther as a result of aerosol processes during transport,
including gas-particle partitioning, heterogeneous and
multiphase reactions, or coagulation. Winkler (1973) stated
an important implication concerning a population of par-
ticles: The same bulk composition of an aerosol “can be
caused by an infinite variety of different internal distribu-
tions of the various compounds.” This property is termed
the aerosol mixing state. Figure 1 illustrates this concept,
with one extreme being the external mixture where each
particle only contains one pure compound (Figure la),
and the other extreme being the internal mixture, where
each particle contains a mixture of compounds, with the
mass fractions equal to the bulk (Figure 1c). In the ambi-
ent atmosphere, the mixing state is in between these two
extremes, with an example shown in Figure 1b.

In recent decades, there has been a growing realization
that mixing state is important for understanding aerosol
climate and health impacts, since these impacts depend
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on per-particle composition in a non-linear way. A good
example is the absorption of solar radiation by an aerosol
that consists of a non-absorbing species, e.g., ammonium
sulfate, and an absorbing species, e.g., black carbon (BC).
The absorptivity of the aerosol will be higher when the
aerosol is internally mixed compared to the external mix-
ture, even if the species bulk concentrations are the same.
This is because the absorptivity of the population is deter-
mined by the sum of the absorptivities of the individual
particles, and the individual particles’s absorptivity is
enhanced for the internally mixed case. The difference
can be large enough to matter for radiative forcing calcu-
lations, as pointed out already by Jacobson (2001) and
Chung and Seinfeld (2002). This has led to efforts to both
measure aerosol composition on the per-particle level
(Murphy et al. 1998; Middlebrook et al. 2003; Sullivan
and Prather 2007; Pratt and Prather 2010; Ault et al.
2010; Bondy et al. 2018), thereby learning about the
prevalent mixing state in the ambient atmosphere, and to
represent mixing state in models (Riemer et al. 2003;
Bauer et al. 2008; Oshima et al. 2009; Riemer et al. 2009;
Ching et al. 2016; Matsui et al. 2013; Zhu et al. 2015).

We are now at a point where single-particle data are
becoming more and more available, where compute
power is sufficient to run mixing-state-aware models,
and where new analytical techniques, including machine
learning, offer the possibility of processing large amounts
of high-dimensional single-particle data to infer popula-
tion-level properties and processes. Now is the right time
to reevaluate how we should be thinking about some of
the basic questions in aerosol science to facilitate aerosol
model representations and model-measurement compari-
sons—How should we describe the aerosol state? What
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(a) External mixture

(b) Real world mixture

(c) Internal mixture

Figure 1. lllustration of the term aerosol mixing state. Each box shows an aerosol population with six particles, with colors repre-
senting different chemical species. The populations shown in (a), (b), and (c) have the same bulk composition, but their mixing
states differ. (a) External mixture, (b) one of many possible examples of a mixing state in between external and internal mixture,
and (c) internal mixture.

Real particles

Particle 1 Particle 2 Particle 3
BC 3 10 1
SO, 12 4
(o]¢ 5 2

Model particles

Figure 2. lllustration of the concept of the aerosol state as set of vectors, where each vector describes the composition of one
particle. The set of particles can be placed accordingly in the composition space of the aerosol, in this example shown as a three-
dimensional space. Microscopy images of real particles courtesy of Miriam Freedman, Pennsylvania State University.

are the implications for modeling and measuring aero-
sols? What does it take to meaningfully compare mixing
state measurements with model results?

2. How should we describe the aerosol state?

As aerosol scientists, we are trained to visualize aerosol
populations as number, surface, or mass size distribu-
tions. This makes sense, given the crucial role that par-
ticle size plays for many of the aerosol impacts that we
care about, such as the propensity of particles to form
cloud droplets and to initiate ice formation, or the ability
to scatter and absorb radiation. However, the distribu-
tion-based representation is limiting when dealing with
an aerosol that has a realistic mixing state somewhere on
the spectrum between an internal and external mixture.
In that case, it is appropriate to think of the aerosol as a
multi-dimensional distribution that resides in a space
where the dimension is given by the number of distinct
species, called the composition space.

Figure 2 illustrates the example of an aerosol that con-
sists of three species that are commonly represented in
models, BC, sulfate (SO4), and organic carbon (OC), i.e.,
forming a three-dimensional composition space. Each par-
ticle is defined by a vector 7 that specifies the mass of
each species in the particle. The set of vectors from the
particles in the population defines the aerosol state.
Different aerosol processes acting on these particles cause
them to move within the composition space. For example,
condensation of secondary organic aerosol would cause
the particles to move along the axis labeled with OC, while
coagulation of two particles would result in the removal of
the two parent particles and the creation of a new particle
with a composition vector that is the sum of the parent
particles’ composition vectors. In reality, the dimension of
the composition space is much higher than three, espe-
cially if we consider the multitude of organic components
individually, and the additional per-particle properties to
capture morphology, charge, and other features. Rather
than working with discrete particles, to formulate the gov-
erning population balance equations (Riemer et al. 2019),



it is convenient to introduce a generalized number distri-
bution n( ') of an aerosol that contains A species, so that

n()dp,dp,...duy (1)

is the number concentration of particles where species 1
has mass between p;, and u; + du,, species 2 has mass
between p, and p, + du,, and so forth.

Having established this fundamental way of describing the
aerosol state, it is easy to see that our traditional size distribu-
tions are a particular choice of one-dimensional projections
of the true high-dimensional aerosol state. Importantly, while
it is straightforward to construct the low-dimensional projec-
tions from the true aerosol state, the reverse is not possible.
This means, if we only have information about one-dimen-
sional mass distributions, ambiguity exists regarding the mix-
ing state of the aerosol, or in other words, many different
mixing states are consistent with the same one-dimensional
mass distribution. This fact introduces uncertainties in our
estimates of aerosol-related impacts, such as aerosol-cloud
interactions or aerosol-radiation interactions.

3. What are the implications for modeling (and
measuring) aerosols?

Several approaches exist to simulate aerosols, with each
approach differing in the way that the particle population
is represented, namely bulk models, modal models,
moment models, sectional models, and particle-resolved
models. With the exception of particle-resolved models,
these are nothing else than particular low-dimensional
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projections of the aerosol state as introduced in Section 2,
and they are related as shown in Figure 3. Note that even
particle-resolved models simplify the true aerosol state
since assumptions regarding morphology and shape are
made.

Each type of model makes its specific assumptions
about mixing state, which may differ between different
representations. Bulk models track the species’ mass con-
centrations and inherently treat the aerosol as an exter-
nal mixture of sulfate, BC, OC, sea salt, and dust (Koch
2001; Schult, Feichter, and Cooke 1997; Tegen and
Miller 1998).

The underlying assumption of modal models is that
the aerosol consists of several overlapping subpopula-
tions (modes), with each subpopulation represented by a
log-normal function of the diameter (Whitby and
McMurry 1997). Within each mode, an internal mixture
is assumed, but since different modes can overlap within
a given size range, mixing state can be resolved to a cer-
tain extent. This has been exploited to represent the
aging process of soot in regional (Riemer et al. 2003)
and global models (Koch et al. 2009; Liu et al. 2016),
that is, the conversion of soot from its freshly emitted,
uncoated state to its aged state after it is coated with sec-
ondary aerosol material. While separating “fresh” and
“aged” soot into two different modes is closer to reality,
it introduces new challenges as threshold parameters
need to be set to define what separates fresh and aged
modes and how the modes interact, which are difficult
to constrain. Furthermore, the internal mixture
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Figure 3. lllustration of three different ways the true (high-dimensional) composition space can be collapsed into low-dimensional

projections, for bulk, modal, and sectional model representations.
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assumption in the mixed modes leads to biases when
optical properties are calculated since the distribution of
coating materials on BC cores is not captured correctly
(Fierce et al. 2017).

While modal models use several overlapping log-nor-
mal functions, sectional models discretize the aerosol size
range into a number of sections where each section is
assumed to be internally mixed. Consequently, the
change of composition with size is resolved, but diversity
of composition within a narrow size range is not
resolved, unless several one-dimensional bin structures
are introduced (Jacobson 2002).

In contrast to modal and sectional models, particle-
resolved models resolve composition space by dis-
cretely sampling the space with a large number of
computational particles. This way, mixing state is
inherently resolved, and particle-resolved models can
be used to benchmark other aerosol model types with
respect to mixing state assumptions. From these exer-
cises, we learn about the magnitude of errors that are
introduced when simplifying mixing state assumptions
are applied to determine population-level quantities
such as aerosol absorption or cloud condensation
nuclei (CCN) concentrations. Fierce et al. (2016)
showed that it is important to capture the distribution
of coatings over a population of BC cores to be able to
predict absorption enhancements in line with observa-
tions. Ching et al. (2017) found that when internal
mixing was assumed, CCN concentrations were up to
100% overpredicted for more externally-mixed popula-
tions, but were well predicted for more internally-
mixed populations. For mixing states in between
internal and external mixture, the errors could remain
up to 50%.

Is it not possible to construct a sectional model
with a multi-dimensional grid structure? In principle
yes, and this has been done for specific choices of
two- and three-dimensional grid structures (Oshima
et al. 2009; Matsui et al. 2013; Ching et al. 2016).
However, beyond this, the curse of dimensionality
(Bellman 1957) strikes and higher-dimensional sec-
tional models become too computationally expensive,
since the number of bins scales with the number of
bins in each dimension to the power of the dimension.
Particle-resolved models overcome the curse of dimen-
sionality by placing computational particles only where
real particles exist (most of the many bins in high-
dimensional sectional models would actually be empty,
but still need to be allocated) and by exploiting sto-
chastic sampling techniques.

The projection of composition space to a lower
dimension not only occurs in the context of aerosol
models; it also applies in the context of aerosol measure-
ments. Measured number and mass size distributions are
straightforward examples. Other examples include CCN
spectra (one-dimensional projection on supersaturation)
or measurements of BC core/coating distributions by

single-particle soot photometers (SP2, two-dimensional
projection on BC core size and coating thickness).
Furthermore, each measurement technique only “sees” a
certain sector of composition space, both in terms of the
physical particle sizes and in terms of which species can
be identified.

4. What does it take to meaningfully compare
mixing state measurements with model
results?

Not only does aerosol mixing state individually complicate
aerosol characterization by measurements and their repre-
sentations by models; it also challenges the comparison of
the two. We are used to comparing measurements and
model results of scalar quantities (e.g., species mass con-
centrations, total number concentrations) or discretized
one-dimensional distributions (e.g., number or mass size
distributions, CCN spectra). However, comparing mixing
state is much more difficult because it requires comparing
sampled high-dimensional distributions.

To accomplish this, one can take several approaches,
depending on what kind of data is available. For
example, in a scenario where model output from a par-
ticle-resolved model and single-particle data from an
aerosol mass spectrometer are available, one approach
could be to directly work in the high-dimensional space,
using a Wasserstein metric (Villani 2008) to quantify the
distance between the measured and modeled (high-dimen-
sional) distributions. However, a problem with this
approach is that it is difficult to establish a clear mapping
between the particle-resolved model output (masses of
model species in each particle) and the data that a mass
spectrometer provides (relative intensities for certain m/z
ratios for each particle). Even if this mapping exists, this
approach would be difficult to visualize or to interpret.

An alternative is to revert back to low-dimensional
projections. Some of these, e.g., mass concentrations or
size distributions, do not contain mixing state informa-
tion. In this case, the comparison can be augmented
with a scalar quantity that is sensitive to mixing state,
such as the mixing state metric y (Riemer and West
2013). This metric is based on species mass fractions in
each particle and includes two distinct aspects: how
complex individual particles are (in terms of being
composed of different species) and how similar differ-
ent particles are within a population. The metric ¥
ranges from 0% for a fully external mixture to 100% for
a fully internal mixture and can quantify any state in
between. If measurements and model results agree in
terms of number and mass size distributions and in
terms of mixing state index, this would increase our
confidence that the model captures mixing state cor-
rectly (Zhu et al. 2016). Using this framework does
require the knowledge of quantitative per-particle com-
position, which is straightforward to determine with a



particle-resolved model, but not available for more sim-
plified modeling approaches, and challenging to deter-
mine from observational data.

In contrast to mass concentrations or size distributions,
other low-dimensional projections do have mixing state
information embedded. For example CCN spectra contain
information on how species of different hygroscopicity are
mixed (Su et al. 2010; Yuan and Zhao 2023). Another
example are measurements with the single-particle soot
photometer from which distributions with respect to BC
core size and coating thickness (or their ratio) can be
derived (Matsui et al. 2013). These (partial) measures of
mixing state are especially useful if they are applied in a
size-resolved manner, so that particle size and mixing state
can be disentangled. For a more complete characterization
of mixing state, collocated measurements of several differ-
ent instruments are needed.

5. Conclusions

This editorial elucidates the fundamental properties of
the aerosol state and the implications of the fact that
atmospheric aerosols are mixtures of mixtures—each
aerosol particle usually contains several chemical compo-
nents, and particles of diverse composition are assembled
within a population. A convenient way to conceptualize
this fact is to think of the aerosol residing in a high-
dimensional composition space. The implications can be
summarized as follows:

e Common aerosol modeling approaches and aerosol
measurement techniques work with low-dimensional
projections of this high-dimensional space. As a result,
information of the true aerosol state is lost.

o There are many different ways to obtain low-
dimensional projections for use as aerosol model
representations. This introduces structural and para-
metric uncertainties in our models that are to date
still largely unquantified.

e Comparisons of mixing state predictions with observa-
tions are challenging. One of the main hurdles in this
endeavor is to find a mapping between the quantities
that the model tracks and the quantities that a given
measurement technique provides. Only when such a
mapping exists is a quantitative comparison possible.

e It is worth devoting effort to develop such mappings
because it will allow for stronger constraints on our
aerosol predictions, which are necessary to ensure that
we obtain the right results for the right reasons in our
predictions of aerosol climate impacts.
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