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Abstract
We consider the point-to-point log-gamma polymer of length 2N in a half-space with
i.i.d. Gamma−1(2θ) distributed bulk weights and i.i.d. Gamma−1(α + θ) distributed
boundary weights for θ > 0 and α > −θ . We establish the KPZ exponents (1/3 fluc-
tuation and 2/3 transversal) for this model when α = N−1/3μ forμ ∈ R fixed (critical
regime) and when α > 0 is fixed (supercritical regime). In particular, in these two
regimes, we show that after appropriate centering, the free energy process with spatial
coordinate scaled by N 2/3 and fluctuations scaled by N 1/3 is tight. These regimes
correspond to a polymer measure which is not pinned at the boundary. This is the first
instance of establishing the 2/3 transversal exponent for a positive temperature half-
space model, and the first instance of the 1/3 fluctuation exponent besides precisely at
the boundary where recent work of Imamura et al. (Solvable models in the KPZ class:
approach through periodic and free boundary Schur measures. arXiv:2204.08420.
2022) applies and also gives the exact one-point fluctuation distribution (our methods
do not access exact fluctuation distributions). Our proof relies on two inputs—the
relationship between the half-space log-gamma polymer and half-space Whittaker
process (facilitated by the geometric RSK correspondence as initiated in Corwin et al.
(Duke Math J 163(3):513–563, 2014), O’Connell et al. (Invent Math 197(2):361–416,
2014), and an identity in Barraquand andWang (Int Math Res Not 2023:11877, 2022)
which relates the point-to-line half-space partition function to the full-space partition
function for the log-gamma polymer. The primary technical contribution of our work
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is to construct the half-space log-gamma Gibbsian line ensemble and develop, in the
spirit of work initiated in Corwin andHammond (InventMath 195(2):441–508, 2014),
a toolbox for extracting tightness and absolute continuity results from minimal infor-
mation about the top curve of such half-space line ensembles. This is the first study
of half-space line ensembles.

Mathematics Subject Classification 60K37 · 82B23

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2 Half-space log-gamma objects and proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . . . .
3 Properties of the first three curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 Properties of the first two curves of Gibbs measures with no bottom curve . . . . . . . . . . . . . . .
5 Modulus of continuity: proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix A Stochastic monotonicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix B Basic properties of log-gamma type random variables . . . . . . . . . . . . . . . . . . .
Appendix C Estimates for non-intersection probability . . . . . . . . . . . . . . . . . . . . . . . . . .
Appendix D Supporting calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

1.1 Themodel and themain results

Fix �θ := (θi )i∈Z≥1 such that θi > 0 for all i ∈ Z≥1 and α > −min{θi : i ∈ Z≥1}.
Consider a family of independent random variables (Wi, j )(i, j)∈Zhalf with Z

half :=
{(i, j) ∈ (Z≥1)2 : j ≤ i} such that

Wi, j ∼ Gamma−1(α + θ j ) for i = j and Wi, j ∼ Gamma−1(θi + θ j ) for j < i,
(1.1)

where X ∼ Gamma−1(β) means X is a random variable with density 1x>0�
−1(β)

x−β−1e−1/x . A directed lattice pathπ = ((xi , yi )
)k
i=1 confined to the half-space index

set Zhalf is an up-right path with all (xi , yi ) ∈ Z
half , such that it only makes unit steps

in the coordinate directions, i.e., (xi+1, yi+1) = (xi , yi ) + (0, 1) or (xi+1, yi+1) =
(xi , yi ) + (1, 0); see Fig. 1. Given (m, n) ∈ Z

half , we denote �m,n to be the set of
all directed paths from (1, 1) to (m, n) confined to Z

half . Given the random variables
from (1.1), we define the weight of a path π and the point-to-point partition function
of the half-space log-gamma (HSLG) polymer as

w(π) :=
∏

(i, j)∈π

Wi, j , Z(α,�θ)(m, n) :=
∑

π∈�m,n

w(π). (1.2)
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KPZ exponents for the half-space log-gamma polymer

Fig. 1 Vertex weights for the
half-space log-gamma polymer
(with i = 6, j = 2) and two
possible paths (one marked in
blue and the other in black) in
�8,8 (color figure online)

Gamma−1(α + θj)

Gamma−1(θi + θj)

Unless otherwise noted, all of our results and discussions below pertain to the
homogeneous polymermodel where all the θi ’s are set equal to some θ > 0. In that
case, we write Z(α,θ) for Z(α,�θ). We include the inhomogeneities when introducing the
half-space log-gamma Gibbs property and line ensemble as well as when proving the
key tool of stochastic monotonicity. As these key tools extend to the inhomogeneous
case, we expect our methods and results should be likewise extendable, though do not
pursue that here.

The parameter α controls the strength of the boundary weights and there is a phase
transition in the behavior of this model at α = 0. In our current work we will probe the
behavior in the critical regime where α is in a scaling window of order N−1/3 of 0, as
well as in the supercritical regime when α is strictly positive. The subcritical regime
may be probed in subsequent work as described in Sect. 1.4. This phase transition has
been the subject of quite a lot of previous work, some of which we review in Sect. 1.4.
The basic picture (some as of yet unproved) is as follows. For α ≥ 0 the free energy
(i.e., log of the partition function) should demonstrate the KPZ 1/3 fluctuation and
2/3 transversal scaling exponents as well as certain universal limiting distributions.
Here the transversal scaling references both the N 2/3 fluctuations of the endpoint of
the length 2N half-space polymer as well as the N 2/3 correlation length of the free
energy as a function of (m, n) subject to m + n = 2N . For α < 0 the situation is
different—the free energy fluctuations should be of order N 1/2, the endpoint should
fluctuate transversally in an order one scale (i.e., not growing with N ), while the free
energy correlation length should be of order N and the limiting distributions should
be Gaussian. To be clear, in terms of the polymer measure, this phase transition relates
to the pinning (α < 0) or unpinning (α ≥ 0) of the path from the diagonal.

Our main result captures the KPZ scaling exponents in the critical and subcritical
regimes.

Theorem 1.1 Fix θ, r > 0. For each α > −θ , s ∈ [0, r ], and N ≥ max{3, r3} define
the centered and scaled HSLG free energy process

Fα
N (s) := log Z(α,θ)(N + sN 2/3, N − sN 2/3)+ 2N�(θ)

N 1/3 . (1.3)
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Here � denotes the digamma function defined on R>0 by

�(z) := ∂z log�(z) = −γ +
∞∑

n=0

(
1

n + 1
− 1

n + z

)
, (1.4)

where γ is the Euler–Mascheroni constant. The functionFα
N (·) is linearly interpolated

in between points where Z(α,θ) is defined. LetPN
α denotes the law ofFα

N (·) as a random
variable in (C[0, r ], C) – the space of continuous functions on [0, r ] equipped with
uniform topology and Borel σ -algebra C. Then the following holds.

(1) The sequence PN
α is tight for each α ∈ (0,∞).

(2) For αN = N−1/3μ with μ ∈ R fixed (noting that for large enough N, αN > −θ ,
and thus FαN

N (·) is well-defined), the sequence PN
αN

is tight.

This theorem is proved at the beginning of Sect. 5.
As discussed below, it is possible to show (e.g. using the ideas of [12]) absolute

continuity of the limit points in Theorem 1.1 with respect to certain Brownian mea-
sures. We do not pursue this here, but remark further about this and related directions
below (see the end of Sect. 1.2).

The rest of this introduction is structured as follows. Section 1.2 introduces the idea
of a half-spaceGibbsian line ensemble, the study ofwhich constitutes the key technical
innovation responsible for the above theorem. Section 1.3 provides a precise definition
of the half-space log-gamma line ensemble andGibbs property, the key input from [31]
and then a sketch of the steps to proving Theorem 1.1. Finally, Sect. 1.4 reviews some
related work in studying half-space polymer and related models (Sect. 1.2 reviews the
literature on Gibbsian line ensembles).

1.2 Half-space Gibbsian line ensembles

In order to prove Theorem 1.1 we develop a new probabilistic structure—half-space
Gibbsian line ensembles—and introduce a toolbox through which to study limits
of such ensembles. A remarkable fact, due to the geometric RSK correspondence
[32, 43, 84, 85] and the half-space Whittaker process [5], is that the free energy
process log Z(α,θ)(N+m, N−m) for the log-gamma polymer can be embedded as the
top labeled curve of an ensemble of log-gamma increment random walks interacting
through a soft version of non-intersection conditioning and subject to an energetic
interaction at the left boundary (where m = 0) depending on the value of α. In
particular, when α > 0 the interaction on the left boundary manifests itself as an
attraction between the label 2i−1 and 2i curves of the line ensemble for each relevant
choice of i ; for α < 0 the interaction is repulsive while for α = 0 it is not present. We
describe this line ensemble embedding in Sects. 1.3.1 and 2.2.

The basic premise of Gibbsian line ensembles, as initiated in the study of full-space
models in [35], is to use the resampling invariance of a sequence of such ensembles to
propagate one-point tightness information (generally for the top curve of the ensemble)
into tightness of the entire sequence of ensembles. In particular once the scale of one-
point fluctuations (in this case N 1/3) is known, the Gibbs property implies transversal
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fluctuations are correlated in a diffusive scale (in this case N 2/3) and that lower curves
also all fluctuate with these exponents in the same scale. In other words, one point
tightness of the top curve translates into spatial tightness of the entire ensemble.
Moreover, all subsequential limits of these line ensembles enjoy, themselves, a Gibbs
property corresponding to the diffusive limit of that of the pre-limiting ensembles.
This general approach has been applied widely in studying a variety of different Gibbs
properties related to probabilistic models, e.g. [12, 33, 36, 45, 51, 57, 93, 99, 102].
Moreover, it has been leveraged to give fine information about the local behavior of
these models [34, 37, 39, 40, 46, 58, 59, 64–66, 69–72, 101] and in studying related
scaling limits such as the Airy sheet and directed landscape [16, 17, 38, 52–54, 67,
91, 96, 103].

In this work we initiate the study of half-space Gibbsian line ensembles. These are
measures on collections of curves in which there exists a left boundary around which
the Gibbs property differs from its behavior in the bulk. As an illustrative example,
consider curvesL1(s) ≥ L2(s) ≥ · · · for s ≥ 0 which enjoy the following resampling
invariance. In the bulk, for 0 < s < t and 1 ≤ k1 ≤ k2 the law of L�k1,k2�([s, t]) (i.e.,
curves k1 through k2 on the interval [s, t]) conditioned on the values of L�k1,k2�(s),L�k1,k2�(t), Lk1−1([s, t]) (if k1 = 1 then L0 ≡ +∞) and Lk2+1([s, t]) is that of
Brownianmotions conditioned to start at s and end at t with the correct boundary values
and to not intersect each other nor the curve Lk1−1([s, t]) above and Lk2+1([s, t])
below. Around the left boundary, for t > 0 and 1 ≤ k1 ≤ k2 the law of L�k1,k2�([0, t])
conditioned on the values of L�k1,k2�(t), Lk1−1([0, t]) and Lk2+1([0, t]) is the law of
Brownian motions conditioned to end at values L�k1,k2�(t) at time t , not intersect with
each other or the Lk1−1 and Lk2+1 curves on the interval [0, t] and to have values at
zero such that L2i−1(0) = L2i (0) for all i . This last condition that is quite novel to
the half-space models. An example of such an ensemble is illustrated in Fig. 2B. This
Gibbs property arise as a diffusive limit of the half-space log-gamma Gibbs property
introduced and studied here.

Half-spaceGibbsian line ensembles have not previously been studied.However, this
structure exists implicitly in some previous literature studying half-space integrable
probabilistic models. For instance, the half-space (or Pfaffian) Schur processes [7,
28, 94] have such a structure where the Brownian resampling is replaced by certain
discrete random walks (geometric, exponential or Bernoulli), the non-intersection
conditioning persists, and where the odd/even pairing at the boundary is replaced by
an exponential interaction in the spirit of e−α(L2i−1(0)−L2i (0)). Half-space Whittaker
processes [5] have a more complicated Gibbs property which is the one relevant to
our current work. Essentially, the Brownian motion is replaced by log-gamma random
walks, the non-intersection by a soft exponential energy reweighing, and the interaction
at zero by the same sort of e−α(L2i−1(0)−L2i (0)) reweighing. There are other half-space
Gibbs properties that should be studied such as related to half-space version of Hall-
Littlewood processes, q-Whittaker processes and their spin generalizations (see for
instance, [5, 8, 73]). Furthermore, periodic or two-sided boundary versions ofGibbsian
line ensembles (e.g. related to versions of Schur processes as in [9, 13, 24]) will also
likely play a key role in study of related integrable probabilistic models and hence
warrant study in the spirit of what is done here.
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O(N2/3)

O(N1/3)

O(N1/3)

O(N1/3)

O(N1/3)
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O(1)

O(1)
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1 (·)
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2 (·)LN

3 (·)
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4 (·)LN

5 (·)
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6 (·)

(a)

L1(·)

L2(·)

L3(·)

L4(·)

L5(·)

L6(·)

(b)

Fig. 2 A depicts the half-space log-gamma line ensemble for large N along with the type of scalings that are
deduced in proving Theorem 1.1. This ensemble enjoys a half-space log-gammaGibbs property.B depicts a
potential limiting line ensemble which should enjoy a half-space non-intersecting Brownian Gibbs property

As in the full-space setting, the challenge is to develop a route to take one-point
fluctuation information about the top curve LN

1 of a sequence of line ensembles LN

and propagate that into fluctuation information about the whole ensemble. Figure
2A illustrates the scalings that we prove to be associated with this sequence of line
ensembles.) One-point information about the top curve for the half-space log-gamma
polymer (and hence the top curve of our line ensemble) is in short supply with only
two result due to (chronologically) [31] and then [76].

The core technical purpose and challenge of this paper is to extend the Gibbsian
line ensemble methodology to address half-space models and provide tools to show
tightness at the edge of such ensembles. We do this for the type of Gibbs property
mentioned above that relates to half-space Whittaker processes which, owing to its
relation to the log-gamma polymer, we call the half-space log-gamma Gibbs property.
Our tools and method should extend to other Gibbs properties.

The challenge in the half-spacemodels comes from the impact of the pair interaction
at the boundary. When α > 0 is fixed, in edge scaling limits L of the line ensemble
L2i−1(0) = L2i (0) for all i ≥ 1. Before taking a limit, the pairs of curves can be
described in the vicinity of the origin as two (softly) non-intersecting log-gamma
random walks whose left boundary endpoints are energetically conditioned to stay
within O(1). We call this law on pairs of paths the weighted paired random walk
(WPRW) measure, see Definition 1.7 below. This is a discretization of two-particle
Dyson Brownian motion with both particles started at the same point.

The fine and uniform information that we need to know about the WPRWmeasure
does not follow fromweak convergence to Dyson Brownianmotion. Thus, we develop
a variety of results herein to deal with WPRWs, in case with general underlying jump
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distributions, not just the log-gamma. See Sect. 1.3.3 for further discussion onWPRWs
and their role in our analysis and their properties. Appendix C contains our general
results on non-intersecting random walks and bridges.

Overall strategy

As explained in Sect. 1.3.2, we rely only on the work of [31]. From [31] we are
able to extract two vital pieces of information: after proper centering the process
s 	→ N−1/3LN

1 (sN 2/3) stays bounded from positive infinity at N → ∞, and at a
random sequence of growing times sN1 , sN2 , . . . that stay tight as N →∞, the process
has tight (bounded frompositive and negative infinity) fluctuations around the parabola
−νs2 (for some explicit ν > 0). The slightly odd nature of these inputs comes from
the fact that [31] studies a point-to-(partial)line partition function and not point-to-
point directly. The work of [76] does provide tightness (and a limit theorem) for the
point-to-point free energy, but is restricted to precisely the left boundaryLN

1 (1)which
is insufficient information for our approach. Currently, there are no limit theorems
proved for the point-to-point free energy process away from the left-boundary.

With the above input we proceed to show how the Gibbs property propagates
tightness to the whole ensemble. The idea is to first argue that (with proper centering)
the process s 	→ N−1/3LN

2 (sN 2/3) must be tight at some random time s. If not, the
first curve would not follow a parabolic decay but rather a linear one in contradiction
with our parabolic decay input. Now, we know that the (scaled) first and second curves
are tight at some random times (not necessarily the same). The next step is to argue that
this pair of scaled curves to the left of the random times (including the left-boundary)
are likewise tight. This relies on showing (using the Gibbs property and some a priori
bounds) that the third curve cannot rise much beyond the first two curves, and that
the first two curves remain bounded from infinity (as follows from [31]). With this
and a form of stochastic monotonicity associated to this Gibbs property, the control
over the first two curves can be established by a fine analysis of the behavior of a
pair of log-gamma random walks subject to soft non-intersection conditioning and
attractive energetic pinning at zero. We call these weighted paired random walks and
a substantial amount of work is needed to develop tools and estimates regarding them.
We give amore detailed overview of the steps of our proof in Sect. 1.3.3. The attractive
nature of the boundary is directly linked to the choice here that α ≥ 0.

Extensions

In this paper we do not pursue showing that the tightness propagation process extends
to the entire line ensemble, though it very likely can be done, e.g. in the spirit of
[57] for a full-space line ensemble. Any subsequential limit should enjoy the type
of half-space Brownian Gibbs property discussed earlier. This would show that any
such subsequential limit should also enjoy local comparison to Brownian motions
away from the boundary, or two 2-particle Dyson Brownian motions started paired
together when looking near the boundary. In fact, for the top two curves we can extract
(though do not explicitly record here) such absolute continuity results without showing
tightness of the whole ensemble, e.g. as in [12]. The full-space Gibbs property in [12,
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57] differs slightly from here since they consider point-to-point polymer endpoints
varying along horizontal lines, while we consider endpoints varying along down-right
zigzag paths.

Besides the directions alluded to above, we mention here a few more natural points
of inquiry spurred by our work. Our analysis is restricted to α ≥ 0. When α < 0,
the pair interaction at the boundary becomes repulsive, and thus, curves separate and
behave quite differently. In particular, the log-gamma free energy (i.e., top curve)
is expected to have O(

√
N ) Gaussian fluctuations and O(1) transversal fluctuation

around (N , N ). The Gaussian fluctuations on the diagonal was recently proven in [76],
while the O(1) transversal fluctuations result appears in the subsequent work [60]. The
behavior in this O(1) scale relates to a portion of the phase diagram for the half-space
log-gamma stationary measure [11]. Using our Gibbsian line ensemble techniques
and modifications of the log-gamma polymer (i.e., adding a boundary condition on
the first row too), it should be possible to access and re-derive the description of the
entire phase diagram.

Beyond tightness, the half-space log-gamma line ensemble should converge to a
universal limit, the half-space Airy line ensemble. This object, which should enjoy the
type of Brownian Gibbs property discussed earlier, has not been constructed. While
the log-gamma convergence result is currently out of reach, it should be possible to
construct this from solvable last passage percolation, i.e. half-space Schur processes
[7]. This should enjoy uniqueness characterization in the spirit of [47, 49] and may
even relate to a half-space Airy sheet in the spirit of [52]. It is also a compelling
challenge to identify a strong characterization of the half-space Airy line ensemble
in the spirit of the recent work [2] on the full-space Airy line ensemble.

A different scaling regime for the half-space log-gamma line ensemble involves
weak-noise scaling in which θ goes to infinity while α remains fixed. In the full-
space setting, [100] proved tightness of the full-space line ensemble and (via [41])
convergence to the KPZ line ensemble [36, 86]. A half-space analog of this result
should hold and help in exploring questions related to the half-space KPZ equation
and the corresponding half-space continuous directed random polymer.

1.3 Ideas in the proof of Theorem 1.1

In Sect. 1.3.1 we precisely define the half-space log-gamma Gibbs measure and line
ensemble. In Section 1.3.2 we record the key input from [31] which we then combine
with the Gibbs line ensemble structure in Sect. 1.3.3 to give the key deductions in the
course of proving Theorem 1.1 (see Sect. 5 for the full proof of this theorem).

Though the Gibbs measure and line ensemble definition holds for general α, most
of our discussion, especially around the proof, will focus on the case α > 0 which
is harder than the α = N−1/3μ case. As noted earlier, we do not address the case of
α < 0 here.
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· · ·

· · ·

· · ·

· · ·
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(1, 2) (1, 4)

(2, 5)

(3, 3)

(4, 1)

(4, 6)

(a) (b)

Fig. 3 A The directed, colored (and labeled) graph G associated to half-space log-gamma 
-Gibbs mea-
sures. A few of the vertices of G have their φ-induced index (i.e., the coordinates above the vertex), and a
few of the blue edges are labeled by the ϑi, j parameters. A generic bounded connected domain � is shown
in the figure which contains all vertices in the shaded region. ∂� consists of white vertices in the figure. B
The domain KN considered in Theorem 1.3. �∗N consists of vertices in the shaded region. The assignment
ϑi, j = θN−i+1 of 
 parameters from Theorem 1.3 as shown here over the blue edges (color figure online)

1.3.1 HSLG Gibbs measures and theHSLG line ensemble

The main technique that goes into the proof of Theorem 1.1 is our construction of
the half-space log-gamma (HSLG) line ensemble whose law enjoys a property that we
call the half-space log-gamma (HSLG) Gibbs measures. In what follows we construct
these objects and describe how they relate to the HSLG polymer free energy.

We will start by defining the fully-inhomogeneous HSLG Gibbs measure whose
state-space and associated weight function is indexed by the following directed and
colored (and labeled) graph. Fix any parameters 
 := {ϑm,n > 0 | (m, n) ∈ Z

2≥1}
and α > −min{ϑm,n : (m, n) ∈ Z

2≥1}. Note, we have used ϑ here to distinguish from
θ used to define the polymer. In Theorem 1.3 we will relate these parameters. Define
the graph G with vertices V (G) := {(m, n) : m ∈ Z≥1, n ∈ Z<0+ 1

21m∈2Z} and with
the following directed colored (and labeled) edges:

• For each (m, n) ∈ Z
2≥1, we put two blue (ϑm,n) edges from

(2m − 1,−n) → (2m,−n + 1
2 ) and (2m + 1,−n) → (2m,−n + 1

2 ).

• For each (m, n) ∈ Z
2≥1, we put two black edges from

(2m,−n − 1
2 )→ (2m − 1,−n) and (2m,−n − 1

2 )→ (2m + 1,−n).

• For each m ∈ Z≥1, we put one red edge from (1,−2m + 1)→ (1,−2m).

Note there is a parameter linked to the blue edges, while the black and red edges do
not have any associated parameters. A portion of the corresponding graph is shown
in Fig. 3 A. We write E(G) for the set of edges of graph G and e = {v1 → v2} for a
generic directed edge from v1 to v2 in E(G) (the color of the edge is suppressed from
the notation).
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We next define a bijection φ : V (G) → Z
2≥1 by φ((m, n)) = (−
n�,m). This

pushes the directed/colored edges in G onto directed/colored edges on Z2≥1 which we
denote by E(Z2≥1). We will always view G as in Fig. 3 and will use the φ-induced
indexing when describing this graph. As in Fig. 3B, set �∗N := {(i, j) ∈ Z

2≥1 : i ∈[1, N − 1], j ∈ [1, 2N − 2i + 1]}.
We associate to each e ∈ E(Z2) a weight function based on the color of edge

defined as follows:

We(x) :=

⎧
⎪⎨

⎪⎩

exp(ϑx − ex ) if e is blue(ϑ),

exp(−ex ) if e is black,

exp(−αx) if e is red,

(1.5)

Definition 1.2 (Half-space log-gamma 
-Gibbs measure) Fix any 
 := {ϑm,n > 0 |
(m, n) ∈ Z

2≥1}. Consider the graphZ2≥1 endowed with directed/colored edges E(Z2≥1)
as above. Let � be a bounded connected subset of Z2≥1. Set

∂� := {v ∈ Z
2≥1 ∩�c : {v′ → v} ∈ E(Z2≥1) or {v → v′} ∈ E(Z2≥1), for some v′ ∈ �

}
.

The half-space log-gamma (HSLG)
-Gibbsmeasure for the domain�, with boundary
condition

(
ui, j ∈ R : (i, j) ∈ ∂�

)
, is a measure on R

|�| with density at (ui, j )(i, j)∈�

proportional to

∏

e={v1→v2}∈E(�∪∂�)

We(uv1 − uv2). (1.6)

Lemma B.2 shows that theHSLG 
-Gibbs measure is well-defined.When all ϑm,n are
equal to a generic parameter θ > 0, we shall simply call the corresponding measure
as HSLG Gibbs measure.

Notationally, we will generally use uv for vertices v = (i, j) ∈ � as dummy-
variables when discussing the density of HSLG Gibbs measures. When discussing
multivariate random variables distributed jointly according to a HSLG Gibbs mea-
sure we will typically write Li ( j), or sometimes L(v) for v = (i, j), for the (i, j)
coordinate of these multivariate random variables.

An event A, i.e., elements of the Borel σ -algebra forR|�|, is increasing if it satisfies
the condition that u′ ∈ A implies u ∈ A provided u � u′. Here u = (

ui, j
)
(i, j)∈�

,

u′ = (u′i, j
)
(i, j)∈�

and u � u′ if ui, j ≤ u′i, j for all (i, j) ∈ �. An event is decreasing

if u′ ∈ A implies u ∈ A provided u′ � u

The following shows how the HSLG free energy process can be embedded in a
HSLG 
-Gibbs measure. Its proof in Sect. 2.2 relies on results of [31] that build on
the analysis of the log-gamma polymer via the geometric RSK correspondence [43]
on symmetrized domains [32, 84, 85]. In Sect. 2.2, for each N > 0, we will define
explicitly such a choice for

(LN
i ( j) : (i, j) ∈ KN

)
that will satisfy the two criterion

of the theorem. We will call this the half-space log-gamma (HSLG) line ensemble.
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KPZ exponents for the half-space log-gamma polymer

We will use L when discussing the HSLG line ensemble, while L will be used when
discussing general line ensembles that enjoy the HSLG 
-Gibbs property.

Theorem 1.3 (Half-space log-gamma line ensemble) Let �θ = (θi )i∈Z≥1 be a sequence
of positive parameters. Fix α > −θ where θ := min{θi : i ∈ Z≥1}, and N ∈ Z≥1. As
in Fig. 3B, set KN := {(i, j) ∈ Z

2≥1 : i ∈ [1, N ], j ∈ [1, 2N − 2i + 2]}. There exists
random variables

(LN
i ( j) : (i, j) ∈ KN

)
, called here the HSLG 
-line ensemble, on

a common probability space such:

(i) We have the following equality in distribution

(LN
1 (2 j + 1)) j∈�0,N−1�

(d)= (
log Z(α,�θ)(N + j, N − j)+ 2N�(θ)

)
j∈�0,N−1�.

(1.7)

(ii) The law of
(LN

i ( j) : (i, j) ∈ �∗N
)
conditioned on

(LN
i ( j) : (i, j) ∈ (�∗N )c

)
is

given by the HSLG 
-Gibbs measure for the domain �∗N with boundary condition(LN
i ( j) : (i, j) ∈ ∂�∗N

)
.Here the parameters in
 are chosen as ϑi, j := θN−i+1,

see the blue edge labeling in Fig. 3B.

In the homogeneous case we set all θi ≡ θ .

Remark 1.4 Theorem 1.3 is stated for the polymer model using the inhomogeneous
weights in (1.2). In the homogeneous case (which we will focus upon here) where
θi ≡ θ (and hence ϑi, j ≡ θ ) the 2N�(θ) centering term in (1.7) is chosen to be
adapted to our ultimate goal of taking scaling limits. However, this terms inclusion is
ultimately inconsequential since it constitutes a constant shift of the Gibbs measures
which does not impact the Gibbs property (see Lemma 2.1a).

We assume below that we are dealing with the homogeneous case of the HSLG line
ensemble.

It is useful to view HSLG Gibbs measures (in particular we focus here on the
Gibbs measures from Theorem 1.3) in terms of the language of Gibbsian line ensem-
bles. Consider k and T fixed and N sufficiently large so that all of the random
variables LN

1 �1, T �,LN
2 �1, T �, . . . ,LN

2k�1, T � are defined. We will think of LN
i as

the label i ‘line’ (rather, a piecewise linearly interpolated curve) in the ensem-
ble. The values of

(LN
i (2T + 1) : i ∈ �1, 2k�

)
and LN

2k+1(·) constitute boundary
data which, once known, uniquely identify (via the Gibbs description) the laws of
LN
1 �1, T �,LN

2 �1, T �, . . . ,LN
2k�1, T �.

Let us consider the three types of weights in the Gibbs measure. The weights
corresponding to black edges v1 → v2 contribute a factor of e−e

uv1−uv2 (here uv is
the dummy variable in the Gibbs density corresponding to a vertex v) in the Gibbs
measure.Whenever uv1 � uv2 , this weight is very close to 0, whereaswhen uv1 � uv2

the weight is close to 1 (between, there is a smooth monotone transition from 0 to 1).
Thus, this weight produces a soft version of conditioning on the event that LN (v2) ≥
LN (v1) (recall the notational convention for a line ensemble that L(v) = Li ( j)where
v = (i, j)). Black edges arise between consecutive lines thus we expect that our
measure will strongly favor configurations where LN

1 (·) � LN
2 (·) � LN

3 (·) � · · · ,
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i.e., the curves are non-intersecting up to some error (Theorem 3.1 provides a precise
statement substantiating this). Of course, the soft nature of this conditioning will not
rule out crossing, but a heavy penalty will be incurred so at a heuristic level it is useful
to think in terms of non-intersecting lines.

The red edges are (2i − 1, 1) → (2i, 1) and come with a weight e−α(u2i−1,1−u2i,1).
This weight is close to 0when u2i−1,1 � u2i,1 (since α > 0). This creates an attractive
force between LN

2i−1(1) and LN
2i (1) which tries to establish the ordering LN

2i−1(1) ≤
LN
2i (1). Of course, this is in opposition to the soft non-intersecting influence already

discussed. Combined, these forces ultimately (through our analysis of weighted paired
random walks) result in the difference LN

2i−1(1) − LN
2i (1) = O(1) as N → ∞. In

contrast, in the critical regime, when αN = N−1/3μ, the attraction weakens with N
and the forces result inLN

2i−1(1)−LN
2i (1) = O(N 1/3). It is the O(1) distance between

LN
2i−1(1) and LN

2i (1) that makes the supercritical case harder than the critical case.
Finally, consider the blue edges that encode the Gibbs weights between consecutive

values of a given line, i.e. between LN
i ( j) and LN

i ( j + 1). Alone, these weights
define log-gamma increment random walks (with two-step periodicity in the law of
the increments). Thus, putting these three factors together one arrives at the picture
illustrated in Fig. 2A—an ensemble of softly non-intersecting log-gamma random
walks with starting points O(1) distance apart between the curves labeled 2i − 1 and
2i for each relevant i . In order to prove Theorem 1.1 we essentially need to justify the
distance scales in Fig. 2A. To do that, we use the Gibbs property for the line ensemble
described above along with some one-point control over LN

1 that we describe now.

1.3.2 Point-to-line free energy fluctuations

The HSLG Gibbs measures machinery gives us access to the behavior of the HSLG
line ensemble conditioned on the boundary data. However, we still need to understand
the behavior of the boundary data. The theory of (full-space) Gibbsian line ensembles
that has been developed over the last decade has become proficient at taking very
minimal seed information, such as the scale in which tightness occurs for the one-
point fluctuations of the top curve of a Gibbsian line ensemble, and outputting the
scaling and tightness for the entire edge of the line ensemble. We take the first step in
developing such a half-space theory.

There are currently only two fluctuation results about the HSLG polymer. The first
(chronologically) is a result of [31] that we will recall below and appeal to, while the
second is the work of [76] that proves a limit theorem for N−1/3LN

1 (1) (i.e. Fα
N (0)).

Our work began prior to the release of [76] and thus we rely only on the work of [31].
The control [76] provides is forLN

1 (1) only and since we need some information away
from the boundary too, most of the work herein is unavoidable and not significantly
simplified by using [76]. It is natural to wonder if [76] could have been used alone,
in place of [31], at the seed for our analysis. While we do not rule this out, it would
certainly require a very different type of argument since we rely heavily on the fact
that [31] provides some information about LN

1 ( j) as j varies.
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We recall the result of [31]. For each k > 0, define the point-to-(partial)line partition
function

Z line
N (k) :=

N∑

j=�k�
Z(α,θ)(N + j, N − j). (1.8)

This sum is restricted to endpoints at least distance 2k from the boundary. Set p = N+k
N−k ,

Let θc be the unique solution to � ′(θc) = p� ′(2θ − θc) and set (recall the digamma
function � from (1.4))

fθ,p := −�(θc)− p�(2θ − θc), σθ,p :=
(

1
2 (−� ′′(θc)− pψ ′′(2θ − θc)

)1/3

.

Theorem 1.5 (Theorem 1.10 in [31]) Suppose (kN )N∈Z>0 is such that for some y ∈
R ∪ {∞}, limN→∞(N − kN )1/3σθ,p(α + θ − θc) = y. Then, as N →∞

log Z line
N (kN )− (N − kN ) fθ,p

(N − kN )1/3σθ,p

(d)�⇒ U−y .

where for y ∈ R, U−y is distributed as the Baik-Ben Arous-Péché distribution with
parameter y (see Eq. (5.2) in [31]). When y = ∞, U−∞ is distributed as the GUE
Tracy-Widom distribution.

The crucial deduction from Theorem 1.5 is that there exists ν > 0 such that for
each M > 0,

VN (M)+ M2 (d)���⇒
N→∞ XM , where VN (M) := log Z line

N (MN 2/3)+ 2�(θ)N

N 1/3ν
.

(1.9)

Here the BBP distributions of the limiting random variables (XM )M>0 form a tight
sequence in M , in particular they converge in law to the GUE Tracy–Widom distri-
bution as M →∞. A precise version of this deduction in given later in Lemma 3.7.
Essentially, the rescaled point-to-(partial)line free energy process VN (M) looks like
an inverted parabola −M2 with tight fluctuations around it.

1.3.3 Using the Gibbs line ensemble structure to prove Theorem 1.1

We now give a brief overview of the steps of our proof and how it relies on combining
the seed information from [31], i.e. (1.9), and theHSLG line ensemble Gibbs property.
Fixing a bit of notation, we will say that a sequence of random variables XN is upper-
tight if max(XN , 0) is tight, and lower-tight if min(XN , 0) is tight. Recall that XN is
tight if for all ε > 0 there exists K = K (ε) > 0 such that P(|XN | ≥ K ) < ε for all
N ≥ N0. If XN is both upper and lower tight, then it is tight.
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We sketch the proof of the main theorem for r = 1 (r is as in the statement of the
theorem). Fix any N0 large enough so everything below is well-defined for N ≥ N0.
We consider a time

T = 8
N 2/3� (1.10)

(the key point is that time window [0, T ] scales like N 2/3). By virtue of the relation
(1.7) in Theorem 1.3 (i), to prove our main theorem for r = 1 it suffices to establish
tightness of the top curve of the HSLG line ensemble LN (after appropriate scaling)
on the time window [0, T /4]. The broad steps used in establishing our main theorem
can be summarized as (i)-(iv) below.

(i) Given any M1 > 0, prove that there exists M2 > M1 such that N−
1
3LN

1 (2p∗ − 1)

and N− 1
3LN

2 (2p∗) are tight for some random p∗ ∈ [M1N
2
3 , M2N

2
3 ].

Here and below we consider staggered (i.e., even and odd) arguments for LN
1 and LN

2
(and L1 and L2) due to the diagonal Gibbs interaction. This is a technical point which
can be ignored currently.

Owing to the Gibbs property, Theorem 1.3 (ii), enjoyed by the line ensemble LN ,
the joint law ofLN

1 (�1, 2p∗−1�) andLN
2 (�1, 2p∗�) given the knowledge ofLN

1 (2p∗−
1),LN

2 (2p∗) andLN
3 (�1, 2p∗�) (where p∗ comes from (i)) is that of a two-curveHSLG

Gibbs line ensemble (L1, L2) with a bottom boundary data given by L3 = LN
3 and

right-boundary data determined by L1(2p∗ − 1) = LN
1 (2p∗ − 1) and LN

2 (2p∗) =
LN
2 (2p∗). The point of this reduction is that we can now make use of a tool known as

stochastic monotonicity (see Proposition 2.6 and discussion later in the introduction).
This implies that if we instead condition on lower boundary data (i.e., lower L3,
LN
1 (2p∗ − 1) or LN

2 (2p∗)), the resulting measure is stochastically dominated by the
original measure, i.e. the law of (LN

1 ,LN
2 ).

Byusing stochasticmonotonicitywe see that conditionedon the values ofLN
1 (2p∗−

1),LN
2 (2p∗), it is possible to couple on the same probability space

(LN
1 (�1, 2p∗ −

1�),LN
2 (�1, 2p∗�)

)
along with (L1, L2) distributed according to a bottom-free HSLG

Gibbs measure specified by L3 ≡ −∞, L1(2p∗−1) = LN
1 (2p∗−1) and LN

2 (2p∗) =
LN
2 (2p∗) (see also (1.12) below, orDefinition 2.4 for a precise definition) in such away

that LN
1 (�1, 2p∗ − 1�) ≥ L1(�1, 2p∗ − 1�) and LN

2 (�1, 2p∗�) ≥ L2(�1, 2p∗�) point-
wise. In particular, this means that any increasing event (recall from Definition 1.2)
will have a larger probability under the bottom-free measure than under the original
measure. This is an important tool in establishing lower-tightness as well as control
over the modulus of continuity.

For the below three items we will assume that (L1, L2) is specified in this bottom-
free manner and that the right-boundary data given by LN

1 (2p∗ − 1) and LN
2 (2p∗)

satisfies (i) above.

(ii) Prove that N− 1
3 L1(1) and N− 1

3 L2(2) are lower-tight.
(iii) Prove that for any M∗ > 0, with positive probability (depending on M∗ and r

but not of N )

L1(p) ≥ M∗N 1/3, and L2(p) ≥ M∗N 1/3, for all p ∈ �1, T �.
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(iv) Prove process-level tightness of (N−1/3L1(xN 2/3))x∈[0,2].

We shall describe how we establish the above broad steps in a moment. Let us first
conclude how the above steps work together to yield our main theorem, Theorem 1.1.

We first argue that N− 1
3LN

1 (1) and N− 1
3LN

2 (2) are tight. Indeed, since the point-to-
line free energy is an upper bound for the point-to-point free energy process, utilizing

(1.9) it follows immediately that N− 1
3LN

1 (1) and N− 1
3LN

2 (2) are upper-tight. To show
that they are also lower-tightwe utilize the abovementioned stochasticmonotonicity of
theHSLG Gibbs line ensembles (Proposition 2.6) and instead show lower-tightness for
the two-curve bottom-free line ensemble (L1, L2) (i.e., under the condition L3 ≡ ∞),
which is what we established in item (ii).

The next step to proving Theorem 1.1 is to argue that with strictly positive prob-
ability (i.e., not going to zero with N → ∞) there is a uniform separation of length
cN 1/3 (for sufficient small c) between the first two curves LN

1 and LN
2 and the third

curve LN
3 . The argument to show this (Proposition 4.1 in the text) proceeds as fol-

lows. Once we have tightness at the left boundary, it is straight-forward to show that

N− 1
3LN

1 (2v−1) and N− 1
3LN

2 (2v) are tight for any choice of v ∈ �1, p∗�. Combining
this with the soft non-intersection property of the line ensembles and (ii), we deduce

in Theorem 3.8 that supp∈�1,2T � N
− 1

3LN
3 (p) is upper tight. The result in (iii) shows

that the bottom-free line ensemble (L1, L2) has a strictly positive probability of being
uniformly high on [0, T ] and thus by stochastic monotonicity so too does (LN

1 ,LN
2 ).

Together with upper-tightness of supp∈�1,2T � N
− 1

3LN
3 (p), this shows that the proba-

bility that (LN
1 ,LN

2 ) stay separate from LN
3 stays bounded from 0 as N →∞.

Finally, we prove the process-level tightness of the top curve of our ensemble. Size
biasing plays a key role in this deduction (see around equation (5.25)). Indeed, once
we know that there is a positive probability of uniform separation (as deduced above),
we can use the fact that the Radon-Nikodym derivative defining our Gibbs measures
highly penalize configurations where the top two curves are close to the third curve.
Thus, the positive probability event of separation becomes a high probability event.
Finally, we are able to establish process-level tightness (i.e., control on the modulus of
continuity) by leveraging the separation and the process-level tightness of the first two
curves with the third curve moved to−∞ that was shown in item (iv). This establishes
tightness of the first curve which, through identification with the free energy process,
yields Theorem 1.3.

Remark 1.6 The result of [76] immediately implies the tightness of N−1/3LN
1 (1).

However, to carry our proof outlined above we need tightness ofLN
2 (1), and other fine

information about LN
1 and LN

2 away from the boundary, as described in item (ii) and
(iv), which to our best understanding is beyond the scope of [76].

We return to steps (i)-(iv) stated above and describe the main ideas in achieving
them.

Proof idea for (i): We start by proving (Theorem 3.1) that the curves LN
i are typically

non-intersecting (or at least do not overlap bymuch). Combining this with the fact that
the point-to-line partition function (controlled in [31]) dominates the point-to-point
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partition function for any point along the line, it follows that supi, j N
−1/3LN

i ( j) is
upper-tight. Lower-tightness is trickier.

From the parabolic decay of the point-to-(partial)line free energy (1.9), we deduce
that the point-to-point free energy process has to be in the N 1/3 fluctuation scale at
some random p∗1 in a O(N 2/3) window. We essentially (see Proposition 3.4) show
that for M0 large enough

sup
p∈�QN2/3,(M0+2Q)N2/3�

LN
1 (2p + 1)

N 1/3ν
+ Q2 (1.11)

is tight as N →∞, uniformly over all Q > 0. The parameter ν is an explicit function
of θ , see (3.13). The crucial point here is the uniformity, i.e., the K (ε) in the definition
of tightness can be chosen independent of Q > 0. Thus, in N 1/3 and N 2/3 scaling LN

1
follows an inverted parabola.

We next essentially show (see Proposition 3.3) that there exists M1 and M2 large
enough so that

sup
p2∈�M1N2/3,M2N2/3�

N−1/3LN
2 (2p2)

is tight. The idea is if LN
2 is uniformly low in [M1N 2/3, M2N 2/3], then, due to the

Gibbs property of the line ensemble, the first curve LN
1 behaves like a random bridge,

i.e., linearly, in that interval. However, as we show in proving Proposition 3.3, this
violates the inverted parabolic trajectory (1.11) for some Q thus leaving us with a
random p∗2 ∈ [M1N 2/3, M2N 2/3] so that N−1/3LN

2 (2p∗2) is tight. Owing to typical
non-intersection (Proposition 3.1) we have that N−1/3LN

1 (2p∗2 − 1) is tight.
WPRW machinery: The remaining proofs of (ii), (iii) and (iv) rely heavily on under-
standing the

HSLG Gibbs measure on (L1, L2) with L1(2n − 1) = xn, L2(2n) = yn,

and L3 ≡ −∞,
(1.12)

for L1 with domain �1, 2n − 1�, L2 with domain �1, 2n�, n of order N 2/3 and xn, yn
of order N 1/3 (i.e. order

√
n). We referred above to this as the bottom-free measure.

Set M1 = 16 (so that M1N 2/3 ≥ 2T , where T is defined in (1.10)) in (i) and
determine a random point p∗ from the same item. Essentially, we want to take n in
(1.12) to be this p∗. However, one caveat in taking p∗ as a choice for n is that it
is random. So, instead we analyze (1.12) for all fixed n ∈ [M1N 2/3, M2N 2/3]. We
shall show (ii), (iii′), and (iv) under the law in (1.12) with estimates uniform over all
possible choices of n ∈ [M1N 2/3, M2N 2/3]. Here (iii′) is given by

(iii′) Prove that any M∗ > 0, with strictly positive probability (depending only on
M∗ and M1, M2)

under (1.12) L1(p) ≥ M∗N1/3, and L2(p) ≥ M∗N1/3 for all p ∈ �1, n − 1�.
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Note that as n ≥ 2T , (iii′) implies (iii).
The law in (1.12) is closely related (see (1.16)) to theweighted paired random walk

(WPRW) law.

Definition 1.7 (Paired Random Walk and Weighted Paired Random Walk) Let �2
n =

R
n × R

n and F2
n be the Borel σ -algebra associated to �2

n . Write ω ∈ �2
n as ω =

(ω1(1), . . . , ω1(N ), ω2(1), . . . , ω2(N )). (For later purposes write �1
n = R

n , let F1
n

be its Borel σ -algebra and write ω = (ω1, . . . , ωn) for ω ∈ �1
n .) Let fθ (x) denote the

density at x ∈ R of log Y1 − log Y2 were Y1,Y2 are independent Gamma(θ) random
variables and gζ (x) = �(α)−1eαx−ex (see also (2.3) below). For (x, y) ∈ R

2 and
n ∈ Z≥2 The paired random walk (PRW) law on (�2

n,F2
n) is the probability measure

P
n;(x,y)
PRW proportional to the product of two Dirac delta functions δω1(n)=xδω2(n)=y and

a density (against Lebesgue on R2(n−1)) is given by

gζ

(
ω2(1)− ω1(1)

) n∏

k=2
fθ
(
ω1(k)− ω1(k − 1)

)
fθ
(
ω2(k)− ω2(k − 1)

)
dω1(k) dω2(k).

(1.13)

As a slight abuse of notation we will say that the coordinate functions (i.e., random
variables)

Si (k)(ω) := ωi (k), k ∈ �1, n�, i ∈ {1, 2}

under this measure Pn;(a,b)
PRW are paired random walks. See Fig. 4 for an illustration of

the PRW.
The weighted paired random walk (WPRW) law P

n;(x,y)
WPRW on (�2

n,F2
n) is absolutely

continuous with respect to Pn;(x,y)
PRW and defined through a Radon-Nikodym derivative

so that for all A ∈ Fn ,

P
n;(x,y)
WPRW(A) = E

n;(x,y)
PRW [Wsc1A]
E
n;(x,y)
PRW [Wsc]

, (1.14)

where Wsc = Wsc(ω) is given by

Wsc := exp

(
− eS2(1)−S1(2) −

n−1∑

k=2

(
eS2(k)−S1(k+1) + eS2(k)−S1(k)

))
. (1.15)

The ‘sc’ here refers to ‘super-critical’ as we will use a different representation of the
bottom-free law in the critical case. For the purpose of this introduction we will just
write W in place of Wsc below. The WPRW law can be seen as a ‘soft’ version of the
law that would result from conditioning on non-crossing. Crossing is now allowed but
subject to substantial energetic penalization.
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Fig. 4 A paired random walk (PRW) with top curve (S1(k))
n
k=1 and the bottom curve (S2(k))

n
k=1 specified

by the condition that S1(n) = xn = 0 and S2(n) = yn = −√n. The PRW law is given in (1.13) and should
be seen as a reweighting of independent random walks by gζ (S1(1)− S2(1)). This explains why the paths
approach each other on the left of this figure. Also illustrated here is the situation where the two random
walks happen to also be non-intersecting

It follows from the Gibbs property for the WPRW law (see Lemma 4.4) that the

law of (L1(2k − 1), L2(2k))
n
k=1 in (1.12) equals law of (S1(k), S2(k))

n
k=1 under P

n;(xn ,yn)
WPRW

(1.16)

where the latter depends only on n and not N . Thus, hereon out we study the WPRW
law.

Remark 1.8 The WPRW law described above only describes the behavior of points
(L1(2k − 1), L2(2k))nk=1 under the law in (1.12). This leaves half of the points unac-
counted for—even indexed points in L1�1, 2n� and odd indexed points in L2�1, 2n�.
However, once we have controlled the behavior of the points (L1(2k−1), L2(2k))nk=1,
the complementary points can easily be controlled by use of the Gibbs property as
explained in Lemma 4.4.

Proof idea for (ii) and (iii): We now illustrate the proof idea of (ii). The proof idea
for (iii′) is quite similar and done in parallel in Section 4. To establish (ii), it suffices
to show that for A = {S1(1) ≤ −M

√
n} or A = {S2(1) ≤ −M

√
n}, Pn;(xn ,yn)

WPRW (A) can
be made arbitrarily small by choosing M large enough in a manner that is uniform as
n → ∞. Let us consider the case A = {S1(1) ≤ −M

√
n} as the argument for the

other case is completely analogous. The event A is increasing (recall from Definition
1.2). Thus, by stochastic monotonicity of Pn;(xn ,yn)

WPRW (Proposition 2.6), decreasing the
values of the endpoints (xn, yn) can only increase the probability of A. Thus

P
n;(xn ,yn)
WPRW (S1(1) ≤ −M

√
n) ≤ P

n;(min{xn ,yn},min{xn ,yn}−√n)

WPRW (S1(1) ≤ −M
√
n)

= P
n;(0,−√n)

WPRW (S1(1) ≤ −M
√
n −min{xn, yn}),

where the last inequality follows from shift invariance of the Gibbs measures (Lemma
2.1a). Recall that by the tightness afforded to us from (i) we were able to assume that
|min{xn, yn}| is of order √n. Since in (ii) and (iii) we are likewise trying to prove
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tightness or that certain events occur with positive probability, it suffices to show that
for all C > 0, those results hold under the assumption |min{xn, yn}| < C

√
n. We do

not need uniformity in C and the argument is the same for any such value, so we will

currently assume C = 1. Thus we aim now to bound P
n;(0,−√n)

WPRW (S1(1) ≤ −M
√
n)

(really M + 1, but since M is arbitrary we just write M here) for large enough M ,
uniformly in n. To summarize, we have currently reduced our consideration to the
boundary data xn = 0, yn = −√n. This type of reduction is also possible while
dealing with corresponding events in (iii′) but not for the event (iv).

We next claim that there exists a constant C > 0 so that uniformly over all M and
n

P
n;(0,−√n)

WPRW (A) ≤ C2
P
n;(0,−√n)

PRW (A) for A = {S1(1) ≤ −M
√
n}.

The probability Pn;(0,−√n)

PRW (A) can be readily shown to go to zero uniformly in n as M
grows. Thus, it suffices to prove the above comparison. In light of (1.14), it suffices
to show such a comparison for both the numerator and denominator. In particular, we
show that

E
n;(0,−√n)

PRW [W1A] ≤ C·n−1/2 ·En;(0,−√n)

PRW [1A], and E
n;(0,−√n)

PRW [W ] ≥ 1
C ·n−1/2,

(1.17)

where C > 0 is a universal constant that does not depend on M or n. Notice that while
both numerator and denominator terms in (1.14) go to zero with n →∞, they do so

at the same rate n−1/2 which cancels and yields the desired control on Pn;(0,−√n)

WPRW (A).
Note also that the n−1/2 decay behavior here is particular to xn, yn of order

√
n and

that for general boundary values of xn, yn , the estimates in (1.17) may not be true.
The inequalities in (1.17) are established in the proofs of Lemmas 4.1 and 4.11, and
Corollary 4.12. We will describe their main ideas here.
Proof idea for upper bound in (1.17). We briefly explain the proof idea for the upper

bound onEn;(0,−√n)

PRW [W1A] and, along the way, we explain why the n−1/2 factor shows
up. The starting point of our proof is to compare the soft non-intersection conditioning
by W to hard non-intersection conditioning in the following manner. Define

NIp :=
{
S1(k)− S2(k) ≥ −p, for all k ∈ �2, n − 1�

}
, with NI := NI0.

(1.18)

Under the complement event NIcp, we have W ≤ e−ep and thus the following deter-
ministic inequality:

W ≤ 1NI +
∞∑

p=0
e−ep ·1NIp+1∩NIcp ≤ 1NI +

∞∑

p=0
e−ep ·1NIp+1 . (1.19)

Note that if we condition on (S1(1), S2(1)), the PRW law can be viewed as two inde-
pendent random bridges from (S1(1), S2(1)) to (0,−√n). We denote this law as
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P
n;(S1(1),S2(1)),(0,−√n). In Lemma C.8, we show that there is an absolute constant

C > 0, such that

P
n;(S1(1),S2(1)),(0,−√n)(NIp) ≤ eCp · Pn;(S1(1),S2(1)),(0,−√n)(NI) for all p ≥ 0.

By this inequality and (1.19) along with the tower property of conditional expectations
we find

E
n;(0,−√n)

PRW [W1A] ≤ C · En;(0,−√n)

PRW

[
1A · Pn;(S1(1),S2(1)),(0,−√n)(NI)

]

for some C > 0. Thus, to upper bound E
n;(0,−√n)

PRW [W1A] it suffices to do so to

P
n;(S1(1),S2(1)),(0,−√n)(NI).
Due to the presence of the g factor in (1.13), under the PRW lawwe expect a pinning

effect in the left boundary, i.e., S1(1)− S2(1) = O(1). Thus we expect the large scale
behavior under the PRW law should be comparable to that of two independent random
walks started close to each other. It is well known (see for example [82, 95]) that
when S1(k), S2(k) are independent random walks with S1(1) − S2(1) = 0, the non-
intersection probability over a time horizon of n step is of the order n−1/2. This is why
we expect the n−1/2 behavior of the non-intersection probability under the PRW law
as well. We confirm this expectation with two lemmas. The first, Lemma 4.7, show
that |S1(1) − S2(1)|, S1(1)/√n, and S2(1)/

√
n all have exponential tails under the

PRW law. The second, Lemma C.9, bounds the non-intersection probability as

1|S1(1)|+|S2(1)|≤√n(log n)3/2 · Pn;(S1(1),S2(1)),(0,−√n)
(
NI
)

≤ C√
n
·max{S1(1)− S2(1), 1}·max

{
1√
n
|S1(1)|, 2

} 3
2
.

(1.20)

This lemma allows us to control the probabilitywhen |S1(1)|+|S2(1)| ≤ √n(log n)3/2

(the complementary case probability is controlled by the exponential tails). Lemma
4.7 follows from the description of the PRW law in (1.13) and the exponential tails
for the densities fθ and gζ . Lemma C.9 is more subtle and requires various estimates
under the randombridge law that are uniform over a specified set of starting and ending
points. Let us briefly explain here why we have such a bound in (1.20). Intuitively,
the non-intersection probability should increase as the difference in starting points,
S1(1) − S2(1), increases. Thus we see a term of the form max{S1(1) − S2(1), 1} on
the right-hand side of (1.20). The term involving 1√

n
|S1(1)|, on the other hand, arises

due to the nature of our proof. In the course of proving Lemma C.9, we proceed by
bounding the ratio of density of the random bridge and density of a (pure) random
walk. Such bound naturally depends on the slope of the random bridge and gets worse
as the slope |S1(1)|/√n increases. This is why we encounter 1√

n
|S1(1)| term on the

right-hand side of (1.20). The details of the proof are presented in Appendix C. From
the above two lemmas the upper bound in (1.17) follows readily.

Proof idea for lower bound in (1.17). Lower boundingEn;(0,−√n)

PRW [W ] ismore involved.
The first step is to find a lower bound for W in terms of the indicator function for an
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A

D

B

C

n/4 n/2 n/4

Fig. 5 The modified random bridge is constructed by starting two random walks of length n/4, one from A
to B and another (run backwards) from D to C . The path between B and C is then chosen given the values
there according to a random bridge of length n/2 (color figure online)

event which we call Gap. For simplicity we do this in a simpler setting to lower bound

E
n;(0,−√n)

PRW [W ′] where

W ′ := exp

(
−

n−1∑

k=2
eS2(k)−S1(k)

)
(1.21)

is obtain by deleting various terms in the exponential defining ofW (see (1.15)). Note
that W ′ ≥ W and thus the argument for W is necessarily more involved. It is known
from [90] that when a randomwalk (S(k))nk=1 is conditioned to stay positive, with high
probability S(k) has growth at least of the order k

1
2−δ for any δ > 0. Taking δ = 1

4 this
implies that if we condition a random bridge (S(k))nk=1 of length n starting and ending
at zero to stay positive, then S(k) should be at least of the order min{k, n − k + 1} 14
with very high probability. Treating S1(k) − S2(k) as a random bridge, this inspires
us to define

Gap′β := {S1(k)− S2(k) ≥ β ·min{k, n − k + 1} 14 for all k ∈ �2, n�}

We note that when Gapβ ′ ∩ {S1(1)− S2(1) ∈ [0, 1]} occurs, the sum in the exponent
ofW ′ is bounded uniformly in n and henceW ′ is bounded below by a strictly positive
constant, say a′β . Thus we have W ′ ≥ a′β1Gap′β∩{S1(1)−S2(1)∈[0,1]}. For W , we define a

similar, albeit more complicated, event Gapβ (see (4.22) for definition) that captures
the above idea and we show in Lemma 4.8 that W ≥ aβ1Gapβ∩{S1(1)−S2(1)∈[0,1]} for
some deterministic constant aβ > 0. Thus to lower bound E

n;(0,−√n)

PRW [W ] we lower
bound P

n;(0,−√n)

PRW (Gapβ) and P
n;(0,−√n)

PRW (S1(1)− S2(1) ∈ [0, 1]).
Recall that by the Gibbs property, conditioned on (S1(1), S2(1)), the law of

(S1(k), S2(k))nk=1 under P
n;(0,−√n)

PRW is that of two independent random bridges (with
increment law fθ as in all of our discussion above) started from (S1(1), S2(1)) and
ended at (0,−√n). In estimating the Gap event probability under this law we found
it easier to work with the law of two independent modified random bridges. These are
described in Fig. 5 and composed of random walks (with increment law fθ ) in the first
and last n/4 portion of its domain, and then a bridge to connect the resulting values.
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Lemma 4.10 shows that the density of the random bridge and modified random bridge
are comparable provided the values at k = 1, n/4, 3n/4, n are all of order

√
n. In

particular, if we set

E := {|S1(n/4)− S1(3n/4)| + |S2(n/4)− S2(3n/4)|
≤ √

n}, F := {|S1(1)| + |S2(1)| ≤
√
n},

the results from Lemma 4.10 allows us to conclude that

P
n;(0,−√n)

PRW (Gapβ ∩ {S1(1)− S2(1) ∈ [0, 1]})
≥ P

n;(0,−√n)

PRW (Gapβ ∩ {S1(1)− S2(1) ∈ [0, 1]} ∩ E ∩ F)

≥ 1
C · En;(0,−√n)

PRW

[
1{S1(1)−S2(1)∈[0,1]}∩F · P̃n;(S1(1),S2(1)),(0,−√n)(Gapβ ∩ E)

]
(1.22)

where P̃
n;(S1(1),S2(1)),(0,−√n) is the law of two independent modified random

bridges started from (S1(1), S2(1)) and ended at (0,−√n). Using shorthand P̃ for
P̃
n;(S1(1),S2(1)),(0,−√n) and Bayes rule,

P̃(Gapβ ∩ E) = P̃(NI) · P̃(Gapβ ∩ E | NI).

Since the modified random bridge has two true random walk portion (first and last
quarter) we can now rely on standard non-intersecting random walk techniques to
eventually obtain a lower bound on the probability P̃(NI) above. In Appendix C we
establish various uniform estimates and in particular (combining Lemma C.3 and
Corollary C.10) show that for xn, yn of order n1/2,

P̃(NI) ≥ 1
C · n−1/2 · Pn/4;(xn ,yn)(ÑI), (1.23)

and P̃(Gapβ ∩ E | NI) ≥ 1
C (for small enough β) uniformly over S1(1), S2(1) ≤

M
√
n and S1(1) − S2(1) ∈ [0, 1]. In (1.23), Pn/4;(xn ,yn)(ÑI) denotes the probability

of non-intersection of two random walks of length n/4 started from xn and yn . As
xn = 0, yn = −√n, we can show that Pn/4;(xn ,yn)(ÑI) is bounded below. Finally,

Lemma 4.7 establishes that En;(0,−√n)

PRW

[
1{S1(1)−S2(1)∈[0,1]}∩F

]
is bounded below. Thus

combining all the estimates leads to an n−1/2 order lower bound for the right hand
side of (1.22). Putting together the various bounds described above now yields the

desired lower bound on En;(0,−√n)

PRW [W ] in (1.17). Since in Sect. 5.3, we prove (ii) and
(iii′) in parallel, some parts of the argument presented here in the introduction appear
in a more general or slightly different flavor later. However, the core idea and features
remain the same.

Non-intersecting random walks and random bridges that are pinned at the starting
and/or ending points have been studied extensively (e.g. [30, 55, 61] and the refer-
ence therein) and are known to converge under diffusive scaling to Dyson Brownian
motion and non-intersecting Brownian bridges. As demanded by our technical argu-
ments, our work establishes uniform (over starting and ending points) estimates for
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non-intersection probabilities of pairs of random walks and random bridges in such
scaling, i.e. uniform over all possible O(1) starting points that potentially can vary
in a diffusive O(

√
n) window (precisely how (S1(1), S2(1)) behaves). Appendix C

develops themachinery to establish such uniform estimates under general assumptions
on increments of the random bridges.

Proof idea for (iv): The argument to prove (iv) also uses the machinery developed in
the proof of (ii) and (iii) and the reduction from (1.16) to the study of the weighted
paired random walks (S1(k), S2(k))nk=1. For γ, δ, M > 0, consider the events

B = B(δ, γ ) :=
{

sup
i1,i2∈�1,n/4�
|i1−i2|≤δn

|S1(i1)− S1(i2)| ≥ γ
√
n

}
,

G = G(M) := {|S1(1)| + |S2(1)| ≥ M
√
n
}
.

To prove tightness we will show that for each γ > 0, as δ → 0, we have
P
n;(xn ,yn)
WPRW (B) → 0. Recall that as an input we know that xn, yn are of order n1/2.

In (ii), we observed that Pn;(xn ,yn)
WPRW (G) → 0 as M → ∞ uniformly in n. Thus it suf-

fices to provide an upper bound for Pn;(xn ,yn)
WPRW (B ∩ Gc) for each M > 0. Thanks to

(1.14), it suffices to give a upper bound for En;(xn ,yn)
PRW [W1B∩Gc ] and a lower bound

for En;(xn ,yn)
PRW [W ]. An important difference from the discussion regarding (ii) is that

now the event B in question deals with two point differences of S1(·) which is not
an increasing event. Thus, the monotonicity of the Gibbs measure with respect to the
boundary data does not help here and, unlike in (ii), we cannot use monotonicity to
reduce consideration to xn = 0, yn = −√n.

Instead, using the soft non-intersection property of our Gibbsian line ensemble we
can deduce control on the difference of the exit points. We show in Theorem 3.1 that
for all large enough N

P

(
LN
1 (2n − 1) ≥ LN

1 (2n)− (log N )7/6 for all n ∈ �M1N
2/3, M2N

2/3�
)
≥ 1− 2−N .

Note that in (1.12) we conditioned upon L1(2n − 1) = xn and L1(2n) = yn . In view
of the above high probability event, we may thus assume xn − yn ≥ −(log n)7/6.
Under these boundary conditions (xn, yn of order n1/2 and xn − yn ≥ −(log n)7/6)
the estimates in (1.17) may not hold.

Nonetheless, for the lower bound of En;(xn ,yn)
PRW [W ], all the arguments up to and

including (1.23) hold under the present assumptions on (xn, yn). We show in Lemma
5.6 that

E
n;(xn ,yn)
PRW [W ] ≥ 1√

n
C−11 · Pn/4;(xn ,yn)(ÑI) ≥ C−12 e−C2(log n)5/4 , (1.24)

where the second bound above is true under our assumption xn− yn ≥ (log n)7/6. For
the upper bound on E

n;(xn ,yn)
PRW [W1B∩Gc ] we first obtain a deterministic bound for W
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(similar to (1.19))

W ≤ C
(
e−(log n)2 + W̃

)
, W̃ :=


2 log log(n)�∑

p=0
e−ep ·1NIp+1 .

Due to the e−C2(log n)5/4 lower bound in (1.24), the e−(log n)2 factor above can be ignored
and we instead focus on upper bounding W̃ . Using the Gibbs property and conditional
expectations

E
n;(xn ,yn )
PRW [W̃1B∩Gc ] =


2 log log(n)�−1∑

p=0
e−epEn;(xn ,yn)

PRW

[
1GcP

n;(S1(1),S2(1)),(xn ,yn)(B ∩ NIp+1)
]

=

2 log log(n)�−1∑

p=0
e−epEn;(xn ,yn)

PRW

×
[
1GcP

n;(S1(1)+p+1,S2(1)),(xn+p+1,yn)(B ∩ NI)
]
.

where Pn;(S1(1),S2(1)),(xn ,yn) is the law of two independent random bridges started from
(S1(1), S2(1)) and ending at (xn, yn). The last equality above follows by lifting the
S1(·) random walk by p + 1 units. We then apply the density comparison (Lemma
4.10) to modified random bridges to obtain

1Gc · Pn;(S1(1)+p,S2(1)),(xn+p,yn)(B ∩ NI) ≤ C · 1Gc · P̃n;(S1(1)+p,S2(1)),(xn+p,yn)(B ∩ NI).

where P̃
n;(S1(1)+p,S2(1)),(xn+p,yn) is the law of two independent modified random

bridges started from (S1(1), S2(1)) and ending at (xn, yn). The above comparison
is only possible when we have a control on the slopes of the random bridges. This
slope control is precisely furnished by 1Gc .

Let us write P̃p for P̃n;(S1(1)+p+1,S2(1)),(xn+p+1,yn). Using uniform estimates for
non-intersection probability for random walks and bridges from Appendix C (com-
bining Lemma C.3, Lemma C.8 and Corollary C.10) we obtain that

P̃p(NI) ≤ C√
n
eCp ·max{S1(1)− S2(1), 1} · Pn/4;(xn ,yn)(ÑI).

Since B depends only of the first quarter points, P̃p(B | NI) can be controlled by
modulus of continuity estimates for (pure) randomwalks under non-intersectionwhich
we deduce in Lemma C.12. In particular, we obtain that supp∈�0,
2 log log(n)�−1� P̃p(B |
NI) → 0 as δ → 0. Combining all the above estimates, in view of the exponential
tail bounds for S1(1) − S2(1) under the PRW law from Lemma 4.7, this leads to the
desired estimate.
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1.4 Related works on half-space polymers

Half-space polymers are a particular variant of full-space polymers that are well-
studied in the literature (introduced in [23, 74, 77]). Full-space polymers are widely
believed to be in the KPZ universality class in the sense that they are expected to
have 1/3 fluctuation exponent and 2/3 transversal exponent. However, besides a few
solvable models, these exponents are not proven rigorously for general polymers. We
refer to [10, 12, 42, 58, 59, 92] and references therein for more details.

Half-space polymer models have been studied in the physics literature since the
work of Kardar [79]. They arise naturally in the context of modeling wetting phe-
nomena [1, 18, 89] where one studies directed polymers in the presence of a wall.
They have been of great interest due to the presence of phase transition (called the
‘depinning transition’) and a rich phase diagram for limiting distributions based on the
diagonal strength. This phase diagram was first rigorously proven for geometric last
passage percolation (LPP), i.e., polymers with zero temperature, in a series of works
by Baik and Rains [25–27]. Multi-point fluctuations were studied then in [94] and
similar results were later proven for exponential LPP in [6, 7] using Pfaffian Schur
processes. For further recents works on half-space LPP, we refer to [9, 14, 15, 63].

Positive temperaturemodels such as polymers resisted rigorous treatment for longer
compared to LPP since they are no longer directly related to Pfaffian point processes.
For such class of models in the half-space geometry, the first rigorous proof of depin-
ning transition appeared in [31] where the authors proved precise fluctuation results
including the BBP phase transition [3] for the point-to-line log-gamma free energy.
For the point-to-point log-gamma free energy, the limit theorem alongwith Baik-Rains
phase transition was conjectured in [5] based on an uncontrolled steepest descent anal-
ysis of certain formulas coming from half-spaceMacdonald processes. This result was
proved recently in [76] using a new set of ideas, relating the half-space model to a
free boundary version of the Schur process. In fact, [76] also proves analogous results
for the half-space KPZ equation which is the free energy of the continuum directed
random polymer in half-space. The half-space KPZ equation arises as a limit of free
energy ofHSLG polymer [11, 100]. Since the earlywork byKardar [79], the half-space
KPZ equation has received significant attention, with a flurry of new results recently
in in both mathematics [5, 8, 11, 44, 76, 87, 88] and physics literature [4, 20–22, 50,
68, 78, 80]. Apart from log-gamma and continuum polymer, a half-space version of
the beta polymer was recently introduced and studied in [29].

Organization

In Sect. 2, we study several properties of HSLG Gibbs measures and Gibbsian line
ensemble, and prove Theorem 1.3. Section 3 is divided into three subsections that
discuss three important probabilistic results for the line ensemble. In Sect. 3.1, we
show a certain ordering of points on the line ensemble (Theorem 3.1). This is the
precise technical form of the typical non-intersection property discussed at the end
of Sect. 1.3.1. In Sect. 3.2, we show that there is a high point on the second curve
(Theorem 3.3) as discussed at the end of item (i) from Section 1.3.3. In Sect. 3.2,
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we provide high probability uniform upper bounds for the second and third curves
(Theorem 3.8). These bounds are used later in proving item (ii) from Sect. 1.3.3. In
Sect. 4, we prove one-point tightness on the left boundary and study the probability of a
certain ‘region pass event’. The study of the region pass event is utilized in proving the
lower bound on the uniform separation between the first two curves and the third curve
(described earlier in (ii) from Sect. 1.3.3). Finally, in Sect. 5, we study the modulus of
continuity under theWPRW lawandproveTheorem1.1.AppendixA includes the proof
of stochastic monotonicity for HSLG Gibbsian line ensembles. Appendix B collects
several basic facts about log-gamma randomvariables and relatedmeasures. Appendix
C is devoted to proving several technical estimates related to non-intersecting random
bridges which are required in studying theWPRW law.

Notations and conventions

Fora, b ∈ R,we denote �a, b� := [a, b]∩Z,a∧b = min(a, b), anda∨b = max(a, b).
Throughout this paper we work with three fixed parameters: θ > 0 (bulk parameter),
ζ > 0 (supercritical boundary parameter), and μ ∈ R (critical boundary parameter).
All our constants appearing in the rest of the paper may depend on θ, ζ, μ and possibly
other specified variables. We will only specify the dependency of the constants on
the variables besides θ, ζ, μ by writing C = C(a, b, c, · · · ) > 0 to denote a generic
deterministic positive finite constant thatmay change from line to line, but is dependent
on the designated variables a, b, c, · · · . We write l.h.s. or r.h.s. to denote the left- or
right-hand side of an equation. Given a density f , X ∼ f denotes a random variable

X whose distribution function has density f . We also write Xi
i .i .d.∼ f if {Xi } are i.i.d.

with some common density f . We sometimes also use the notation X ∼ • where •
is the name of a distribution (e.g. Gamma−1(β)) to mean X has distribution • and is
independent of all other random variables being considered. For two densities f and
g, we write f ∗ g(x) = ∫

R
f (z)g(x − z)dz for the convolution density. We use the

notation σ(•) for denote the σ -algebra generated by the random variables •. We write
(d)�⇒ and

(d)= for convergence and equality in distribution. There is a glossary at the end
of this text that recalls and points to the definitions of much of the notation introduced
elsewhere.

2 Half-space log-gamma objects and proof of Theorem 1.3

In Sect. 2.1, we gather several useful properties ofHSLG Gibbs measures fromDefini-
tion 1.2 including stochastic monotonicity (Proposition 2.6). TheHSLG line ensemble
is defined in Sect. 2.2 which includes the proof of Theorem 1.3.

Here, we introduce few important functions that will come up often in our argu-
ments. We define

W (a; b, c) = exp(−ea−b − ea−c), a, b, c ∈ R, (2.1)
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For θ > 0,m ∈ Z we set

Gθ,(−1)m (y) := eθ(−1)m y−e(−1)m y
/�(θ), y ∈ R. (2.2)

One can check that Gθ,(−1)m is a density (i.e., it integrates to 1). Using G, we define
two more probability density functions:

fθ (x) := Gθ,+1 ∗ Gθ,−1(x), gζ (x) := Gζ,1(x), θ, ζ > 0, x ∈ R, (2.3)

where ∗ denotes the convolution operation, i.e., p ∗ q(x) := ∫
R
p(z)q(x − z)dz.

2.1 Properties ofHSLG Gibbsmeasures

We start by writing down several lemmas that all follow directly from the definition
of HSLG Gibbs measures (recall from Definition 1.2).

Lemma 2.1 Consider the graph Z2≥1 endowed with directed/colored edges E(Z2≥1) as
above. Let � be a bounded connected subset of Z2≥1. For each (i, j) ∈ ∂� fix some
ui, j ∈ R. Fix any c ∈ R. Let

(
L(v) : v ∈ �

)
be a collection of random variables

that are distributed as the HSLG 
-Gibbs measure on the domain � with boundary
condition

(
ui, j : (i, j) ∈ ∂�

)
.

(a) (Translation invariance) The law of
(
L(v)+ c : v ∈ �

)
is given by the HSLG 
-

Gibbs measure on the domain�with boundary condition
(
ui, j+c : (i, j) ∈ ∂�

)
.

(b) (Gibbs property on smaller domain) Take a bounded connected subset�′ ⊂ �. The
law of

(
L(v) : v ∈ �′

)
conditioned on

(
L(v) : v ∈ � \�′

)
is given by the HSLG


-Gibbs measure on the domain�′ with the boundary condition
(
L(v) : v ∈ ∂�′

)

where we set L(v) = uv for v ∈ ∂�.

Proof Note that the density of a HSLG 
-Gibbs measure given in (1.6) only involve
terms of the form uv1−uv2 . Thus adding a constant c to every term does not change the
law. The fact that Gibbs property carries to smaller domains follows from the explicit
form of the density as well. ��

Although HSLG Gibbs measures are defined for any bounded connected subset �,
we will be mainly concerned with two kinds of domains �. Given k ≥ 1 and T ≥ 2,
we define

Kk,T :=
{
(i, j) : i ∈ �1, k�, j ∈ �1, 2T − 1− 1i=1�

}
, K′k,T := �1, k�× �1, 2T − 2�.

(2.4)

The domains Kk,T and K′k,T are shown as shaded regions in Figure 6. We state these
results for the homogeneous Gibbs measures, though they could easily be adapted to

-Gibbs measures.

Lemma 2.2 (One-sided boundary Gibbs property) Fix k, T ∈ Z≥2 and α > −θ . Fix
�y ∈ R

k , �z ∈ R
T , and �w ∈ R

T−1.
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y1
y2

y3

z0

z1 z2 z3
z4

(1, 2)

(2, 3) (2, 5)
(2, 4)

(3, 6)

(a) Kk,T

y1

y2

y3

z0

w1 w2 w3

(1, 6)

(3, 3)

(2, 5)

(3, 1)

(2, 2)

(b) K′
k,T

Fig. 6 Two domainsKk,T andK′k,T are shown in (A) and (B) with k = 3, T = 4 and boundary conditions
(�y, �z) and (�y, �w) respectively. They include all the vertices within the gray dashed box as well some labels
for the points. The directed edgeswith lighter colors are edges connecting vertices from� to ∂� or viceversa
(� = Kk,T or � = K′k,T ). The boundary variable z0 does not actually play any role in the density of the
corresponding HSLG Gibbs measure after normalizing it to be a probability density. This point is explained
in the proof of Lemma 2.2 (color figure online)

(a) The HSLG Gibbs measure on the domain Kk,T with boundary condition (�y, �z) is
a probability measure on R

|Kk,T | whose density at u = (ui, j )(i, j)∈Kk,T is propor-
tional to

f �y,�zk,T (u) :=
k∏

i=1

⎛

⎝e(−1)iαui,1
T−1i=1∏

j=1
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

×
2T−1−1i=1∏

j=1
Gθ,(−1) j+1(ui, j − ui, j+1)

⎞

⎠ (2.5)

where W (a; b, c) and Gθ,(−1)m (y) are defined in (2.1) and (2.2) respectively. Here
uk+1,2 j = z j for each j ∈ �1, T �, u1,2T−1 = y1, and ui,2T = yi , ui,2T+1 := +∞
(so that the factor exp(−eui+1,2T−ui,2T+1) = 1) for each i ∈ �2, k�.

(b) The HSLG Gibbs measure on the domain K′k,T with boundary condition (�y, �w) is

a probability measure on R
|K′k,T | whose density at u = (ui, j )(i, j)∈K′k,T is propor-

tional to

Q �y
′,�z

k,T (u) :=
k∏

i=1

⎛

⎝e(−1)iαui,1
T−1∏

j=1
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

×
2T−2∏

j=1
Gθ,(−1) j+1(ui, j − ui, j+1)

⎞

⎠ . (2.6)

Here uk+1,2 j = w j for each j ∈ �1, T −1�, and ui,2T−1 = yi for each i ∈ �1, k�.

Proof We refer to Fig. 6 for a visual representation of the above measures. Recall the
edge weights from (1.5). The blue edges in the figure corresponds toGθ,(−1) j+1(·) fac-
tors that appear in (2.5) and (2.6). The (−1) j+1 factor is due to the alternate switching
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of the direction of blue weights as we read off from left to right. Here we have obtained
theG function from the blue edgeweights bymultiplying by a constant. This is done so
that theG function becomes density (i.e., integrates to 1), a fact thatwill be useful in the
later analysis. The black edge weights from (1.5) corresponds to the W factor in (2.5)
and (2.6). Finally the red edge weights are of type e−αu2i−1,1−u2i,1 = e−αu2i−1,1 ·eαu2i,1 .
Note that only for odd k we have (k + 1, 1) ∈ ∂Kk,T , ∂K′k,T . In that case, the fac-
tor e−αuk+1,1 can be absorbed into the proportionality constant. Thus, overall, the red
weights contributes the factor

∏k
i=1 e(−1)iαi,1 in the above densities. This also explains

why the z0 value does not play any role in the definition of these densities. ��
Definition 2.3 We will mostly be concerned with the HSLG Gibbs measure on Kk,T

with boundary condition (�y, �z) (see Lemma 2.2a for the probability density of this
measure). We will denote the probability and the expectation operator under this
law as P

�y,�z;k,T
α and E

�y,�z;k,T
α respectively and a random variable with this law by

L := (
L(i, j) := Li ( j) : (i, j) ∈ Kk,T

)
. We may drop α and write P

�y,�z;k,T and
E
�y,�z;k,T when clear from the context.

We now define theHSLG Gibbs measure onKk,T with boundary condition �y ∈ R
k ,

�z := (−∞)T .

Definition 2.4 (Bottom-free Gibbs measure) The bottom-freemeasure on the domain
Kk,T with boundary condition �y is the HSLG Gibbs measure on the domain Kk,T

with boundary condition (�y, (−∞)T ). By Lemma 4.2 this the corresponding density

f �y,(−∞)T

k,T is integrable when k is even and α ∈ R (in that case the measure does not
even depend on α) or when k is odd and α ∈ (−θ, θ). In this case the bottom-free
measure can be normalized to a probability measure so that for �z ∈ R

T

P
�y,�z;k,T
α (A) = 1

V T
k (�y, �z)E

�y;(−∞)T ;k,T
α

⎡

⎣1A ·
T∏

j=1
W (z2 j ; Lk(2 j + 1), Lk(2 j − 1))

⎤

⎦ ,

(2.7)

for any event A, where we set Lk(2T + 1) = +∞ and the normalization is given by

V T
k (�y, �z) := E

�y;(−∞)T ;k,T
α

⎡

⎣
T∏

j=1
W (z2 j ; Lk(2 j + 1), Lk(2 j − 1))

⎤

⎦ . (2.8)

In other words, we can build the full Gibbs measure P
�y,�z;k,T
α by reweighting the

bottom-free measure by a Radon-Nikodym derivative given by the expression (except
1A) inside the expectation in (2.7), normalized by dividing by V T

k (�y, �z).
Besides one-sided conditioning as inLemma2.1,we can also use theGibbs property

when conditioning on boundary data on both sides as is standard in full-space discrete
line ensembles [12, 45, 57]. We record here one such result that will be useful in our
later proofs.
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ba

z1 z2 z3 z4 z5

Fig. 7 The marginal distribution of the odd (black) points of the HSLG Gibbs measure shown above with
T1 = 1, T2 = 6 is described in Lemma 2.5 (color figure online)

Lemma 2.5 (Two-sided boundary Gibbs property) Fix 1 ≤ T1 < T2 − 1. Suppose L
is distributed as P�y,�z;1,T2 . Let (X( j))T2−1j=T1−1 be a random bridge from X(T1− 1) = a
to X(T2− 1) = b with i.i.d. increments from the density fθ defined in (2.3). The law of(
L1(2 j+1) : T1 ≤ j ≤ T2−2

)
conditioned on {L1(2T1−1) = a, L1(2T2−1) = b}

is absolutely continuous with respect to the law of (X( j))T2−2j=T1 with Radon-Nikodym
derivative proportional to

W̃ := exp

(
−

T2−1∑

j=T1
(ez j−X( j) + ez j−X( j−1))

)
.

Proof Weutilize the formof theGibbsmeasure density given in (2.5). TheGθ,1∗Gθ,−1
function appears in the statement ofLemma2.5 aswe focus on themarginal distribution
of the odd points only and hence we integrate out the dummy variables on the even
points (see Fig. 7). ��

As with full-space line ensemble Gibbs measures [12, 35, 36, 57, 100], the HSLG
Gibbs measures satisfy stochastic monotonicity with respect to the boundary data.
The following, stated for the inhomogeneous 
-Gibbs measures provides a grand
monotone coupling over all boundary data.

Proposition 2.6 (Stochastic monotonicity) Fix k1 ≤ k2, ai ≤ bi for k1 ≤ i ≤ k2. Fix

 := {ϑi, j > 0 : (i, j) ∈ Z

2≥1}, and α > −min{θi, j : (i, j) ∈ Z
2≥1}. Let

� := {(i, j) : k1 ≤ i ≤ k2, ai ≤ j ≤ bi }.

There exists a probability space that supports a collection of random variables

(
L(v; (uw)w∈∂�) : v ∈ �, (uw)w∈∂� ∈ R

|∂�|)

such that

(1) For each (uw)w∈∂� ∈ R
|∂�|, the marginal law of

(
L(v; (uw)w∈∂�) : v ∈ �

)
is

given by the HSLG 
-Gibbs measure for the domain � with boundary condition
(uw)w∈∂� ∈ R

|∂�|.
(2) With probability 1, for all v ∈ � we have

L
(
v; (uw)w∈∂�

) ≤ L
(
v; (u′w)w∈∂�

)
whenever uw ≤ u′w for all w ∈ ∂�.

Consequently, the probability of increasing events (defined in Definition 1.2)
increase with respect to decreasing the boundary conditions.
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The above proposition is stated for the general HSLG 
-Gibbs measure introduced
inDefinition 1.2. In light of the second part of the above proposition,wewill sometimes
say that an increasing event is ‘increasingwith respect to the boundary data’. The proof
of the above proposition follows a similar strategy as in [12, 57] and is provided in
Appendix A for completeness.

2.2 TheHSLG line ensemble and Proof of Theorem 1.3

In this section we define the half-space log-gamma (HSLG) line ensemble and prove
Theorem 1.3.Weworkwith the inhomogeneous polymermodel determined by param-
eters �θ := (θi )i∈Z≥1 . The construction of the line ensemble is based on the multi-path
point-to-point partition functions. These are defined in (2.10) as sums over multiple
non-intersecting paths on the full quadrant Z2≥1 (not just half-quadrant) of products of
the symmetrized versions of the weights from (1.1):

W̃i, j ∼

⎧
⎪⎨

⎪⎩

1
2Wi, j when i = j,

Wj,i when j > i,

Wi, j when j < i .

(2.9)

Form, n, r ∈ Z≥1 withn ≥ r , let�(r)
m,n be the set of r -tuples of non-intersectingupright

paths in Z2≥1 starting from (1, r), (1, r − 1), · · · , (1, 1) and going to (m, n), (m, n −
1), . . . , (m, n−r+1) respectively.Wedefine themultipath point-to-point symmetrized
partition function as

Z (r)
sym(m, n) :=

∑

(π1,...,πr )∈�
(r)
m,n

∏

(i, j)∈π1∪···∪πr

W̃i, j , (2.10)

with the convention that Z (0)
sym(m, n) ≡ 1 for all m, n ∈ Z≥1. The dependence on the

�θ := (θi )i∈Z≥1 parameters that determine the weights through (1.1) is suppressed here
and below.

Definition 2.7 (Half-space log-gamma line ensemble) Fix N ∈ Z≥1. For each i ∈
�1, N� and j ∈ �1, 2N − 2i + 2�, we set

LN
i ( j) = log

(
2Z (i)

sym(p, q)

Z (i−1)
sym (p, q)

)

+ 2�(θ)N .

where p := N + 
 j/2� and q := N − � j/2� + 1. We call the collection of random
variables

(LN
i ( j) : i ∈ �1, N�, j ∈ �1, 2N − 2i + 2�

)

the half-space log-gamma (HSLG) line ensemble with parameters (α, θ), see Fig. 8.
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1 2N

L1(·)

L2(·)

...

LN (·)

Fig. 8 The half-space log gamma line ensemble L = (Li (·))Ni=1 (N = 6 in above figure). Each curve Li (·)
has 2N − 2i + 2 many coordinates. �∗N in Theorem 1.3 is the set of all black points in the above figure.
Theorem 1.3 tells us that conditioned on the blue points, the law of the black points is given by the HSLG
Gibbs measures (color figure online)

Proof of Theorem 1.3 Recalling the convention Z (0)
sym(m, n) ≡ 1, we can write

LN
1 ( j) = log

(
2Z (1)

sym(N + 
 j/2�, N − � j/2� + 1)
)
+ 2�(θ)N .

Assuming Part (ii) of Theorem 1.3 (verified below), Part (i) follows immediately from
the identity 2Z (1)

sym(p, q) = Z(α,�θ)(p, q). The above identity is noted in Section 2.1
of [31] and follows easily due to symmetry of the weights (the factor of 2 comes
from a lack of double-counting the weight at (1, 1)). This is an equality (not just in
distribution).

Part (ii) is a highly non-trivial deduction from first principles. However, the works
of [31, 32, 43, 84, 85] have built a rich theory using the geometric RSK correspondence
from which this part follows in a rather straightforward manner, as now described. We
seek to determine the joint density of the HSLG line ensemble defined above. Let us
start by defining

KN := {(i, j) : i ∈ �1, N�, j ∈ �1, 2N − 2i + 2�},
I(N ) := {(i, j) ∈ Z

2≥1 : i + j ≤ 2N + 1}.

Note that the map (i, j) 	→ (N + 
 j/2� − i + 1, N − � j/2� − i + 2) is a bijection
from KN to I(N ) ∩ {i ≥ j}. For any (i, j) ∈ KN , we then define

TN+
 j/2�−i+1,N−� j/2�−i+2 := Z (i)
sym(N + 
 j/2�, N − � j/2� + 1)

Z (i−1)
sym (N + 
 j/2�, N − � j/2� + 1)

,
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and then set Tj,i := Ti, j for i ≥ j . From Proposition 2.6 in [84], (Ti, j )(i, j)∈I(N ) is
precisely the image under the geometric RSK map of the symmetrized weights (2.9)
with indices restricted to the I(N ) array. The density of this image has been computed
in [31]. Indeed, setting m = 0, n = N , αi = θi for i ≥ 1, and α0 = α in the final
two (unnumbered) equations on page 28 in [31] (in the arXiv version see the second
unnumbered equation on page 20), we see that the density of (2Ti, j )i≥ j at (ti, j )i≥ j is
proportional to

e
− 1

t1,1

N∏

i=1
t (−1)

N−i+1α
i,i

N∏

j=1

(τ2N−2 j+2 · τ2N−2 j
τ 22N−2 j+1

)θ j

× exp
(
−
∑

i≥ j>1

ti, j−1
ti, j

−
∑

i> j

ti−1, j
ti, j

) ∏

(i, j)∈I(N )

t−1i, j 1ti, j>0 (2.11)

where the τ variables are defined as τk = ∏(
ti, j : (i, j) ∈ I(N ), i − j = k

) =
∏(

ti+k,i : 1 ≤ i ≤ N − k−1
2

)
. In fact, the density formula in [31] is for (2Ti, j )i≤ j

at (ti, j )i≤ j , thus we needed to permute the indices in that formula to arrive at the
above formula. The line ensemble LN

i ( j) defined in Definition 2.7 is related to
(2Ti, j )(i, j)∈I(N ) via the relation

LN
i ( j)− 2�(θ)N = log

(
TN+
 j/2�−i+1,N−� j/2�−i+2

)
.

Under the change of variables ui, j = log
(
tN+
 j/2�−i+1,N−� j/2�−i+2

)
for (i, j) ∈ KN ,

we claim that the density of (LN
i ( j)− 2�(θ)N ) at (ui, j )(i, j)∈KN is proportional to

e−e
−uN ,1

N∏

i=1
e(−1)i ui,1α

N∏

i=1

⎛

⎝e−θi ui,2N−2i+2
N−i+1∏

j=1
eθN− j+1(ui,2 j−1−ui,2 j )

N−i∏

j=1
e−θN− j+1(ui,2 j−ui,2 j+1)

⎞

⎠ (2.12)

· exp
⎛

⎝−
N∑

i=1

N−i+1∑

j=1
eui,2 j−1−ui,2 j −

N−1∑

i=1

N−i∑

j=1
eui+1,2 j−ui,2 j+1

⎞

⎠ (2.13)

· exp
⎛

⎝−
N−1∑

i=1

N−i∑

j=1
eui,2 j+1−ui,2 j −

N−1∑

i=1

N−i∑

j=1
eui+1,2 j−ui,2 j−1

⎞

⎠ . (2.14)

The justification of going from (2.11) to (2.12)-(2.14) is given in Appendix D. Recall
now that we are interested in the density conditioned on (LN

i ( j) − 2�(θ)N ) at
(ui, j )(i, j)∈KN \�∗N . To compute this conditional density we may absorb all the ui, j
terms with (i, j) ∈ KN \ �∗N into the proportionality constant. Thus in (2.12), we
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may absorb the e−uN ,1 term and e−θi ui,2N−2i+2 terms and observe

N∏

i=1
e(−1)i ui,1α ∝

∏

i∈�1,N/2�

e−α(u2i−1,1−u2i,1).

Upon a quick inspection of the form of the weight function in (1.5), one sees that
these factors are precisely the red edge weights functions in the HSLG Gibbs measure
on the domain �∗N ; see Fig. 3B and Definition 1.2. Combining the terms which have
(ui,2 j−1−ui,2 j ) and (ui,2 j+1−ui,2 j ) in (2.12), (2.13), (2.14) give rise to the following
factor

N∏

i=1

N−i+1∏

j=1
exp

(
θN− j+1(ui,2 j−1 − ui,2 j )− eui,2 j−1−ui,2 j

)

·
N−1∏

i=1

N−i∏

j=1
exp

(
θN− j+1(ui,2 j+1 − ui,2 j )− eui,2 j+1−ui,2 j

)
.

The above factor corresponds to the blue edge weight functions in the HSLG Gibbs
measure on the domain �∗N . Finally, the remaining terms in (2.13) and (2.14) corre-
sponds to black edge weight function in the HSLG Gibbs measure on the domain
�∗N . Thus the density of {LN

i ( j) − 2�(θ)N : (i, j) ∈ �∗N } conditioned on
{LN

i ( j) − 2�(θ)N : (i, j) ∈ KN \ �∗N } is precisely given by the HSLG Gibbs
measure with boundary condition {LN

i ( j)− 2�(θ)N : (i, j) ∈ KN \�∗N } as in Def-
inition 1.2. By the Gibbs measures translation invariance (Lemma 2.1a), we obtain
Theorem 1.3 (ii) . ��

3 Properties of the first three curves

In this section we extract probabilistic information about the first few curves of HSLG
line ensemble LN (Definition 2.7). In Sect. 3.1 we prove Theorem 3.1, which claims
that there is a certain high probability ordering among the points of the curve. Section
3.2 contains Theorem 3.3 which asserts that with high probability there is a point p =
O(N 2/3) such that LN

2 (p) is reasonably large. Finally in Sect. 3.3, we show Theorem
3.8 which argues that with high probability (LN

2 (s))s∈�1,kN2/3� and (LN
3 (s))s∈�1,kN2/3�

lie below MN 1/3 for large enough M .

3.1 Ordering of the points in the line ensemble

In this subsectionwe show thatwith high probability there is ordering among the points
of theHSLG line ensemble. Throughout this subsection we shall assume α ∈ (−θ,∞)

is a fixed parameter. The results can be easily extended to the case where α = α(N )
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satisfying

−θ < lim inf
N→∞ α(N ) ≤ lim sup

N→∞
α(N ) <∞.

We consider the HSLG line ensemble LN from Definition 2.7 with parameter (α, θ).

Theorem 3.1 Fix any k ∈ Z≥1 and ρ ∈ (0, 1). There exists N0 = N0(ρ, k) > 0 such
that for all N ≥ N0, i ∈ �1, k� and p ∈ �1, N − k − 2� the following inequalities
holds:

P
(LN

i (2p + 1) ≤ LN
i (2p)+ (log N )7/6

) ≥ 1− ρN ,

P
(LN

i (2p − 1) ≤ LN
i (2p)+ (log N )7/6

) ≥ 1− ρN ,

P
(LN

i+1(2p) ≤ LN
i (2p + 1)+ (log N )7/6

) ≥ 1− ρN ,

P
(LN

i+1(2p) ≤ LN
i (2p − 1)+ (log N )7/6

) ≥ 1− ρN .

(3.1)

We refer to the caption of Fig. 9 for a visual interpretation of the above Theorem.
The 7/6 appearing above can be replaced with any γ > 1. N0 will also depend on
γ in that case. In order to prove the above theorem, we first provide an apriori loose
bound for the entries of the first k curves of the line ensemble LN .

Proposition 3.2 Fix any ρ ∈ (0, 1) and k ∈ Z≥1. There exists a constant C =
C(ρ, k) > 0 and N0(ρ, k) > 0 such that for all N ≥ N0, i ∈ �1, k�, j ∈
�1, 2N − 2i + 2� we have

P

(
|LN

i ( j)| ≤ C · N
)
≥ 1− ρN . (3.2)

We first prove Theorem 3.1 assuming Proposition 3.2.

Proof of Theorem 3.1 Fix any ρ ∈ (0, 1) and k ∈ Z≥1. Set T := N −k. Fix i0 ∈ �1, k�
and p ∈ �1, T − 2�. We will show only the first of the inequalities in (3.1), as the rest
are all proved analogously. For simplicity, we write L for LN . Consider the event

V :=
{
Li0(2p + 1) ≥ Li0(2p)+ (log N )7/6

}
.

We apply Proposition 3.2 with k 	→ k + 1 and ρ 	→ ρ/2 to get C > 0 so that for all
large enough N , by union bound we have P(A) ≥ 1− 2Nk · (ρ/2)N where

A :=
{
|Lk+1( j)|, |Li (2T − 1)| ≤ C · N , for all j ∈ �1, 2T �, i ∈ �1, k�

}
.

Thus if we consider the σ -algebra

F := σ
(
Lk+1( j),Li (2T − 1) : j ∈ �1, 2T �, i ∈ �1, k�

)
,
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· · ·

· · ·

· · ·

· · ·
...

...
...

LN
1 (2) LN

1 (4)

LN
2 (5)

LN
3 (3)

LN
4 (1)

LN
4 (6)

Fig. 9 The ordering of points within the HSLG line ensemble. The figure depicts of first four curves
of the line ensemble L. Points v and v′ connected by a black or blue arrow from v → v′ satisfy that
LN (v′) ≥ LN (v)+ (log N )7/6 with high probability (recall that for v = (i, j)we writeLN (v) = LN

i ( j)).
The blue arrows thus imply ordering within a particular indexed curve while the black arrow imply ordering
between the two consecutive curves (color figure online)

by union bound and tower property of the conditional expectation we have

P(V) ≤ P(¬A)+ P(V ∩ A) ≤ 2Nk · (ρ/2)N + E [1AE[1V | F]] . (3.3)

Recall K′k,T from (2.4). From Theorem 1.3 and Lemma 2.1b, the law of {L(v) : v ∈
K′k,T } conditioned onF is given by theHSLG Gibbs measure on the domainK′k,T with

boundary condition �y := {L j (2T − 1)}kj=1. �z := {Lk+1(2i)}T−1i=1 . In view of Lemma
2.2b we see that

E[1V | F] =
∫
V Q �y,�zk,T (u)du

∫
R
|K′k,T | Q

�y,�z
k,T (u)du

(3.4)

where Q �y,�zk,T (u) is defined in (2.6). We will now bound the numerator and denominator
of (3.4) respectively. We claim that there exists R, τ > 0 depending only on k, α, θ,C
such that

1A ·
∫

V
Q �y,�zk,T (u)du ≤ 1A exp(− 1

2 e
(log N )7/6 ) · RN , and 1A

∫

R
|K′k,T |

Q �y,�zk,T (u)du ≥ 1A · τ N .

(3.5)

Clearly plugging this bounds back in (3.4) and then back in (3.3) leads to P(V) ≤ ρN

for all large enough N , as desired. Thus we focus on proving the two inequalities in
(3.5).
Proof of the first inequality in (3.5). Recall G defined in (2.2). Set

Hθ,(−1)k (y) := e
1
2 e

(−1)k y · Gθ,(−1)k (y) =
1

�(θ)
exp(θ(−1)k y − 1

2e
(−1)k y).
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Set
√
W (a; b, c) := √W (a; b, c) where W is defined in (2.1). From (2.6) we have

Q �y,�zk,T (u) =
k∏

i=1

⎛

⎝e(−1)iαui,1
T−1∏

j=1

√
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

2T−2∏

j=1
Hθ,(−1) j+1 (ui, j − ui, j+1)

⎞

⎠

·
k∏

i=1

⎛

⎝
T−1∏

j=1

√
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

2T−2∏

j=1
exp(− 1

2 e
(−1) j+1(ui, j−ui, j+1))

⎞

⎠ .

On V, among the terms appearing in the last line of the above equation, the term
exp(− 1

2e
u2p+1,i0−u2p,i0 ) is at most exp(− 1

2e
(log N )7/6). We bound the rest of the terms

in the above last line just by 1, so that on V, we have Q �y,�zk,T (u) ≤ e− 1
2 e

(log N )7/6

Q̃ �y,�zk,T (u)

where

Q̃ �y,�zk,T (u) :=
k∏

i=1

⎛

⎝e(−1)iαui,1
T−1∏

j=1

√
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

×
2T−2∏

j=1
Hθ,(−1) j+1(ui, j − ui, j+1)

⎞

⎠ .

By Lemma B.2 it follows that
∫
R
|K′k,T | Q̃

�y,�z
k,T (u)du ≤ RN for some R > 0 depending

on k, α, θ and C only. This verifies the first inequality in (3.5).
Proof of the second inequality in (3.5). We define the event

D :=
k⋂

i=1

2T−2⋂

j=1

{Li ( j)− CN − 2N + 2i ∈ [0, 1]}.

Note that on D, |Li (1)| ≤ CN + 2N + 3 and Li+1(2 j) ≤ Li (2 j + 1),Li (2 j − 1).
Hence on D we have

W (Li+1(2 j);Li (2 j + 1),Li (2 j − 1))

= exp
(
−eLi+1(2 j)−Li (2 j+1) − eLi+1(2 j)−Li (2 j−1)

)
≥ e−2.
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Hence on D we have

Q �y,�zk,T (u) =
k∏

i=1

⎛

⎝e(−1)iαui,1
T−1∏

j=1
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

×
2T−2∏

j=1
Gθ,(−1) j+1(ui, j − ui, j+1)

⎞

⎠

≥ e−αk(CN+2N )e−2kT
k∏

i=1

2T−2∏

j=1
Gθ,(−1) j+1(ui, j − ui, j+1).

Again note that on D, |Li ( j)−Li ( j + 1)| ≤ 2 for all i ∈ �1, k� and j ∈ �1, 2T − 3�,
whereas on A ∩ D,

Li (2T − 2)− Li (2T − 1) ∈ [0, 2CN + 2N ].

Thus, on A ∩ D

Q �y,�zk,T (u) ≥ e−αk(CN+2N )−2kT
(
inf|x |≤2Gθ,1(x)

)k(2T−3) (
inf

x∈[0,2CN+2N ]Gθ,1(−x)
)k

.

Note that the lower tail of Gθ,1(x) is exponential. Thus inf x∈[0,2CN+2N ] Gθ,1(−x) ≥
τ N
1 for some τ1 > 0 depending on α, θ, and C . Thus overall on A∩D, Q �y,�zk,T (u) ≥ τ N

for some τ depending on α, θ, k, and C . Since the Lebesgue measure of D is 1 we
have

1A

∫

R
|K′k,T |

Q �y,�zk,T (u)du ≥ 1A

∫

D
Q �y,�zk,T (u)du ≥ 1A · τ N

∫

D
du = 1A · τ N .

This proves the second inequality in (3.5) completing the proof. ��

Proof of Proposition 3.2 Recall LN
i ( j) from Definition 2.7. Fix any k ∈ Z≥1 and ρ ∈

(0, 1). For all r ∈ �1, k� and j ∈ �1, 2N − 2i + 2� set

Br ( j) :=
r∑

i=1
LN
i ( j) = r log 2+ 2r�(θ)N + log Z (r)

sym(N + 
 j/2�, N − � j/2� + 1),

where recall Z (r)
sym(·, ·) defined in (2.10). Set B0( j) ≡ 0. We claim that there exist

C = C(ρ, k) > 0 and N0 = N0(ρ, k) > 0, such that for all N ≥ N0 and r ∈ �1, k�

P

(∣∣∣log Z (r)
sym(N + 
 j/2�, N − � j/2� + 1)

∣
∣∣ ≤ C · N

)
≥ 1− ρN . (3.6)
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Setting C′ = C + 2k|�(θ)| + k log 2 we see from above that, by triangle inequality
and union bound

P(|Lr ( j)| ≤ 2C′ · N ) ≥ P(|Br−1( j)| ≤ C′ · N )+ P(|Br ( j)| ≤ C′ · N )− 1 ≥ 1− 2 · ρN .

Adjusting ρ, N0 the above inequality yields (3.2). The rest of the proof is devoted in
proving (3.6).

Recall that Z (r)
sym(·, ·), defined in (2.10), can be viewed as sum of weights of r -tuple

of non-intersecting paths. We first provide concentration bound for weight of a given
path π with endpoints in I(N )

sym := {(i, j) : i + j ≤ 2N + 1} via standard Chernoff
bound for i.i.d. random variables. Then we provide an upper bound on the number of
r -tuple of non-intersecting paths. Via union bound, this gives a concentration bound
of type (3.6) for Z (r)

sym(·, ·).
Recall the symmetric weight W̃i, j from (2.9). Note that for an upright path π ,

(i, j) ∈ π and ( j, i) ∈ π cannot happen simultaneously provided i �= j . Thus
(W̃i, j )(i, j)∈π forms an independent collection. Set

R1 := max{log�(θ)− log�(2θ), log�(α)− θ log 2− log�(α + θ)},
R2 := max{log�(3θ)− log�(2θ), log�(α + 2θ)+ θ log 2− log�(α + θ)}.

Using moments of Gamma distribution andMarkov inequality for each s > 0 we have

P

⎛

⎝
∑

(i, j)∈π

log W̃i, j ≥ s+R1
θ
|π |
⎞

⎠ ≤ e−(s+R1)|π | ∏

(i, j)∈π

E[W̃ θ
i, j ]

= e−(s+R1)|π | ∏

(i, j)∈π,i �= j

�(θ)

�(2θ)

×
∏

(i,i)∈π

�(α)

2θ�(α + θ)
≤ e−s|π |,

and

P

⎛

⎝
∑

(i, j)∈π

log W̃i, j ≤ − s+R2
θ
|π |
⎞

⎠ ≤ e−(s+R2)|π | ∏

(i, j)∈π

E[W̃−θ
i, j ]

= e−(s+R2)|π | ∏

(i, j)∈π,i �= j

�(3θ)

�(2θ)

×
∏

(i,i)∈π

2θ�(α + 2θ)

�(α + θ)
≤ e−s|π |.
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This leads to the following concentration bound

P

(∣∣∣
∣
∑

(i, j)∈π

log W̃i, j

∣∣∣
∣ ≤ s+R1+R2

θ
|π |
)
≥ 1− 2e−s|π |. (3.7)

To upgrade the above bound to (3.6), we need an upper bound for the number of r -
tuples of non-intersecting upright paths. To do this, we introduce a few notations. Set
m := N + 
 j/2�, n := N − � j/2� + 1. Given two points (i1, j1), (i2, j2) ∈ I(N )

sym, let
FN ((i1, j1) → (i2, j2)) be the set of all upright paths from (i1, j1) to (i2, j2). For any
π ∈ �

(r)
(m,n) we have N ≤ |π | ≤ 2N . Furthermore, |FN ((i1, j1) → (i2, j2))| ≤ 4N

for all (i1, j1), (i2, j2) ∈ I(N )
sym. Thus |�(r)

(m,n)| ≤ 4kN as r ≤ k. Fix s = s(ρ, k) > 0

such that 4kN · 2e−sN ≤ ρN and consider the event

A :=
{∣∣∣∣ log

∏

(i, j)∈π1∪···∪πr

W̃i, j

∣∣∣∣ ≤ s+R1+R2
θ

· 2r N for all (πq)
r
q=1 ∈ �

(r)
(m,n)

}
.

Applying the concentration bound (3.7) for each path in�
(r)
(m,n), an union bound yields

P (A) ≥ 1− 4kN · 2e−sN ≥ 1− ρN . (3.8)

Next set C = C(ρ, k) := k log 4+ s+R1+R2
θ

2k. Note that on A we have

log Z (r)
sym(m, n) ≤ log

⎛

⎜
⎝

∑

(π1,...,πr )∈�
(r)
(m,n)

∏

(i, j)∈π1∪···∪πr

W̃i, j

⎞

⎟
⎠

≤ log
(
4kN · e s+R1+R2

θ
2r N
)
≤ kN log 4+ s+R1+R2

θ
2kN ≤ C · N .

(3.9)

Similarly for the lower bound we consider any (π1, . . . , πr ) ∈ �
(r)
(m,n) which forms a

disjoint collection of paths. Then on A we have

log Z (r)
sym(m, n) ≥ log

⎛

⎝
∏

(i, j)∈π1∪···∪πr

W̃i, j

⎞

⎠ ≥ − s+R1+R2
θ

2kN ≥ −C · N . (3.10)

Now (3.6) follows from (3.9), (3.10) and the bound in (3.8). ��

3.2 High point on the second curve

The goal of this subsection is to show there is a point p = O(N 2/3) such that with
high probability LN

2 (2p) ≥ −CN 1/3 where LN is the HSLG line ensemble defined in
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Definition 2.7. For the rest of this section we work with the boundary parameter fixed
in the critical or supercritical phase. We assume α equals α1 or α2 where

{
α1 := α1(N ) := N−1/3μ (Critical)

α2 := ζ (Super-Critical)
(3.11)

where μ ∈ R and ζ > 0 are fixed numbers. The labeling of the parameter might seem
a bit unnatural at this moment. Essentially, when the boundary parameter is αi , we
shall resample the top i curves of the HSLG line ensemble in the arguments of Sect. 4.

Theorem 3.3 (High point on the second curve) Fix any ε ∈ (0, 1) and k > 0. There
exist R0(k, ε) > 0 such that for all R ≥ R0

lim inf
N→∞ P

(

sup
p∈[kN2/3,RN2/3]

LN
2 (2p) ≥ −( 18 R2ν + 2

√
R
)
N 1/3

)

> 1− ε. (3.12)

where

ν := (� ′(θ))2

(−� ′′(θ))4/3
. (3.13)

The factor 1/8 appearing in (3.12) can be replaced by any constant γ > 0. R0 will
depend on γ in that case. The proof of Theorem 3.3 relies on two results related to the
first curve.

Proposition 3.4 (Highpoint on thefirst curve)Fixany ε ∈ (0, 1). There exists M0(ε) >

0 such that for all M1, M2 ≥ M0 and k > 0 we have

lim inf
N→∞ P

(

sup
p∈�kN2/3,(M1+2k)N2/3�

LN
1 (2p + 1)

N 1/3 + k2ν ≤ M2

)

> 1− ε, (3.14)

lim inf
N→∞ P

(

sup
p∈�kN2/3,(M1+2k)N2/3�

LN
1 (2p + 1)

N 1/3 + k2ν ≥ −M2

)

> 1− ε. (3.15)

where ν is defined in (3.13).

Figure 10 depicts the high probability events considered in Proposition 3.4.

Proposition 3.5 (Low point on the first curve) Fix any ε ∈ (0, 1). There exists M0(ε)

such that for all M ≥ M0,

lim inf
N→∞ P

(
LN
1 (2MN 2/3 + 1) ≤ − 1

8M
2N 1/3ν

)
> 1− ε, (3.16)

where ν is defined in (3.13).
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f+(·)

f−(·)
Ik

kN2/3 (M1 + 2k)N2/3

Fig. 10 Events considered in Proposition 3.4. Here LN
1 (2p + 1) is given by the black rough curve. The

parabolic curves f±(x) := −(Nν)−1x2 ± M2N
1/3 are also depicted. Horizontal lines eminate from

these parabolas starting at x = kN2/3. The event in (3.14) tells us that on the horizontal interval Ik :=
�kN2/3, (M1 + 2k)N2/3� the black rough curve stays entirely below the black horizontal line while the
event in (3.15) tells us that there is a point in Ik at which the black rough curve exceeds the red horizontal
curve (color figure online)

Definition 3.6 (n-step random walk and bridge measures) Recall the spaces (�
p
n ,Fp

n )

for p ∈ {1, 2} from Definition 1.7. For p = 2 that definition provided coordinate
function notation Si (k) := ωi (k) for i ∈ {1, 2} and k ∈ �1, n�. For p = 1 similarly
define coordinate functions S(k) := ω(k) for k ∈ �1, n�. Recall fθ from (2.3).

For a ∈ R define the probability measure P
n;a on (�1

n,F1
n) for a single n-step

random walk started at a to be proportional to the product of the Dirac delta function
δω(1)=a and a density (against Lebesgue on R

n−1) given by

n∏

k=2
fθ
(
ω(k)− ω(k − 1)

)
dω(k).

Similarly, for (a1, a2) ∈ R
2 define the probability measure Pn;(a1,a2) on (�2

n,F2
n) for

a pair of independent n-step random walk started at a1 and a2 by taking the product
of P‘n;a1 and P

n;a2 .
For a, b ∈ R define the probability measure P

n;a;b (�1
n,F1

n) for a single n-step
random bridge started at a and ended at b to be proportional to the product of two
Dirac delta function δω(1)=aδω(n)=b and a density (against Lebesgue on R

n−2) given
by

n∏

k=2
fθ
(
ω(k)− ω(k − 1)

) n−1∏

k=2
dω(k).
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Similarly, for (a1, a2), (b1, b2) ∈ R
2 define the probability measure Pn;(a1,a2);(b1,b2)

on (�2
n,F2

n) for a pair of independent n-step random briges started at a1 and a2 and
ended (respectively) at b1 and b2 by taking the product of Pn;a1;b1 and P

n;a2;b2 .

The proofs of Propositions 3.4 and 3.5 rely on the fluctuation results from [31], as
restated earlier in Theorem 1.5, and are postponed to the next subsection. Assuming
their validity, we complete the proof of Theorem 3.3.

Proof of Theorem 3.3 For clarity we divide the proof into two steps.
Step 1. In this step we define notation and events used in the proof. Fix ε ∈ (0, 1) and
k > 0. Take M0 from Proposition 3.4. We set R large enough so that

2−5R ≥ 2k + 1, M0 − 2−5( 18 R
2ν + M0)+ R3/2 ≤ −M0 − 2−10R2ν, R ≥ 2M0

(3.17)

and Q := 2−5R. We will assume some additional conditions on R later, which will
depend on certain probability bounds that will be specified in the next step. For con-
venience, we will also assume kN 2/3 and RN 2/3 are integers (instead of using floor
functions below). We set

a := M0N
1/3, b := − 1

8 R
2N 1/3ν,

n := RN 2/3 − kN 2/3 + 1, v := −( 18 R2ν + 2
√
R
)
N 1/3.

Let us define the sets I := �QN 2/3, (M0 + 2Q)N 2/3� and J := �kN 2/3, RN 2/3�.
Due to (3.17), we have I ⊂ J. Next we define the following events:

A :=
{
sup
p∈J

L2(2p) ≤ v

}
, B :=

{
L1(2kN

2/3 + 1) ≤ a,L1(2RN
2/3 + 1) ≤ b

}
.

The A event demands that the second curve LN
2 (2p) does not rise above v for any

p ∈ J. The B event requires both LN
1 (2kN 2/3 + 1) and LN

1 (2RN 2/3 + 1) to be less
than a and b respectively. Finally we set

C :=
{
sup
p∈I

LN
1 (2p + 1)+ Q2νN 1/3 ≥ −a

}

In words, C ensures there exists some p ∈ I such that LN
1 (2p + 1) is greater than

−a − Q2νN 1/3.
Note that by Proposition 3.4 we have P(C) ≥ 1− ε . Furthermore, by Propositions

3.4 and 3.5 for large enough R we also have P(¬B) ≤ 2ε. We claim that for all large
enough R we have

P(A ∩ B ∩ C) ≤ ε. (3.18)
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y = v

a

b

f(·)

I

J

Fig. 11 In this figure LN
1 (2p+ 1) (black curve) and LN

2 (2p) (blue curve) are plotted for p ∈ J. A denotes
the event that the blue curve lies below the horizontal line y = v. B denotes the event that the black curve
starts below a and ends below b. The curve f in the figure is given by f (x) = −(Nν)−1x2 − a. The event
C denotes that there is a point p′ ∈ I where the black rough curve stays above the red horizontal line (this
event does not occur in the above figure). The key idea is that on A ∩ B, the blue curve lies below y = v

completely, and the black curve behaves like a simple random bridge and follows a linear trajectory with
starting and ending points less than a and b respectively. As a result, the event C (which requires the black
curve to follow parabolic trajectory) does not occur with high probability. But we know both B and C occurs
with high probability. Thus the event A occurs with low probability (color figure online)

We prove (3.18) in the next step. Assuming this, note that by union bound we have

P(¬A) ≥ P(C)− P(¬B)− P(A ∩ B ∩ C) ≥ 1− 4ε.

Changing ε 	→ ε/4 we arrive at (3.12). This completes the proof modulo (3.18).
Step 2. In this step we will prove (3.18). The reader is encouraged to consult with
Fig. 11 and its caption to get an overview of the key idea behind the proof.

We consider the σ -algebra:

F := σ
(LN

2 �1, 2N − 2i�,LN
1 (�1, 2kN 2/3 + 1� ∪ �2RN 2/3 + 1, 2N�)

)
.

Note that A ∩ B is measurable with respect to F. Hence

P(A ∩ B ∩ C) = E [1A∩BE [1C | F]] .

Using the Gibbs property for two-sided boundaries (see Lemma 2.5), the conditional
law is determined by the boundary data and is monotone with respect to the boundary
data (see Proposition 2.6). On the event A ∩ B, LN

2 (on even points) is at most v,
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Fig. 12 In the above figure the
random bridge S(i) from a to b
is depicted by the black curve.
The event D ensures the random
bridge lies below the blue line
y = a + x

n (b − a)+√Rn. The
event C requires
S(i) ≥ −(M0 + Q2ν

)
N1/3 for

some i ∈ K := �(Q −
k)N2/3, (M0 + 2Q − k)N2/3�.
One can choose R large enough
so that the horizontal black line
y = −a − Q2νN1/3 =
−(M0 + Q2ν

)
N1/3 lies above

the blue line
y = a+ x

n (b− a)+√Rn for all

x ≥ (Q − k)N2/3. This forces
D ⊂ ¬C (color figure online)

a

b

K

y = −a − Q2νN1/3

LN
1 (2kN 2/3 + 1) is at most a and LN

1 (2RN 2/3 + 1) is at most b. Thus by stochastic
monotonicity we have

1A∩B · E
(
1C | F

) ≤ 1A∩B · E
n;a;b (W (S, v)1C)
En;a;b (W (S, v))

≤ 1A∩B · E
n;a;b (C)

En;a;b (W (S, v))
. (3.19)

where S = (S(1), . . . , S(n)) is distributed according to P
n;a;b, the n-step random

bridge measure from a to b, and where W (S, v) := exp
(
−2∑n−1

i=2 ev−S(i)
)
. The

event C should now be treated as being defined in terms of S as

C =
{

sup
p∈�QN2/3,(M0+2Q)N2/3�

S(p − kN 2/3 + 1)+ Q2νN 1/3 ≥ −a
}
.

Note that

E
n;a;b (W (S, v)) ≥ exp

(
−2ne−

√
n
)
P
n;a;b (S(i) ≥ v +√n for all i ∈ �1, n�

)

≥ exp
(
−2ne−

√
n
)
P
n;a;b (S(i)− a − i(b−a)

n ≥ −√n for all i ∈ �1, n�
)

.

(3.20)

where the last inequality follows by noting that S(i) − a − i(b−a)
n ≥ −√n implies

S(i) ≥ b − √n ≥ v + √n. Since random bridges weakly converge to Brownian
bridges (see [83] and [56] for a quantitative version), using estimates for Brownian
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bridges, we see that the r.h.s. (3.20) is uniformly bounded below by some absolute
constant δ. We now claim that for all large enough R

D ⊂ ¬C, P
n;a;b(D) ≥ 1− εδ, where D :=

{

sup
i∈�1,n�

(
S(i)− a − i(b−a)

n

)
≤ √R

√
n

}

.

(3.21)

Note that (3.21) implies Pn;a;b(C) ≤ εδ. Plugging this back in (3.19) along with the
bound E

n;a;b (W (S, z)) ≥ δ, yields that r.h.s. (3.19) is at most ε. This proves (3.18).
Let us now verify (3.21). Indeed, Pn;a;b(D) can be made arbitrarily close to 1 by

choosing R large enough (as random bridges weakly converge to Brownian bridges
[83]). We choose R so large that Pn;a;b(D) is at least 1−εδ. Let us now verifyD ⊂ ¬C
(see also Fig. 12 and its caption). For q ≥ Q we see that

a + (q−k)(b−a)
R−k +√R

√
n ≤

(
M0 − Q−k

R−k ( 18 R
2ν + M0)+ R3/2

)
N 1/3

≤
(
M0 − 2−5( 18 R

2ν + M0)+ R3/2
)
N 1/3

≤ −
(
M0 + Q2ν

)
N 1/3

The penultimate inequality follows by observing that as Q = 2−5R, we have Q −
k ≥ 2−5(R − k) > 0. Finally the last inequality follows from (3.17). Thus for all
p ≥ QN 2/3,

x + (p−kN2/3)(y−x)
(R−k)N2/3 +√R

√
n ≤ M0N

1/3 − Q2νN 1/3

Clearly this implies D ⊂ ¬C, completing the proof (3.21). ��

3.2.1 Proof of Propositions 3.4 and 3.5

The proofs of Propositions 3.4 and 3.5 uses the following.

Lemma 3.7 (Uniform tightness) Recall Z line
N (m), the point-to-(partial)line partition

function defined in (1.8). Fix ε ∈ (0, 1). There exists K0 = K0(ε) > 0, such that for
all M > 0 and K ≥ K0 we have

lim inf
N→∞ P

(

−K ≤ log Z line
N (MN 2/3)+ 2�(θ)N

N 1/3 + M2ν ≤ K

)

> 1− ε

where ν is defined in (3.13).

We remark that the above lemma was alluded in the introduction in the form of
(1.9).
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Proof We recall the notations introduced in Sect. 1.3.2. Fix any M > 0. Set k =
MN 2/3 and p := 1+ 2k

N−k . Let θc be the unique solution to� ′(θc)− p� ′(2θ−θc) = 0.

Set fθ,p = −�(θc)− p�(2θ − θc) and σ 3
θ,p = 1

2 (−� ′′(θc)−� ′′(2θ − θc)) where �

is the digamma function defined in (1.4). A straightforward calculation (done at the
end of Appendix D) shows

(N − k) fθ,p = −2N�(θ)+ M2N 1/3(� ′(θ))2/� ′′(θ)+ O(1), and

σθ,p/(−� ′′(θ))1/3
N→∞→ 1, (3.22)

where O(1) terms depend on M, θ , but are bounded in N . When α = α2 > 0, we
have that limN→∞(N − k)1/3σθ,p(α2 + θ − θc) = ∞ for each fixed M > 0. Thus by
Theorem 1.5 we get

log Z line
N (MN 2/3)+ 2�(θ)N

(−N� ′′(θ))1/3
+ M2ν

(d)�⇒ TWGUE,

where TWGUE is the GUE Tracy-Widom distribution [97] and ν is defined in (3.13).
For α = α1 = N−1/3μ, we have limN→∞(N − k)1/3σθ,p(α1 + θ − θc) = y :=
σθ,1(μ− M� ′(θ)/� ′′(θ)). Another application of Theorem 1.5 yields

log Z line
N (MN 2/3)+ 2�(θ)N

(−N� ′′(θ))1/3
+ M2ν

(d)�⇒ U−y .

whereU−y is theBaik-BenArous-Péché distribution [3] (see [31, (5.2)] for definition).

As M →∞, so does y →∞. Since U−y
(d)�⇒ TWGUE as y →∞ (see [26, (2.36)]),

we thus get tightness uniformly in M . ��
Proof of Proposition 3.4 Fix k > 0, ε ∈ (0, 1). Since for any M1 > 0

sup
j∈�kN2/3,(M1+2k)N2/3�

Z(N + j, N − j) ≤ Z line
N (kN 2/3),

appealing to Lemma 3.7 with M 	→ k we see that

P

(

sup
j∈�kN2/3,(M1+2k)N2/3�

log Z(N + j, N − j)+ 2�(θ)N

N 1/3 + k2ν ≤ M2

)

≥ 1− ε,

where M2 can be chosen to be any M ≥ K0 where K0(ε) comes from Lemma 3.7.
Recalling that LN

1 (2 j + 1) = log Z(N + j, N − j) + 2�(θ)N from (1.7), we get
(3.14).

The remainder of the proof is now devoted in proving (3.15). Towards this end,
set K1 = 1

2 (M1 + 2k)2ν. Choose M1 large enough so that K1 ≥ K0(ε/4) where K0
comes from Lemma 3.7. Applying Lemma 3.7 with M 	→ M1 + 2k, K 	→ K1, and
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ε 	→ ε/4 we have

lim inf
N→∞ P

(
log Z line

N ((M1 + 2k)N 2/3)+ 2�(θ)N

N 1/3 ≤ − 1
2 (M1 + 2k)2ν

)

> 1− 1
4ε.

(3.23)

Now we take K2 = (
(M1+2k)2

4 − k2)ν − log 2 ≥ 1
4M

2
1ν. We again choose M1 large

enough so that K2 ≥ K0(ε/4). Then applying Lemma 3.7 with M 	→ k, K 	→ K2,
and ε 	→ ε/4 we have

lim inf
N→∞ P

(
log Z line

N (kN 2/3)+ 2�(θ)N

N 1/3 ≥ − 1
4 (M1 + 2k)2ν + log 2

)

> 1− 1
4ε.

(3.24)

By union bound the above two estimates implies for all large enough M1 we have

lim inf
N→∞ P

(
Z line
N (kN 2/3) > 2 · Z line

N ((M1 + 2k)N 2/3)
)

> 1− 1
2ε. (3.25)

Let us temporarily set A = Z line
N (kN 2/3)−Z line

N ((M1+2k)N 2/3 and B = Z line
N ((M1+

2k)N 2/3. Observe that A + B > 2B implies 2A > A + B. Recall from (1.8) that

A =
�(M1+2k)N2/3�−1∑

�kN2/3�
Z(N + j, N − j) ≤ (M1 + k)N

2
3 sup

j∈�kN 2
3 ,(M1+2k)N

2
3 �

Z(N + j, N − j).

We thus have

{
Z line
N (kN2/3) > 2 · Z line

N ((M1 + 2k)N2/3)
}

⊂
{

sup

j∈�kN 2
3 ,(M1+2k)N

2
3 �

log Z(N + j, N − j) > log Z line
N (kN

2
3 )− log(2(M1 + k)N

2
3 )

}
.

(3.26)

By Lemma 3.7, one can choose M2 large enough (but free of k) so that

lim inf
N→∞ P

(
log Z line

N (kN 2/3)+ 2�(θ)N + k2νN 1/3

≥ −M2N
1
3 + log(2(M1 + k)N

2
3 )
)

> 1− 1
2ε.

Using this, in view of (3.26) and (3.25), and using LN
1 (2 j + 1) = log Z(N + j, N −

j)+ 2�(θ)N (see (1.7)) we arrive at (3.15). This proves Proposition 3.4. ��
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Proof of Proposition 3.5 Weuse the same notations as from the proof of Proposition 3.4
and utilize (3.23) and (3.24) obtained there with k = 1. Set M = M1+ 2. Combining
(3.23) and (3.24) implies

lim inf
N→∞ P

(
log Z line

N (N 2/3) > 1
4M

2N 1/3ν + log Z line
N (MN 2/3)

)
≥ 1− 1

2ε.

As Z line
N (MN 2/3) ≥ Z(N + MN 2/3; N − MN 2/3), this leads to

lim inf
N→∞ P

(
log Z line

N (N 2/3) > 1
4M

2N 1/3ν + log Z(N + MN 2/3, N − MN 2/3)
)

≥ 1− 1
2ε.

Again by Lemma 3.7, one can choose M large enough so that

lim inf
N→∞ P

(
log Z line

N (N 2/3) ≤ 1
8M

2N 1/3ν − 2�(θ)N

)
> 1− 1

2ε,

which forces

lim inf
N→∞ P

(
log Z(N + MN 2/3; N − MN 2/3) < −2N�(θ)− 1

8M
2N 1/3ν

)
≥ 1− ε.

By (1.7), LN
1 (2MN 2/3 + 1) = log Z(N + MN 2/3; N − MN 2/3) − 2�(θ)N hence

(3.16) follows. ��

3.3 Spatial properties of the lower curves

In this subsection, we study spatial properties of the lower curves of the HSLG line
ensemble. The main result of this section is the following.

Theorem 3.8 Fix any p ∈ {1, 2}. Set α := αp according to (3.11). Consider theHSLG
line ensemble from Definition 2.7 with parameters (α, θ). Given any k, ε > 0, there
exist constants M = M(k, ε) ≥ 1 and N0(k, ε) ≥ 1 such that for all N ≥ N0(k, ε)
and v ∈ {2, 3} we have

P

(

sup
s∈�1,kN2/3�

LN
v (s) ≥ MN 1/3

)

≤ ε. (3.27)

In plain words, Theorem 3.8 argues that with high probability on the domain
�1, kN 2/3�, the entire second curve and third curve lies below a threshold MN 1/3.
The proof of Theorem 3.8 can be easily extended to include other lower indexed
curves as well. However, for the proofs of our main results, it suffices to consider the
first three curves.

Recall from Theorem 1.3 that the conditional laws of the HSLG line ensemble
are given by HSLG Gibbs measures introduced in Definition 1.2. The key technical
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ingredient in proving Theorem 3.8 is the tightness of left boundary points of the first
two curves under the bottom-free measure defined in Definition 2.4.

Proposition 3.9 Fix any p ∈ {1, 2}. Set α := αp according to (3.11). Fix any r ≥ 1
and ε > 0. Set T = 
r N 2/3�. Define

A :=
{
1+√r |μ|� ′( 12θ) if p = 1,

1 if p = 2.
(3.28)

There exists M = M(ε) > 0 and N0(ε) > 0 such that for all N ≥ N0 we have

P
(0,−A

√
T ),(−∞)T ;2,T

αp

(|L1(1)| + |L2(2)| ≥ M
√
T
) ≤ ε. (3.29)

where the law P
�y,(−∞)2T ;2,T
αp is defined in Definition 2.4. Furthremore, there exists

M̃ = M̃(ε) > 0 and Ñ0(ε) > 0 such that for all N ≥ Ñ0 we have

P
0,(−∞)T ;1,T
α1

(|L1(1)| ≥ M̃
√
T
) ≤ ε. (3.30)

As we shall see in the next section, the proof of the above lemma can be extended
to include L2(1) instead of L2(2). For technical reasons we work with L2(2) here.

As mentioned in the introduction, the proof of Proposition 3.9 relies on several
ingredients related to non-intersecting randomwalks.We postpone its proof to Sect. 4.
We now complete the proof of Theorem 3.8 assuming Proposition 3.9.

Proof of Theorem 3.8 We prove the v = 2 case and then use it to show the v = 3 case.
Part I: v = 2 case. For clarity we divide the proof into two steps.
Step 1. Recall that the points in the line ensemble satisfy certain high probability
ordering due to Theorem 3.1. In particular, if we know the even points on LN

2 are not
too high, Theorem 3.1 will force that with high probability the odd points are not too
high as well. Thus it suffices to control the even points on LN

2 . In this step, we flesh
out the details of the above idea. The proof of control on even points on LN

2 appears
in the second step of the proof.

We begin by defining a few events that will appear in the rest of the proof. Fix
k, ε > 0. For any r ∈ �1, kN 2/3� ∩ 2Z, define

A(r , M) := {LN
2 (r) ≥ MN 1/3}, F(r , M) := {LN

1 (r − 1) ≥ 3M
4 N 1/3}.

Define

B(r , M) := A(r , M) ∩
⋂

s∈�r+2,kN2/3�∩2Z
¬A(s, M),

so that (B(r , M))r∈�1,kN2/3� forms a disjoint collections of events. Note that

⊔

r∈�1,kN2/3�∩2Z
B(r , M) =

⋃

r∈�1,kN2/3�∩2Z
A(r , M) =

{
sup

r∈�1,kN2/3�∩2Z
LN
2 (r) ≥ MN 1/3

}
.
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In the above equation, we use � instead of ∪ to stress on the fact that it is an union
of disjoint events. Thus the above union demands at least one of the even points in
�1, kN 2/3� of LN

2 to exceed MN 1/3. We next define

G+(M) :=
⊔

r∈�1,kN2/3�∩2Z
B(r , M) ∩ F(r , M), G−(M) :=

⊔

r∈�1,kN2/3�∩2Z
B(r , M) ∩ ¬F(r , M).

Finally set G(M) := G+(M) � G−(M). Observe that the event

¬G(M) =
{

sup
s∈�1,kN2/3�∩2Z

LN
2 (s) < MN 1/3

}

controls the supremum of the second curve over the even points. Take 0 < k′ < k. By
the union bound we get that

P

(

sup
s∈�1,k′N2/3�

LN
2 (s) ≥ 3MN

1
3

)

≤ P(G(2M))

+ P

(
sup

s∈�1,k′N2/3�
s∈(2Z+1)

LN
2 (s) ≥ 3MN

1
3 ,¬G(2M)

)
. (3.31)

Note that on −G(2M) the supremum of LN
2 (s) over all s ∈ �1, kN 2/3� is at most

2MN 1/3. Then by the ordering of the line ensemble (Theorem 3.1) on ¬G(2M) it is
exponentially unlikely that any odd point within �1, k′N 2/3� will exceed 2MN 1/3 +
(log N )7/6. In particular the second term in r.h.s. (3.31) can be made smaller than ε

2
by choosing N large enough and taking M ≥ 1. For the first term we claim that there
exists M0, N0 depending on k, ε such that for all N ≥ N0 and M ≥ M0 we have

P(G(2M)) ≤ ε
2 . (3.32)

Clearly plugging this bound back in r.h.s. (3.31) proves (3.27) with M 	→ 3M and
k′ 	→ k. For the remainder of the proof we focus on proving (3.32).
Step 2. In this step we prove (3.32). Observe that from the definition of G−(2M) we
have

P(G−(2M)) ≤ P

(
LN
1 (r − 1)− LN

2 (r) ≥ −M
2 N 1/3 for some r ∈ �1, kN 1/3� ∩ 2Z

)
.

However byTheorem3.1 the right-hand side of the above equation can bemade smaller
that ε

4 for all N ≥ N0 and M ≥ 1, by choosing N0 := N0(k, ε) > 0 appropriately.
We next claim that

P(G+(2M)) ≤ 2P(A(2, M)) ≤ ε
4 . (3.33)
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As G(2M) = G−(2M) ∪ G+(2M), in view of the above claim, (3.32) follows via a
union bound.

Let us now prove (3.33). Observe that by definition of G+(2M) we have

P
(
A(2, M)

) ≥ P
(
G+(2M) ∩ A(2, M)

)

=
∑

r∈�1,kN2/3�∩2Z
P
(
B(r , 2M) ∩ F(r , 2M) ∩ A(2, M)

)
. (3.34)

We focus on each of the terms in the above sum. Using the tower property we have

P
(
B(r , 2M) ∩ F(r , 2M) ∩ A(2, M)

)

= E

[
1B(r ,2M)∩F(r ,2M)E

(
1A(2,M) | σ

(LN
3 ,LN

1 �r − 1, kN 2/3�,LN
2 �r , kN 2/3�

))]
.

(3.35)

Using the Gibbs property (see Theorem 1.3 and Lemma 2.2a) we have almost surely
that

1B(r ,2M)∩F(r ,2M)E

(
1A(2,M) | σ

(LN
3 ,LN

1 �r − 1, kN 2/3�,LN
2 �r , kN 2/3�

))

= 1B(r ,2M)∩F(r ,2M)P
�y,�z;2,r/2
αp

(L2(2) > MN 1/3)

≥ 1B(r ,2M)∩F(r ,2M)P
�w,(−∞)r ;2,r/2
αp

(L2(2) > MN 1/3),

(3.36)

where �y = (LN
1 (r − 1),LN

2 (r)), �z = (LN
3 (2v))

r/2
v=1 and �w := ( 3M2 N 1/3, 3M

2 N 1/3 −
A
√
r/2) (A ≥ 1 is defined in (3.28)). The last inequality above follows by stochastic

monotonicity (Proposition 2.6). We now briefly explain how stochastic monotonicity
works here. Note that the event {L2(2) > MN 1/3} is decreasing thus by stochastic
monotonicity to achieve a lower bound, we can reduce the boundary �z to (−∞)r .
Furthermore, on B(r , 2M)∩F(r , 2M), wemay reduce �y to �w as yi ≥ wi on B(r , 2M)∩
F(r , 2M).

Note that MN 1/3 ≥ Mk− 1
2
√
r/2. By translation invariance (Lemma 2.1a) and

Proposition 3.9, we may choose M0(k, ε) large enough so that for all M ≥ M0 and
r ∈ �1, kN 2/3� ∩ 2Z we have

P
�w,(−∞)r ;2,r/2
αp (L2(2) > MN1/3) = P

(0,−A
√
r/2),(−∞)r ;2,r/2

αp

(
L2(2) > − 1

2MN1/3) ≥ 1
2 .

Inserting the above bound in (3.36) and then going back to (3.35) we get

r.h.s. (3.35) ≥ 1
2P
(
B(r , 2M) ∩ F(r , 2M)

)
.

Recall that B(r , 2M) ∩ F(r , 2M) are all disjoint events whose union over r ∈
�1, kN 2/3� ∩ 2Z is given by G+(2M). Summing the above inequality over r ∈
�1, kN 2/3� ∩ 2Z, in view of (3.34), we thus arrive at P(A(2, M)) ≥ 1

2P(G+(2M)).
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This proves the first inequality in (3.33). For the second one observe that by union
bound

P(A(2, M)) ≤ P
(LN

1 (3)− LN
2 (2) ≤ −N 1/3)+ P

(LN
1 (3) ≥ (M − 1)N 1/3).

By Theorem 3.1 the first term on the right-hand side of the above equation can be
made arbitrarily small by choosing N large enough. As for the second term, recall
the point-to-line partition function Z line

N (·) from (1.8). From Theorem 1.5 we know
N−1/3[log Z line

N (1)+ 2�(θ)N ] is tight. Since LN
1 (3) ≤ log Z line

N (1)+ 2�(θ)N (see
(1.7)), one can make the second term arbitrarily small enough by choosing M, N large
enough. This completes the proof of (3.33).
Part II: v = 3 case. Fix k > 0. Let us define

E :=
{

sup
s∈�1,kN2/3�

LN
3 (s) ≥ MN 1/3

}
, F :=

{
sup

s∈�1,kN2/3�

LN
2 (s) ≥ 1

2MN 1/3
}
.

By repeated application of the union bound we have

P(E) ≤ P(F)+ P(E ∩ ¬F)
≤ P(F)+ P

(
LN
2 (s)− LN

3 (s) ≤ − 1
2MN 1/3, for some s ∈ �1, kN 2/3�

)

≤ P(F)+
∑

�1,kN2/3�

P
(LN

2 (s)− LN
3 (s) ≤ − 1

2MN 1/3). (3.37)

By Theorem 3.1, there exists an absolute constant N0 such that for all s ≥ 1, and
M ≥ 1,wehaveP

(LN
2 (s)− LN

3 (s) < − 1
2MN 1/3

) ≤ 2−N . Sincewehave established
v = 2 case of Theorem 3.8, we may directed use (3.27) with v 	→ 2, M 	→ 1

2M and
ε 	→ 1

2ε, to get that P(F) ≤ 1
2ε for all large enough N , M . Thus for all N , M large

enough we have (3.37) ≤ 1
2ε + kN 2/32−N ≤ ε. ��

Theorem 3.8 and Proposition 3.9 can be used to deduce left boundary tightness for
the HSLG line ensemble. We shall refer to this property as endpoint tightness.

Theorem 3.10 (Endpoint tightness) Fix any p ∈ {1, 2}. Set α := αp according to
(3.11). Recall the HSLG line ensemble from Definition 2.7 with parameters (α, θ).
The sequences {N−1/3LN

1 (1)}N≥1 and {N−1/3LN
2 (2)}N≥1 are tight.

Again the proof can be extended to include tightness of N−1/3LN
2 (1) as well, once

we have the corresponding version in Proposition 3.9. We again refrain from doing so,
as it is inconsequential to the proofs of our main theorem. We refer to the discussion
in the introduction (Remark 1.6) about how Theorem 3.10 relates to the work of [76].

Proof of Theorem 3.10 Fix an ε > 0. We shall show that for all large enough N , M we
have

P(LN
1 (1) ≤ MN 1/3) ≥ 1− 3ε, P(LN

2 (2) ≤ −MN 1/3) ≤ 3ε. (3.38)
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In viewof the ordering of points in the line ensemble (Theorem3.1),we knowLN
1 (1) ≥

LN
2 (2) − (log N )7/6 with probability at least 1 − 2−N . This along with the above

equation ensures endpoint tightness. We thus focus on proving (3.38).
Proof of the first inequality in (3.38). Recall the point-to-line partition function
Z line
N (·) from (1.8). From Theorem 1.5, we know N−1/3

(
log Z line

N (1) + 2�(θ)N
)
is

tight. Since LN
1 (3) ≤ log Z line

N (1)+ 2�(θ)N , there exists M1(ε) > 0 such that for all
N ≥ 3 we have P(LN

1 (3) ≤ M1N 1/3) ≥ 1 − ε. Thanks to Theorem 3.1, there exists
M2(ε) > M1(ε) such that for all N ≥ 3

P(A) ≥ 1− 2ε, A :=
{
LN
1 (3) ≤ M1N

1/3, sup
j∈�1,4�

LN
2 ( j) ≤ M2N

1/3
}
.

Define F := σ
(
(LN

1 ( j)) j≥3, (LN
i �1, 2N − 2i + 2�)i≥2

)
. By the union bound and

tower property of the conditional expectation, for any M3 > 0 we have

P(LN
1 (1) ≥ M2N

1/3 + M3) ≤ 2ε + E

[
1AE

[
1LN

1 (1)≥M2N1/3+M3
| F]

]

Using Theorem 1.3 we have

E
[
1LN

1 (1)≥M2N1/3+M3
| F] = P

LN
1 (3),(LN

2 (2),LN
2 (4));1,2

αp (L1(1) ≥ M2N
1/3 + M3)

OneventA, the boundary data are atmostM2N 1/3. By stochasticmonotonicity (Propo-
sition 2.6) and translation invariance of the Gibbs measure (Lemma 2.1a) we have

1A · PL
N
1 (3),(LN

2 (2),LN
2 (4));1,2

αp (L1(1) ≥ M2N
1/3 + M3) ≤ 1A · P0,(0,0);1,2αp (L1(1) ≥ M3).

The last probability can be made less than ε by taking M3 large enough. Thus setting
M4 = M4(ε) := M3 + M2, we see that for all N ≥ 3, the first inequality in (3.38)
holds with M = M4.

Proof of the second inequality in (3.38). We start by defining two high probability
events B1 and B2. The idea is to then show P

({LN
2 (2) ≤ −MN 1/3} ∩ B1 ∩ B2

)
can be

made arbitrarily small by choosing N , M large enough.
We shall use Theorem 3.3 (high point on the second curve) with k 	→ 1. Consider

R0 = R0(1, ε) > 0 from Theorem 3.3. Set R = max{R0, 1}. By Theorem 3.3 with
k 	→ 1, there exists M5(ε) > 0 such that for all large enough N

P(B1) ≥ 1− ε, B1 :=
⋃

q∈�N2/3,RN2/3�

B1(p), B1(q) := {LN
2 (2q) ≥ −M5N

1/3}.

We write the set B1 as a union of disjoint sets as follows:

C1(q) := B1(q) ∩
⋂

s∈�q+1,RN2/3�

¬B1(s), C1 :=
⊔

q∈�N2/3,RN2/3�

C1(q) = B1.
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By Theorem 3.1, for large enough N we have

P(B2) ≥ 1− ε, B2 :=
⋂

q∈�N2/3,RN2/3�

B2(q),

B2(q) := {LN
2 (2q)− LN

1 (2q − 1) ≤ N 1/3}.

Set Fq := σ
(
(LN

1 ( j − 1),LN
2 ( j)) j≥2q , (LN

i �1, 2N − 2i + 2�)i≥3
)
. Observe that

B2(q) ∩ C1(q) is measurable with respect to Fq . Note that for any M6 > 0 we have

P

({
LN
2 (2) ≤ −M6N

1/3
}
∩ B1 ∩ B2

)

≤
∑

q∈�N2/3,RN2/3�

P

({
LN
2 (2) ≤ −M6N

1/3
}
∩ C1(p) ∩ B2(p)

)

=
∑

q∈�N2/3,RN2/3�

E

[
1B2(q)∩C1(q)E

[
1LN

2 (2)≤−M6N1/3 | Fq

]]
. (3.39)

By the Gibbs property (Theorem 1.3) we have

1B2(q)∩C1(q) · E
[
1LN

2 (2)≤−M6N1/3 | Fq

]

= 1B2(q)∩C1(q) · P(LN
1 (2q−1),LN

2 (2q)),(LN
3 (2i))qi=1;2,q

αp (L2(2) ≤ −M6N
1
3 )

≤ 1B2(q)∩C1(q) · P(y1,y2),(−∞)q ;2,q
αp

(L2(2) ≤ −M6N
1/3),

where y1 = −(M5 + 1)N 1/3, y2 = −M5N 1/3. The last inequality follows due to
stochastic monotonicity (Proposition 2.6) as on the event B2(q) ∩ C1(q) we have
LN
2 (2q) ≥ −M5N 1/3 and LN

1 (2q − 1) ≥ −(M5 + 1)N 1/3. By translation invariance
(Lemma 2.1a) and stochastic monotonicity (Proposition 2.6) we have

P
(y1,y2),(−∞)q ;2,q
αp

(L2(2) ≤ −M6N
1/3) ≤ P

(0,−A
√
q),(−∞)q ;2,q

αp (L2(2)

≤ (M5 + 1− M6)N
1/3) ≤ ε,

where the last inequality is uniform over q ∈ �N 2/3, RN 2/3� and follows from Propo-
sition 3.9 by taking M6 large enough (A ≥ 1 is defined in (3.28)). Plugging the above
bound back in (3.39), and noting that (B2(q))q∈�N2/3,RN2/3� forms a disjoint collection
of events we have that (3.39) ≤ ε. Using the fact that P(¬Bi ) ≤ ε for i = 1, 2, an
application of the union bound yields the second inequality in (3.38) with M = M6.
��
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Fig. 13 The above figure depicts
the event RP2,M under the law

P
�y,(−∞)2T ;2,2T
α2

2MN1/3

−MN1/3

−(M + 1)N1/3

2T 4T

4 Properties of the first two curves of Gibbsmeasures with no bottom
curve

In this section, we prove Proposition 3.9 that asserts endpoint tightness of bottom-
free measures defined in Definition 2.4. Along with Proposition 3.9, we also study
probabilities of a certain event which we call region pass event under the bottom-free
measure.

Proposition 4.1 Fix any r , M > 0 and p ∈ {1, 2}. Set T = 
r N 2/3�. We set α = αp

according to (3.11). Recall the bottom-free measure from Definition 2.4. Let �y ∈ R
p

with yi = −(M+ i −1)N 1/3. There exists φ = φ(r , M) > 0 and N0(r , M) > 0 such
that for all N ≥ N0 we have

P
�y,(−∞)2T ;p,2T
αp

(RPp,M ) ≥ φ, (4.1)

where the region pass event is defined as

RPp,M :=
{

inf
j∈�1,2T+p−2�

L p( j) ≥ 2MN 1/3

}

. (4.2)

The event RPp,M requires the first 2T + p− 2 points of the p-th curve to lie above
2MN 1/3. Although this is a low probability event, Proposition 4.1 says that this event
always has positive probability (independent of N ) under the bottom-free measure.
(see Fig. 13 for p = 2 case).

Recall from (3.11) that α1 and α2 are the boundary parameters corresponding to
critical and supercritical phases respectively. Depending on the phase being critical
or supercritical, the arguments for proving Proposition 3.9 and Proposition 4.1 are
markedly different. We first give interpretation of the bottom-free laws under the two
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phases in Sect. 4.1. In Sects. 4.2 and 4.3, we provide proofs of the aforementioned
lemmas for critical and supercritical phases respectively.

In the critical phase, the left boundary attraction between the first two curves is
weak as α1 = O(N−1/3)—it is the soft-intersection that only comes into the effect.
The analysis of the Gibbs measures in this case is similar to the one done in studying
full-space line ensembles and relies on KMT coupling type results. In the supercritical
phase, we have α2 = O(1) and the soft-intersection and attraction acts as two opposite
forces: one tries to repel the curves and another tries to attract. This situation has
asymptotically zero probability. The KMT coupling is no longer suitable to analyze
events under this setting. This makes the argument for the supercritical phase more
involved.

Let us first introduce a piece of notation thatwewill use frequently for the remainder
of the paper. Consider any probability measure P• on R|Kk,T | equipped with Borel σ -
algebra on R

|Kk,T | where Kk,T is defined in (2.4). For ω ∈ R
|Kk,T |, we denote the

coordinate functions as Li ( j)(ω) := ωi ( j) for (i, j) ∈ Kk,T . We will simply write
(Li ( j))(i, j)∈Kk,T ∼ P

• for the random variables (Li ( j))(i, j)∈Kk,T under the measure
P
•.

4.1 The bottom-free laws under critical and supercritical phase

In this section, we provide two alternative (and ultimately equivalent) representations
of the bottom-free laws defined in Definition 2.4. The first representation, provided
in Lemma 4.3, is most suitable for studying the critical phase while the second rep-
resentation, provided in Lemma 4.4 (see also Definition 1.7 and the discussion in the
introduction), is most suitable for studying the supercritical phase.

Webeginwith the following lemmawherewemention how the bottom-freemeasure
on the domainKk,T (see (2.4)) with boundary condition �y is well-defined under certain
cases.

Lemma 4.2 (Well-definedness of bottom-free measures) Take �y ∈ R
k . For k ≥ 1 and

α ∈ (−θ, θ), f �y,(−∞)T

k,T (u) (see (2.5)) is proportional to

k−1∏

i=1

T−1i=1∏

j=1
W (ui+1,2 j ; ui,2 j+1, ui,2 j−1)

k∏

i=1

2T−1−1i=1∏

j=1
G

θ+(−1)i+ j−1α,(−1) j+1 (ui, j − ui, j+1).

(4.3)

where W and G are defined in (2.1) and (2.2). Furthermore, f �y,(−∞)T

2,T (u) is propor-
tional to

exp
(−eu2,2−u1,3)Gα,1(u2,2 − u1,1)Gθ,1(u1,1 − u1,2)Gα+θ,1(u2,1 − u2,2)

T−1∏

j=2
W (u2,2 j ; u1,2 j+1, u1,2 j−1)

2∏

i=1

2T−1−1i=1∏

j=2
Gθ,(−1) j+1(ui, j − ui, j+1).

(4.4)

Moreover, the above two densities are integrable.

123



G. Barraquand et al.

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
(a)

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·
(b)

=

(c)

=

(d)

Fig. 14 Redistribution of edge weights for α ∈ (−θ, θ) (A) and for α > 0 and k even (B). The weights
of green, yellow (dashed), and purple edges are e(θ−α)x−ex , eαx−ex , and e(θ+α)x−ex respectively. The
weights of black, blue edges are defined in (1.5). (A) can be derived from Fig. 3 by observing the equality
(as weight functions) in (C). The red circle around vertex v signifies a vertex weight of the form eαx . The
red vertex weight on the right boundary can be absorbed in the constant of proportionality of the Gibbs
measure. B Can be derived from Fig. 3 by observing the equality (as weight functions) in (D) (color figure
online)

Proof Recall the definition of the HSLG Gibbs measure from (2.5) and the corre-
sponding graphical representation from Fig. 3. Note that the red colored edges comes
with a weight of the form exp(−α(u2i−1,1 − u2i,1)) which can be written as a prod-
uct e−αu2i−1,1 · eαu2i,1 . Thus we will think of each red edge as two red rings on the
endpoints of the edges that comes with the (vertex) weight e(−1)iαui,1 (see Fig. 14C).
Upon doing this vertex weight identification, the case k = 1 and T = 3 corresponds
to the top graph of Fig. 14C. One can check that the weights corresponding two graphs
in Fig. 14C are equal. The red vertex weight on the right boundary of Fig. 14C can
be absorbed in the constant of proportionality of the Gibbs measure. Thus ignoring
this weight, the remaining weight is precisely given by the expression in (4.3). The
general k odd case follows by redistributing the weights according to Fig. 14A. For
the case when k is even and α > 0, we redistribute according to Fig. 14B. This leads
to the k = 2 density given in (4.4). One can compute also the explicit density for the
general even case from Fig. 14B. Since 0 ≤ W ≤ 1 and Gs are densities, it is clear
that the expressions in (4.3) and (4.4) are integrable. ��

This redistribution described in Fig. 14will allows us to view the bottom free laws as
laws which are absolutely continuous with respect to randomwalks. We give two such
representations which will be useful in our critical and supercritical phase analysis.
Towards this end, we introduce ξ -distributions. Given θ1, θ2 > 0 and a, b ∈ R, we
consider the following two probability density functions

ξ
(a,b)
θ1,θ2;±1(x) ∝ Gθ1,±1(a − x)Gθ2,±1(b − x). (4.5)
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y1

(a) P
y1,(−∞)4;1,4
α1

ba
θ1 θ2 ba

θ1 θ2

(b) ξ
(a,b)
θ1,θ2;+1 and ξ

(a,b)
θ1,θ2;−1

y1
y2

y1
y2

y1
y2·=

(c) P
(y1,y2),(−∞)3;2,3
α1

Fig. 15 Figures (A) and (B) are graphical representations of the probability distributions Py1,(−∞)4;1,4
α1

and ξ
(a,b)
θ1,θ2;±1 respectively. We use the representation from Fig. 14A here. The black edge labeled as θi in

B represents that the edge carries a weight of eθi x−ex . C shows the decomposition of P(y1,y2),(−∞)4;2,4
α1

into P̂(y1,y2) (middle figure) andWcr (right figure). The marginal law of the gray (blue resp.) shaded region
is a random walk started at y1 (y2 resp.) with increment Gθ+α1,−1 ∗ Gθ−α1,+1 (Gθ+α1,+1 ∗ Gθ−α1,−1
resp.) (color figure online)

The graphical representation of the above two distributions are given in Fig. 15B.

Lemma 4.3 (Critical phase representation)Consider an independent collection of ran-

dom variables Yi ( j)
i .i .d.∼ Gθ+α1,1 and Ui ( j)

i .i .d.∼ Beta(θ − α1, 2α1) for i = 1, 2 and
j ∈ Z≥1. Define

Vi ( j) := Yi (2 j)+ logUi (2 j)− E[logUi (2 j)] − Yi (2 j − 1). (4.6)

so that Vi ( j) form an i.i.d. collection of mean zero random variables. Set Li (2T +
i − 2) = yi and for k ∈ �1, T − 1� define

Li (2T + i − 2k − 2) :=
(
yi + (−1)i+1(k − 1)E[logU1(1)]

)
+ (−1)i+1

k−1∑

j=1
Vi ( j),

(4.7)

and set

Wcr := exp

(

−
T−1∑

k=1

(
eL2(2k)−L1(2k−1) + eL2(2k)−L1(2k+1)

))

, (4.8)

where ‘cr’ stands for critical. Conditioned on (Li (2 j + i − 2))i∈{1,2}, j∈�1,T �, we set

Li (2k + i − 1) ∼ ξ
(Li (2k+i−2),Li (2k+i))
θ−α1,θ+α1,(−1)i+1 for i ∈ {1, 2}, k ∈ �1, T − 1�

and L2(1) = X + L2(2) where X ∼ Gθ+α1,1. We have

(a) (L1( j))(1, j)∈K1,T is distributed as Py1,(−∞)T ;1,T
α1 .
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(b) Let P
(y1,y2) denotes the joint law of {(Li ( j))(i, j)∈K2,T }. This law has graphical

representation given by the middle figure in Fig. 15C. The law P
(y1,y2),(−∞)T ;2,T
α1

is absolutely continuous with respect to P
(y1,y2) with

dP(y1,y2),(−∞)S;2,T
α1

dP
(y1,y2)

∝ Wcr.

Proof Let us consider (L1( j))(1, j)∈K1,T ∼ P
y1,(−∞)T ;1,T
α1 . See Fig. 15A for the graphi-

cal representation of the law.We focus on the odd points (shaded inside the gray box in
the figure). Note that (L1(2T −1−2k))T−1k=0 is a randomwalk starting at L1(2T −1) =
y1 with increments distributed as Gθ+α1,1 ∗Gθ−α1,−1. Conditioned on the odd points,
we have L1(2k) ∼ ξ

(L(2k−1),L(2k+1))
θ−α1,θ+α1;1 . Since V1, j +E[logU1,1] ∼ Gθ+α,1 ∗Gθ−α,−1,

Part (a) of the lemma follows.

Let us now consider the P
(y1,y2),(−∞)T ;2,T
α1 law whose graphical representation is

given in Fig. 15C. We view the graph as superimposition of two graphs where in one
graph we collect all the non-black edges and the other graph we include only the black
edges (see Fig. 15C). We denote the law of the Gibbs measure formed by deleting the

black edges as P̂(y1,y2) (middle figure in Fig. 15C). The law P
(y1,y2),(−∞)T ;2,T
α1 can be

recovered from P̂
(y1,y2) by viewing the black edges as a Radon-Nikodym derivative.

Note that Wcr, defined in (4.8), precisely contains all the effect of the black edges in
the Gibbs measure.

If (Li ( j))(i, j)∈K2,T ∼ P̂
(y1,y2), we have L1(·) independent of L2(·) and L1 is

distributed asPy1,(−∞)T ;1,T
α1 . L2 has a similar representationwith even points (L2(2T−

2k))T−1k=0 forming a randomwalk starting at y2 with increments distributed asGθ+α,−1∗
Gθ−α,1. Conditioned on the even points, we have L2(2k + 1) ∼ ξ

(L(2k),L(2k+2))
θ−α1,θ+α1;−1 and

L2(1) ∼ Gθ+α1,1 + L2(2). Since −V2, j − E[logU1,1] ∼ Gθ+α,−1 ∗ Gθ−α,1, we see

that P̂(y1,y2) is equal to the lawP
(y1,y2) defined in Part (b) of the lemma. This completes

the proof of Part (b). ��
In the supercritical phase, the weighted paired random walk (WPRW) measure

(recall this and the PRWmeasure fromDefinition 1.7) provides a usefulway to describe

the measure P�y,(−∞)T ;2,T
α2 .

Lemma 4.4 (Supercritical phase representation) Fix any �y ∈ R
2 and T ∈ Z≥2.

Suppose (L1(2 j − 1), L2(2 j)) j∈�1,T−1� ∼ P
T ;�y
WPRW. Conditioned on (L1(2i −

1), L2(2i))i∈�1,T−1�, set L2(1) ∼ X + L2(2) where X ∼ Gα2+θ,1 and

L1(2k) ∼ ξ
(L1(2k−1),L1(2k+1))
θ,θ;1 , L2(2k + 1) ∼ ξ

(L2(2k),L2(2k+2))
θ,θ;−1 for k ∈ �1, T − 1�.

Then (Li ( j))(i, j)∈K2,T is distributed as P�y,(−∞)T ;2,T
α2 .
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y1
y2

y1
y2

y1
y2·=

Fig. 16 P
(y1,y2),(−∞)3;2,3
α2 law is decomposed into two parts. We use the representation from Fig. 14B

here. The first part (middle figure) shaded region corresponds to a paired random walk. The second part
(right figure) corresponds to Wsc (color figure online)

Proof We use the alternative graph representation of P�y,(−∞)T ;2,T
α2 law from Fig. 14B.

We decompose this graph into two graphs: one without the black edges (middle figure
of Fig. 16, and one with the black edges, (right figure of Fig. 16. However, unlike the
critical phase, the Gibbs measure corresponding to the middle figure does not split
into two independent parts because of the yellow (dashed) edge. For this measure, the
marginal law of the odd points of the first curve and even points of the second curve
together form the paired randomwalk. Upon taking the black edges into consideration
(which corresponds to theWsc weight), the odd points of the first curve and even points
of the second curve jointly follow theWPRW law. ��

4.2 Proof of Propositions 3.9 and 4.1 in the critical phase

We continue with the notations from Lemma 4.3. By the KMT coupling for random
walks [81], we may find independent Brownian motions B1, B2 defined on the same
probability space such that the following holds. There exists a constant C > 0 depend-
ing only on θ and μ such that for all T large enough,

P

⎛

⎝ max
k≤T−2

∣∣
k∑

j=1
Vi ( j)− σ Bi (k)

∣∣ ≥ C log T

⎞

⎠ ≤ 1/T . (4.9)

V1(1) defined in (4.6) and σ 2 := Var(V1(1)). Recall that in the critical phase we have
α1 = N−1/3μ. Set κ := 1

4 |μ|� ′( 12θ) ≥ 0. As� ′ is a decreasing nonnegative function
on [0,∞), for large enough N

∣
∣E[logU1(1)]

∣
∣ = ∣∣�(θ − α1)−�(θ + α1)

∣
∣ ≤ 2|α1|� ′( 12θ) = 1

2κN
−1/3. (4.10)

Propositions 3.9 and 4.1 can now be proven using the above coupling and estimate for
|E[logU1(1)]|.
Proof of Proposition 3.9 in the case p = 1 (critical phase). Fix ε ∈ (0, 1). Set

β1 := P

(
sup

x∈[0,T ]
B1(x) ≤

√
T
8

)
= P

(
sup

x∈[0,1]
B1(x) ≤ 1

8

)
> 0,

β2 := inf
n∈N exp

(− 2(n − 1)e−
1
2
√
n) > 0.
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Set T := 
r N 2/3�. Continuing with the notations from Lemma 4.3, let us assume

(Li ( j))(i, j)∈K2,T ∼ P
(0,−A

√
T )

.

Observe that |(T − 1)E[logU1(1)]| ≤ √rκ
√
T . Following the relation in (4.7) and

the estimate in (4.9) we get that

P
(0,−A

√
T )
(
L1(2k − 1) ≥ − 1

8

√
T −√rκ

√
T − C log T for all k ∈ �1, T �, and

L2(2k) ≤ −A
√
T + 1

8

√
T +√rκ

√
T + C log T for all k ∈ �1, T �

)
≥ β2

1 − 2
T .

Recall that A = 1+ 2
√
rκ from (3.28). Thus for large enough T we can ensure that

(− 1
8

√
T −√rκ

√
T − C log T

)− (− A
√
T + 1

8

√
T +√rκ

√
T + C log T

) ≥ 1
2

√
T ,

and β2
1 − 2

T ≥ 1
2β

2
1 . Thus for large enough T we have

P
(0,−A

√
T )
(
L1(2k − 1) ∧ L1(2k + 1) ≥ L2(2k)+ 1

2

√
T , for all k ∈ �1, T − 1�

)
≥ 1

2β2
1 .

Following the definition of Wcr from (4.8) we thus get

E
(0,−A

√
T )[Wcr] ≥ 1

2β
2
1 · exp

(− 2(T − 1)e−
1
2

√
T ) ≥ 1

2β
2
1β2.

By Lemma 4.3, this forces

P
(0,−A

√
T ),(−∞)T ;2,T

α1

(|L2(2)| ≥ M
√
T
) = E

(0,−A
√
T )[

Wcr1|L2(2)|≥M
√
T

]

E
(0,−A

√
T )[Wcr]

≤ 2β−21 β−12 · P(0,−A
√
T )(|L2(2)| ≥ M

√
T
)
.

Under P
(0,−A

√
T )
, L2(2) has variance T · Var(V1(1)) and mean −A

√
T + (T −

1)E[logU1(1)]. One can thus choose M large enough so that the last term in the

above equation is at most ε. Similarly one can show P
(0,−A

√
T ),(−∞)T ;2,T

α2

(|L1(1)| ≥
M
√
T
) ≤ ε for all large enough M . This proves (3.29) for p = 1. For (3.30), observe

that by Lemma 4.3a and the Markov inequality one can take M̃ large enough so that
have

P
0,(−∞)T ;1,T
α1

(|L1(1)| ≥ M̃
√
T
)

≤ 1
M̃2T

(
T · Var(V1(1))+ (|(T − 1)E[logU1(1)])2

) ≤ ε.

��
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Proof of Proposition 4.1 in the case p = 1 (critical case). We continue with the same
notations as in Lemma 4.3 with T 	→ 2T . Set T := 
r N 2/3�. Consider the collection
of random variables (Li ( j))(i, j)∈K2,2T defined in (4.7) with y1 = −MN

1
3 . By Lemma

4.3a, we get that

(L1( j))(i, j)∈K1,2T ∼ P
−MN1/3;(−∞)2T ;1,2T
α1

.

We may assume V1( j) are defined in a probability space that includes a Brownian
motion B1(·) such that (4.9) holds. Recall that given a standard Brownian motion B
and an open set U ⊂ C([0, 1])with { f : f (0) = 0} ⊂ U, we have P(B|[0,1] ∈ U) > 0.
Thus by the scale invariance of Brownian motion, there exists φ(θ, μ, r , M) > 0 such
that

P

(
0 ≤ σ B1(x)− (16M + 5κr)N 1/3 ≤ MN 1/3 for all x ∈ [ T2 , 2T ]

)
≥ 2φ.

Here κ = 1
4 |μ|� ′( 12θ) ≥ 0.Now for y = −MN

1
3 we have |y+(k−1)E[logU1(1)]| ≤

(M + κr)N
1
3 for all k ≤ 2T . For large enough N we also have C log 2T ≤ MN 1/3

where C comes from (4.9). Thus in view of (4.7) and (4.9) we have

P1

(
(14M + 4κr)N

1
3 ≤ L1(4T − 1− 2k)

≤ (19M + 6κr)N
1
3 for all k ∈ � T2 , 2T − 1�

)
≥ 2φ − 1

2T ,

(4.11)

where for simplicity we write P1 := P
−MN

1
3 ,(−∞)2T ;1,2T

α1 . Let us set

A :=
{
(14M + 4κr)N

1
3 ≤ L1(4T − 1− 2k) ≤ (19M + 6κr)N

1
3 for all k ∈ � T2 , 2T − 1�

}
,

B(k) :=
{
|L1(2k − 1)− L1(2k)|, |L1(2k + 1)− L1(2k)| ≥ 2(5M + 2κr)N

1
3

}
.

Recall the event RP1,M from (4.2). Observe that

RP1,M ⊃ A ∩
⋂

k∈�1,3T /2−1�
B(k)

Thus by applying the union bound we get

P1(RP1,M ) ≥ P1

(
A ∩

⋂

k∈�1,3T /2−1�
B(k)

)
≥ P1(A)−

∑

k∈�1,3T /2−1�
P1

(
A ∩ ¬B(k)

)

(4.12)

Let us denote Fodd := σ
(
(L1(2k − 1))2Tk=1

)
. Note that the event A is measurable with

respect to Fodd. On the event A, |L1(2k + 1) − L1(2k − 1)| ≤ (5M + 2κr)N
1
3 for
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all k ∈ �1, 3T /2 − 1�. Recall that the distribution of even points of L1 conditioned
on Fodd are given by the ξ -distributions (see (4.5) and Lemma 4.3). Applying the tail
bound for the ξ -distribution from Lemma B.4 we have

1AE1
(
1¬B(k) | Fodd

) ≤ 1A · exp
(
−C(5M + 2κr)N

1
3

)
,

for all k ∈ �1, 3T /2− 1�. Taking another expectation with respect to Fodd above and
then plugging the bound back in (4.12), along with the lower bound of P1(A) from
(4.11) we get that

P1(RP1,M ) ≥ 2φ − 1
2T − 3r N

2
3 exp

(
−C(5M + 2κr)N

1
3

)
.

For large enough N , the right side of above equation is always larger than φ. ��

4.3 Proof of Propositions 3.9 and 4.1 in the supercritical phase

Recall that Lemma 4.4 establishes that the law of P�y,(−∞)T ;2,T
α2 is related to the law

of weighted paired random walk (WPRW) defined in Definition 1.7. We will start by
developing a few important properties of the paired random walk and weighted paired
random walk measures before going into the proof of Propositions 3.9 and 4.1 in the
p = 2 case (supercritical phase).

Lemma 4.5 (Properties of the increments) The densities fθ and gζ , defined in (2.3),
enjoy the following properties.

(1) The density fθ is symmetric and log fθ is concave.
(2) Let ψ denote the characteristic function corresponding to fθ . |ψ | is integrable.

Given any δ > 0, there exists η such that supt≥δ |ψ(t)| = η < 1.
(3) For any a < b, inf x∈[a,b] fθ (x) > 0 and inf x∈[a,b] gζ (x) > 0.
(4) There exists a constant C > 0 such that fθ (x) ≤ Ce−|x |/C and gζ (x) ≤ Ce−|x |/C.

In particular, this implies that if X ∼ fθ and Y ∼ gζ , there exists v > 0 such that
and

sup
|t |≤v

[
E[et X ] + E[etY ]] <∞.

In other words X and Y are subexponential random variables.

Proof Recall that fθ = Gθ,+1 ∗ Gθ,−1. Thus the random variable corresponding to fθ
can be viewed as difference of two independent random variables drawn from Gθ,+1.
Hence symmetricity claim of part (1) follows. Concavity of log fθ can be checked by
computing the second derivative explicitly. For the characteristic function from [48,
Formula 5.8.3] one has

ψ(t) =
∣∣∣∣
�(θ + i t)

�(θ)

∣∣∣∣

2

=
∞∏

n=0

(
1+ t2

(θ + n)2

)−1
≤
(
1+ t2

θ2

)−1
. (4.13)
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From here, one can verify part (2) of the above lemma. Part (3) and (4) follows from
the explicit form of the G function. ��

The following corollary allows us to use estimates developed inAppendix C regard-
ing non-intersection probabilities for random walks and bridges with general jump
distributions.

Corollary 4.6 The density fθ defined in (2.3) satisfies Assumption C.1.

Proof This follows immediately from Lemma 4.5. ��

Recall the PRW law from Definition 1.7. Let fθ
(n)

be the density of X(1)+···+X(n)√
n

where X(i) are i.i.d. drawn from fθ . Assume U (n), V (n)
i .i .d.∼ fθ

(n−1)
. Note that for

any Borel set A ⊂ R
2 and x, y ∈ R we have

P
n;(x,y)
PRW

(
(S1(1), S2(1)) ∈ A

)

=
E

[
gζ (
√
n(V (n)−U (n)− x−y√

n
))1(U (n)+x,V (n)+y)∈n−1/2A

]

E[gζ (
√
n(V (n)−U (n)− x−y√

n
))] . (4.14)

The above formula is the guiding principle for extracting tail estimates of various kinds
of functions of (S1(1), S2(1)). We list few of them that are indispensable for our later
analysis.

Lemma 4.7 (Tail estimates for the entrance law) Fix any M > 0, n ≥ 1, and consider
xn, yn ∈ R with |xn|, |yn| ≤ M

√
n. Fix two open intervals I1, I2 > 0. Under the

above setup, there exists a constant C = C(M, I1, I2) > 1 such that for all n ≥ 1 and
τ ≥ 1, we have

P
n;(xn ,yn)
PRW

(|S1(1)| ≥ τ
√
n
) ≤ Ce−

1
C τ , (4.15)

P
n;(xn ,yn)
PRW

(|S1(1)− S2(1)| ≥ τ
) ≤ Ce−

1
C τ , (4.16)

P
n;(xn ,yn)
PRW

(
S1(1)− S2(1) ∈ I1, S1(1) ∈

√
nI2
) ≥ 1

C . (4.17)

Proof of Lemma 4.7 For simplicity let us write zn := xn−yn√
n

. It is enough to prove the
Lemma 4.7 for large enough n. So, throughout the proof we will assume n is large
enough. We first claim that the denominator of the right-hand side of (4.14) is of the
order n−1/2, i.e. there exists a C > 1 such that for all large enough n we have

1

C
√
n
≤ E[gζ (

√
n(V (n)−U (n)− zn))] ≤ C√

n
(4.18)
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Fix any τ ≥ 0. Using the exponential tails of gζ (part (4) from Lemma 4.5) we have

E

[
gζ (
√
n(V (n)−U (n)− zn))1|√n(V (n)−U (n)−zn)|≥τ

]

≤ E

[
gζ (
√
n(V (n)−U (n)− zn))1|√n(V (n)−U (n)−zn)|≥τ+√n

]

+
∑

p∈�τ,τ+√n�

E

[
gζ (
√
n(V (n)−U (n)− zn))1|√n(V (n)−U (n)−zn)|∈[p,p+1]

]

≤ Ce− 1
C (
√
n+τ) +

∑

p∈�τ,τ+√n�

Ce− 1
C p

· P( p√
n
≤ |V (n)−U (n)− zn | ≤ p+1√

n

)
.

(4.19)

Note that fθ
(n)

(x) = √nf∗nθ (x
√
n) where f∗nθ denotes the n-fold convolution of fθ . As

n → ∞, we know by central limit theorem that this should converge to a Gaussian
density with appropriate variance. Lemma C.2 (recall Corollary 4.6) records a sharp
quantitative version of this convergence. Indeed, the estimate from Lemma C.2 (recall
Corollary 4.6) ensures that given any interval B := [ p√

n
,
p+1√
n
] ⊂ [−2, 2], for all large

enough n, we have

P
(
(V (n)−U (n)− zn) ∈ B

) = (1+ o(1))P
(
Z1 − Z2 − zn ∈ B

)

where Z1, Z2 are independent Gaussian random variables with same variance as of
fθ . By Gaussian computations we can ensure that for all large enough n we have

P
(
(V (n)−U (n)− zn) ∈ B

) ∈ [R−1/√n, R/
√
n]

for some R > 1 depending only on M . This ensures P
( p√

n
≤ |V (n)−U (n)− zn| ≤

p+1√
n

) ≤ R√
n
for all p ∈ �0,

√
n�. Plugging this bound back in r.h.s. (4.19) leads to

E

[
gζ (
√
n(V (n)−U (n)− zn))1|√n(V (n)−U (n)−zn)|≥τ

]
≤ C√

n
e−τ/C. (4.20)

Taking τ = 0 leads to the upper bound in (4.18). For the lower bound we note

E[g(√n(V (n)−U (n)− zn))]
≥ E

[
g(
√
n(V (n)−U (n)− zn))1Vn−Un−xn+yn∈( 1√

n
, 2√

n
)

]

≥ P

(
V (n)−U (n)− zn ∈ ( 1√

n
, 2√

n
)

)
· inf
x∈[1,2]gζ (x)

≥ R−1√
n
· inf
x∈[1,2]gζ (x),

(4.21)
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which is bounded below by 1/[C√n], by the property of gζ from part (3) of Lemma
4.5. This proves the lower bound in (4.18).

Let us now prove the inequalities in Lemma 4.7 one by one. Inserting the upper
bound in (4.20) and lower bound in (4.18) in the formula (4.14) leads to (4.16). For
(4.17) notice that due to (4.14) and (4.21) we have

P
(
S1(1)− S2(1) ∈ I1, S1(1) ∈ √nI2

)

≥ C−11

√
n · inf

x∈I1
g(−x) · P

(
U (n)+ xn√

n
∈ √nI2,U (n)+ zn − V (n) ∈ n−1/2 I1

)
.

Using Lemma C.2 (recall Corollary 4.6) again, the probability above can be shown

lower bounded by
C−12√

n
for some C2 depending on M, I1, I2 but free of n. This proves

(4.17). For (4.15) we observe

E
[
g(
√
n(V (n)−U (n)− zn))1|U (n)|≥τ

]

≤ Ce−
√
n
C +

∑

p∈�0,√n�

Ce−
p
CP

(
p√
n
≤ |V (n)−U (n)− zn| ≤ p+1√

n
, |U (n)| ≥ τ

)
.

By a union bound followed by tower property of conditional expectation, we have

P

(
p√
n
≤ |V (n)−U (n)− zn| ≤ p+1√

n
, |U (n)| ≥ τ

)

≤ E

[
1τ≤|U (n)|≤(log n)3/2P

(
p√
n
≤ |V (n)−U (n)− zn| ≤ p+1√

n
| U (n)

)]

+ P
(|U (n)| ≥ (log n)3/2

)
.

By Lemma C.2 (recall Corollary 4.6), the conditional probability above can be uni-
formly bounded above by C3√

n
for some C3 independent of p and n. Exponential tail

estimates of U (n), which follows from sub-exponential property (part (4) of Lemma
4.5) of fθ (see Theorem 2.8.1 from [98]), show that the right-hand side of the above

equation is at most C√
n
e− 1

C τ . Combining these estimates yields

E
[
g(
√
n(V (n)−U (n)− zn))1|U (n)|≥τ

] ≤ C√
n
e−

1
C τ .

Using the lower bound for the denominator from (4.21), in view of (4.14), we get
(4.15). ��

In order to deal with theWPRW law, the weighted version of the PRW law (see Def-
inition 1.7), we next analyze theWsc weight defined in (1.15). We record a convenient
lower bound for Wsc that will be useful in our later analysis. Fix any p, q ∈ Z≥1 with
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p + q ≤ n − 1. Given any β > 0, we consider several ‘Gap’ events:

Gap1,β := {S1(k)− S2(k) ≥ βk1/4 for all k ∈ �2, p�},
Gap2,β := {S1(k)− S2(k) ≥ β(n − k)1/4 for all k ∈ �n − q, n − 1�},
Gap3,β := {S1(k)− S2(k) ≥ n1/4 for all k ∈ �p + 1, n − q�},
Gap4,β := {S1(k − 1)− S1(k) ≤ β−1k1/8 for all k ∈ �2, p�},
Gap5,β := {S1(k − 1)− S1(k) ≤ β−1(n − k + 1)1/8 for all k ∈ �n − q + 1, n�},
Gap6,β := {|S1(k)− S1(k − 1)| ≤ β−1(log n) for all k ∈ �p + 1, n − q�}.

The events depend on p and q as well, but we have suppressed it from the notation.
Gap1,β ,Gap2,β , and Gap3,β requires S1(k) − S2(k) to be bigger than a threshold
pointwise in the left (�2, p�), right (�n − q, n − 1�), and middle (�p + 1, n − q�)
region respectively. The type of threshold depends on the region. Gap4,β ,Gap5,β , and
Gap6,β controls the increments of S1(k). Set

Gapβ :=
6⋂

i=1
Gapi,β . (4.22)

We have the following deterministic inequality for Wsc.

Lemma 4.8 Recall Wsc from (1.15). Given any β > 0, there exists aβ > 0 such that
for all n ≥ 1,

Wsc ≥ aβ · 1Gapβ∩{|S1(1)−S2(1)|≤β−1}.

where Wsc is defined in (1.15).

Proof Assume Gapβ holds. For k ∈ �2, n − 1� we have

S2(k)− S1(k) ≤ −min(βk1/4, β(n − k)1/4, n1/4) =: τ (n)(k).

Clearly
∑n−1

k=2 eS2(k)−S1(k) ≤∑n−1
k=1 eτ (n)(k) is uniformly bounded in n and hence can

be bounded by some constant Cβ ∈ (0,∞). Similarly for k ∈ �2, n − 1� we have

S2(k)− S1(k + 1) = S2(k)− S1(k)+ S1(k)− S1(k + 1)

≤ τ (1)
n (k)+ β−1 max((k + 1)1/8, (n − k)1/8, (log n)) =: τ̃ (n)(k).

Clearly
∑n−1

k=2 eS2(k)−S1(k+1) ≤ ∑n−1
k=1 eτ̃ (n)(k) is uniformly bounded in n and hence

can be bounded by some constant C̃β ∈ (0,∞). Finally,

S2(1)− S1(1) = S1(1)− S2(2)+ S2(2)− S1(2) ≤ 3β−1
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on the event {|S1(1) − S2(1)| ≤ β−1} ∩ Gap4,β . Thus from the definition of Wsc in
(1.15) we have

Wsc ≥ 1Gapβ∩{|S1(1)−S2(1)|≤β−1} · exp(−e3β
−1 − Cβ − C̃β).

Taking aβ := exp(−e3β−1 − Cβ − C̃β) completes the proof. ��

Note that upon conditioning on the values of S1(1) and S2(1), a paired randomwalk
(recall Definition 3.6) has the law of two independent n-step random bridges (recall
Definition 3.6) starting from (S1(1), S2(1)) and ending at (x, y).

Wenow introducemodified randombridge above as they are easier toworkwith than
random bridges. Indeed, as described in the proof idea section of the introduction, the
main advantage of working with modified random bridges is that they have a (true)
random walk portion and one can appeal to classical non-intersection probability
estimates available for the random walks. On the other hand, the laws of random
bridge and modified random bridge can be compared with the help of Lemma 4.10
below. Figure 5 contains an illustration of such a bridge for p = q = 
n/4�.

Definition 4.9 ((n; p, q)-modified random bridge) Fix n ≥ 1, and p, q ∈ �0, n� with

p + q ≤ n and p �= 0. Take any a, b ∈ R. Let (X(i),Y (i))i∈Z≥1
i .i .d.∼ fθ where fθ is

defined in (2.3). Set S(1) := a and S(n) := b. Set For k ∈ �2, p�, set

S(k) := a +
k−1∑

j=1
X j for k ∈ �2, p�, S(n − k) := b −

k∑

j=1
Y j for k ∈ �1, q�.

Conditioned on (S(k))k∈�1,p�∪�n−q,n�, set (S(k))n−qk=p ∼ P
n−p−q+1;̃a,̃b where ã :=

S(p), b̃ := S(n − q), and P
m;a,b is a m-step random walk from a to b. We call

(S(k))k∈�1,n� a (n; p, q)-modified random bridge of length n starting at a and ending

at b and denote its law as P̃(n;p,q);a,b. Again, we shall often consider two independent
(n; p, q)-modified random bridges starting from (a1, a2) and ending at (b1, b2). Such
bridges can be viewed as a measure on (�2

n,F2
n) space introduced in Definition 1.7.

We write P̃(n;p,q);(a1,a2),(b1,b2) to denote its law.

Lemma 4.10 (Comparison Lemma) Fix any M, M̃ > 0 and δ1, δ2 ∈ [0, 1/2), and
n ≥ 1. Set p = 
nδ1� and q = 
nδ2�. For �x ∈ R

n−2, let Va,b(�x) and Ṽa,b(�x) be the
joint density of a n-step random bridge and (n; p, q)-modified random bridge starting
at a and ending at b. Suppose a, b ∈ R with |a − b| ≤ M

√
n. Then, there exists two

constants C1 = C1(M, δ1, δ2) > 0 and C2 = C2(M, M̃, δ1, δ2) > 0 such that for all
�x ∈ R

n−2 and all a, b ∈ R with |a − b| ≤ M
√
n we have

Va,b(�x) ≤ C1 ·Ṽa,b(�x), (4.23)

Va,b(�x)·1|xp−xn−q |≤M̃
√
n ≥ C−12 ·Ṽa,b(�x)·1|xp−xn−q |≤M̃

√
n . (4.24)
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Proof We have

Va,b(�x) :=
∏n−2

j=0 fθ (x j+1 − x j )

f∗(n−1)θ (b − a)
, Ṽa,b(�x) :=

∏n−2
j=0 fθ (x j+1 − x j )

f∗(n−p−q)
θ (xp − xn−q)

.

where x0 := a and xn−1 := b. We thus have

Va,b(�x)
Ṽa,b(�x)

= f∗(n−p−q)
θ (xp − xn−q)

f∗(n−1)θ (b − a)
. (4.25)

By [62, Theorem 2, Chapter XV.5] we know

sup
z∈R

∣
∣∣∣
√
kf∗kθ (z)− 1√

2πσ
e
− z2

2kσ2

∣
∣∣∣

k→∞−−−→ 0, (4.26)

where σ = ∫
R
x2fθ (x)dx . Thus, there exist a constant C̃1 > 1 depending on M, δ1, δ2

such that

√
nf∗(n−p−q)

θ (z) ≤ C̃1 for all z ∈ R, 1
C̃1
≤ √nf∗(n−1)θ (b − a) ≤ C̃1.

for all large enough n. Inserting these bounds in the numerator and denominator of
r.h.s. (4.25) we get the (4.23) by setting C1 := C̃

2
1. When |xp − xn−q | ≤ M̃

√
n, we

may utilize the limit result in (4.26) to obtain a new constant C̃2 > 0 depending on
M̃, δ1, δ2 such that

√
nf∗(n−p−q)

θ (xp − xn−q) ≥ 1
C̃2

whenever |xp − xn−q | ≤ M̃
√
n,

for all large enough n. Using this bound and the upper bound for
√
nf∗(n−1)θ (b − a)

we get the desired result. We arrive at (4.24) by setting C2 := C̃2 · C̃1. ��
With all the preparatory results in hand, we are now ready to prove Propositions

3.9 and 4.1. Recall that in the introduction we gave a proof sketch for Proposition 3.9
(that does not appeal to Proposition 4.1). In what follows, we shall use the techniques
outlined in that sketch to establish more sophisticated intermediate results (such as
Lemma 4.11). These results will allow us to prove Proposition 4.1 first. Then using
those intermediate results we shall then establish Proposition 3.9.
Proof of Proposition 4.1 for the p = 2 case (supercritical phase). We split the proof
into several steps.
Step 1. In this step, we reduce the proof of Proposition 4.1 to the claim around (4.27).
Fix r > 0. Set T := 
r N 2/3� and n = 2T . Recall yi ’s and the event RP2,M from the
statement of the lemma. Since RP2,M is a monotone event, by Proposition 2.6 we have

P
�y,(−∞)2T ;2,2T
α2

(RP2,M ) ≥ P
�x,(−∞)2T ;2,2T
α2

(RP2,M ).
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where x1 = −2MN 1/3, x2 = −2MN 1/3 − √n. By translation invariance (Lemma
2.1a), wemay lift the Gibbs measure by 2MN 1/3 units so that the boundary conditions
changes from (x1, x2) to (0,−√n). The RP2,M event now requires the second curve
to be above the (lifted) barrier 4MN 1/3 under this new boundary condition. Since
4MN 1/3 ≤ 8Mr−1/2

√
n. it thus suffices to show that there exists φ = φ(r , M) > 0

such that

P
(0,−√n),(−∞)n;2,n
α2

(
inf

i∈�1,n�
L2(i) ≥ 8Mr−1/2

√
n

)
≥ φ.

for all large enough n. Towards this end we claim that there exists φ = φ(r , M) > 0
such that

lim inf
n→∞ P

(0,−√n),(−∞)2n;2,n
α2 (Dm) ≥ 2φ, (4.27)

where

Dm :=
{
(L1(2i − 1), L2(2i)) ∈ (10m

√
n, 11m

√
n)2 for all i ∈ �1, n/2�

}
,

and m := Mr−1/2. Let us complete the proof assuming (4.27). Note that (4.27)
controls the even points of the second curve. By Lemma 4.4, we know conditioned on
the even points, L2(2k + 1) ∼ ξ

(L2(2k),L2(2k+2))
θ,θ;−1 for k = 1, 2, . . . , 2n − 1. In view of

Lemma B.4, on the event Dm we have

E

[
1L2(2k+1)≤8m√n | σ

(
L2(2k), L2(2k + 2)

)] ≤ Ce−
1
Cm
√
n .

ByLemma 4.4, L2(1) ∼ Gα2+θ,1+L2(2). Since the densityGα2+θ,1 have exponential

tails, we see that on the event Dm we have P(L2(1) ≤ 8m
√
n | L2(2)) ≤ Ce− 1

Cm
√
n .

Thus by a union bound,

P
(0,−√n),(−∞)2n;2,n
α2

(
inf

i∈�1,n�
L2(i) ≥ 8m

√
n

)

≥ P
(0,−√n),(−∞)2n;2,n
α2 (Dm)− C · ne− 1

Cm
√
n ≥ φ,

for large enough n. This establishes Proposition 4.1 for p = 2, modulo (4.27).
Step 2. In this and subsequent steps we prove (4.27). Recall the PRW and WPRW
laws from Definition 1.7. Recall from Lemma 4.4 that (L1(2i − 1), L2(2i))i∈�1,n� ∼
P
n;(0,−√n)

WPRW . We the terminology from Definition 1.7 to write

P
n;(0,−√n)

WPRW (Dm) = E
n;(0,−√n)

PRW [Wsc1Dm ]
E
n;(0,−√n)

PRW [Wsc]
(4.28)
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where Wsc is defined in (1.15) and Dm is now defined as

Dm :=
{
(S1(i), S2(i)) ∈ (10m

√
n, 11m

√
n)2 for all i ∈ �1, n/2�

}
.

For the remainder of the proof we write P and E for Pn;(0,−√n)

PRW and En;(0,−√n)

PRW respec-
tively. We claim that there exists constants C > 0 and C̃ = C̃(m) > 0 such that

E[Wsc1Dm ] ≤ C̃−1√
n

, E[Wsc] ≥ C√
n
. (4.29)

Clearly plugging these bounds back in (4.28) verifies (4.27). Let us thus focus on
proving (4.29). For the upper bound we use the following lemma. ��
Lemma 4.11 There exists a constant C > 0 such that for all Borel sets A ⊂ R

2 we
have

E [Wsc1A] ≤ C
n + C√

n
E

[
1A
(
(S1(1)− S2(1)+ 1) ∨ 1

)( |S1(1)|√
n
∨ 2
)3/2]

,

where A := {(S1(1), S2(1)) ∈ A}.
Note that taking A = R

2 in Lemma 4.11 and utilizing the exponential tail estimates of
|S1(1)− S2(1)| and |S1(1)|/√n from Lemma 4.7, the upper bound in (4.29) follows.

Proof of Lemma 4.11 As in (1.18), define

NIp :=
{
S1(k)− S2(k) ≥ −p for all k ∈ �2, n − 1�

}
. (4.30)

We set NI := NI0. Here NI stands for non-intersection. Observe that for any q ∈ Z≥1
we have

1NI +
q∑

p=0
1NIp+1∩NIcp + 1NIcq = 1. (4.31)

Thus, taking q = 
log log n� we have

E[Wsc1A] = E[Wsc1A∩NI] +

log log n�−1∑

p=0
E[Wsc1A∩NIp+1∩NIcp ] + E[Wsc1A∩NIc
log log n� ]

≤

log log n�∑

p=0
e−ep−1P

(
A ∩ NIp

)+ 1
n , (4.32)

where the above inequality follows by noting that on NIcp we have W ≤ e−ep−1 . For
the probability term above we condition on F := σ(S1(1), S2(1)) and write P(A ∩
NIp) = E

[
1AE[1NIp | F]

]
. Upon conditioning on S1(1), S2(1), the paired random
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walk P
n;(0,−√n)

PRW law is equal to the law of two independent n-step random walks
starting from (S1(1), S2(1)) to (0,−√n). Thanks to this observation, we may now
appeal to Lemma C.8 to conclude that E[1NIp | F] ≤ eCp

E[1NI | F] holds for some
deterministic constant C > 0. This allows us to conclude

P(A ∩ NIp) ≤ eCp · P(A ∩ NI).

Plugging this into (4.32) and observing that the series
∑

p≥0 e−e
p−1 ·eCp is summable

shows

E[Wsc1A] ≤ 1
n + C · P(A ∩ NI). (4.33)

Thus to suffices to bound P(A ∩ NI). Towards this end, we first define the event

B :=
{
|Si (1)| ≤ (log n)3/2

√
n for i = 1, 2, and |S1(1)− S2(1)| ≤ (log n)3/2

}
.

By the union bound we have P(A∩NI) ≤ P(A∩B∩NI)+P(Bc). For the second term
note that by tail estimates from Lemma 4.7 we have

P(Bc) ≤
2∑

i=1
P(|Si (1)| ≥ (log n)3/2)+ P

(
|S1(1)− S2(1)| ≥ (log n)3/2

)
≤ C

n .

(4.34)

For the first term we write P(A ∩ B ∩ NI) = E [1A∩BE[1NI | F]]. Again, since upon
conditioning on S1(1), S2(1), the paired random walk law is equal to the law of of
two independent n-step random walks starting from (S1(1), S2(1)) to (0,−√n), we
may use random bridge estimates from Appendix C. In particular, Lemma C.9 (recall
Corollary 4.6) shows there exists a constant C > 0 such that

1BE[1NI | F] ≤ 1B · C√
n

(
(S1(1)− S2(1)+ 1) ∨ 1

)( |S1(1)|√
n
∨ 2
)3/2

.

for all n. Taking expectation with respect toF on both sides of the above equation and
then using the fact that 1A∩B ≤ 1A leads to

P(A ∩ B ∩ NI) ≤ C√
n
· E
[
1A
(
(S1(1)− S2(1)+ 1) ∨ 1

)( |S1(1)|√
n
∨ 2
)3/2]

. (4.35)

Inserting this bound along with the bound in (4.34) back in (4.33), we arrive at the
desired bound stated in the statement of the lemma. ��
Step 3. In this step we prove the lower bound in (4.29). Towards this end, consider
the event

Em :=
{
1 ≤ S1(1)− S2(1) ≤ 2, and S1(1), S2(1) ∈ ( 414 m

√
n, 43

4 m
√
n)
}
,
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and σ -algebra F := σ(S1(1), S2(1)). Fix any β > 0 and recall Gapβ from (4.22). We
have

E[Wsc1Dm ] ≥ E[Wsc1Em1Dm1Gapβ
] ≥ aβE[1EmE

[
1Dm∩Gapβ

| F]] (4.36)

where the second inequality above follows by noting thatW ≥ aβ onGapβ∩E (Lemma
4.8). As mentioned in the proof of Lemma 4.11, upon conditioning on F, the paired
random walk P

n;(0,−√n)

PRW law is equal to the law of two independent n-step random
walks starting from (S1(1), S2(1)) to (0,−√n). For simplicity set b1 = 0, b2 = −√n.
We shall use the comparison between random bridge to (n; nρ, 0)-modified random
bridge from Lemma 4.10, for a special ρ ∈ (0, 1) coming from Corollary C.6 (recall
Corollary 4.6). Using the lower bound in (4.24) we get

1Em · E[1Dm∩Gapβ
| F] ≥ 1EmC

−1 · P̃(S1(1),S2(1))
ρ (Dm ∩ Gapβ)

= 1EmC
−1 · P̃(S1(1),S2(1))

ρ (Dm ∩ Gapβ | NI)̃P(S1(1),S2(1))
ρ (NI)

(4.37)

for someC > 0dependingonm andρ.Here P̃(S1(1),S2(1))
ρ := P̃

(n;nρ,0);(S1(1),S2(1)),(0,√n)

is the joint law of two independent (n; nρ, 0)-modified random bridge from Si (1) to
bi defined in Definition 4.9. We now claim that there exists φ̃ = φ̃(m) > 0 such that

P̃
(a1,a2)
ρ (Dm | NI) ≥ 2φ̃. (4.38)

uniformly over all (a1, a2) ∈ P1 where we define

P1 :=
{
(z1, z2) ∈ ( 414 m

√
n, 43

4

√
n) : 1 ≤ z1 − z2 ≤ 2

}
.

We postpone the proof of this claim to the next step. Let us complete the proof of
the lemma assuming it. Since, under P̃(a1,a2)

ρ , S1(�1, nρ�), S2(�1, nρ�) are two inde-
pendent random walks, we may use non-intersection type estimates for random walks
from Appendix C. In particular, using Lemmas C.3 and C.5 (recall Corollary 4.6) we
can get constants δ > 0, M2 > 0 and C1 > 0 all depending on m and ρ such that
uniformly over (a1, a2) ∈ P1 we have

P̃
(a1,a2)
ρ

(
S1(k) ≥ S2(k) for all k ∈ �2, nρ�, S1(nρ)− S2(nρ)

≥ δ
√
n, |Si (nρ)| ≤ M2

√
n
) ≥ C−11√

n
.

Set G := {S1(nρ) − S2(nρ) ≥ δ
√
n, |Si (nρ)| ≤ M2

√
n}. Recall from the definition

of (n; nρ, 0)-modified random bridge that on �nρ, n� the modified random bridge is
just a random bridge from Si (nρ) to bi . Applying Lemma C.7 (recall Corollary 4.6)
it follows that

1G · P̃(a1,a2)
ρ

(
S1(k) ≥ S2(k) for all k ∈ �nρ, n − 1�

) ≥ 1G · C−12 ,
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for some constant C2 > 0 depending onm and ρ only. Thus we get P̃(a1,a2)
ρ (NI) ≥ C−14√

n
uniformly on Em for some deterministic constant C4 depending on m and ρ only. By
Lemma C.11 (recall Corollary 4.6), we may choose β small enough depending on m
and ρ such that P̃(a1,a2)

ρ (Gapβ | NI) ≥ 1− φ̃ uniformly over (a1, a2) ∈ P1. Plugging
this estimates back in (4.37), we see that

1Em · E[1Dm∩Gapβ
| F] ≥ 1Em · φ̃ ·

C−14√
n

.

Now, by Lemma 4.7 (equation (4.17) in particular) we know that P(Em) ≥ C−15 > 0
for some C5 depending on m. Plugging this back in (4.36) we see that

E[Wsc1Dm ] ≥ aβ · P(Em) · φ̃ · C−14√
n
=: C̃−1√

n
. (4.39)

where C̃ > 0 is a constant depending only on m and ρ.
Step 4. In this step we prove (4.38). By equation (C.1) in Lemma C.5 (recall Corollary
4.6), we know there exists δ ∈ (0, 1

8 (m ∧ 1)) small enough depending only on ρ such
that

P̃
(a1,a2)
ρ

(
S1(nρ)− S2(nρ) ≥ δ

√
n | NI) ≥ 15

16 (4.40)

uniformly over (a1, a2) ∈ P1. We shall now choose ρ as ρ( 1
16 ,

m∧1
8 ) where the latter

is a constant depending on m and comes from Corollary C.6 (recall Corollary 4.6).
In view of this choice of ρ, applying Corollary C.6 (recall Corollary 4.6), we see that
uniformly over (a1, a2) ∈ P1 we have

P̃
(a1,a2)
ρ

(

sup
k∈�1,nρ�,i=1,2

|Si (k)− Si (1)| ≤ m∧1
8

√
n | NI

)

≥ 15
16 . (4.41)

Since on P1 we also have (a1, a2) ∈ ( 414 m
√
n, 43

4 m
√
n), combining (4.40) and (4.41)

we get

P̃
(a1,a2)
ρ

({
S1(nρ)− S2(nρ) ≥ δ

√
n
} ∩ K1 | NI

)
≥ 7

8 ,

where

K1 :=
{
S1(k), S2(k) ∈ ( 818 m

√
n, 87

8 m
√
n) for all k ∈ �1, nρ�, and

|S1(nρ)− S2(nρ)| ≤
√
n
2

}
.
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Following the definition of (n; nρ, 0)-modified random bridge, to prove (4.38) it suf-
fices to show

P
n−nρ+1;(c1,c2),(b1,b2)

({
S1(k), S2(k) ∈ (10m

√
n, 11m

√
n) for all k ∈ �1, n/2�

} ∩ NI
)

≥ 16
7 φ̃, (4.42)

uniformly over (c1, c2) ∈ P2 where

P2 := {(c1, c2) ∈ R
2 : ci ∈ ( 818 m

√
n, 87

8 m
√
n), and 1

2

√
n ≥ c1 − c2 ≥ δ

√
n}.

and P
n−nρ+1;(c1,c2),(b1,b2) is the law of two independent random bridges of length

n − nρ + 1 starting at (c1, c2) and ending at (b1, b2). For simplicity set u := n −
nρ+1 ≥ 3

4n. By the KMT coupling of random bridges [56] we may assume there are
two independent Brownian bridges B1, B2 (with variance

∫
x2fθ (x)dx) on the same

probability space such that

P
u;(c1,c2),(b1,b2)

(

sup
k∈�1,u�,i=1,2

|Si (k)−
√
uBi (k/u)− ci − k

u (bi − ci )| ≥ C log n

)

≤ 1
n .

(4.43)

Let rn,i (x) be the piece-wise linear function interpolated by three points: rn,i (0) =
rn,i (1) = 0 and rn,i (3/4) = 3

4
√
u
(bi − ci ). Let Ui be the L∞ open ball of rn,i (x) of

radius 1
4δ (this is the same δ that was chosen at the beginning of Step 4). By properties

of Brownian bridge, there exists a φ̃ = φ̃(m) > 0 such that for all (c1, c2) ∈ P2, we
have

P
u;(c1,c2),(b1,b2)(B(i) ∈ Ui for i = 1, 2) ≥ 32

7 φ̃.

Note that the above equation along with (4.43) implies that with probability 32
7 φ̃− 1

n ,
for all n large enough (and hence u large enough) under the law P

u;(c1,c2),(b1,b2) we
have the following items simultaneously:

• For all k ∈ �1, 3/4u�

|Si (k)− ci | ≤ C log n + 1
4

√
uδ ≤ m

8

√
u < m

8

√
n.

• For all k ∈ �1, u� we have

S1(k) ≥ √urn,1(
k
u )+ c1 + k

u (b1 − c1)− 1
4

√
uδ − C log n

≥ S2(k)+√u(rn,1(
k
u )− rn,2(

k
u ))− 1

2

√
uδ + c1 − c2

+ k
u (b1 − b2 − c1 + c2)− 2C log n

≥ √u(rn,1(k/u)− rn,2(k/u))+ 1
2

√
uδ − 2C log n + S2(k).
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We have rn,1(x) ≥ rn,2(x) by construction, and c1− c2+ k
u (b1− b2− c1+ c2) ≥√

uδ for all (c1, c2) ∈ P2. Thus for all large enough n, S1(k) > S2(k) for all
k ∈ �0, u�.

For n large enough 32
7 φ̃− 1

n ≥ 16
7 φ̃. This establishes (4.42) and hence also Proposition

4.1. ��

Corollary 4.12 There exists an absolute constant C > 0 such that for all n ≥ 1.

E
n;(0,−√n)

PRW [Wsc] ≥ C−1√
n

.

The above corollary follows from (4.39) as En;(0,−√n)

PRW [Wsc] ≥ E
n;(0,−√n)

PRW [Wsc1D1 ].
We remark that here it is important that the endpoints are O(

√
n) apart to get the

precise order of E[Wsc]. We expect a different order if the endpoints are closer or lie
in a reversed order. Later, in Lemma 5.6, we shall prove a different lower bound for
E
n;(x,y)
PRW [Wsc] that is uniform over all possible endpoints (x, y) in a specific window.

Proof of Proposition 3.9 in the p = 2 case (supercritical phase). Given the machinery
developed in the above proof, proof of Proposition 3.9 follows easily. By Lemma 4.4
we have

P
(0,−√T ),(−∞)T ;2,T
α2

(|Li (i)| ≥ M
√
T ) = P

T ;(0,−√T )
WPRW (|Si (1)| ≥ M

√
T )

= E
T ;(0,−√T )
PRW [Wsc1|Si (1)|≥M

√
T ]

E
T ;(0,−√T )
PRW [Wsc]

. (4.44)

Now by Corollary 4.12 we have ET ;(0,−√T )
PRW [Wsc] ≥ C√

T
and by Lemma 4.11 we have

E
T ;(0,−√T )
PRW [Wsc1|Si (1)|≥M

√
T ]

≤ 1
T + C√

T
E
T ;(0,−√T )
PRW

[
1|Si (1)|≥M

√
T

(
(S1(1)− S2(1)+ 1) ∨ 1

)( |Si (1)|√
T
∨ 2
)3]

≤ 1
T + C√

T

√

E
T ;(0,−√T )
PRW

[(
(S1(1)− S2(1)+ 1) ∨ 1

)2]

√

E
T ;(0,−√T )
PRW

[
1|Si (1)|≥M

√
T

( |S1(1)|√
T
∨ 2
)6]

,

where the last inequality follows from Cauchy–Schwarz. Taking T and M large
enough, in viewof the tail estimates fromLemma4.7, it follows that (4.44) can bemade

arbitrarily small. By a union bound, we can thus make P(0,−√T ),(−∞)T ;2,T
α2 (|L1(1)| +

|L2(2)| ≥ M
√
T ) arbitrarily small by taking T and M large enough. ��
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5 Modulus of continuity: proof of Theorem 1.1

In this section we prove our main theorem, Theorem 1.1, about spatial tightness of
HSLG polymers. Due to the relation in (1.7), Theorem 1.1 essentially follows by
controlling modulus of continuity of the first curve of log-gamma line ensemble.
Towards this end, we recall the definition of modulus of continuity function. Given a
continuous function f : Z≥1 → R and U > 1, we define the modulus of continuity
function as

ωN
δ ( f ; �1,U�) := sup

i1,i2∈�1,U�
|i1−i2|≤δN2/3

| f (i1)− f (i2)|. (5.1)

We have the following result that is proved in Section 5.2.

Proposition 5.1 Fix r , γ > 0 and p ∈ {1, 2}. Set α = αp according to (3.11). We
have

lim
δ↓0 lim sup

N→∞
Pαp

(
ωN

δ (LN
1 , �1, 2
r N 2/3� − 1�) ≥ γ N 1/3

)
= 0. (5.2)

Proof of Theorem 1.1 By a standard criterion for functional tightness [19, Theorem
7.3], Proposition 5.1 along with endpoint tightness from Theorem 3.10 implies tight-
ness of the probability law of N−1/3LN

1 (�1, 2
r N 2/3� − 1�). In light of the matching
in distribution in Theorem 1.3 (i), this immediately translates into tightness of the
measure PN

α desired to prove Theorem 1.1. Note that cases (1) and (2) of Theorem 1.1
follow by using the p = 1 and p = 2 cases of Proposition 5.1 and Theorem 3.10. ��

The rest of this section is devoted to proving Proposition 5.1. This relies on the
following technical result which deals with the modulus of continuity for the bottom-
free measure.

Proposition 5.2 Fix any M, V , k1, k2, γ > 0 with k2 > k1. For each N > 0, define
the sets

I1,M := {y ∈ R, |y| ≤ 2MN 1/3}, and

I2,M := {(y1, y2) ∈ R
2 : yi ∈ I1,M/2, y1 − y2 ≥ −(log N )7/6}.

For each p ∈ {1, 2}, there exist δ = δ(M, V , k1, k2, γ, ε) > 0 and N0 =
N0(M, V , k1, k2, γ, ε) > 0 such that for all �x ∈ Ip,M, T ∈ �k1N 2/3, k2N 2/3�, and
N ≥ N0 we have

p∑

i=1
P
�x,(−∞)T ;p,T
αp

⎛

⎝
i∑

k=1
|Lk(k)| ≤ V N1/3, and ωN

δ (Li , �1, T /4+ i − 2�) ≥ γ N1/3

⎞

⎠ ≤ ε.

We postpone the proof of Proposition 5.2 to Sect. 5.3. Section 5.1 contains a few
lemmas that are used in the proof of Proposition 5.1 later in Sect. 5.2.
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0 0
0 0

Fig. 17 Graphical representation of X (left) and Y (right) distribution from Lemma 5.3

5.1 Preparatory Lemmas

We first discuss a few consequences of Proposition 3.9 that form the preparatory tools
for our modulus of continuity analysis.

Lemma 5.3 Fix any ε ∈ (0, 1
2 ) and T ≥ 2. Let (X(i))2T−1i=1 be a random vector with

X(1) = X(2T − 1) ≡ 0 and density at (Xi )
2T−2
i=2 = (ui )

2T−2
2=1 proportional to

2T−2∏

i=1
Gθ,(−1)i+1(ui − ui+1)

respectively where u1 = 0 and u2T−1 = 0 and G is defined in (2.2). Similarly, define
an independent random vector (Y (i))2T−1i=1 precisely as with X except that Gθ,(−1)i+1
is replaced by Gθ,(−1)i . Then, there exists M0(ε) > 0 such that for all T ≥ 2 we have

P

(
sup

i∈�1,2T−1�

(|X(i)| + |Y (i)|) ≥ M0
√
T

)
≤ ε. (5.3)

We refer to Fig. 17 for graphical representation of the distributions appearing in
Lemma 5.3.

Proof Fix ε ∈ (0, 1). Note that (X(2i−1))Ti=1 forms a random bridge from 0 to 0 with
increment from Gθ,+1 ∗ Gθ,−1. By the KMT coupling for random bridges [56] along
with Brownian bridge estimates, there exists a constant M > 0 such that (here we
temporarily use P and E for the probability and expectation for the X and Y vectors)

P(A) ≤ ε
4 , where A :=

{

sup
i∈�1,T �

|X(2i − 1)| ≥ M
√
T

}

.

Let us write F := σ
(
(X(2i − 1))Ti=1

)
. By a union bound we have

P

(
sup

i∈�1,2T−1�
|X(i)| ≥ 5M

√
T
)
≤ ε

4
+

T−1∑

i=1
E

[
1¬A · E

[
1|X(2i)|≥5M√T | F

]]
.

(5.4)

Note that the distribution of even points given the odd points are given by the ξ -
distribution introduced in (4.5). Observe that by Lemma B.4,

1X(2i−1),X(2i+1)∈(−M
√
T ,M

√
T )
· E
[
1|X(2i)|≥5M√T | F

]
≤ C exp(− 1

C

√
T ),
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for some absolute constant C > 0. Plugging the above bound back in (5.4) and
taking T large enough we get that r.h.s. (5.4) is at most ε

2 . Similarly we see that
P
(
supi∈�1,2T−1� |Y (i)| ≥ 5M

√
T
) ≤ ε

2 . Adjusting M , we arrive at (5.7). ��
Lemma 5.4 Recall for p ∈ {1, 2}, α := αp from (3.11). Fix any r ≥ 1 and ε > 0. Set
T = 
r N 2/3�. There exists M = M(ε) > 0 and N0(ε) > 0 such that for all N ≥ N0
we have

P
0,(−∞)T ;1,T
α1

(
sup

i∈�1,2T−1�
|L1(i)| ≥ M

√
T

)
≤ ε, (5.5)

P
(0,−√T ),(−∞)T ;2,T
α2

(
sup

i∈�1,2T−1�
|L1(i)| + sup

j∈�1,2T �
|L2( j)| ≥ M

√
T

)
≤ ε, (5.6)

where the bottom free law P
�x,(−∞)2T ;2,T
αp is defined in Definition 2.4.

Proof For clarity we divide the proof into two steps.
Step 1. Fix any ε ∈ (0, 1

2 ) and consider M0(ε) from Lemma 5.3. In this step we prove
(5.5). From Proposition 3.9 choose M1(ε) > 0 such that for all large enough T we
have

P
0,(−∞)T ;1,T
α1

(|L1(1)| ≥ M1
√
T
) ≥ ε,

P
(0,−√T ),(−∞)T ;2,T
α2

(|L1(1)| + |L2(2)| ≥ M1
√
T
) ≥ ε. (5.7)

We will use the first bound immediately, and the second a bit later. Set M3 := 2M0 +
M1 + 1, and

A1 :=
{

sup
i∈�1,2T−1�

L1(i) ≥ (M3 + M0)
√
T

}

,

A2 :=
{

sup
i∈�2,2T �

L2(i) ≥ (M0 + M1)
√
T

}

.

Finally, introduce shorthand notation P1 for P
(0,−√T ),(−∞)T ;1,T
α1 and P2 for

P
(0,−√T ),(−∞)T ;2,T
α2 (and likewise for E). In view of (5.7), by a union bound we have

P1(A1) ≤ ε + E1

[
1L1(1)≤M1

√
TE1

[
1A1 | σ(L1(1))

]]
.

As A1 is an increasing event with respect to the boundary data, due to stochas-
tic monotonicity (Proposition 2.6), increasing the boundaries will only increase the
conditional probability. Thus to get an upper bound, we may assume L1(1) =
L1(2T − 1) = M1

√
T . But note that under this boundary condition we have

(L1(i) − M1
√
T )2T−1i=1

(d)= (X(i))2T−1i=1 , where X(·) is defined in Lemma 5.3. Thus,
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Fig. 18 In the above figure, we have plotted L1�1, 2T − 1� (black curve) and L2�2, 2T � (blue curve).
Endpoint tightness, Proposition 3.9, ensures that L1(1), L2(2) ∈ (−M0

√
T , M0

√
T ). Assuming this, in

order to seek an uniform upper bound for the blue curve, by stochastic monotonicity we may push the black
curve all the way to+∞. The resulting law for the blue curve is given by Y (·) (upto a translation) introduced
in Lemma 5.3. A uniform upper bound for the resulting law for the blue curve law can then be estimated by
Lemma 5.3. The upper bound is shown in the dashed line above. Once we have a uniform upper bound for
the blue curve, we may elevate the endpoints of black curve much higher (from black points to red points
in the above right figure) so that the curve no longer feels the effect of the blue curve. The red curve above
denotes a sample for L1 from this elevated end points. Without interaction with the blue curve, its law (upto
a translation) equals to X(·) in Lemma 5.3. A uniform upper bound for the red curve can then be estimated
by Lemma 5.3 (color figure online)

owing to (5.3), almost surely we have

1L1(1)≤M1
√
TE1

[
1A1 | σ(L1(1))

] ≤ P

(
sup

i∈�1,2T−1�
|X(i)| ≥ (2M0 + M)

√
T

)
≤ ε.

This implies P1(A1) ≤ 2ε. Following similar calculations one can show

P1

(
inf

i∈�1,2T−1�
L1(i) ≤ −(M3 + M0)

√
T

)
≤ 2ε.

This proves (5.5) with M = M3 for ε 	→ 2ε.
Step 2. In this step we prove (5.6). At this point we encourage the readers to look at
Fig. 18 and its caption for an overview of the proof idea.

Let us set F1 = σ(L2(2), (L1(i))
2T−1
i=1 ) and F2 = σ(L1(1), (L2(i))2Ti=2). In view

of (5.7), by a union bound

P2(A2) ≤ ε + P2

(
{L2(2) ≤ M0

√
T } ∩ A2

)
≤ ε + E2

[
1L2(2)≤M0

√
TE2

[
1A2 | F1

]]
.
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As A2 is an increasing event with respect to the boundary data, due to stochas-
tic monotonicity (Proposition 2.6), increasing the boundaries will only increase
the conditional probability of A2. Thus, to get an upper bound, we may assume
L2(2T ) = L2(2) = M1

√
T , and L1(i) = +∞ for all i ∈ �1, 2T − 1�. Under

this boundary condition we have (L2(i + 1) − M1
√
T )2T−1i=1

(d)= (Y (i))2T−1i=1 where
Y (·) is defined in Lemma 5.3. Thus, almost surely we have (recall P is the law of Y
below)

1L2(2)≤M0
√
T · E2

[
1A2 | F1

] ≤ P

(
sup

i∈�1,2T−1�
|X(i)| ≥ M0

√
T

)
≤ ε.

Thus P2(A2) ≤ 2ε. In view of this bound, applying a union bound we have

P2(A1) ≤ 3ε + E2

[
1{L1(1)≤M1

√
T }∩¬A2E2

[
1A1 | F2

]]
.

As A1 is an increasing event with respect to the boundary data, due to stochastic mono-
tonicity (Proposition 2.6), increasing the boundaries will only increase the conditional
probability. Thus, to get an upper bound we may assume L1(1) = L1(2T − 1) =
M3
√
T and L2(i) = (M0 + M1)

√
T for all i ∈ �2, 2T �. From the definition of the

Gibbs measure, almost surely we have

1{L1(1)≤M1
√
T }∩¬A2E2

[
1A1 | F2

] ≤ 1

E[�]E
[
� · 1A1

]
,

where on the right-hand side,A1 is defined as the event {supi∈�1,2T−1� X(i) ≥ M0
√
T }

and

� = exp

(

−
T−1∑

i=1

(
e−(M0+1)

√
T−X1(2i−1) + e−(M0+1)

√
T−X1(2i+1)

))

.

As � ≤ 1, by (5.3), E
[
�·1A1

] ≤ E[1A1 ] ≤ ε. By (5.3) we have E[�] ≥ (1 − ε) ·
e−2(T−1)e−

√
T ≥ β for some absolute constant β > 0. Thus, P2(A1) ≤ (3 + β−1)ε.

Similarly one can show

P2

(

inf
i∈�2,2T �

L2(i) ≤ −(M3 + M0)
√
T

)

≤ (3+ β−1)ε,

P2

(

inf
i∈�1,2T−1�

L1(i) ≤ −(M0 + M1)
√
T

)

≤ 2ε.

Thus adjusting the constants we can find M̃ such that

P2

(
sup

i∈�1,2T−1�
|L1(i)| + sup

j∈�2,2T �
|L2( j)| ≥ (M − 1)

√
T

)
≤ ε/3.
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Finally via Lemma 4.4 we know L2(1)− L2(2) ∼ Gα2+θ,1. Thus, by a union bound,
for all T large enough we have P2(|L2(1)| ≥ M

√
T ) ≤ ε/3+P2(|L2(1)− L2(2)| ≥√

T ) ≤ 2ε/3. By another union bound, we arrive at (5.6). ��
Recall the normalizing constant V T

p (�y, �z) from (2.8). One can easily obtain a lower
bound for this normalizing constant as a consequence of the Lemma 5.4.

Corollary 5.5 Fix any r > 0 and for each N > 0 set T = 
r N 2/3�. Fix any p ∈ {1, 2}
and set α = αp according to (3.11). Recall V T

p (�y, �z) from (2.8). There exists Q0 =
Q0(r) > 0, N0 = N0(r) > 0 such that for all Q ≥ Q0 and N ≥ N0, V T

p (�y, �z) ≥ 1
2

for all �z ∈ R
T with zi ≤ QN 1/3 for i ∈ �1, T � and �y ∈ R

p with yi ≥ (2Q − 1)N 1/3

for i ∈ �1, p�. Here we assume L p(2T + 1) := ∞.

Proof Consider the event

A :=
{

inf
j∈�1,T �

L p(2 j − 1) ≥ (Q + 1)N 1/3

}

.

Observe that

V T
p (�y, �z) ≥ E

�y,(−∞)T ;p,T
αp

⎡

⎣1A
T∏

j=1
W (z j ; L p(2 j + 1), L p(2 j − 1))

⎤

⎦

≥ exp(−2T e−N1/3
) · P�y,(−∞)T ;p,T

αp
(A) .

Taking N large enough ensures exp(−2T e−N1/3
) ≥ 1/

√
2. Since A is an increasing

event with respect to the boundary data, applying stochasticmonotonicity (Proposition
2.6) and translation invariance (Lemma 2.1a) of HSLG Gibbs measures we have

P
�y,(−∞)T ;p,T
αp

(A) = P
�x,(−∞)T ;p,T
αp

(

inf
j∈�1,T �

L p(2 j − 1) ≥ −(Q − 2)N 1/3

)

where �x = 0 if p = 1 and �x = (0,−√T ) if p = 2. Appealing to Lemma 5.4 we may
choose Q large enough so that the above probability is at least 1/

√
2. ��

5.2 Proof of Proposition 5.1

For clarity we divide the proof into three steps.
Step 1. In this step, we give a roadmap of the proof of (5.1) leaving the technical
details to later steps. Fix r , ε, δ > 0 and p ∈ {1, 2}. Fix N ≥ 3 large enough so that
T = 8
r N 2/3� ≥ 24. Set α = αp according to (3.11) and consider the HSLG line
ensemble LN from Definition 2.7 with parameters (α, θ). Consider the modulus of
continuity event

MCδ :=
{
ωN

δ (LN
1 , �1, T /4− 1�) ≥ γ N 1/3}.
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By Theorem 3.10, there exists V = V (ε) > 0 such that

P(A1) ≥ 1− ε, where A1 :=
{
N−1/3|LN

1 (1)| + N−1/3|LN
2 (2)| ≤ V

}
. (5.8)

By Proposition 3.4, there exists M1(ε) > 0 such that for all large enough N

P

(
LN
1 (2T − 1) ≥ M1N

1/3
)
≤ ε. (5.9)

We claim that there exists M2(r , ε) > 0 such that for all large enough N

P

(
LN

p (2T + p − 2) ≤ −M2N
1/3
)
≤ ε. (5.10)

We shall prove (5.10) in Step 2. Let us assume it for now. Set M = max{M1, M2, 4}
and consider the events

B1 :=
{|LN

1 (2T − 1)| ≤ 2MN 1/3},

B2 :=
{
LN
2 (2T ) ≥ −MN

1
3 , LN

1 (2T − 1) ≤ MN
1
3 ,

LN
1 (2T − 1) ≥ LN

1 (2T )− (log N )7/6
}
,

For each β > 0 we define

C(p, β) :=
{
V T
p

(
(LN

j (2T + j − 2)) j∈�1,p�; (LN
p+1(2k))Tk=1

)
≥ β

}
, (5.11)

where V T
p (·, ·) is defined in (2.8). We now claim that there exists β(r , ε) > 0 such

that

P (¬C(p, β)) ≤ ε. (5.12)

We work with this choice of β for the rest of this step. We postpone the proof of (5.12)
to Step 3. Let us now complete the proof of Proposition 5.1 assuming it. Consider the
following σ -algebra:

Fp,k := σ
(
(LN

i �1, 2N − 2i + 2�)i≥p+1, (LN
i ( j)) j≥2k+i−2,i∈�1,p�

)
. (5.13)

Clearly Bp ∩ C(p, β) is measurable with respect to Fp,T . By union bound and tower
property of conditional expectation we have

P(MCδ) ≤ P(¬A1)+ P
(¬Bp

)+ P (¬C(p, β))

+ E
[
1Bp∩C(p,β)E

[
1A1∩MCδ

| Fp,T
]]

.
(5.14)

We bound the four terms on the right-hand side of the above equation separately.
A1 event: We have P(¬A1) ≤ ε due to (5.8).
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Bp event: Note that for large enough N , B2 ⊂ B1. Combining (5.9), (5.10), and
Theorem 3.1 (with ρ 	→ 1

2 , M 	→ M), by a union bound we see that for all large
enough N ,

P(¬Bp) ≤ P(¬B2)
≤ P(LN

2 (2T ) ≤ −MN 1/3)+ P(LN
1 (2T − 1) ≥ MN 1/3)

+ P

(
LN
1 (2T − 1) ≤ LN

1 (2T )− (log N )7/6
)

≤ 2ε + 2−N ≤ 3ε.

C(p, β) event: We have P(¬C(p, β)) ≤ ε due to (5.12).
Conditional probability: By Theorem 1.3 and (2.7) we have

E
[
1A1∩MCδ

| Fp,T
] =

E
�y,(−∞)2T ;p,T
αp

[
V T
p

(
�y; (LN

p+1(2i))Ti=1
)
· 1A1∩MCδ

]

V T
p

(
�y; (LN

p+1(2i))Ti=1
) (5.15)

where �y := (LN
j (2T + j − 2)) j∈�1,p� and V T

p (·; ·) is defined in (2.8). From definition

we have V T
p

(
�y; (LN

p+1(2i))Ti=1
)
∈ [0, 1]. On C(p, β) we have

1C(p,β) · r.h.s. (5.15) ≤ 1C(p,β) · β−1 · P�y,(−∞)2T ;p,T
αp

(A1 ∩MCδ) .

Observe that the event Bp ensures �y ∈ Ip,M where the set Ip,M is defined in the
statement of Proposition 5.2. We can thus apply Proposition 5.2 with ε 	→ β · ε, to
get a δ > 0 such that

1Bp · P�y,(−∞)2T ;p,T
αp

(A1 ∩MCδ) ≤ 1Bp · ε,

for all large enough N . Thus overall we have

E
[
1Bp∩C(p,β)E

[
1A1∩MCδ

| Fp,T
] ] ≤ ε.

Plugging the above four estimates into r.h.s. (5.14) and taking limsup N →∞, then
δ ↓ 0, yields

lim sup
δ↓0

lim sup
N→∞

P(MCδ) ≤ 6ε.

As ε is arbitrary, we thus have (5.2), completing the proof.
Step 2. In this step we prove (5.10). We write Pαp instead of P to stress the fact that
the HSLG line ensemble has boundary parameter αp, defined in (3.11). We claim that
there exists M2(r , ε) such that for all large enough N
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Pαp

(
Fall(M2)

p

)
≤ ε

4 , Fall(M2)
p :=

{

inf
j∈�1,4T+4�,i∈�1,p�

LN
i ( j) ≤ −M2N

1/3

}

.

(5.16)

Note that as {LN
p (2T + p − 2) ≤ −M2N 1/3} ⊂ Fall(M2)

p , (5.16) implies (5.10). To
show (5.16), we first define a few more events. For each R ≥ 32r + 1 we define

B(R, j)
i :=

{
LN
i (2 j + i − 2) ≥ −R2N1/3

}
, B̃(R, j)

i := B(R, j)
i ∩

⋃

k∈� j+1,RN2/3�

¬B(R,k)
i ,

B(R)
i :=

⋃

j∈�4T+4,RN2/3�

B(R, j)
i =

⊔

j∈�4T+4,RN2/3�

B̃(R, j)
i =

{
sup

j∈�4T+4,RN2/3�
LN
i (2 j + i − 2) ≥ −R2N1/3

}
,

Dif(R) :=
{
LN
1 (2 j − 1) ≥ LN

2 (2 j)+ (log N )2 for all j ∈ �1, RN2/3�
}

.

By Theorem 3.1, Theorem 3.3, and Proposition 3.4, we can find a R = R(r , ε) ≥ 1
such that for all large enough N , and for v ∈ {1, 2}

Pαv

(
¬B(R)

1

)
+ Pαv

(
¬B(R)

2

)
+ Pαv

(
¬Dif(R)

)
≤ ε

8 . (5.17)

We fix this choice of R. Observe that for large enough N , we have

B̃(R,i)
2 ∩ Dif(R) ⊂ B̃(R,i)

2 ∩ B(2R,i)
1 ,

uniformly for all i ∈ �4T + 4, RN 2/3�. For p = 2, by the union bound and the tower
property of conditional expectation, in view of (5.17), we have

Pα2

(
Fall(M2)

2

)
≤ Pα2

(
¬B(R)

2

)
+ P

(
¬Dif(R)

)

+
∑

j∈�4T+4,RN2/3�

Pα2

(
B̃(R, j)
2 ∩ B(2R, j)

1 ∩ Fall(M2)
2

)

≤ ε
8 +

∑

j∈�4T+4,RN2/3�

E

[
1̃
B(R, j)
2 ∩B(2R, j)

1
Eα2

[
1
Fall

(M2)

2
| F2, j

]]
,

(5.18)

where Fp,k is defined in (5.13). For p = 1, applying union bound and using (5.17)
we have

Pα1

(
Fall(M2)

1

)
≤ Pα1

(
¬B(R)

1

)
+

∑

j∈�4T ,RN2/3�

Pα1

(
B̃(R, j)
1 ∩ Fall(M2)

1

)

≤ ε
8 +

∑

j∈�4T+4,RN2/3�

E

[
1̃
B(R, j)
1

Eα1

[
1
Fall

(M2)

1
| F1, j

]]
.

(5.19)
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We now proceed to control the conditional expectation Pαp

(
Fall(M2)

p | Fp, j

)
sepa-

rately for p = 1 and p = 2. Applying the Gibbs property (Theorem 1.3), we have

1̃
B(R, j)
2 ∩B(2R, j)

1
· Eα2

[
Fall(M2)

2 | F2, j

]
= 1̃

B(R, j)
2 ∩B(2R, j)

1
· P�y,�z;2, jα2

(
Fall(M2)

2

)

≤ 1̃
B(R, j)
2 ∩B(2R, j)

1
· P(0,−√ j),(−∞) j ;2, j

α2

(
Fall(M2−4R2)

2

)
.

Here �y = (LN
1 (2 j − 1),LN

2 (2 j)) and �z = (LN
3 (2m))

j
m=1. Let us briefly explain the

above inequality. Note that on B̃(R, j)
2 ∩B(2R, j)

1 we have yi ≥ (−4R2N 1/3−(i−1)
√

j)

for i = 1, 2. Furthermore Fall(M2)
2 is an eventwhich decreaseswith respect to boundary

data. Thus to obtain an upper bound, by stochastic monotonicity (Proposition 2.6), we
may take the boundary data from (y1, y2) to (−4R2N 1/3,−4R2N 1/3 − √ j) and �z
to (−∞) j . The above inequality then follows by translation invariance (see Lemma
2.1a). Similar applications of the Gibbs property and stochastic monotonicity yield
that on B̃(R, j)

1 we have

Eα1

[
1
Fall

(M2)

1
| F2, j

]
≤ P

0,(−∞) j ;1, j
α1

(
Fall(M2−4R2)

1

)
.

We now claim that one can choose M2(r , ε) > 0 large enough such that for all
j ∈ �4T + 4, RN 2/3�,

P
�x,(−∞) j ;p, j
αp

(
Fall(M2−4R2)

p

)
≤ ε

8 , (5.20)

where �x := 0 (if p = 1) or �x := (0,−√ j) (if p = 2). Plugging the above bound
back in (5.19) and (5.18) and using the fact that {̃B(R, j)

p } j∈�4T+4,RN2/3� is a disjoint
collection of events we arrive at the bound in (5.16). Thus we are left to verify (5.20)
in this step. Observe that

P
�x,(−∞) j ;p, j
αp

(
Fall(M2−4R2)

p

)
≤ P

�x,(−∞) j ;p, j
αp

(

inf
k∈�1,2 j+i−2�,i∈�1,p�

Li (k) ≤ −(M2 − 4R2)N 1/3

)

By Lemma 5.4, one can choose M2 large enough such that the above expression is
bounded above by ε/8 for all j ∈ �4T , RN 2/3�. This proves (5.20) completing our
work for this step.
Step 3. In this step we prove (5.12). For each Q > 0 consider the event

DQ :=
{

sup
i∈�1,4T+4�

LN
p+1(i) ≤ QN1/3, inf

j∈�1,p�
LN
j (4T + j + 2) ≥ −QN1/3 +√2T + 1

}

.

(5.21)
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By Theorem 3.1, Proposition 3.8, and (5.16) there exists Q(r , ε) > 0 large enough
such that P(¬Dp,Q) ≤ ε

2 . Consider Fp,2T+2 from (5.13). Recall the event C(p, β)

from (5.11). By union bound and the tower-property of the expectation, we have

P(¬C(p, β)) ≤ P(¬C(p, β) ∩ DQ)+ ε
2 = E

[
1DQE

[
1C(p,β) | Fp,2T+2

]]+ ε
2 .

(5.22)

Applying the Gibbs property and (2.7) we have

E[1¬C(p,β) | Fp,2T+2] = P
�y;�z;p,2T+2
αp

(¬C(p, β)
)

with �y = (y1, . . . , yp) and y j = LN
j (4T + j + 2) for j ∈ �1, p�, and �z =

(LN
p+1(2k))

2T+2
k=1 . Set �x = (−QN 1/3 + √2T + 1)p. We claim that there exists

Q0(r , ε) > 0, N0(r , ε) > 0 and β(r , ε) > 0, such that for all N ≥ N0, Q ≥ Q0,
yi ≥ xi and �z ∈ R

2T+2 with supi∈�1,2T+2� zi ≤ QN 1/3 we have

P
�y;�z;p,2T+2
αp

(¬C̃(p, β)
) ≤ ε

2 , where C̃(p, β) := {Vp ≥ β
}
, (5.23)

where we set (see (2.8))

Vp := V T
p

(
(Li (2T + i − 2))i∈�1,p�, (z1, . . . , zT )

)
. (5.24)

Clearly in view of the definition of DQ from (5.21), the above claim shows that
r.h.s. (5.22) is at most ε (5.12). Thus, to complete our proof it suffices to check (5.23).
Towards this end, we first claim that for all �y ∈ R

p, �z ∈ R
2T+2

P
�y;�z;p,2T+2
αp

(¬C̃(p, β)
) =

E
�y; �w;p,2T+2
αp

[
1C̃(p,β) ·Rp · Vp

]

E
�y; �w;p,2T+2
αp

[Rp · Vp
] ,

where Rp := e−ezT −L2(2T+1)1p=2 , (5.25)

and where �w ∈ [−∞,∞)2T+2 is defined by setting wi = −∞ for i ≤ T and wi = zi
for i > T . We postpone the proof of (5.25) to the next step.

Assuming (5.25), to prove (5.23), we provide upper and lower bounds for the
numerator and denominator of r.h.s. (5.25) respectively. Consider the events

R1 :=
{
L1(2T − 1) ≥ 2QN 1/3

}
,

R2 :=
{
L2(2T ) ≥ 2QN 1/3, L2(2T + 1) ≥ 2QN 1/3, L1(2T − 1) ≥ (2Q − 1)N 1/3

}
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Note that

E
�y, �w;p,2T+2
αp

[Rp · Vp
] ≥ E

�y, �w;p,2T+2
αp

[
1Rp ·Rp · Vp

]

≥ 1
2 exp(−e−QN1/3

) · P�y, �w;p,2T+2αp

(
Rp
)

≥ 1
2 exp(−e−QN1/3

) · P�x,(−∞)2T+2;p,2T+2
αp

(
Rp
)
. (5.26)

where the penultimate inequality follows from the definition ofRp and Corollary 5.5
and the final inequality follows via stochastic monotonicity (Proposition 2.6) as Rp is
an increasing event with respect to the boundary data (recall yi ≥ xi ). To lower bound
the above expression, we proceed into two cases depending on the value of p.
Case 1. p = 1. Note that R1 ⊃ RP1,Q event defined in (4.2). By Proposition 4.1, we

have P�x,(−∞)2T+2;1,2T+2
α1 (R1) ≥ P

−QN1/3,(−∞)2T+2;1,2T+2
α1 (RP1,Q) ≥ φ1 > 0 for some

φ1 free of N .
Case 2. p = 2. Let �u := (−QN 1/3 +√2T + 2,−QN 1/3). Let us use the shorthand

notation Pγ1,γ2
2 for P(γ1,γ2),(−∞)2T+2;2,2T+2

α2 . Note that by stochastic monotonicity and
union bound we have

P
�x
2(R2) ≥ P

�u
2(R2) ≥ P

�u
2

(
{L2(2T ) ≥ 2QN1/3} ∩ {L2(2T + 1) ≥ 2QN1/3}

)

− P
�u
2
(
L1(2T − 1) ≤ L2(2T )− N1/3).

(5.27)

Note that RP2,Q ⊂ {L2(2T ) ≥ 2QN 1/3} ∩ {L2(2T + 1) ≥ 2QN 1/3} (with T
replaced by T + 1 in (4.2)). Applying stochastic monotonicity (Proposition 2.6) and
Proposition 4.1 with p 	→ 2 and T 	→ T + 1, we see that the first term in the above
equation can be bounded as

P
�u
2

(
{L2(2T ) ≥ 2QN 1/3} ∩ {L2(2T + 1) ≥ 2QN 1/3}

)

≥ P
(−QN1/3,−(Q+1)N1/3)
2

(
RP2,Q

) ≥ φ2, (5.28)

for some φ2 > 0 free of N . As for the second term in r.h.s. (5.27), by translation
invariance (Lemma 2.1a) we have

P
�u
2

(
L1(2T − 1) ≤ L2(2T )− N 1/3) = P

(0,−√2T+1)
2

(
L1(2T − 1) ≤ L2(2T )− N 1/3)

= E
2T+2;(0,√2T+1)
PRW

[
Wsc1S1(T−1)≤S2(T−1)−N1/3

]

E
2T+2;(0,√2T+1)
PRW [Wsc]

,

where the last equality follows from Lemma 4.4 (recall the PRW law from Defini-

tion 1.7 and Wsc from (1.15)). Now by Corollary (4.12), E2T+2;(0,√2T+1)
PRW [Wsc] ≥

C/
√
2T + 2 for some absolute constant C > 0. However on the event {S1(T − 1) ≤

S2(T − 1)− N 1/3}, Wsc ≤ exp(−eN1/3
). Thus,

P
�u
2

(
L1(2T − 1) ≤ L2(2T )− N 1/3)→ 0
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as N → ∞. Hence, inserting (5.28) back in r.h.s. (5.27), we see that for all large
enough N ,

P
�x
2(R2) ≥ φ2 − P

�u
2

(
L1(2T − 1) ≤ L2(2T )− N 1/3) ≥ 1

2
φ2.

Summarizing the above two cases, for all large enough N , (5.26) is lower bounded
by some φ > 0 free of N . For the numerator in r.h.s. (5.25) observe that as Rp ≤ 1,
by definition of the event C̃(p, β), we have 1¬C̃(p,β) ·Rp ·Vp ≤ β. Let us now choose
β = φε. Plugging these bounds back in r.h.s. (5.25) yields (5.23).

Step 5.All that remains is to prove (5.25).Wewill do this for the p = 2 case. The p = 1
case is done analogously. Fix any �y ∈ R

2, �z ∈ R
2T+2 and define �w ∈ [−∞,∞)2T+2

such that wi = −∞ for i ≤ T and wi = zi for i > T . Assume (L1�1, 4T +
3�, L2�1, 4T + 4�) ∼ P

�y,�z;2,2T+2
α2 . Let G := σ(Li �2T + i − 2, 4T + i + 2�)i∈�1,2�.

Fix any event F measurable with respect to G. Set L2(4T + 1) = ∞. We claim that
(recall W (a; b, c) from (1.5), Vp from (5.24), and R2 from (5.25))

E
�y,(−∞)2T+2;2,2T+2
α2

⎡

⎣1F ·
2T+2∏

j=1
W (z j ; L2(2 j + 1), L2(2 j − 1))

⎤

⎦

= E
�y,(−∞)2T+2;2,2T+2
α2

⎡

⎣1F ·R2 · V2
2T+2∏

j=1
W (w j ; L2(2 j + 1), L2(2 j − 1))

⎤

⎦ .

(5.29)

Assuming (5.29) we can finish the proof of (5.25) (for p = 2) via the following string
of equalities:

P
�y;�z;2,2T+2
α2

(
¬C̃(2, β)

)

=
E
�y;(−∞)2T+2;2,2T+2
α2

[
1¬C̃(2,β) ·

2T+2∏

j=1
W (z j ; L2(2 j + 1), L2(2 j − 1))

]

E
�y;(−∞)2T+2;2,2T+2
α2

[
2T+2∏

j=1
W (z j ; L2(2 j + 1), L2(2 j − 1))

]

=
E
�y;(−∞)2T+2;2,2T+2
α2

[
1¬C̃(2,β) ·R2 · V2

2T+2∏

j=1
W (w j ; L2(2 j + 1), L2(2 j − 1))

]

E
�y;(−∞)2T+2;2,2T+2
α2

[
R2 · V2

2T+2∏

j=1
W (w j ; L2(2 j + 1), L2(2 j − 1))

]

=
E
�y; �w;2,2T+2
α2

[
1¬C̃(2,β) ·R2 · V2

]

E
�y; �w;2,2T+2
α2

[
R2 · V2

] .
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Let us briefly explain the above equalities. The first equality is due to (2.7) and (2.8).
In the second equality we have applied (5.29) to the numerator and denominator by
taking F = ¬C(2, β) and F = � (the full set, i.e., 1F = 1) respectively. The last
equality follows by applying (2.7) and (2.8) again. This proves (5.25) modulo (5.29).

To see why (5.29) holds, observe that

E
�y,(−∞)2T+2;2,2T+2
α2

⎡

⎣1F ·
2T+2∏

j=1
W (z j ; L2(2 j + 1), L2(2 j − 1))

⎤

⎦

= E
�y,(−∞)2T+2;2,2T+2
α2

⎡

⎣1F ·R2

2T+2∏

j=T+1
W (z j ; L2(2 j + 1), L2(2 j − 1))

·E�y,(−∞)2T+2;2,2T+2
α2

⎡

⎣R2

T−1∏

j=1
W (z j ; L2(2 j + 1), L2(2 j − 1)) | G

⎤

⎦

⎤

⎦ .

By the Gibbs property, the inner expectation, when viewed as a random variable, is
almost surely equal to V2 defined in (2.8). On the other hand, we have

2T+2∏

j=T+1
W (z j ; L2(2 j + 1), L2(2 j − 1)) =

2T+2∏

j=1
W (w j ; L2(2 j + 1), L2(2 j − 1)).

Combining the above two observations, leads to (5.29).

5.3 Proof of Proposition 5.2

As with the proof of Propositions 3.9 and 4.1, we divide the proof of Proposition 5.2
into two parts depending on p = 1 (critical) or p = 2 (supercritical).
Proof of Proposition 5.2 in the p = 1 case (critical phase). Fix any T ∈
�k1N

2
3 , k2N

2
3 �. Fix any δ ≤ γ /6κ . We recall the representation of bottom-free law

in p = 1 case from Lemma 4.3. Consider the Brownian motion B1 obtained via the
KMT coupling that satisfies (4.9). Define

Aδ :=
{

sup
i1,i2∈�1,T �

|i1−i2|≤ δ
2 N

2/3

|L1(2i1 − 1)− L1(2i2 − 1)| ≥ 1
6γ N

1
3

}
,

B(k) :=
{
|L1(2k − 1)− L1(2k)|, |L1(2k + 1)− L1(2k)| ≥ 1

3γ N
1
3

}
.

Fix any x ∈ R and write P1 := P
x,(−∞)T ;1,T
α1 . Observe that by union bound we have

P1

(
ωN

δ (L1, �1, 2T − 1�) ≥ γ N 1/3
)
≤ P1(Aδ)+

T−1∑

k=1
P1(¬Aδ ∩ B(k)). (5.30)
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We now proceed to bound each of the above term separately. For the first term, by
(4.7) and (4.9), in view of the estimate in (4.10) we have for all large enough N that

P1(Aδ) ≤ P1

(
sup

i1,i2∈�1,T �

|i1−i2|≤ δ
2 N

2/3

σ |B1(T − i1 − 1)− B1(T − i2 − 1)| ≥ γ
12 N

1/3 − 2C log T

)

≤ P1

(
sup

i1,i2∈�1,T �

|i1−i2|≤ δ
2 N

2/3

σ |B1(i1)− B1(i2)| ≥ γ
24 N

1/3
)

.

By modulus of continuity of Brownian motion, the right-hand side of the above
equation can be made smaller than 1

2ε by choosing δ small enough depending on
μ, θ, γ, k1, k2. For the second term in r.h.s. (5.30) we use Lemma B.4 to get

P1(¬Aδ ∩ B(k)) ≤ Ce−
1
C γ N

1
3
.

Plugging the bounds back in (5.30) and taking N large enough we get the desired
result. ��
Proof of Proposition 5.2 in the p = 2 case (supercritical phase). Fix any (x1, x2) ∈
I2,M , and T ∈ �k1N

2
3 , k2N

2
3 �. Set n := T . Recall the law paired random walk and

weighted paired random walk defined in Definition 1.7. We recall from Lemma 4.4

that the bottom-free law P
(x1,x2),(−∞)T ;2,T
α2 is equal to P

n;(x1,x2)
WPRW for the supercritical

case. At this point is it also good to recall the random walk measures from Definition
3.6.

A key to this proof is the following estimate for En;(x1,x2)
PRW [Wsc] (recall Wsc from

(1.15)).

Lemma 5.6 There exist constants C1,C2 > 0, depending on M, such that for all
(x1, x2) ∈ I2,M we have

E
n;(x1,x2)
PRW [Wsc] ≥ 1√

n
C−11 · P
n/4�;(x1,x2)(ÑI) ≥ C−12 e−C2(log n)5/4 , (5.31)

where ÑI := {S1(k) ≥ S2(k) for all k ∈ �1, n/4�} and S1, S2 are random walks under
the law P


n/4�;(x1,x2).

Before proving Lemma 5.6 we complete the proof of Proposition 5.2 in the follow-
ing two steps.
Step 1. Fix any V , γ > 0. Set v = γ /

√
k2, u = V /

√
k1, and t = 
2 log log n�. Let

F := σ(S1(1), S2(1)). Consider the events

MCδ :=
{
|S1(1)| + |S2(1)| ≤ u

√
n, ωN

δ (Si (·), �0, n
8 �) ≥ 1

6v
√
n, for i = 1, 2

}
, for δ > 0.

We claim that given ε > 0, there exists δ small enough and N large enough such that

P
n;(x1,x2)
WPRW (MCδ) ≤ ε. (5.32)
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We finish the proof of the lemma assuming (5.32). Lemma 4.4 implies that
(
L1(2 j +

1), L2(2 j + 2)
)n
j=0 is distributed as WPRW. Write Leven

2 (k) := L2(2k) and P2 :=
P
�x,(−∞)T ;2,T
α2 . Then (5.32) implies

P2
({|L1(1)| + |L2(2)| ≤ V N1/3} ∩ A

) ≤ ε, A :=
{
ωN

δ (Leven2 , �1, T /8�) ≥ 1
6γ N1/3

}
.

(5.33)

On the event ¬A the increments of Leven
2 are well controlled. By Lemma 4.4, condi-

tioned on the even points of L2, the distribution of the odd points of L2 are given by
ξ -distributions defined in (4.5). Once we have a bound on the increments of Leven

2 ,
we may invoke the tails estimates of ξ -distributions from Lemma B.4 to control incre-
ments of L2. In particular, due to Lemma B.4,

1¬A · E2

[
1|L2(2k+1)−L2(2k)|,|L2(2k+1)−L2(2k+2)|≥ 1

3 γ N1/3 | σ (Leven
2 �1, T /8�

)]

≤ C exp(− 1
Cγ N 1/3)

for all k ≥ 1. For the first point in L2, i.e., L2(1), we recall from Lemma 4.4 that
L2(1) ∼ X + L2(2) where X ∼ Gα2+θ,1. The explicit form of Gα2+θ,1 from (2.2)
allow us to derive that

P2

(
|L2(1)− L2(2)| ≥ 1

6γ N 1/3 | σ (Leven
2 �1, T /8�

)) ≤ C exp(− 1
Cγ N 1/3).

Thus, in view of (5.33), by the union bound

P2

(
|L1(1)| + |L2(2)| ≤ V N

1
3 , ωN

δ (L2, �1, T /4�) ≥ γ N
1
3

)

≤ ε + C · k2N 2
3 exp(− 1

Cγ N
1
3 )

which can be made arbitrarily small taking N large enough. A similar argument shows
that

P2

(
|L1(1)| + |L2(2)| ≤ V N

1
3 , ωN

δ (L1, �1, T /4− 1�) ≥ γ N
1
3

)

can be made arbitrarily small as well taking N large enough. This proves Proposition
5.2.
Step 2. In this step we prove (5.32). First, recall that due to (1.14),

P
n;(x1,x2)
WPRW (MCδ) = E

n;(x1,x2)
PRW [Wsc1MCδ

]
E
n;(x1,x2)
PRW [Wsc]

123



G. Barraquand et al.

where Wsc is defined in (1.15). We first define a few more necessary events.

G1 := {|S1(1)| + |S2(1)| ≤ u
√
n, |S1(1)− S2(1)| ≤ (log n)3/2},

G2 := {|S1(1)| + |S2(1)| ≤ u
√
n, 1 ≤ S1(1)− S2(1) ≤ 2}.

Recall the non-intersection event NIp from (4.30). Let us temporarily set t =
�2 log log n�. As Wsc ≤ 1, we write

E
n;(x1,x2)
PRW [Wsc1MCδ

]
≤ E

n;(x1,x2)
PRW [Wsc1MCδ∩G1∩NIt ]︸ ︷︷ ︸

(I)

+E
n;(x1,x2)
PRW [Wsc1¬NIt ] + E

n;(x1,x2)
PRW [1¬G1 ]︸ ︷︷ ︸

(II)

.

For (II), note that on ¬NIt , we have Wsc ≤ e−et ≤ e−(log n)2 and by Lemma 4.7,
P
n;(x1,x2)
PRW (¬G1) ≤ Ce−C−1(log n)3/2 . Thus, (II) ≤ Ce−C−1(log n)3/2 . In view of Lemma

5.6, (En;(x1,x2)
PRW [Wsc])−1 · (II) → 0. For (I), note that

(I) = E
n;(x1,x2)
PRW [Wsc1MCδ∩G1∩NI0 ] +

t∑

p=1
E
n;(x1,x2)
PRW [Wsc1MCδ∩G1∩NIp∩¬NIp−1 ]

≤
t∑

p=0
Ce−epEn;(x1,x2)

PRW

[
1G1E

n;(x1,x2)
PRW [1MCδ∩NIp | F]

]
.

(5.34)

Upon conditioning on F, the conditional law is the law of two independent n-step
random bridges from (S1(1), S2(1)) to (x1, x2). We may lift the bridges by p units.
The modulus of continuity event remains unchanged and NIp event turns into NI. Now
we apply the comparison trick between random bridges and modified random bridges
via Lemma 4.10. By Lemma 4.10, there exists a constant C depending only on u such
that

1G1E
n;(x1,x2)
PRW [1MCδ∩NIp | F] = 1G1P

n;(S1(1),S2(1)),(x1,x2)(MCδ ∩ NIp)

= 1G1P
n;(S1(1)+p,S2(1)),(x1+p,x2)(MCδ ∩ NI)

≤ C · 1G1 P̃p(MCδ ∩ NI) = C · 1G1 P̃p(MCδ | NI) · P̃p(NI)

(5.35)

where P̃p denote the law of a (n; 
n/4�, 
n/4�)-modified random bridge defined in
Definition 4.9 starting from (S1(1) + p, S2(1)) to (x1 + p, x2). Observe that P̃p(NI)
is F-measurable. By Lemmas C.3 and C.8 (recall Corollary 4.6),

1G1 · P̃p(NI) ≤ 1G1 · C√
n
· eCp ·max{S1(1)− S2(1), 1} · P
n/4�,(x1,x2)(ÑI

)
. (5.36)

We plug the estimates from (5.35) and (5.36) back in (5.34). Thus setting C3 :=∑∞
r=1 2C1C3eCr e−er (with C1 coming fromLemma 5.6) and utilizing the lower bound
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for En;(x1,x2)
PRW [Wsc] from Lemma 5.6, we have

(E
n;(x1,x2)
PRW [Wsc])−1 · (I) ≤ C3 · En;(x1,x2)

PRW

[

1G1

·max{S1(1)− S2(1), 1} · sup
p∈�0,t�

P̃p(MCδ | NI)
]

Now we claim that one can choose δ sufficiently small such that

E
n;(x1,x2)
PRW

[

1G1 ·max{S1(1)− S2(1), 1} · sup
p∈�0,t�

P̃p(MCδ | NI)
]

≤ 1
2C
−1
1 ε. (5.37)

We write G1 = G1,M2 ∪ G̃1,M2 , where

G1,M2 := {|S1(1)| + |S2(1)| ≤ u
√
n, |S1(1)− S2(1)| ≤ M2}, G̃1,M2 := G1 ∩ ¬G1,M2 .

Given the tail estimates, one can choose M2 large enough such that

E
n;(x1,x2)
PRW

[
1G̃1,M2

·max{S1(1)− S2(1), 1}
]
≤ 1

4C
−1
1 ε.

This fixes our choice for M2. Now note that the event MCδ depends only on the first

n/8� points of the two (n; 
n/4�, 
n/4�)-modified random bridges. By definition,
the first 
n/4� points of a (n; 
n/4�, 
n/4�)-modified random bridge is just a random
walk. Thus, in view of LemmaC.12 (recall Corollary 4.6), one can then choose δ small
enough and N large enough such that on uniformly on G1,M2 we have

sup
p∈�0,t�

P̃p(MCδ | NI) ≤ 1
4C
−1
1 M−1

2 ε.

Thus, we have

l.h.s. (5.37) ≤ E
n;(x1,x2)
PRW

[
1G̃1,M2

·max{S1(1)− S2(1), 1}
]

+ M2 ·En;(x1,x2)
PRW

[
1G1,M2

· sup
p∈�0,t�

P̃p(MCδ | NI)
]

≤ 1
4C
−1
1 ε + M2 · 14C−11 M−1

2 ε = 1
2C
−1
1 ε,

verifying the inequality in (5.37). ��
Proof of Lemma 5.6 Recall the definition of (n, p, q)-modified random bridge from
Definition 4.9, in particular that P̃(n;
n/4�,
n/4�);(a1,a2),(x1,x2) denotes the law of two
independent (n, 
n/4�, 
n/4�)-modified random bridge started at (a1, a2) and ended
at (x1, x2). We shall use the shorthand P̃

(a1,a2) for P̃(n;
n/4�,
n/4�);(a1,a2),(x1,x2). Also
recall the notation Pm;(b1,b2) from Definition 3.6 to denote the law of two independent
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random walks of lengthm started at (b1, b2) with same increment law as the modified
bridges.

Recall the eventsNI andGapβ from (4.30) and (4.22) respectively. Invoking Lemma

C.11 we first fix a β = β(M) ≤ 1
2 small enough so that it satisfies

P̃
(a1,a2)(Gapβ | NI) ≥ 3

4 ,

for all |ai | ≤ √n with 1 ≤ a1 − a2 ≤ 2. Next by Lemma C.5, we fix ξ = ξ(M) > 0
so that

P

n/4�;(b1,b2)

(
|S1(
n/4�)|, |S2(
n/4�)| ≤ ξ

√
n | ÑI

)
≥
√

3
4

for all |bi | ≤ (M + 1)
√
n. Here ÑI := {S1(k) ≥ S2(k) for all k ∈ �2, n/4�} is the

non-intersection event over 
n/4� points.
We consider the following events

G3 :=
{|Si (1)| ≤ √n for i = 1, 2, 1 ≤ S1(1)− S2(1) ≤ 2

}
,

Tξ :=
{|Si (
n/4�)|, |Si (n − 
n/4�)| ≤ ξ

√
n for i = 1, 2

}
,

where T stands for tightness. Observe that by Lemma 4.8 we have

E
n;(x1,x2)
PRW [Wsc] ≥ E

n;(x1,x2)
PRW [Wsc1Gapβ∩G3∩Tξ

]
≥ 1

CP
n;(x1,x2)
PRW (Gapβ ∩ G3 ∩ Tξ )

= 1
CE

n;(x1,x2)
PRW

[
1G3E

n;(x1,x2)
PRW [1Gapβ ,Tξ

| F]
]

(5.38)

where F := σ(S1(1), S2(1)). Under the event G3 and Tξ we may invoke Lemma 4.10
to get

1G3 · En;(x1,x2)
PRW [1Gapβ∩Tξ

| F] ≥ C−1 · 1G3 · P̃(S1(1),S1(2))(Gapβ ∩ Tξ ) (5.39)

almost surely. By Corollary C.10 (recall Corollary 4.6),

1G3 · P̃(S1(1),S1(2))(Gapβ ∩ Tξ )

= 1G3 · P̃(S1(1),S1(2))(Gapβ ∩ Tξ | NI)̃P(a1,a2)(NI)

≥ C−11G3 · P̃(S1(1),S1(2))(Gapβ ∩ Tξ | NI)
· P
n/4�;(S1(1),S1(2))(ÑI)P
n/4�;(x1,x2)(ÑI).

(5.40)

By our choice of β and ξ , we have 1G3 · P̃(S1(1),S1(2))(Gapβ, Tξ | NI) ≥ 1
21G3 almost

surely. By Lemma C.3 (recall Corollary 4.6), we have 1G3 · P
n/4�;(S1(1),S1(2))(ÑI) ≥
C−1√

n
almost surely. Thus combining (5.38), (5.39), and (5.40) we have

E
n;(x1,x2)
PRW [Wsc] ≥ 1√

n
C−1 · P
n/4�;(x1,x2)(ÑI) · Pn;(x1,x2)

PRW (G3).
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By Lemma 4.7 ((4.17) in particular), Pn;(x1,x2)
PRW (G3) ≥ C−1. Plugging this back in the

above equation we get the first inequality in (5.31). For the second inequality, we
consider the event:

G4 := {|S1(2)− x1| ≤ 1, |S2(2)−min{x1 − 3, x2}| ≤ 1}.

Observe that

P

n/4�;(x1,x2)(ÑI) ≥ P


n/4�;(x1,x2)
(
G4 ∩ {S1( j) ≥ S2( j) for all j ∈ �3, n/4�}

)
.

By the tail bounds of the increments from Lemma B.3, and given the condition x1 −
x2 ≥ −(log N )7/6, we have P
n/4�;(x1,x2)(G4) ≥ C−1 exp(−C(log n)7/6) (recall n ≥
k1N 2/3−1). Furthermore, on G4 we must have S1(2) ≥ S2(2). By Lemma C.3 (recall
Corollary 4.6), we have

P

n/4�−1;(a1,a2)(S1( j) ≥ S2( j) for all j ∈ �2, n/4− 1�

) ≥ C−1/
√
n

for all a1 ≥ a2. Thus we have

P

n/4�;(x1,x2)

(
G4 ∩ {S1( j) ≥ S2( j) for all j ∈ �3, n/4�}

)

≥ C−1 exp(−C(log n)7/6) · 1√
n
.

Adjusting the constant we get the second inequality in (5.31). ��

Appendix A Stochastic monotonicity

The goal of this section is to prove the stochasticmonotonicity ofHSLG Gibbsmeasure
(Proposition 2.6). Let � = {(i, j) : k1 ≤ i ≤ k2, ai ≤ j ≤ bi }. Let w1, . . . , w|�| be
the enumeration of points in� in the lexicographic order. Set�r = {w1, w2, . . . , wr },
so that �|�| = �. Let Er := E(�r ∪ ∂�r ) (the edges in Z

2 connecting points in
�r ∪ ∂�r ), and, recalling the weights We from (1.5), let

Hr (x; (uv)v∈∂�r ) :=
∫

R
|�r−1|

∏

e={v1→v2}∈Er

We(uv1 − uv2)
∏

v∈�r−1
duv, (A.1)

where uwr = x . The proof of Proposition 2.6 relies on the following technical lemma.

Lemma A.1 Fix r ∈ �1, |�|�. For each v ∈ ∂�r , fix any uv, u′v ∈ R with uv ≤ u′v .
For all s ≥ t

Hr
(
s; (uv)v∈∂�r

)
Hr
(
t; (u′v)v∈∂�r

) ≤ Hr
(
s; (u′v)v∈∂�r

)
Hr
(
t; (uv)v∈∂�r

)
(A.2)
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We prove Lemma A.1 at the end of this section and now complete the proof of
Proposition 2.6.

Proof of Proposition 2.6 Fix r ∈ �1, |�|�. We first claim that for all boundary condi-
tions (uv)v∈∂�r and (u′v)v∈∂�r with uv ≤ u′v for all v ∈ ∂�r , and s ∈ R,

P
(
L(wr ) ≤ s | L(v) = uv for all v ∈ ∂�r

)

≥ P
(
L(wr ) ≤ s | L(v) = u′v for all v ∈ ∂�r

)
. (A.3)

To show this, observe that Hr (x; (uv)v∈∂�r ) in (A.1) is proportional to the conditional
density at x of L(wr ) given

(
L(v)

)
v∈∂�r

= (uv)v∈∂�r . Thus,

P
(
L(wr ) ≤ s | L(v) = uv for all v ∈ ∂�r

)

= Fr
(
s; (uv)v∈∂�r

) :=
∫ s
−∞ Hr (x; (uv)v∈∂�r )dx∫∞
−∞ Hr (x; (uv)v∈∂�r )dx

(A.4)

To prove (A.3) observe that owing to Lemma A.1, the derivative of

log
∫ s

−∞
Hr (x; (uv)v∈∂�r )dx − log

∫ s

−∞
Hr (x; (u′v)v∈∂�r )dx .

is non-positive for all s. This implies for s′ ≥ s we have

∫ s
−∞ Hr (x; (uv)v∈∂�r )dx∫ s
−∞ Hr (x; (u′v)v∈∂�r )dx

≥
∫ s′
−∞ Hr (x; (uv)v∈∂�r )dx
∫ s′
−∞ Hr (x; (u′v)v∈∂�r )dx

Taking s′ → ∞ and cross-multiplying yields the desired inequality (A.3), in light of
(A.4).

Given (uv)v∈∂� ∈ R
|∂�|, we now define a sequence of random variables according

to the following algorithm. Note that below, x ← y means to assign the value y to the
variable x .

Algorithm 1 Defining the random vectors
Generate U1, . . . ,U|�| i.i.d. random variables from U [0, 1]
Y|�| ← (uv)v∈∂�

r ← |�|
while r ≥ 1 do

L(wr ; (uw)v∈∂�)← F−1r (Ur ; Yr )
ũv ← uv for all v ∈ ∂�r−1 ∩ ∂�r
ũwr ← L(wr ; (uw)v∈∂�)

Yr−1 ← (̃uv)v∈∂�r−1
r ← r − 1

end while
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Fig. 19 A A possible domain � includes all the vertices in the shaded region. wi ’s are the vertices of �

enumerated in lexicographic order. Directed edges er going are shown above for r = 5 and r = 8. These
are the blue edges with wr as the left point of er . B The domain �5 includes the vertices in the shaded
region. Q5 is the set of all red and black edges that have one vertex as w6 and one vertex in ∂�6. In the
above figure, Q5 is composed of two black edges that points toward w6 (color figure online)

This defines a collection of random variables L(wi ; (uv)v∈∂�) indexed by i ∈ �1, |�|�
and (uv)v∈∂� ∈ R

|∂�|, all on the common probability space on which U1, . . . ,U|�|
are defined. It is clear from the definition that for each (uv)v∈∂� ∈ R

|∂�|, the law of(
L(wi ; (uv)v∈∂�)

)
i∈�1,|�|� is given by theHSLG Gibbsmeasure on the domain�with

boundary condition (uv)v∈∂�. Take two boundary conditions (uv)v∈∂� and (u′v)v∈∂�

with uv ≤ u′v for all v ∈ ∂�. As each Fr is stochastically increasing with respect to
the boundary condition, i.e., (A.3), sequentially we obtain that with probability 1 on
our probability space L(wr ; (uv)v∈∂�) ≤ L(wr ; (u′v)v∈∂�) for all r , thus completing
the proof. ��

Proof of LemmaA.1 Let us begin with a few pieces of notations. Fix any 1 ≤ r ≤ |�|.
Set er := {wr → (wr + (0, 1)), (wr + (0, 1)) → wr } ∩ Er . In words, this is the
directed blue edge (see Figure 19 A) with wr as the left point of er .

Define

hr
(
x; (uv)v∈∂�r

) :=
∫

R
|�r−1|

∏

e={v1→v2}∈Er \{er }
We(uv1 − uv2)

∏

v∈�r−1
duv

with the convention uwr = x . Observe that the difference between Hr from (A.1) and
hr above is that the weight of the directed blue edge er is included in the former but
not in the latter. Note that the vertices of er are not in �r−1. Thus in the definition of
Hr , the edge weight function corresponding to er can be pulled out of the integrand
leading to

Hr
(
x; (uv)v∈∂�r

) = hr
(
x; (uv)v∈∂�r

) · Fr (uwr+(0,1) − x) (A.5)

where Fr (y) is the directed blue edge weight corresponding to er , i.e., Fr (y) :=
eϑr y−ey or Fr (y) = e−ϑr y−e−y

depending on the direction of the er edge between wr

and wr + (0, 1). Here ϑr is the parameter linked to the blue edge er .
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With the above introduced notation, we now turn towards the proof of (A.2). Note
that given a function P(x) = e−R(x) with R being convex, we have

P(δ − β)P(γ − α) ≥ P(δ − α)P(γ − β) (A.6)

for all α, β, γ, δ ∈ R with α ≤ β and γ ≤ δ. All our weight functions in (1.5) are of
this type. In particular, this implies that (A.6) holds for P = Fr . In view of this and
the relation (A.5), to show (A.2) it suffices to show the same holds for hr replacing
Hr , i.e.,

hr
(
s; (uv)v∈∂�r

)
hr
(
t; (u′v)v∈∂�r

) ≤ hr
(
s; (u′v)v∈∂�r

)
hr
(
t; (uv)v∈∂�r

)
. (A.7)

We shall prove (A.7) via induction. Note that

h1(x; (uv)v∈∂{w1}) =
∏

e={v1→v2}∈E1\{e1}
We(uv1 − uv2)

is the product of edge weights without any integration and with the convention uw1 =
x . Applying (A.6) to each such weight function yields (A.7) for r = 1. Observe the
recursion relation for hr :

hr+1
(
x; (uv)v∈∂�r+1

) = dr
(
x; (uv)v∈∂�r+1

) ·
∫

R

hr
(
y; (uv)v∈∂�r

)
Fr (x − y)dy

where by convention we set uwr+1 = x and where we define

dr (x; (uv)v∈∂�r+1) =
∏

e={v1→v2}∈Qr

We(uv1 − uv2)

with Qr being the set of all red and black edges that have one vertex as wr+1 and
another vertex in ∂�r+1, see Fig. 19B. Note that the blue edge er+1 between wr+1
and wr+1 + (0, 1) is excluded from Qr . Appealing to (A.6) again, we have

dr (s; (uv)v∈∂�r+1)dr (t; (u′v)v∈∂�r+1) ≤ dr (s; (u′v)v∈∂�r+1)dr (t; (uv)v∈∂�r+1)
(A.8)

for all s ≥ t and for all u′v ≥ uv with v ∈ ∂�r+1. Under same conditions we claim
that

∫

R2
hr (y; (uv)v∈∂�r )Fr (s − y)hr (x; (u′v)v∈∂�r )Fr (t − x)dxdy

≤
∫

R2
hr (y; (u′v)v∈∂�r )Fr (s − y)hr (x; (uv)v∈∂�r )Fr (t − x)dxdy.

(A.9)

Combining the above inequality with (A.8) we have (A.7) completing the proof. To
see why (A.9) holds, we split the integrals in (A.9) over {x < y} and {y < x} and
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swap the x, y labels in the region {y < x} to get that (A.9) is equivalent to
∫

x<y
A(y)Y (y)B(x)X(x)+ C(x)Z(x)D(y)W (y)

≤
∫

x<y
D(y)Y (y)C(x)X(x)+ B(x)Z(x)A(y)Z(y)

where we let

A(y) = hr (y; (uv)v∈∂�r ), B(x) = hr (x; (u′v)v∈∂�r ),

C(x) = hr (x; (uv)v∈∂�r ), D(y) = hr (y; (u′v)v∈∂�r ),

X(x) = Fr (t − x),Y (y) = Fr (s − y),W (y) = Fr (t − y), Z(x) = Fr (s − x).

The integral above can be rewritten as
∫
x<y

(
A(y)B(x) − C(x)D(y)

)(
X(x)Y (y) −

W (y)Z(x)
)
and thus it suffices to show for each x ≤ y the integrand is non-positive.

By induction hypothesis, A(y)B(x) ≤ C(x)D(y) for all x ≤ y and since the weight
function Fr satisfies (A.6) (with P = Fr ), we also have X(x)Y (y) ≥ W (y)Z(x). This
proves (A.9), completing the proof of the lemma. ��

Appendix B Basic properties of log-gamma type random variables

In this section we collect some basic facts about log-gamma type random variables.
Towards this end, for each θ, κ > 0, andm ∈ Z≥1 we consider the following function:

Hθ,(−1)m ,κ (y) := κθ

�(θ)
exp(θ(−1)m y − κe(−1)m y).

It is plain to check H is a valid probability density function. Observe that Hθ,(−1)m ,1 ≡
Gθ,(−1)m whereG is defined in (2.2). The following lemma collects some useful prop-
erties of H . Its proof follows via straightforward computations and is hence omitted.

Lemma B.1 Suppose X ∼ Hθ,1,κ . Then −X ∼ Hθ,−1,κ . For all α > −θ we have
E[eαX ] = �(α+θ)

κα�(θ)
.

We next define generalized HSLG 
-Gibbs measures in the same vein as HSLG

-Gibbs measures (see Definition 1.2) but by considering the weight function

W̃e(x) =

⎧
⎪⎨

⎪⎩

exp(ϑx − κex ) if e is blue(ϑ)
exp(−γ ex ) if e is black
exp(−αx) if e is red.

instead of W defined in (1.5). κ = γ = 1 in above weights lead to the usual Gibbs
measures. The following result ensures that generalizedHSLG 
-Gibbsmeasures (and
hence the usual ones from Definition 1.2) are well-defined.
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Lemma B.2 Fix any γ, κ > 0, 
 := {ϑm,n > 0 : (m, n) ∈ Z
2≥1} and α >

−min{ϑm,n : (m, n) ∈ Z
2≥1}. Recall the graph G from Sect. 1.3.1 used in defin-

ing HSLG 
-Gibbs measures. Given a domain � and a boundary condition {ui, j :
(i, j) ∈ ∂�}, we have

∫

R|�|

∏

e={v1→v2}∈E(�∪∂�)

W̃e(uv1 − uv2)
∏

v∈�

duv <∞.

Let us suppose |ui, j | ≤ R for all (i, j) ∈ ∂�. Let us assume � = Kk,T or K′k,T
defined in (2.4). There exists a constant C that depends only on γ, κ, θ, and α such
that

∫

R|�|

∏

e={v1→v2}∈E(�∪∂�)

W̃e(uv1 − uv2)
∏

v∈�

duv ≤ CkT+R .

Proof We shall prove this lemma only for the homogeneous case, i.e. ϑm,n ≡ θ > 0.
The general case is notationallymore cumbersomebut follows in an exact samemanner
as the homogeneous case. First note that for red edges {v1 → v2} the corresponding
weight functionWe(uv1−uv2) factors out as e

−αuv1 ·eαuv2 . Hence they can be viewed
as vertex weight functions.More specifically, at each vertex (k, 1)we can associate the
vertex weight function Vk(u) := e(−1)kαu . They replace the role of red edge weights.
We denote this vertex weights as red circles in Figure 20. We now divide our analysis
into two cases based on the value of α.

Suppose α ∈ (−θ, θ). As black edge weights are less than 1, we may drop all of
them to get a Gibbsmeasure based on the blue and red edge weights only, see Fig. 20B.
The integral of the reduced Gibbs measure can be viewed as a product of integrals of
several smaller Gibbs measures that are two types: Type I and Type II as in Fig. 20D
and E respectively. Type I Gibbs measures are those for which red vertex weights do
not appear. The integral corresponding to Type I takes the following form:

(
κθ (�(θ))−1

)k ∫

Rk−1

k∏

i=1
Hθ,κ,(−1)i+m (ui−1 − ui )

k−1∏

i=1
dui

where u0 and uk are in ∂�. In this case, we may use Hθ,κ,(−1)i+m (uk−1 − uk) ≤ C
and the fact that H is a probability density function to get that the integral is bounded

by C · (κθ (�(θ))−1
)k
. Type II Gibbs measures are the ones where red vertex weights

are present. The integral corresponding to the Type II Gibbs measures takes the form

∫

Rk

k∏

i=1
e(−1)mαu0 · e(−1)i+mθ(ui−1−ui )−κe(−1)i+m (ui−1−ui )

k∏

i=1
dui .
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(a) (b)

(c)

u0 uk

u0 uk

(d)

uk

(e)

c

u

(f)

Fig. 20 AA possible domain �. B Reduction in the case of α ∈ (−θ, θ).C Reduction in the case of α > 0.
D Type I Gibbs measures. The figure shows two of them of even length. It may also have odd length with
one edge at either of the end removed. E Type II Gibbs measures. It may also have odd length with one
edge at right end removed. F Few examples of Type III Gibbs measures (color figure online)

The integrand can be manipulated to show that the above integral is equal to

e(−1)m+k−1αuk
k−1∏

i=1
(�(θ + (−1)m+i+1α))κ−θ+(−1)m+iα

∫

Rk

k∏

i=1
Hθ+(−1)m+i+1α,κ,(−1)i−1(xi )

k∏

i=1
dxi

= e(−1)m+k−1αuk
k−1∏

i=1
(�(θ + (−1)m+i+1α))κ−θ+(−1)m+iα.
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Since we factor out the measure into these independent pieces and all integrals are
finite, the claim follows for α ∈ (−θ, θ).

For α > 0, we remove all the black edges except the ones connecting (2i − 1, 1)
to (2i, 1) (again since weights of black edges are atmost 1, removal of them only
increases the integrand). This leads to a reduced Gibbs measures shown in Fig. 20C.
The reduced Gibbs measure decomposes into several Type I Gibbs measures and Type
III Gibbs measures. Type III Gibbs measures are those for which red vertex weights
do appear. Because of the presence of black edge in this case, Type III Gibbs measures
are different from Type II. A few of the possible Type III Gibbs measures are shown
in Fig. 20F.

• If a Type III Gibbs measure has two red vertices in its domain or boundary, we
may use the fact that the weight of the figure

a

b

c

is e(θ+α)(b−c)−κeb−c · eα(c−a)−γ ec−a ≤ e(θ+α)(b−c)−κeb−c · (supx∈R eαx−γ ex
) ≤

C · e(θ+α)(b−c)−κeb−c .
• If a Type III Gibbs measure has only one red vertex in its domain or boundary,
then it must contain either of the two following figures

b

c a

c

with c ∈ ∂�. The corresponding weights are eαc · e(θ+α)(b−c)−κeb−c ≤ C′eαc and
e−αc · eα(c−a)−γ ec−a ≤ C′e−αc respectively where C′ := supx∈R eαx−γ ex .

Based on the kind of Type III Gibbs measures, we may insert the above bounds
on the Gibbs weights in the integrand of this type of Gibbs measures. The resulting
integral can then be computed explicitly to yield a bound of the form CV e|αc| where
V is the number of vertices in the Gibbs measures. For example, for the middle figure
in Fig. 20F we have (with u4 := u)

(
κ−θ�(θ)

)4
∫

R4
e−αu0e−γ ec−u0

3∏

i=0
Hθ,κ,(−1)i (ui − ui+1)dui

≤ (κ−θ�(θ)
)4 · Ce−αc

∫

R4

3∏

i=0
Hθ,κ,(−1)i (ui − ui+1)dui ≤

(
κ−θ�(θ)

)4 · Ce|αc|.

This establishes the lemma for α > 0. ��
We end this section we two lemmas concerning with the tail properties of fθ and

ξ -distributions defined in (2.3) and (4.5) respectively.
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Lemma B.3 For all x ∈ R we have

e−2e ≤ (�(θ))2fθ (x)e
θ |x | ≤ �(2θ),

where fθ is defined in (2.3).

Proof Since fθ is symmetric, it suffices to show the lemma for x > 0. We have

(
�(θ)

)2fθ (x) =
∫

R

eθ y−ey+θ(y−x)−ey−x dy = e−θx
∫

R

e2θ y−ey−ey−x dy.

Now for the lower bound we observe

∫

R

e2θ y−ey−ey−x dy ≥
∫ 1

0
e2θ y−ey−ey−x dy ≥ e−2e,

whereas for the upper bound we have

∫

R

e2θ y−ey−ey−x dy ≤
∫

R

e2θ y−ey dy = �(2θ).

��
Lemma B.4 Fix any θ0 > 1. For any θ1, θ2 ∈ [θ−10 , θ0] and a, b ∈ R, define the

random variable X (a,b)
θ1,θ2;±1 ∼ ξ

(a,b)
θ1,θ2;±1 where ξ

(a,b)
θ1,θ2;±1 is defined in (4.5). There exists

a constant C > 0 depending only θ0 such that for all θ1, θ2 ∈ [θ−10 , θ0], for all a, b ∈ R

and for all r ≥ |a − b| we have

P

(
X (a,b)

θ1,θ2;±1 /∈ [min{a, b} − 2r ,max{a, b} + 2r ]
)
≤ Ce−

1
Cr .

Proof Fix any θ1, θ2 ∈ [θ−10 , θ0]. We shall prove the bound for X (a,b)
θ1,θ2;1. The proof for

the case X (a,b)
θ1,θ2;−1 is analogous. Without loss of generality assume b ≤ a. Observe

that

P

(
X (a,b)

θ1,θ2;±1 /∈ [min{a, b} − 2r ,max{a, b} + 2r
])

≤
∫
(−∞,b−2r ]∪[a+2r ,∞)

Gθ1,1(a − x)Gθ2,1(b − x)
∫ a+1
a Gθ1,1(a − x)Gθ2,1(b − x)

. (B.1)

Note that

∫ a+1

a
Gθ1,1(a − x)Gθ2,1(b − x) ≥ 1

C · e−max{θ1,θ2}·(a−b),
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wherewehave used the fact thatGβ,1(−y) ≥ C−1e−β y (recallG from (2.2)). Similarly

∫

x≤b−2r
Gθ1,1(a − x)Gθ2,1(b − x)dx

+
∫

x≥a+2r
Gθ1,1(a − x)Gθ2,1(b − x)dx ≤ C · e−2(θ1+θ2)r .

Thus as long as r ≥ a−b, inserting the above two bounds back in (B.1) and adjusting
the constant C we get the desired result. ��

Appendix C Estimates for non-intersection probability

In this section, we study non-intersection probability of random walks and random
bridges (defined inDefinition 3.6), andmodified random bridges (defined inDefinition
4.9). Throughout this section we shall assume the increments are drawn from a density
f that satisfies the following assumptions. It is worth recalling that due to Corollary
4.6, fθ defined in (2.3) satisfies the conditions of Assumption C.1 and hence all results
of this section can be applied to random walks with that increment law.

Assumption C.1 (Assumption on the increments) The density f satisfies the following
properties.

(1) The density f is symmetric and log f is concave.
(2) Letψ denote the characteristic function corresponding to f. |ψ | is integrable. Given

any δ > 0, there exists η such that supt≥δ |ψ(t)| = η < 1.
(3) There exists a constant C > 0 such that f(x) ≤ Ce−|x |/C. In particular, this implies

that if X ∼ f, there exists v > 0 such that and

sup
|t |≤v

[
E[et X ]] <∞.

In other words X is an subexponential random variable.

The following lemma concerns with sharp rate of convergence of the probability

density function of (X(1)+X(2)+· · ·+X(n))/
√
n, where X(i)

i .i .d.∼ f, to theGaussian
density with appropriate variance.

Lemma C.2 Let f∗n be the n-fold convolution of f. There exists a constant C > 0 such
that

sup
|x |≤(log n)2

∣
∣∣∣

√
nf∗n(x

√
n)

φσ (x)
− 1

∣
∣∣∣ ≤ C · n−3/4.

where φσ (x) := 1√
2πσ 2

e−
x2

2σ2 and σ 2 := ∫ x2f(x)dx.
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Proof This proof is adapted from Theorem 5 in Chapter XV in [62]. In what follows
we shall use the big O-notation and write an = O(bn) if an/bn is uniformly bounded
above by some universal constant. Let ψ denote the characteristic function of fθ . The
explicit form ofψ was given in (4.13). In particular, |ψ | is integrable. In what follows,
for simplicity we will assume σ 2 = 1. Set fn(x) :=

∫
R
eitxψn(t/

√
n)dt . By the

Fourier inversion formula, fn(x) is the density of (X(1) + X(2) + · · · + X(n))/
√
n

where X(i)
i .i .d.∼ f. Hence we have

√
nf∗n(x/

√
n) = fn(x). Since f is symmetric and

has all finite moments, by Taylor expansion we have

ψ(t/
√
n) = 1− t2

2n + O( t4

n2
).

Set α = 1/16. Thus for |t | ≤ nα , we have ψ(t/
√
n) = 1 − t2

2n + O(n4α−2) =
e−t2/2n+O(n4α−2). Thus ψn(t/

√
n) = e−t2/2(1+ O(n−3/4)), where the O term is free

of t in that specified range. Thus,

fn(x) = (1+ O(n−3/4))
∫

|t |≤nα

eitx e−t2/2dt +
∫

|t |≥nα

eitxψn(t/
√
n)dt

= (1+ O(n−3/4))
∫

R

eitx e−t2/2dt

+
∫

|t |≥nα

eitxψn(t/
√
n)dt − (1+ O(n−3/4))

∫

|t |≥nα

eitx e−t2/2dt .

We next compute the order of the last two integrals above. Clearly
∫
|t |≥nα e−t

2/2dt ≤
Ce−cn2α . For the second one, we choose δ > 0 small enough such that |ψ(t)| ≤ e−t2/4
for all |t | ≤ δ. This implies

∫

nα≤t≤√nδ

|ψn(t/
√
n)|dt ≤ Ce−cn2α .

For |t | ≥ √nδ, we know supt≥δ |ψ(t)| = η < 1 by part (2) of Lemma 4.7. This forces

∫

|t |≥√nδ

|ψn(t/
√
n)|dt ≤ ηn−1

√
n
∫

R

ψ(t)dt .

Thus the error integrals are at most Ce− 1
C n

1/8
in absolute value uniform in x . Fur-

thermore if we assume |x | ≤ (log n)2, φ1(x) ≥ 1√
2π

e−(log n)2/2, which dominates the

error coming from the integrals. Hence we may divide φ1(x) and still obtain that the
errors are going to zero. ��

For any p ∈ [0,∞), s, t ∈ �1, n�, we set

NIp�s, t� := {S1(k)− S2(k) ≥ −p, for all k ∈ �s, t�}.
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When s = 2, t = n−1 we write NIp := NIp�2, n−1� so that it coincides with the NIp
event defined in (1.18). When a1 − a2 = O(1), it is well known that Pn;(a1,a2)(NI) =
O(n−1/2). We record this classical fact in the following lemma.

Lemma C.3 For all (a1, a2) ∈ R
2 we have P

n;(a1,a2)(NI) ≤ Cmax{a1−a2,1}√
n

for some

absolute constant C > 0. If in addition a1 ≥ a2, we have Pn;(a1,a2)(NI) ≥ C−1√
n
.

Proof The first part is [82, Theorem A] and the second part is [95, Theorem 3.5]. ��
We again remind the readers that the above result, as well as all the results stated

below within this section, the random walks/bridges or the modified random bridges
are assumed to have increments drawn from a density f satisfying Assumption C.1.
In many of our arguments below, we shall often appeal to stochastic monotonicity of
non-intersecting random walks or bridges with respect to boundary data. We record
this result below.

Proposition C.4 (Stochastic monotonicity of random bridges and random walks) Fix
n ∈ Z≥1. et a( j)

i , b( j)
i ∈ [−∞,∞] for i, j ∈ {1, 2}. Suppose a(1)

i ≥ a(2)
i and b(1)

i ≥
b(2)
i for i ∈ {1, 2}.

(a) There exists a probability space that supports a collection of random variables

(
S( j)
1 (k), S( j)

2 (k) : j ∈ {1, 2}, k ∈ �1, n�
)

such that S(1)
i (k) ≥ S(2)

i (k) for all i ∈ {1, 2} and k ∈ �1, n�, and marginally

(S( j)
1 (·), S( j)

2 (·)) ∼ P
n;(a( j)

1 ,a( j)
2 ),(b( j)

1 ,b( j)
2 )(· | NI) for each j ∈ {1, 2}.

(b) There exists a probability space that supports a collection of random variables

(
S( j)
1 (k), S( j)

2 (k) : j ∈ {1, 2}, k ∈ �1, n�
)

such that S(1)
i (k) ≥ S(2)

i (k) for all i ∈ {1, 2} and k ∈ �1, n�, and marginally

(S( j)
1 (·), S( j)

2 (·)) ∼ P
n;(a( j)

1 ,a( j)
2 )(· | NI) for each j ∈ {1, 2}.

Proof This proposition of as a discrete analogue of Lemma 2.6 in [35] and is true
under log-concavity assumption on f. Instead of giving the full details, we explain the
two possible ways in proving this proposition. One is via Markov Chain arguments
as done, for example, in [35, 93, 100] previously. In [93] for example, the stochastic
monotonicity was proved for non-intersecting random bridges under discrete bounded
increment assumption. One can take a discrete to continuous limit of the increments
to obtain the above result. The second route is via direct construction argument is the
style of [12, 57]. We have, in fact, already adapted that technique in proving stochastic
monotonicity for HSLG Gibbs measures in Appendix A and a similar argument can
be carried out to prove Proposition C.4. ��

Next we study diffusive properties of the random walks under the non-intersecting
event.
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Lemma C.5 Given any ε > 0 there exists a constant δ(ε) > 0 such that for all n ∈ Z≥1
and (a1, a2) ∈ R

2 we have

P
n;(a1,a2)

(
S1(n)− S2(n) ≥ δ

√
n | NI

)
≥ 1− ε, (C.1)

P
n;(a1,a2)

(
sup

k∈�1,n�
(S1(k)− S2(k)) ≤ δ−1

√
n +max{a1 − a2, 0} | NI

)
≥ 1− ε,

(C.2)

P
n;(a1,a2)

(
inf

k∈�1,n�
S1(k)− a1 ≥ −δ−1

√
n | NI

)
≥ 1− ε, (C.3)

P
n;(a1,a2)

(
sup

k∈�1,n�
S2(k)− a2 ≤ δ−1

√
n | NI

)
≥ 1− ε. (C.4)

We remark that Lemma C.5 holds if NI = NI0�2, n − 1� is replaced by NI0�2, n�.
The same argument presented below essentially works when the conditional event is
the latter one instead.

Proof Proof of Eq. (C.1). Set U (k) := S1(k) − S2(k). Under Pn;(a1,a2), (U (k))nk=1
is a random walk starting from a1 − a2 with increments drawn from f ∗ f. The
non-intersection condition for (S1(k), S2(k))nk=1 translates to (U (k))nk=1 staying non-
negative. If a1 ≥ a2, since {U (n) ≥ δ

√
n} is an increasing event with respect to the

boundary conditions, we have

P
n;(a1,a2)

(
S1(n)− S2(n) ≥ δ

√
n | NI

)
≥ P

n;(0,0)
(
S1(n)− S2(n) ≥ δ

√
n | NI

)

But under Pn;(0,0), it is known from [75] that the randomwalk (U (k))nk=1, conditioned
to stay non-negative converges weakly to a Brownianmeander under diffusive scaling.
Since the endpoint of a Brownian meander is a strictly positive continuous random
variable, we thus have (C.1). If a1 ≤ a2, the argument is a bit more involved. We first
write the (complement of the) conditional probability as a ratio:

P
n;(a1,a2)(S1(n)− S2(n) ≤ δ

√
n | NI) = P

n;(a1,a2)({S1(n)− S2(n) ≤ δ
√
n
} ∩ NI

)

Pn;(a1,a2)(NI
) .

For the denominator we condition on (S1(2), S2(2)) and use the lower bound from
Lemma C.3:

P
n;(a1,a2)(NI) = E

n;(a1,a2)
[
1S1(2)≥S2(2)En;(a1,a2)

[
1NI0�3,n−1� | σ(S1(2), S2(2))

]]

(C.5)

≥ C−1√
n
P
n;(a1,a2)(S1(2) ≥ S2(2)). (C.6)
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For the numerator, we again condition on (S1(2), S2(2)) to get

P
n;(a1,a2)({S1(n)− S2(n) ≤ δ

√
n
} ∩ NI

)

= E

[
1S1(2)≥S2(2)E

[
1{S1(n)−S2(n)≤δ

√
n}∩NI0�3,n−1� | σ(S1(2), S2(2))

]]
. (C.7)

Upon conditioning on (S1(2), S2(2)), the random walks starts at (S1(2), S2(2)). For
any b1 ≥ b2, utilizing the upper bound from Lemma C.3 and stochastic monotonicity
we have

P
n−1;(b1,b2) ({S1(n − 1)− S2(n − 1) ≤ δ

√
n} ∩ NI0�2, n − 2�

)

= P
n−1;(b1,b2)(NI0�2, n − 2�)Pn−1;(b1,b2)

({S1(n − 1)− S2(n − 1) ≤ δ
√
n} | NI0�2, n − 2�

)

≤ C√
n
max{b1 − b2, 1} · Pn−1;(0,0)

({S1(n − 1)− S2(n − 1) ≤ δ
√
n} | NI0�2, n − 2�

)

Taking b1 = S1(2) and b2 = S2(2), we insert the above bound back in (C.7) to get

P
n;(a1,a2)({S1(n)− S2(n) ≤ δ

√
n
} ∩ NI

)

≤ C√
n
E
n;(a1,a2) [1S1(2)≥S2(2) max{S1(2)− S2(2), 1}

]

· Pn−1;(0,0) ({S1(n − 1)− S2(n − 1) ≤ δ
√
n} | NI0�2, n − 2�

)
(C.8)

Note that underPn;(a1,a2), S1(2)−S2(2)
(d)= Z−bwhere Z ∼ f∗f and b = a2−a1 ≥ 0.

We claim that there exists a constant C > 0 such that for all b ≥ 0 we have

E
[
max{Z − b, 1}1Z≥b

] ≤ C · P(Z ≥ b). (C.9)

Plugging this bound in the expectation in (C.8) we have

P
n;(a1,a2)({S1(n)− S2(n) ≤ δ

√
n
} ∩ NI

)

≤ C√
n
P
n;(a1,a2)(S1(2) ≥ S2(2))·Pn−1;(0,0)

({S1(n − 1)− S2(n − 1) ≤ δ
√
n} | NI0�2, n − 2�

)

Combining this with the lower bound on the denominator from (C.6) we get that

P
n;(a1,a2)(S1(n)− S2(n)

≤ δ
√
n | NI) ≤ C·Pn−1;(0,0) ({S1(n − 1)− S2(n − 1) ≤ δ

√
n} | NI0�2, n − 2�

)
.

From here, we can again appeal to [75] and Brownian meander properties to show that
the above bound can be made arbitrarily small by choosing δ small enough. Thus we
are left to (C.9).
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Suppose Z ∼ f ∗ f. Observe that for any b ∈ R we have

E
[
max{Z − b, 1}1Z≥b

] =
∞∑

k=1
E
[
max{Z − b, 1}1Z∈[b+k−1,b+k]

]

≤ P(Z ≥ b)

[

1+
∞∑

k=2
k · P(Z ≥ b + k − 1)

P(Z ≥ b)

]

If we assume b ≥ 0 additionally, using exponential tail bounds for f (and hence f ∗ f),
we may get a constant C > 0 free of b, such that P(Z≥b+k−1)

P(Z≥b) ≤ Ce−k/C for all k ≥ 2.
This ensure the infinite sum above can be bounded uniformly over b ∈ [0,∞). This
proves (C.9).

Proof of Eq. (C.2). SetU (k) := S1(k)− S2(k). To obtain (C.2), observe the following
inequalities

P
n;(a1,a2)

(
sup

k∈�1,n�
U (k) ≤ δ−1

√
n +max{a1 − a2, 0} |

n⋂

k=2
{U (k) ≥ 0}

)

≥ P
n;(max{a1,a2},a2)

(
sup

k∈�1,n�
U (k) ≤ δ−1

√
n +max{a1 − a2, 0} |

n⋂

k=2
{U (k) ≥ 0}

)

≥ P
n;(max{a1,a2},a2)

(
sup

k∈�1,n�
U (k) ≤ δ−1

√
n +max{a1 − a2, 0} |

n⋂

k=2
{U (k) ≥ max{a1 − a2, 0}}

)

= P
n;(a2,a2)

(
sup

k∈�1,n�
U (k) ≤ δ−1

√
n |

n⋂

k=2
{U (k) ≥ 0}

)
≥ 1− ε.

Let us briefly explain the above inequalities that imply (C.2). The first inequality fol-
lows from stochastic monotonicity applied to the boundary point. We are conditioning
on the event that requires the random walk (U (k))nk=1 to stay above the barrier zero.
By stochastic monotonicity, increasing this barrier will only decrease the conditional
probability. This implies the second inequality. The equality in the last line follows by
translating the randomwalk. The final inequality follows by taking δ small enough due
to the tightness of the random walk paths conditioned to stay positive (when scaled
by diffusively) [75].
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Proof of Eqs. (C.3) and (C.4) Note that due to stochastic monotonicity (Proposition
C.4), taking a2 ↓ −∞ we get

P
n;(a1,a2)

(
inf

k∈�1,n�
S1(k)− a1 ≥ −δ−1

√
n | NI

)

≥ P
n;(a1,−∞)

(
inf

k∈�1,n�
S1(k)− a1 ≥ −δ−1

√
n | NI

)

= P
n;(a1,−∞)

(
inf

k∈�1,n�
S1(k)− a1 ≥ −δ−1

√
n

)

= P
n;(a1,a2)

(
inf

k∈�1,n�
S1(k)− a1 ≥ −δ−1

√
n

)
.

The first equality above is due to the fact that NI happens almost surely when the
second walk starts at −∞. The second equality follows from noting that S1(·) and
S2(·) are independent and hence the probability is independent of the starting point of
the second walk. Thus the non-intersecting condition makes S1(·) stochastically larger
than a usual random walk. By diffusive behavior of random walks one can choose δ

small enough so that the above quantity is at least 1−ε. Similarly the non-intersecting
condition makes S2(·) stochastically smaller than a usual random walk. Combining
this with the diffusive behavior of random walks leads to (C.4). ��

Corollary C.6 Fix any n ∈ Z≥2. Suppose a1, a2 ∈ R with |a1 − a2| ≤ n/ log n. Given
any ε, γ > 0 there exists a constant ρ(ε, γ ) ∈ (0, 1

4 ] such that for all large enough n
we have

P
n;(a1,a2)

(
sup

k∈�1,nρ�,i=1,2

∣
∣Si (k)− ai

∣
∣ ≥ γ

√
n | NI

)
≥ 1− ε.

Proof Let us focus only on S1(·). We may control lower drift of S1(·) around a1, i.e.,
infk∈�1,nρ�[S1(k) − a1] by an argument similar to the proof of (C.3). For upper drift
we use

sup
k∈�1,nρ�

[S1(k)− a1] ≤ a2 − a1 + sup
k∈�1,nρ�

[S1(k)− S2(k)] + sup
k∈�1,nρ�

[S2(k)− a2]

The second and third term can be controlled by an argument similar to the proof of
(C.2) and (C.4) respectively. Note that by diffusive properties all the fluctuations are
of the order

√
nρ. Hence one can choose ρ small enough so that

P
n;(a1,a2)

(
sup

k∈�1,nρ�

∣∣S1(k)− a1
∣∣ ≥ γ

√
n | NI

)
≥ 1− ε.

��
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We now study non-intersecting probabilities for random bridges Pn;(a1,a2),(b1,b2)
defined in Definition 3.6 (increments drawn from f). The following lemma shows
that when the starting points and endpoints are far apart in the diffusive scale, non-
intersection probability is bounded from zero.

Lemma C.7 Fix δ > 0. For each n ∈ Z≥4, consider the set

Rn,δ := {(x1, x2) : |xi | ≤ 2
√
n(log n)3/2, x1 − x2 ≥ δ

√
n} (C.10)

There exists φ = φ(δ) > 0 such that for all n large enough and all (a1, a2), (b1, b2) ∈
Rn,δ we have

P
n;(a1,a2),(b1,b2)

(

inf
k∈�1,n�

[
S1(k)− S2(k)

] ≥ 1
4δ
√
n

)

≥ φ.

Proof Fix any (a1, a2), (b1, b2) ∈ Rn,δ . For simplicity let uswriteP forPn;(a1,a2),(b1,b2).
Note that |bi−ai | ≤ 4

√
n(log n)3/2. By theKMTcoupling for Brownian bridges (The-

orem 2.3 in [56] with z = bi − ai and p = 0), there exists a constant C > 0 such that
for all n ∈ Z≥1 we have

P
n;(a1,a2),(b1,b2)

(
¬SC(b1,b2)

(a1,a2)

)
≤ 1

n ,

where SC(b1,b2)
(a1,a2)

:=
{

sup
k∈�1,n�,i=1,2

∣∣∣Si (k)−
√
nBi (k/n)− ai − k

n (bi − ai )
∣∣∣ ≤ C log3 n

}
,

(C.11)

and where B1, B2 are Brownian bridges on the same probability space with variance∫
x2f(x)dx (SC stands for ‘strong coupling’). By Brownian bridge properties, there

exists φ = φ(δ) > 0 so that

P
n;(a1,a2),(b1,b2)

(
sup

x∈[0,1]
(|B1(x)| + |B2(x)|) ≤ 1

8δ

)
≥ 2φ.

Combining the previous two math displays we see that with probability 2φ − 1
n we

have

S1(k)− S2(k) ≥ a1 − a2 + k
n (b1 − a1 − b2 + a2)− 2C(log n)3 − 1

4δ
√
n

= n−k
n a1 − a2 + k

n (b1 − b2)− 2C(log n)3 − 1
4δ
√
n

≥ −2C(log n)3 + 1
2δ
√
n > 1

4δ
√
n

for all large enough n. Taking n large enough ensures 2φ − 1
n ≥ φ completing the

proof. ��
Our next lemma gives a crude bound for the weak non-intersection probability in

terms of true non-intersection probability.
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Lemma C.8 There exists C > 0 such that for all p ∈ [0,∞), (a1, a2), (b1, b2) ∈ R
2,

n ∈ Z≥1

P
n;(a1,a2),(b1,b2)(NIp) ≤ eCp · Pn;(a1,a2),(b1,b2)(NI).

Proof By lifting the first random bridge by p units we see that

P
n;(a1,a2),(b1,b2)(NIp) = P

n;(a1+p,a2),(b1+p,b2)(NI).

Conditioning on the second point and the penultimate point of both the random bridges
we get

P
n;(a1+p,a2),(b1+p,b2)(NI) =

∫
x1≥x2,y1≥y2 �

n;(y1,y2)
x1,x2 (NI)ϒp(x1, x2; y1, y2)dx1dx2dy1dy2

f∗(n−1)(a1 − b1)f
∗(n−1)(a2 − b2)

.

(C.12)

where

ϒp(x1, x2; y1, y2) := f(a1 + p − x1)f(a2 − x2)f(y1 − b1 − p)f(y2 − b2),

�
n;(y1,y2)
x1,x2 (NI) :=

∫

x j,1≥x j,2, j∈�3,n−2�

n−2∏

j=2
f(x j,1 − x j+1,1)f(x j,2 − x j+1,2)

n−2∏

j=3
dx j,1dx j,2.

Here in the above integrationwe set x2,1 := x1, x2,2 := x2, xn−1,1 := y1, xn−1,2 := y2.
From Lemma B.3, we have that ϒp(x1, x2; y1, y2) ≤ eCpϒ0(x1, x2; y1, y2), where
the C > 0 depends only on θ . Plugging this bound back in (C.12) we get the desired
result. ��

The following technical lemma, which can be thought of as the bridge analog of
Lemma C.3, studies the non-intersection probability for random bridges when the
starting points are close.

Lemma C.9 Fix M > 0 and n ∈ Z≥2. There exist a constant C = C(M) > 0 such
that for all |ai | ≤ √n(log n)3/2 with |a1 − a2| ≤ (log n)3/2, and |bi | ≤ M

√
n with

b1 ≥ b2 we have

P
n;(a1,a2),(b1,b2)(NI) ≤ C 1√

n
max{a1 − a2, 1} ·max

{
1√
n
|a1 − b1|, 2

}3/2
.

Proof It suffices to prove the lemma only for large enough n (since we can always
choose the C large enough). Set r = max{ 1√

n
|a1 − b1|, 2} and p = 
nr−3�. We first

claim that there exists m(M) > 0 such that

P
n;(a1,a2),(b1,b2)(NI)

≤ 2 · Pn;(a1,a2),(b1,b2)
(
{|Si (p)− ai | ≤ m

√
nr−1 for i = 1, 2} ∩ NI

)
. (C.13)
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Let us first complete the proof of the lemma assuming (C.13). Note that the density

of Si (p) at x is given by f∗(p−1)(x−ai )f∗(n−p)(bi−x)
f∗(n−1)(bi−ai ) . By Lemma C.2, we may replace the

n-fold convolution with Gaussian densities at the expensive of a multiplicative factor
close to 1. In particular for large enough n we have

sup
|x−ai |≤m√nr−1

f∗(n−p)(bi − x)

f∗(n−1)(bi − ai )
= 2 exp

(
1

2σ 2

(
r2 − (r−mr−1)2

1−r−3
))

= 2 exp
(

1
2σ 2(1−r−3)

(
−r−1 − m2r−2 + 2m

))

≤ 2e2m/σ 2
.

Thus f∗(p−1)(x−ai ) f ∗(n−p)(bi−x)
f∗(n−1)(bi−ai ) ≤ 2e2m/σ 2 · f∗(p−1)(x − ai ) whenever |x − ai | ≤

m
√
nr−1. This allows us to go from random bridge laws to random walk laws. We

thus have

P
n;(a1,a2),(b1,b2)

(
{|Si (p)− ai | ≤ m

√
nr−1 for i = 1, 2} ∩ NI

)

≤ P
n;(a1,a2),(b1,b2)

⎛

⎝{|Si (p)− ai | ≤ m
√
nr−1 for i = 1, 2} ∩

p⋂

k=1
{S1(k) ≥ S2(k)}

⎞

⎠

≤ 2e2m/σ 2 · Pn;(a1,a2)
⎛

⎝{|Si (p)− ai | ≤ m
√
nr−1 for i = 1, 2} ∩

p⋂

k=1
{S1(k) ≥ S2(k)}

⎞

⎠

≤ 2e2m/σ 2 · Pp;(a1,a2)
⎛

⎝
p⋂

k=1
{S1(k) ≥ S2(k)}

⎞

⎠ ≤ C√
n
r3/2 ·max{a1 − a2, 1}.

where the last inequality uses Lemma C.3. This completes the proof modulo (C.13).
The rest of the proof is devoted to showing (C.13).

We claim that

P
n;(a1,a2),(b1,b2)(S1(p)− a1 ≤ −m√nr−1 | NI) ≤ 1

8 , (C.14)

P
n;(a1,a2),(b1,b2)(S1(p)− a1 ≥ m

√
nr−1 | NI) ≤ 1

8 ,

P
n;(a1,a2),(b1,b2)(S2(p)− a2 ≤ −m√nr−1 | NI) ≤ 1

8 ,

P
n;(a1,a2),(b1,b2)(S2(p)− a2 ≥ m

√
nr−1 | NI) ≤ 1

8 , (C.15)

for all large enough n. Applying an union bound, leads to (C.13). We shall prove
the first two inequalities: (C.14) and (C.15), the remaining two follows in a similar
fashion.
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Proof ofEq. (C.15). Similar to the proof of (C.3) and (C.4), by stochasticmonotonicity
for random bridges (Proposition C.4) we have

P
n;(a1,a2),(b1,b2)(S1(p)− a1 ≤ −m√nr−1 | NI)
≤ P

n;(a1,a2),(b1,b2)(S1(p)− a1 ≤ −m√nr−1) (C.16)

We invoke the KMT coupling for random bridges [56] to define Brownian bridge
B1, B2 on [0, 1] on a common probability space such that (C.11) holds. By (C.11),
with probability 1− 1

n ,

S1(p)− a1 ≥ √nB1(p/n)+ p
n (b1 − a1)− C log3 n

= √nB1(p/n)−√nr−2 − C log3 n ≥ √nB1(p/n)− 2
√
nr−1.

for large enough n. Since p/n is of the order r−3, B1(p/n) fluctuates of the order
r−3/2. By Brownian bridge one point tail estimates, there exists a constant c > 0 such
that for all m ≥ 3

P
n;(a1,a2),(b1,b2)(B1(p/n) > −(m − 2)r−1) ≥ 1− e−cm2r .

Thus by an union bound we have

P
n;(a1,a2),(b1,b2)(S1(p)− a1 > −m√nr−1) ≥ 1− 1

n − e−cm2r . (C.17)

Taking m, n are large enough, ensure that 1− 1
n − e−cm2r ≥ 7

8 . This verifies (C.14).
Proof of Eq. (C.15). By stochastic monotonicity (Proposition C.4) at the starting
points,

P
n;(a1,a2),(b1,b2)(S1(p)− a1 ≥ m

√
nr−1 | NI)

≤ P
n;(a1+√nr−1,a2),(b1,b2)(S1(p)− a1 ≥ m

√
nr−1 | NI)

≤ P
n;(a1+√nr−1,a2),(b1,b2)(S1(p)− a1 ≥ m

√
nr−1)

Pn;(a1+√nr−1,a2),(b1,b2)(NI)
. (C.18)

Using an argument similar to the derivation of (C.17), we find that

P
n;(a1+√nr−1,a2),(b1,b2)(S1(p)− a1 ≥ m

√
nr−1) ≤ 1

n + e−cm2r . (C.19)

This gives an upper bound for the numerator of (C.18). For the denominator, recall the
event SC(b1,b2)

(a1,a2)
and the Brownian bridges B1, B2 from (C.11). Note that on the event

SC(b1,b2)
(a1+√nr−1,a2) ∩

{
inf

x∈[0,1](B1(x)− B2(x)) ≥ −1

2
r−1

}
,
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for large enough n we have

S1(k) ≥ √nB1(k/n)+ a1 +√nr−1 + k
n (b1 − a1)− C(log n)3

≥ √nB2(k/n)+ 1
2

√
nr−1 + a2 + k

n (b2 − a2)− 2C(log n)3

≥ S2(k)+ 1
2

√
nr−1 − 3C(log n)3 ≥ S2(k).

where we used that |a1−a2| ≤ (log n)3/2, b1 ≥ b2, and r ≤ (log n)3/2. Thus for large
enough n,

P
n;(a1+√nr−1,a2),(b1,b2)(NI) ≥ P

n;(a1+√nr−1,a2),(b1,b2)
(

inf
x∈[0,1](B1(x)− B2(x)) ≥ − 1

2 r
−1
)

− P
n;(a1+√nr−1,a2),(b1,b2)

(
¬SC(b1,b2)

(a1+√nr−1,a2)

)

≥ Cr−2 − 1
n ≥ 1

2Cr
−2,

where the penultimate inequality follows from (C.11) and Brownian bridge calcula-
tions (see Lemma 2.11 in [36] for example). Combining (C.19) and the above lower
bound we have

r.h.s. (C.18) ≤ 2
C

(
r2
n + r2e−cm2r

)
≤ 1

8 ,

for all large enough n and m (as r ≤ (log n)3/2). ��
Corollary C.10 Fix any M > 0 and n ≥ 1. Suppose |ai |, |bi | ≤ M

√
n for i = 1, 2.

There exists a constant C = C(M) > 0 such that

P
n;(a1,a2),(b1,b2)(NI) ≤ C·P
n/4�;(a1,a2)(ÑI)P
n/4�;(b1,b2)(ÑI)

P
n;(a1,a2),(b1,b2)(NI) ≥ 1

C ·P
n/4�;(a1,a2)(ÑI)P
n/4�;(b1,b2)(ÑI).

where ÑI := {S1(k) ≥ S1(k) for all k ∈ �2, n/4�}.
Proof The upper bound follows by applying (4.23) with δi = 1

4 and integrating over
the non-intersection event. Let us focus on the lower bound. For simplicity we will
drop the floor functions from 
n/4�. By Lemma C.5, we can choose a constant M̃
depending only on M such that for all |ci | ≤ M

√
n with |xi | ≤ M

√
n, we have

P
n/4;(c1,c2)

( 2⋂

i=1
{|Si (n/4)| ≤ M̃

√
n} | ÑI

)
≥ 3

4 . (C.20)

By Lemma C.5 we can next choose a δ = δ(M) > 0 small enough such that

P
n/4;(c1,c2)

(
(S1(n/4), S2(n/4)) ∈ Rn,δ | ÑI

)
≥ 3

4 . (C.21)
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where Rn,δ is from (C.10). By Lemma C.7, there exists φ(δ) > 0 so that for all
(x1, x2), (y1, y2) ∈ Rn,δ

P
n/2;(x1,x2),(y1,y2)

( n/2⋂

k=1
{S1(k) ≥ S2(k)}

)
≥ φ. (C.22)

We next consider the events

E1 :=
{|Si (n/4)| ≤ M̃

√
n for i = 1, 2

}
, E2 :=

{|Si (3n/4)| ≤ M̃
√
n for i = 1, 2

}
.

Using (4.24) with δ = 1
4 we have

P
n;(a1,a2),(b1,b2)(NI) ≥ P

n;(a1,a2),(b1,b2)(E1 ∩ E2 ∩ NI) ≥ C−1 ·P̃(E1 ∩ E2 ∩ NI)

= C−1 ·P̃(NI)̃P(E1 ∩ E2 | NI).

for some C > 0 depending on M̃, M . Here P̃ := P̃
(n;n/4,n/4);(a1,a2),(b1,b2) denotes

the joint law of two independent (n; n/4, n/4)-modified random bridges of length n
starting at (a1, a2) and ending at (b1, b2) (see Definition 4.9). In view of our M̃ choice
and by the definition of modified random bridges, we have

P̃(E1 ∩ E2 | NI) = P
n/4;(a1,a2)

( 2⋂

i=1
{|Si (n/4)| ≤ M̃

√
n} | ÑI

)
P
n/4;(b1,b2)

( 2⋂

i=1
{|Si (n/4)| ≤ M̃

√
n} | ÑI

)

which is lower bounded by (3/4)2 from (C.20) and (C.21). Furthermore, in view of
(C.22), we have

P̃(NI) ≥ φ · Pn/4;(a1,a2)(ÑI)Pn/4;(b1,b2)(ÑI).

We thus have the desired lower bound. ��
We now analyze the Gapβ event defined in (4.22) under modified random bridge

law. Fix any M > 0, n ≥ 1, and (a1, a2), (b1, b2) ∈ R
2. Suppose |ai |, |bi | ≤ M

√
n

and a1 ≥ a2. Take p, q ∈ �0, n� with p + q ≤ n/2 and p �= 0. Suppose further
that there exists ρ ∈ (0, 1) such that either q ≥ nρ or b1 − b2 ≥ ρ

√
n. Consider

two independent (n; p, q)- modified random bridges (Si (k))k∈�1,n�,i=1,2 starting and
ending at (a1, a2) and (b1, b2) respectively.We denote its law by P̃(n;p,q);(a1,a2),(b1,b2).
The following lemma asserts Gapβ event is very likely under non-intersection.

Lemma C.11 Fix ε, ρ ∈ (0, 1) and M > 0. There existβ(ε, ρ, M) > 0, n0(ε, ρ, M) >

0, such that for all n ≥ n0

P̃
(n;p,q);(a1,a2),(b1,b2) (Gapβ | NI

) ≥ 1− ε.
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Proof Recall thatGapβ event is intersection of six smaller ‘Gap’ events:Gapi,β defined
around (4.22). For simplicity write P̃ for P̃(n;p,q);(a1,a2),(b1,b2). We now analyze each
‘Gap’ event separately.
Gap1,β and Gap2,β . Note that for k ∈ �1, p�, S1(k)− S2(k) is itself a random walk.
The NI event corresponds to the event of this random walk being non-negative. By
classical result about growth of random walks conditioned to stay non-negative (see
[90, Theorem 2]) it follows that one can choose β small enough such that P̃(Gap1,β |
NI) ≥ 1 − ε

6 . By the same argument one has P̃(Gap2,β | NI) ≥ 1 − ε
6 for all large

enough n by choosing β small enough.
Gap3,β .Note that combining (C.2), (C.3), and (C.4) fromLemmaC.5wehave tightness
of the endpoint of randomwalks conditioned on non-intersection. Combining this with
(C.1), one can choose γ small enough such that

P̃
(
(S1(p), S2(p)), (S1(n − q), S2(n − q) | NI) ∈ Pn,γ

) ≥ 1− ε
12 , (C.23)

where

Pn,γ := {(z1, z2) ∈ R
2 : |zi | ≤ γ−1

√
n, z1 − z2 ≥ γ

√
n}. (C.24)

In other words, with probability 1− ε
12 , the endpoints of the middle portions of the

modified random bridges are in Pγ when conditioned upon non-intersection . Thus,

P̃(Gap3,β | NI) ≥ (1− ε
12 ) · inf

(a1,a2),(b1,b2)∈Pn,γ

P
n−p−q+1;(a1,a2),(b1,b2)(Gap3,β | NI).

(C.25)

Since the increments are drawn from a smooth density, for each fixed n, the probability

P
n−p−q+1;(a1,a2),(b1,b2)(Gap3,β | NI)

is jointly continuouswith respect to the starting and ending points of the randombridge.
As Pn,γ is closed, the infimum in (C.25) is attained at some point (a∗1 , a∗2 ), (b∗1, b∗2) ∈
Pn,γ . Take any subsequential limit of 1√

n
(a∗1 , a∗2 ),

1√
n
(b∗1, b∗2) say (u1, u2), (v1, v2).

Then |ui |, |vi | ≤ γ−1 and u1−u2, v1−v2 ≥ γ . By invariance principle for Brownian
bridges, this conditional law under diffusive scaling converges to non-intersecting
Brownian bridges (with variance

∫
x2f(x)dx) (B1, B2) starting at (u1, u2) ending at

(v1, v2). We have P(inf x∈[0,1](B1(x) − B2(x)) > 0) = 1. This implies along this
subsequence the limit of Pn−p−q+1;(a∗1 ,a∗2 ),(b∗1 ,b∗2)(Gap3,β | NI) is 1. Since this holds
for all subsequences, we thus see that for all large enough n, r.h.s. (C.25) can be made
at least 1− ε

6 .
Gap4,β and Gap5,β . We shall first show Gap4,β happens with high probability under
non-intersection. Note that this event only depends on the first part of the modified
random bridge (which is just two independent pure random walk) independent of the

123



G. Barraquand et al.

other two parts. Hence

P̃(¬Gap4,β | NI) (C.26)

= P̃

( p⋂

k=2
{S1(k)− S1(k − 1) ≥ β−1k1/8} |

p⋂

k=2
{S1(k) ≥ S2(k)}

)
(C.27)

≤
p∑

k=2

P̃

(
{S1(k)− S1(k − 1) ≥ β−1k1/8} ∩⋂ j∈{2}∪�k+2,p�{S1(k) ≥ S2(k)}

)

P̃

(
⋂p

k=2{S1(k) ≥ S2(k)}
) ,

(C.28)

where the above inequality follows via an union bound. Since under P̃,
(S1(�), S2(�))�∈�1,p� are two independent random walks starting from (a1, a2). From
(C.6) we get that

P̃

( p⋂

k=2
{S1(k) ≥ S2(k)}

)
≥ C−1√

p
· P̃(S1(2) ≥ S2(2)). (C.29)

P̃

(
{S1(k)− S1(k − 1) ≥ β−1k1/8} ∩

⋂

j∈{2}∪�k+2,p�
{S1(k) ≥ S2(k)}

)
(C.30)

≤ Ẽ

[
1S1(2)≥S2(2)1

S1(k)−S1(k−1)≥β−1k
1
8
·Ẽ
[ p∏

j=k+2
1S1( j)≥S2( j) | σ

(
(S1(�), S2(�))�∈�1,k+1�

)
]]

(C.31)

By Lemma C.3, we have the following bound for the interior conditional expectation
above:

Ẽ

[ p∏

j=k+2
1S1( j)≥S2( j) | σ

(
(S1(�), S2(�))�∈�1,k+1�

)]

≤ C·max{S1(k + 1)− S2(k + 1), 1}√
p − k + 1

. (C.32)

Under P̃, the increments of S1(·) and S2(·) are independent and distributed as f which
has exponential tails by assumption. We now claim that

Ẽ

[
1S1(2)≥S2(2)1S1(k)−S1(k−1)≥β−1k1/8 ·max{S1(k + 1)− S2(k + 1), 1}

]

≤ C · k · e− 1
Cβ−1k1/8 · P̃(S1(2) ≥ S2(2))

(C.33)
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We shall prove (C.33) later. Assuming it, combining the estimates from (C.31), (C.32),
and (C.33) we get

(C.28) ≤ C2
p∑

k=2

√
p

p−k+1 · k · e−
1
Cβ−1k1/8 .

Taking β small enough, the right-hand side can be made smaller than ε/6. Thus,
P̃(Gap4,β | NI) ≥ 1 − ε

6 for all small enough β. An exact same argument leads to
P̃(Gap5,β | NI) ≥ 1− ε

6 for all small enough β as well.
To prove Eq. (C.33), we start by writing X(k) := S1(k)− S1(k − 1) and Y (k) :=

S2(k)− S2(k − 1). For k = 2, observe that

l.h.s. (C.33) ≤ Ẽ

[
1S1(2)≥S2(2) ·max{S1(3)− S2(3), 1}

]

≤ Ẽ

[
1S1(2)≥S2(2) ·max{S1(2)− S2(2), 1}

]

+ Ẽ

[
1S1(2)≥S2(2) ·max{X(3)− Y (3), 1}

]
.

By (C.9), the first expectation above is less than C′ · P̃(S1(2) ≥ S2(2)). For the second
expectation by independence we get

Ẽ

[
1S1(2)≥S2(2) ·max{X(3)− Y (3), 1}

]
= P̃(S1(2) ≥ S2(2)) · Ẽ[max{X(3)− Y (3), 1}].

Since X(3) and Y (3) have exponential tails, by adjusting the constant C′ we get
l.h.s. (C.33) ≤ C′ · P̃(S1(2) ≥ S2(2)). This proves (C.33) for k = 2 upon adjusting C.
For k ≥ 3, using the fact that max{∑i Ai , 1} ≤∑i max{Ai , 1}, we get

l.h.s. (C.33) ≤
k+1∑

i=3
Ẽ

[
1S1(2)≥S2(2)1X(k)≥β−1k1/8 ·max{X(i)− Y (i), 1}

]

+ Ẽ

[
1S1(2)≥S2(2)1X(k)≥β−1k1/8 ·max{S1(2)− S2(2), 1}

]

≤
k+1∑

i=3
P̃(S1(2) ≥ S2(2)) · Ẽ

[
1X(k)≥β−1k1/8 ·max{X(i)− Y (i), 1}

]

+ Ẽ

[
1S1(2)≥S2(2) ·max{S1(2)− S2(2), 1}

]
· P̃(X(k) ≥ β−1k1/8

)
.

(C.34)
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Using (C.9) again, we have Ẽ

[
1S1(2)≥S2(2)·max{S1(2)− S2(2), 1}

]
≤ C′ · P̃(S1(2) ≥

S2(2)). Using exponential tail estimates for X(�),Y (�) we obtain that

Ẽ

[
1X(k)≥β−1k1/8 ·max{X(i)− Y (i), 1}

]
≤ C exp

(− 1
Cβ−1k1/8

)
,

P̃
(
X(k) ≥ β−1k1/8

) ≤ C exp
(− 1

Cβ−1k1/8
)
.

Putting this estimates back in r.h.s. (C.34) we arrive at (C.33).
Gap6,β . From (C.23), we get that the endpoints of the middle part of the modified
random walk are in Pn,γ (defined in (C.24)) with probability 1 − ε

12 . Whenever the
endpoints are inPn,γ , by LemmaC.7, the probability of non-intersection of themiddle
portion of the walk is lower bounded by some constant φ > 0. Under this event, we
may use the KMT coupling [56] on the middle portion bridge of the modified random
bridge to deduce that

P
n−p−q+1;(c1,c2),(d1,d2)(|S1(k)− S1(k − 1)| ≥ β−1 log n) ≤ 1

n2
.

for all small enough β and for all (c1, c2), (d1, d2) ∈ Pn,γ . Combining all these
estimates, by a union bound we have the desired result. ��

We end this section with a modulus of continuity estimate for non-intersecting
random walks.

Lemma C.12 Fix M, γ > 0. There exists n0(M, γ ) > 0 and δ(M, γ ) > 0 such that
for all n ≥ n0 and for all 0 ≤ a1− a2 ≤ M + 2 log log n we have (recall the modulus
of continuity ωδ from (5.1))

2∑

i=1
P
n;(a1,a2)

(
ωδ(Si (·), �1, n�) ≥ γ

√
n | NI0�2, n�

)
≤ ε,

Proof Fix γ > 0. We write P for Pn;(a1,a2). By Corollary C.6 one can choose ρ such
that

P

(
sup
i=1,2

ωδ(Si (·), �1, nρ�) ≥ γ
√
n | NI0�2, n�

)
≤ ε.

Thus it suffices to control the modulus of continuity away from zero: on the inter-
val �nρ/2, n� (assuming δ < ρ/2). Towards this end let Iv := {(x1, x2) : |xi | ≤
v−1
√
n, x1 − x2 ≥ v

√
n}. By Lemma C.5, one can choose v small enough to

get P(Av | NI0�2, n�) ≥ 1 − ε where Av := {(S1(nρ/2), S2(nρ/2)) ∈ Iv}. Let
F := σ

(
S1(nρ/2), S2(nρ/2)

)
. Note that

P

(
ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n | NI0�2, n�

)

≤ ε + P
(
Av ∩ {ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n} ∩ NI0�2, nρ/2�

)

P(NI0�2, n�)
. (C.35)
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Note that {ωδ(Si (·), �nρ/2, n�) ≥ γ
√
n} is independent of F. By Lemma C.7, we

have 1Av ·E[1NI0�nρ/2,n� | F] ≥ 1Avφ for some φ > 0. Combining these two facts we
get

P
(
Av ∩ {ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n} ∩ NI0�2, nρ/2�

)

= P
(
Av ∩ NI0�2, nρ/2�

)
P
(
ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n
)

≤ φ−1 · E
[
1Av∩NI0�2,nρ/2�E[1NI0�nρ/2,n� | F]

]
· P (ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n
)

≤ φ−1 · P(Av ∩ NI0�2, n�) · P (ωδ(Si (·), �nρ/2, n�) ≥ γ
√
n
)

≤ φ−1 · P(NI0�2, n�) · P (ωδ(Si (·), �nρ/2, n�) ≥ γ
√
n
)
. (C.36)

Invoking the modulus of continuity of random walks we can choose δ small enough
such that P

(
ωδ(Si (·), �nρ/2, n�) ≥ γ

√
n
)
is at most εφ for all large enough n. This,

implies

(C.36) ≤ ε · P(NI0�2, n�).

Using this inequality we see that r.h.s. (C.35) is at most 2ε. Hence combining the near
zero and away zero modulus of continuity we get the desired result by adjusting γ and
ε. ��

Appendix D Supporting calculations

In this section we provide a detailed verification of various tedious calculations. We
first show how to go from (2.11) to (2.12)-(2.14) under the change of variables ui, j =
log
(
tN+
 j/2�−i+1,N−� j/2�−i+2

)
for (i, j) ∈ KN . This follows from the fact that the

factor
∏

t−1i, j in (2.11) is absorbed as the Jacobian of the change of variables, as well
as the following four relations:

N∏

j=1

(
τ2N−2 j+2τ2N−2 j

τ 22N−2 j+1

)θ j

=
N∏

i=1

⎛

⎝e−θi ui,2N−2i+2
N−i+1∏

j=1
eθN− j+1(ui,2 j−1−ui,2 j )

N−i∏

j=1
eθN− j+1(ui,2 j+1−ui,2 j )

⎞

⎠ (D.1)

∑

i> j

ti−1, j
ti, j

=
N∑

i=1

N−i+1∑

j=1
eui,2 j−1−ui,2 j +

N−1∑

i=1

N−i∑

j=1
eui+1,2 j−ui,2 j+1 (D.2)

∑

i≥ j>1

ti, j−1
ti, j

=
N−1∑

i=1

N−i∑

j=1
eui,2 j+1−ui,2 j +

N−1∑

i=1

N−i∑

j=1
eui+1,2 j−ui,2 j−1 (D.3)
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N∏

j=1
t (−1)

N− j+1α
j, j =

N∏

j=1
t (−1)

jα
N− j+1,N− j+1 =

N∏

i=1
e(−1)i ui,1α. (D.4)

While (D.4) is obvious, (D.1), (D.2) and (D.3) are shown below. We continue with the
same notations as in the proof of Theorem 1.3.
Verification of (D.1). Note that from the transformation we have

eu j−i+1,2N−2 j+1 = ti+2N−2 j,i , eu j−i+1,2N−2 j+2 = ti+2N−2 j+1,i .

This yields

τ
θ j
2N−2 j =

j∏

i=1
t
θ j
i+2N−2 j,i =

j∏

i=1
eθ j u j−i+1,2N−2 j+1 =

j∏

i=1
eθ j ui,2N−2 j+1 .

Similarly we have

τ
θ j
2N−2 j+2 = e−θ j u j,2N−2 j+3

j∏

i=1
eθ j ui,2N−2 j+3 , τ

θ j
2N−2 j+1 =

j∏

i=1
eθ j ui,2N−2 j+2 .

Thus,

N∏

j=1

(
τ2N−2 j+2τ2N−2 j

τ22N−2 j+1

)θ j

=
N∏

j=1

⎛

⎝e−θ j u j,2N−2 j+3
j∏

i=1
eθ j (ui,2N−2 j+1+ui,2N−2 j+3−2ui,2N−2 j+2)

⎞

⎠

=
⎛

⎝
N∏

i=1
e−θi ui,2N−2i+3

⎞

⎠

·
⎛

⎝
N∏

i=1

N∏

j=i
eθ j (ui,2N−2 j+1+ui,2N−2 j+3−2ui,2N−2 j+2)

⎞

⎠

=
⎛

⎝
N∏

i=1
e−θi ui,2N−2i+3

⎞

⎠

·
⎛

⎝
N∏

i=1

N−i+1∏

j=1
eθN− j+1(ui,2 j−1+ui,2 j+1−2ui,2 j )

⎞

⎠ ,

where the last equality follows by changing the dummy variable j has been changed
to N − j + 1. The last term above is clearly equal to the right-hand side of (D.1).
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Verification of (D.2). Let us write

∑

i> j

ti−1, j
ti, j

=
N∑

j=1

2N− j+1∑

i= j+1

ti−1, j
ti, j

=
N∑

j=1

2N−2 j+1∑

r=1

t j+r−1, j
t j+r , j

=
N∑

j=1

N− j∑

r=1

t j+2r−1, j
t j+2r , j

+
N∑

j=1

N− j+1∑

r=1

t j+2r−2, j
t j+2r−1, j

.

(D.5)

Observe that

euN−r− j+1,2r+1 = t j+2r , j , euN−r− j+2,2r = t j+2r−1, j . (D.6)

Thus we have

(D.5) =
N∑

j=1

N− j∑

r=1
euN−r− j+2,2r−uN−r− j+1,2r+1 +

N∑

j=1

N− j+1∑

r=1
euN−r− j+2,2r−1−uN−r− j+2,2r

=
N∑

j=1

j−1∑

r=1
eu j−r+1,2r−u j−r ,2r+1 +

N∑

j=1

j∑

r=1
eu j−r+1,2r−1−u j−r+1,2r ( j 	→ N − j + 1)

=
N−1∑

r=1

N∑

j=r+1
eu j−r+1,2r−u j−r ,2r+1 +

N∑

r=1

N∑

j=r
eu j−r+1,2r−1−u j−r+1,2r

=
N−1∑

r=1

N−r∑

i=1
eui+1,2r−ui,2r+1 +

N∑

r=1

N−r+1∑

i=1
eui,2r−1−ui,2r ,

where ( j 	→ N − j + 1) means the dummy variable j has been changed to N − j + 1
to obtain the equality in the second step. The last equality follows by setting j−r 	→ i
and j − r 	→ i − 1 in the first and second sum respectively. A final interchange of
sum in each of the two terms leads to the right hand side of (D.2).
Verification of (D.3). We follow the same above strategy and write

∑

i≥ j>1

ti, j−1
ti, j

=
N∑

j=2

2N− j+1∑

i= j

ti, j−1
ti, j

=
N∑

j=2

2N−2 j+2∑

r=1

t j+r−1, j−1
t j+r−1, j

=
N∑

j=2

N− j+1∑

r=1

t j+2r−1, j−1
t j+2r−1, j

+
N∑

j=2

N− j+1∑

r=1

t j+2r−2, j−1
t j+2r−2, j

(D.7)

123



G. Barraquand et al.

Due to (D.6) we have

(D.7) =
N∑

j=2

N− j+1∑

r=1
euN−r− j+2,2r+1−uN−r− j+2,2r +

N∑

j=2

N− j+1∑

r=1
euN−r− j+3,2r−uN−r− j+2,2r−1

=
N−1∑

j=1

j∑

r=1
eu j−r+1,2r+1−u j−r+1,2r +

N−1∑

j=1

j∑

r=1
eu j−r+2,2r−u j−r+1,2r−1 ( j 	→ N − j + 1)

=
N−1∑

r=1

N−1∑

j=r
eu j−r+1,2r+1−u j−r+1,2r +

N−1∑

r=1

N−1∑

j=r
eu j−r+2,2r−u j−r+1,2r−1

=
N−1∑

r=1

N−r∑

i=1
eui,2r+1−ui,2r +

N−1∑

r=1

N−r∑

i=1
eui+1,2r−ui,2r−1 ( j − r 	→ i − 1).

A final interchange of sum in each of the two terms leads to the right hand side of
(D.3). This completes the verification of all three equalities.
Verification of (3.22). Note that θc is a function of p defined as a solution of the
equation � ′(θc) − p� ′(2θ − θc) = 0. Set g(p) = θc. Note that g(1) = θ . By
differentiating the equation with respect to p we get

g′(p)� ′′(g(p))−� ′(2θ − g(p))+ p� ′′(2θ − g(p))g′(p) = 0

This implies g′(1) = � ′(θ)/2� ′′(θ). Since p− 1 = O(N−1/3). By Taylor expansion
around 1 to first three terms we get

(N − k) fθ,p = −(N − k)
(
�(g(p))+ p�(2θ − g(p))

)

= −(N − k)
(
2�(θ)+ (p − 1)�(θ)

+ (p − 1)2
(
� ′′(θ)(g′(1))2 − g′(1)� ′(θ)

)+ O(N−1)
)

= −2N�(θ)+ k2(� ′(θ))2

� ′′(θ)(N − k)
+ O(1),

where in the final line we used the fact that p − 1 = 2k/(N − k) and the formula for
g′(1) derived above. Taking k = MN 2/3 we arrive at the leading orders claimed in
the first part of (3.22). The second part follows by observing that by Taylor expansion
up to first order we have

log σθ,p = log σθ,1 + O(p − 1) = log σθ,1 + O(N−1/3).

Thus, σθ,p/σθ,1 = σθ,p/(−� ′′(θ))1/3
N→∞→ 1, proving the second claim in (3.22).
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Glossary

General notation used throughout the text

HSLG half-space log-gamma Sec. 1.1
Z≥k set of all integers ≥ k Sec. 1.1
Z
half {

(i, j) ∈ (Z≥1)2 : j ≤ i
}

Sec. 1.1
Wi, j inverse-gamma polymer weights Eq. (1.1)
�m,n set of all directed paths from (1, 1) to (m, n) in Zhalf Sec. 1.1
w(π) weight of path π Eq. (1.2)
Z

(α,�θ)
(m, n) = Z(m, n) point-to-point HSLG polymer partition function Eq. (1.2)

Fα
N (s) centered and scaled HSLG free energy process Eq. (1.3)

�(z) digamma function Eq. (1.4)
Z line
N (k) point-to-line HSLG polymer partition function Eq. (1.8)

Z (r)
sym(m, n) multipath point-to-point symmetrized log-gamma polymer

partition function
Eq. (2.10)

LN HSLG line ensemble Def. 2.7
Kk,T and K′k,T two important domains for HSLG Gibbs measures Eq. (2.4)
α1 and α2 scalings for the boundary parameter Eq. (3.11)
Gapβ gap event Eq. (4.22)
ωN

δ ( f ; �1,U�) modulus of continuity Eq. (5.1)
Basic probability densities and distributions
Gamma−1(β) inverse-gamma distribution with density against Lebesgue

given by 1{x > 0}�−1(β)x−β−1e−1/x
Sec. 1.1

We(x) weight function for edges Eq. (1.5)
W (a; b, c) := exp(−ea−b − ea−c), a, b, c ∈ R Eq. (2.1)

Gθ,(−1)m (x) := eθ(−1)mx−e(−1)m y
/�(θ), θ ∈ R,m ∈ Z≥0, y ∈ R Eq. (2.2)

fθ (x) = ∫
R
Gθ,+1(y)Gθ,−1(x − y)dy, θ ∈ R, x ∈ R Eq. (2.3)

gζ (x) = Gζ,+1(x) Eq. (2.3)

ξ
(a,b)
θ1,θ2;±1(x) Eq. (4.5)

Probability distributions on random walks and bridges

f �y,�zk,T (u) density of the HSLG Gibbs measure on the domain Kk,T
with boundary condition (�y, �z)

Eq. (2.5)

P
�y,�z;k,T
α HSLG Gibbs measure on Kk,T with boundary condition

(�y, �z) (the α subscript is sometimes dropped when clear)
Def. 2.3

P
�y;(−∞)T ;k,T
α bottom free HSLG Gibbs measure on Kk,T with boundary

condition (�y (the α subscript is sometimes dropped when
clear)

Def. 2.4

Q �y
′,�z

k,T (u) HSLG Gibbs measure on the domain K′k,T with boundary
condition (�y, �w)

Eq. (2.6)

P
n;(a1,a2)
WPRW and Pn;(a1,a2)PRW law of weighted paired random walk and paired random

walk of length n started from (a1, a2)
Def. 1.7

P̃
(n;p,q);(a1,a2),(b1,b2) law of two independent (n; p, q)-modified random bridges of length

n started from (a1, a2) ending at (b1, b2) with increments drawn
from fθ

Def. 4.9

P
n;(a1,a2) law of two independent random walks of length n started from

(a1, a2) with increments drawn from fθ
Def. 3.6
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