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Abstract

We consider the point-to-point log-gamma polymer of length 2N in a half-space with
i.i.d. Gamma~'(26) distributed bulk weights and i.i.d. Gamma ™! (o + 6) distributed
boundary weights for & > 0 and @ > —6. We establish the KPZ exponents (1/3 fluc-
tuation and 2/3 transversal) for this model when o = N~1/3 1 for . € R fixed (critical
regime) and when o > 0 is fixed (supercritical regime). In particular, in these two
regimes, we show that after appropriate centering, the free energy process with spatial
coordinate scaled by N%/3 and fluctuations scaled by N'/3 is tight. These regimes
correspond to a polymer measure which is not pinned at the boundary. This is the first
instance of establishing the 2/3 transversal exponent for a positive temperature half-
space model, and the first instance of the 1/3 fluctuation exponent besides precisely at
the boundary where recent work of Imamura et al. (Solvable models in the KPZ class:
approach through periodic and free boundary Schur measures. arXiv:2204.08420.
2022) applies and also gives the exact one-point fluctuation distribution (our methods
do not access exact fluctuation distributions). Our proof relies on two inputs—the
relationship between the half-space log-gamma polymer and half-space Whittaker
process (facilitated by the geometric RSK correspondence as initiated in Corwin et al.
(Duke Math J 163(3):513-563, 2014), O’Connell et al. (Invent Math 197(2):361-416,
2014), and an identity in Barraquand and Wang (Int Math Res Not 2023:11877, 2022)
which relates the point-to-line half-space partition function to the full-space partition
function for the log-gamma polymer. The primary technical contribution of our work
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is to construct the half-space log-gamma Gibbsian line ensemble and develop, in the
spirit of work initiated in Corwin and Hammond (Invent Math 195(2):441-508, 2014),
a toolbox for extracting tightness and absolute continuity results from minimal infor-
mation about the top curve of such half-space line ensembles. This is the first study
of half-space line ensembles.

Mathematics Subject Classification 60K37 - 82B23
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1 Introduction
1.1 The model and the main results

Fix 0 := (0i)iez., suchthat ; > Oforalli € Z>; and > —min{t; : i € Z>,}.
Consider a family of independent random variables (W; ;) jyeznar with zhat =
{(i, j) € (Z=1)* : j < i} such that

Wi~ Gamma_l(a +0;)fori=j and W;;~ Gamma_l(Qi +0;) for j <i,
(1.1)

where X ~ Gamma~!(8) means X is a random variable with density 1,-oT" "1 (8)

x~B—Le=1/x A directed lattice pathmw = ((x,- , yl-))i.(:] confined to the half-space index
set ZM is an up-right path with all (x;, y;) € Z"!f, such that it only makes unit steps
in the coordinate directions, i.e., (xj11, Yi+1) = (xi, ¥;) + (0, 1) or (xj4+1, yit1) =
(xi, yi) + (1, 0); see Fig. 1. Given (m,n) € 7t we denote I1,,., to be the set of
all directed paths from (1, 1) to (m, n) confined to 7half  Given the random variables
from (1.1), we define the weight of a path 7 and the point-to-point partition function

of the half-space log-gamma (‘HSLG) polymer as

wm) = [ Wij.  Zggmn = > w). (1.2)

(i,j)E]T ﬂenm,n
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KPZ exponents for the half-space log-gamma polymer

Fig.1 Vertex weights for the
half-space log-gamma polymer
(withi = 6, j = 2) and two
possible paths (one marked in
blue and the other in black) in P
I3 g (color figure online) :

Ga]@nmafl (0; + )

Unless otherwise noted, all of our results and discussions below pertain to the
homogeneous polymer model where all the 6;’s are set equal to some 6 > 0. In that
case, we write Zy, ) for Z (@.d)" We include the inhomogeneities when introducing the
half-space log-gamma Gibbs property and line ensemble as well as when proving the
key tool of stochastic monotonicity. As these key tools extend to the inhomogeneous
case, we expect our methods and results should be likewise extendable, though do not
pursue that here.

The parameter « controls the strength of the boundary weights and there is a phase
transition in the behavior of this model at « = 0. In our current work we will probe the
behavior in the critical regime where « is in a scaling window of order N~1/3 of 0, as
well as in the supercritical regime when « is strictly positive. The subcritical regime
may be probed in subsequent work as described in Sect. 1.4. This phase transition has
been the subject of quite a lot of previous work, some of which we review in Sect. 1.4.
The basic picture (some as of yet unproved) is as follows. For o > 0 the free energy
(i.e., log of the partition function) should demonstrate the KPZ 1/3 fluctuation and
2/3 transversal scaling exponents as well as certain universal limiting distributions.
Here the transversal scaling references both the N?/3 fluctuations of the endpoint of
the length 2N half-space polymer as well as the N2/3 correlation length of the free
energy as a function of (m, n) subject to m +n = 2N. For ¢ < 0 the situation is
different—the free energy fluctuations should be of order N'/2, the endpoint should
fluctuate transversally in an order one scale (i.e., not growing with N), while the free
energy correlation length should be of order N and the limiting distributions should
be Gaussian. To be clear, in terms of the polymer measure, this phase transition relates
to the pinning (@ < 0) or unpinning (o > 0) of the path from the diagonal.

Our main result captures the KPZ scaling exponents in the critical and subcritical
regimes.

Theorem 1.1 Fix 0, r > 0. For eacha > —6, s € [0, r], and N > max{3, r3} define
the centered and scaled HSLG free energy process

_log Zi.6)(N +sN*3 N — sN?/3) + 2N W (0)

f([:tv(s) : N]/3

(1.3)
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Here VU denotes the digamma function defined on R~ ¢ by

[ 1 1
V() = leogF(z)z—y—i-Z( - ) (14)
= n+1 n+z

where y is the Euler—-Mascheroni constant. The function F%,(-) is linearly interpolated
in between points where Z 4 o) is defined. Let P&V denotes the law of 75, () as a random
variable in (C[0, r], C) — the space of continuous functions on [0, r] equipped with
uniform topology and Borel o -algebra C. Then the following holds.

(1) The sequence }P’(IXV is tight for each o € (0, 00).
(2) Foray = N3 with u € R fixed (noting that for large enough N, ay > —0,
and thus f?\,’v () is well-defined), the sequence ]P)g/N is tight.

This theorem is proved at the beginning of Sect. 5.

As discussed below, it is possible to show (e.g. using the ideas of [12]) absolute
continuity of the limit points in Theorem 1.1 with respect to certain Brownian mea-
sures. We do not pursue this here, but remark further about this and related directions
below (see the end of Sect. 1.2).

The rest of this introduction is structured as follows. Section 1.2 introduces the idea
of a half-space Gibbsian line ensemble, the study of which constitutes the key technical
innovation responsible for the above theorem. Section 1.3 provides a precise definition
of the half-space log-gamma line ensemble and Gibbs property, the key input from [31]
and then a sketch of the steps to proving Theorem 1.1. Finally, Sect. 1.4 reviews some
related work in studying half-space polymer and related models (Sect. 1.2 reviews the
literature on Gibbsian line ensembles).

1.2 Half-space Gibbsian line ensembles

In order to prove Theorem 1.1 we develop a new probabilistic structure—half-space
Gibbsian line ensembles—and introduce a toolbox through which to study limits
of such ensembles. A remarkable fact, due to the geometric RSK correspondence
[32, 43, 84, 85] and the half-space Whittaker process [5], is that the free energy
process log Z 4 6)(N +m, N —m) for the log-gamma polymer can be embedded as the
top labeled curve of an ensemble of log-gamma increment random walks interacting
through a soft version of non-intersection conditioning and subject to an energetic
interaction at the left boundary (where m = 0) depending on the value of «. In
particular, when o > O the interaction on the left boundary manifests itself as an
attraction between the label 2i — 1 and 2i curves of the line ensemble for each relevant
choice of i; for ¢ < 0 the interaction is repulsive while for @ = 0 it is not present. We
describe this line ensemble embedding in Sects. 1.3.1 and 2.2.

The basic premise of Gibbsian line ensembles, as initiated in the study of full-space
models in [35], is to use the resampling invariance of a sequence of such ensembles to
propagate one-point tightness information (generally for the top curve of the ensemble)
into tightness of the entire sequence of ensembles. In particular once the scale of one-
point fluctuations (in this case N'/3) is known, the Gibbs property implies transversal
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fluctuations are correlated in a diffusive scale (in this case N2/3) and that lower curves
also all fluctuate with these exponents in the same scale. In other words, one point
tightness of the top curve translates into spatial tightness of the entire ensemble.
Moreover, all subsequential limits of these line ensembles enjoy, themselves, a Gibbs
property corresponding to the diffusive limit of that of the pre-limiting ensembles.
This general approach has been applied widely in studying a variety of different Gibbs
properties related to probabilistic models, e.g. [12, 33, 36, 45, 51, 57, 93, 99, 102].
Moreover, it has been leveraged to give fine information about the local behavior of
these models [34, 37, 39, 40, 46, 58, 59, 64—66, 69-72, 101] and in studying related
scaling limits such as the Airy sheet and directed landscape [16, 17, 38, 52-54, 67,
91, 96, 103].

In this work we initiate the study of half-space Gibbsian line ensembles. These are
measures on collections of curves in which there exists a left boundary around which
the Gibbs property differs from its behavior in the bulk. As an illustrative example,
consider curves L1(s) > La(s) > --- fors > 0 which enjoy the following resampling
invariance. In the bulk, for0 < s < ¢t and 1 < k; < k the law of ‘C[[k1,k2]] ([s, 1] G.e.,
curves kj through k> on the interval [s, t]) conditioned on the values of C[[kl’ k] (s),
£[[k1,k2ﬂ ), Li,—1([s,t]) (f ky = 1 then Lo = +00) and Ly,41([s, t]) is that of
Brownian motions conditioned to start at s and end at ¢ with the correct boundary values
and to not intersect each other nor the curve Ly, —1([s, t]) above and Ly,1([s, t])
below. Around the left boundary, for r > 0 and 1 < k; < k» the law of E[[kl, k] ([0, t])
conditioned on the values of ‘C[[kl,kz]] (), L, -1([0, £]) and Ly, 11 ([0, t]) is the law of
Brownian motions conditioned to end at values Ly, 1,(7) attime 7, not intersect with
each other or the L4, 1 and Ly, 1 curves on the interval [0, ¢] and to have values at
zero such that £;_1(0) = £,;(0) for all i. This last condition that is quite novel to
the half-space models. An example of such an ensemble is illustrated in Fig. 2B. This
Gibbs property arise as a diffusive limit of the half-space log-gamma Gibbs property
introduced and studied here.

Half-space Gibbsian line ensembles have not previously been studied. However, this
structure exists implicitly in some previous literature studying half-space integrable
probabilistic models. For instance, the half-space (or Pfaffian) Schur processes [7,
28, 94] have such a structure where the Brownian resampling is replaced by certain
discrete random walks (geometric, exponential or Bernoulli), the non-intersection
conditioning persists, and where the odd/even pairing at the boundary is replaced by
an exponential interaction in the spirit of e~®(£2i-10=L2i () Half-space Whittaker
processes [5] have a more complicated Gibbs property which is the one relevant to
our current work. Essentially, the Brownian motion is replaced by log-gamma random
walks, the non-intersection by a soft exponential energy reweighing, and the interaction
at zero by the same sort of e ~*(£2i-10)=£2i(0) reweighing. There are other half-space
Gibbs properties that should be studied such as related to half-space version of Hall-
Littlewood processes, g-Whittaker processes and their spin generalizations (see for
instance, [5, 8, 73]). Furthermore, periodic or two-sided boundary versions of Gibbsian
line ensembles (e.g. related to versions of Schur processes as in [9, 13, 24]) will also
likely play a key role in study of related integrable probabilistic models and hence
warrant study in the spirit of what is done here.
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o(1)

o(1)

Fig.2 A depicts the half-space log-gamma line ensemble for large N along with the type of scalings that are
deduced in proving Theorem 1.1. This ensemble enjoys a half-space log-gamma Gibbs property. B depicts a
potential limiting line ensemble which should enjoy a half-space non-intersecting Brownian Gibbs property

As in the full-space setting, the challenge is to develop a route to take one-point
fluctuation information about the top curve ,C{V of a sequence of line ensembles £V
and propagate that into fluctuation information about the whole ensemble. Figure
2A illustrates the scalings that we prove to be associated with this sequence of line
ensembles.) One-point information about the top curve for the half-space log-gamma
polymer (and hence the top curve of our line ensemble) is in short supply with only
two result due to (chronologically) [31] and then [76].

The core technical purpose and challenge of this paper is to extend the Gibbsian
line ensemble methodology to address half-space models and provide tools to show
tightness at the edge of such ensembles. We do this for the type of Gibbs property
mentioned above that relates to half-space Whittaker processes which, owing to its
relation to the log-gamma polymer, we call the half-space log-gamma Gibbs property.
Our tools and method should extend to other Gibbs properties.

The challenge in the half-space models comes from the impact of the pair interaction
at the boundary. When o > 0 is fixed, in edge scaling limits £ of the line ensemble
Loj—1(0) = L;(0) for all i > 1. Before taking a limit, the pairs of curves can be
described in the vicinity of the origin as two (softly) non-intersecting log-gamma
random walks whose left boundary endpoints are energetically conditioned to stay
within O(1). We call this law on pairs of paths the weighted paired random walk
(WPRW) measure, see Definition 1.7 below. This is a discretization of two-particle
Dyson Brownian motion with both particles started at the same point.

The fine and uniform information that we need to know about the WPRW measure
does not follow from weak convergence to Dyson Brownian motion. Thus, we develop
a variety of results herein to deal with WPRWs, in case with general underlying jump
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distributions, not just the log-gamma. See Sect. 1.3.3 for further discussion on WPRWs
and their role in our analysis and their properties. Appendix C contains our general
results on non-intersecting random walks and bridges.

Overall strategy

As explained in Sect. 1.3.2, we rely only on the work of [31]. From [31] we are
able to extract two vital pieces of information: after proper centering the process
s+ N7V 3£11V (s N?/3) stays bounded from positive infinity at N — oo, and at a
random sequence of growing times s{v , sév , ... that stay tight as N — o0, the process
has tight (bounded from positive and negative infinity) fluctuations around the parabola
—vs? (for some explicit v > 0). The slightly odd nature of these inputs comes from
the fact that [31] studies a point-to-(partial)line partition function and not point-to-
point directly. The work of [76] does provide tightness (and a limit theorem) for the
point-to-point free energy, but is restricted to precisely the left boundary [I]lv (1) which
is insufficient information for our approach. Currently, there are no limit theorems
proved for the point-to-point free energy process away from the left-boundary.

With the above input we proceed to show how the Gibbs property propagates
tightness to the whole ensemble. The idea is to first argue that (with proper centering)
the process s > N~/ 3591 (s N?/3) must be tight at some random time s. If not, the
first curve would not follow a parabolic decay but rather a linear one in contradiction
with our parabolic decay input. Now, we know that the (scaled) first and second curves
are tight at some random times (not necessarily the same). The next step is to argue that
this pair of scaled curves to the left of the random times (including the left-boundary)
are likewise tight. This relies on showing (using the Gibbs property and some a priori
bounds) that the third curve cannot rise much beyond the first two curves, and that
the first two curves remain bounded from infinity (as follows from [31]). With this
and a form of stochastic monotonicity associated to this Gibbs property, the control
over the first two curves can be established by a fine analysis of the behavior of a
pair of log-gamma random walks subject to soft non-intersection conditioning and
attractive energetic pinning at zero. We call these weighted paired random walks and
a substantial amount of work is needed to develop tools and estimates regarding them.
We give a more detailed overview of the steps of our proof in Sect. 1.3.3. The attractive
nature of the boundary is directly linked to the choice here that o > 0.

Extensions

In this paper we do not pursue showing that the tightness propagation process extends
to the entire line ensemble, though it very likely can be done, e.g. in the spirit of
[57] for a full-space line ensemble. Any subsequential limit should enjoy the type
of half-space Brownian Gibbs property discussed earlier. This would show that any
such subsequential limit should also enjoy local comparison to Brownian motions
away from the boundary, or two 2-particle Dyson Brownian motions started paired
together when looking near the boundary. In fact, for the top two curves we can extract
(though do not explicitly record here) such absolute continuity results without showing
tightness of the whole ensemble, e.g. as in [12]. The full-space Gibbs property in [12,
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57] differs slightly from here since they consider point-to-point polymer endpoints
varying along horizontal lines, while we consider endpoints varying along down-right
zigzag paths.

Besides the directions alluded to above, we mention here a few more natural points
of inquiry spurred by our work. Our analysis is restricted to « > 0. When o < 0,
the pair interaction at the boundary becomes repulsive, and thus, curves separate and
behave quite differently. In particular, the log-gamma free energy (i.e., top curve)
is expected to have O(W ) Gaussian fluctuations and O (1) transversal fluctuation
around (N, N). The Gaussian fluctuations on the diagonal was recently proven in [76],
while the O (1) transversal fluctuations result appears in the subsequent work [60]. The
behavior in this O (1) scale relates to a portion of the phase diagram for the half-space
log-gamma stationary measure [11]. Using our Gibbsian line ensemble techniques
and modifications of the log-gamma polymer (i.e., adding a boundary condition on
the first row too), it should be possible to access and re-derive the description of the
entire phase diagram.

Beyond tightness, the half-space log-gamma line ensemble should converge to a
universal limit, the half-space Airy line ensemble. This object, which should enjoy the
type of Brownian Gibbs property discussed earlier, has not been constructed. While
the log-gamma convergence result is currently out of reach, it should be possible to
construct this from solvable last passage percolation, i.e. half-space Schur processes
[7]. This should enjoy uniqueness characterization in the spirit of [47, 49] and may
even relate to a half-space Airy sheet in the spirit of [52]. It is also a compelling
challenge to identify a strong characterization of the half-space Airy line ensemble
in the spirit of the recent work [2] on the full-space Airy line ensemble.

A different scaling regime for the half-space log-gamma line ensemble involves
weak-noise scaling in which 6 goes to infinity while « remains fixed. In the full-
space setting, [100] proved tightness of the full-space line ensemble and (via [41])
convergence to the KPZ line ensemble [36, 86]. A half-space analog of this result
should hold and help in exploring questions related to the half-space KPZ equation
and the corresponding half-space continuous directed random polymer.

1.3 Ideas in the proof of Theorem 1.1

In Sect. 1.3.1 we precisely define the half-space log-gamma Gibbs measure and line
ensemble. In Section 1.3.2 we record the key input from [31] which we then combine
with the Gibbs line ensemble structure in Sect. 1.3.3 to give the key deductions in the
course of proving Theorem 1.1 (see Sect. 5 for the full proof of this theorem).

Though the Gibbs measure and line ensemble definition holds for general o, most
of our discussion, especially around the proof, will focus on the case « > 0 which
is harder than the « = N—1/3 wu case. As noted earlier, we do not address the case of
a < 0 here.

@ Springer



KPZ exponents for the half-space log-gamma polymer

Fig. 3 A The directed, colored (and labeled) graph G associated to half-space log-gamma ®-Gibbs mea-
sures. A few of the vertices of G have their ¢-induced index (i.e., the coordinates above the vertex), and a
few of the blue edges are labeled by the ¥¥; ; parameters. A generic bounded connected domain A is shown
in the figure which contains all vertices in the shaded region. d A consists of white vertices in the figure. B
The domain K considered in Theorem 1.3. A’;V consists of vertices in the shaded region. The assignment
Y, j = ON—i+1 of © parameters from Theorem 1.3 as shown here over the blue edges (color figure online)

1.3.1 #5LG Gibbs measures and the #5.G line ensemble

The main technique that goes into the proof of Theorem 1.1 is our construction of
the half-space log-gamma (#5LG) line ensemble whose law enjoys a property that we
call the half-space log-gamma (HSLG) Gibbs measures. In what follows we construct
these objects and describe how they relate to the #SLG polymer free energy.

We will start by defining the fully-inhomogeneous #SLG Gibbs measure whose
state-space and associated weight function is indexed by the following directed and
colored (and labeled) graph. Fix any parameters ® := {¢, , > 0 | (m,n) € Zi N
and o > —min{d,, , : (m,n) € Zil }. Note, we have used 9 here to distinguish from
0 used to define the polymer. In Theorem 1.3 we will relate these parameters. Define
the graph G with vertices V(G) :={(m,n) :m € Z>1,n € Z<o+ %lmezz} and with
the following directed colored (and labeled) edges:

2

e For each (m,n) € Zzl’ we put two blue (¥, ,) edges from

2m—1,—n) - @m, —n + %) and 2m + 1, —n) — 2m, —n + %).

2

e For each (m, n) € Zz |, we put two black edges from

2m, —n — %) — 2m — 1, —n) and 2m, —n — %) — 2m + 1, —n).

e For each m € Zx1, we put one red edge from (1, —2m + 1) — (1, —2m).

Note there is a parameter linked to the blue edges, while the black and red edges do
not have any associated parameters. A portion of the corresponding graph is shown
in Fig. 3 A. We write E(G) for the set of edges of graph G and e = {v] — vy} for a
generic directed edge from v to vy in E(G) (the color of the edge is suppressed from
the notation).
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We next define a bijection ¢ : V(G) — Zil by ¢((m,n)) = (—|n], m). This
pushes the directed/colored edges in G onto directed/colored edges on Z2 | which we
denote by E (Zil). We will always view G as in Fig. 3 and will use the ¢-induced
indexing when aescribing this graph. As in Fig. 3B, set A}, = {(i, j) € Zil B AR
[I,N—1],j €[1,2N —2i + 1]}.

We associate to each e € E(Z?) a weight function based on the color of edge
defined as follows:

exp(Px —e*) if eis blue(?),
We(x) := { exp(—e”) if e is black, (1.5)
exp(—ax) if e is red,

Definition 1.2 (Half-space log-gamma ®-Gibbs measure) Fix any © := {8, , > 0 |
(m,n) € 22Z 1. Consider the graph Zzzl endowed with directed/colored edges E (Zé D
as above. Let A be a bounded connected subset of ZZZI. Set

IN={ve Zzzl NAS: v —> v} e E(ZZZ]) or{v >} e E(Zzzl), for some v’ € A}.

The half-space log-gamma (#5LG) ®-Gibbs measure for the domain A, with boundary
condition (u; j € R: (i, j) € dA), is a measure on RIAl with density at (u; ;). j)en
proportional to

I1 We(ity, — tty,). (1.6)

e={vi—>v}eE(AUIA)

Lemma B.2 shows that the #5.G ©-Gibbs measure is well-defined. When all 9, ,, are
equal to a generic parameter 8 > 0, we shall simply call the corresponding measure
as HSLG Gibbs measure.

Notationally, we will generally use u, for vertices v = (i, j) € A as dummy-
variables when discussing the density of #H5LG Gibbs measures. When discussing
multivariate random variables distributed jointly according to a HSLG Gibbs mea-
sure we will typically write L;(j), or sometimes L(v) for v = (i, j), for the (i, j)
coordinate of these multivariate random variables.

Anevent A, i.e., elements of the Borel o -algebra for RIAL js increasing if it satisfies
the condition that w’ € A implies u € A provided u < w'. Here u = (u;, j)(i,j) A

! andu <u'ifu; ; < u:/ for all (i, j) € A. An event is decreasing

i,j)(i,j)eA
ifu’ € A implies u € A providedu’ < u

v = (u

The following shows how the HSLG free energy process can be embedded in a
HSLG ©-Gibbs measure. Its proof in Sect. 2.2 relies on results of [31] that build on
the analysis of the log-gamma polymer via the geometric RSK correspondence [43]
on symmetrized domains [32, 84, 85]. In Sect. 2.2, for each N > 0, we will define
explicitly such a choice for (LY (j) : (i, j) € Ky) that will satisfy the two criterion
of the theorem. We will call this the half-space log-gamma (#H5LG) line ensemble.
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We will use £ when discussing the #$SLG line ensemble, while L will be used when
discussing general line ensembles that enjoy the HSLG ®-Gibbs property.

Theorem 1.3 (Half-space log-gamma line ensemble) Letf = 6i)icz-, be asequence
of positive parameters. Fix « > —0 where 6 := min{0; : i € Z>1}, and N € Z>. As
in Fig. 3B, set Ky :={(i, j) € Zil 2i €[l,N],jell,2N —2i 4 21}. There exists
random variables (,CIN ():G,j) e ICN), called here the HSLG ®-line ensemble, on
a common probability space such:

(i) We have the following equality in distribution

Y @j+ 1) jefo.n—1] < (log 2N +Jj, N—j)+ 2N‘p(9))je[[0,1v—1]]'
(1.7)

(ii) The law of (ﬁlN(j) 1 (i, )) € A*N) conditioned on (Lfv(j) 1 (i, )) € (A}*\,)C) is
given by the HSLG ©-Gibbs measure for the domain A, with boundary condition
(ElN(j) 1 (i, )) € 8A*N). Here the parameters in © are chosenas ¥; j == On_i 11,
see the blue edge labeling in Fig. 3B.

In the homogeneous case we set all 0; = 6.

Remark 1.4 Theorem 1.3 is stated for the polymer model using the inhomogeneous
weights in (1.2). In the homogeneous case (which we will focus upon here) where
0; = 0 (and hence ¢; ; = 6) the 2NW(0) centering term in (1.7) is chosen to be
adapted to our ultimate goal of taking scaling limits. However, this terms inclusion is
ultimately inconsequential since it constitutes a constant shift of the Gibbs measures
which does not impact the Gibbs property (see Lemma 2.1a).

We assume below that we are dealing with the homogeneous case of the H5LG line
ensemble.

It is useful to view #HSLG Gibbs measures (in particular we focus here on the
Gibbs measures from Theorem 1.3) in terms of the language of Gibbsian line ensem-
bles. Consider k and T fixed and N sufficiently large so that all of the random
variables LY [1, T, LY 1, T], ..., £3[1, T] are defined. We will think of £V as
the label i ‘line’ (rather, a piecewise linearly interpolated curve) in the ensem-
ble. The values of (LY (2T + 1) : i € [1,2k]) and £, (-) constitute boundary
data which, once known, uniquely identify (via the Gibbs description) the laws of
CV, 1] LY T, . £ [0, T

Let us consider the three types of weights in the Gibbs measure. The weights
corresponding to black edges v; — vy contribute a factor of e (here u, is
the dummy variable in the Gibbs density corresponding to a vertex v) in the Gibbs
measure. Whenever u,, > u,,, this weightis very close to 0, whereas when u,, < u,,
the weight is close to 1 (between, there is a smooth monotone transition from O to 1).
Thus, this weight produces a soft version of conditioning on the event that £V (v;) >
LN (v1) (recall the notational convention for a line ensemble that L(v) = L;(j) where
v = (i, j)). Black edges arise between consecutive lines thus we expect that our
measure will strongly favor configurations where Liv ) 2 Eév O Lév ()2,
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i.e., the curves are non-intersecting up to some error (Theorem 3.1 provides a precise
statement substantiating this). Of course, the soft nature of this conditioning will not
rule out crossing, but a heavy penalty will be incurred so at a heuristic level it is useful
to think in terms of non-intersecting lines.

The red edges are (2i — 1, 1) — (2i, 1) and come with a weight e ~®#2i-1.17%2i,1)
This weight is close to O when ua; 1,1 > up;,1 (since ¢ > 0). This creates an attractive
force between 512\471 (1) and L‘% (1) which tries to establish the ordering Eé\;—l (H <
E% (1). Of course, this is in opposition to the soft non-intersecting influence already
discussed. Combined, these forces ultimately (through our analysis of weighted paired
random walks) result in the difference LQL] (1) — L’Z(l) =0({)as N — oo.In
contrast, in the critical regime, when oy = N - 3M, the attraction weakens with N
and the forces result in Eé\;_l (1) — Eé\l’. (1) = O(N'/3).Ttis the O(1) distance between
LZ _;(1) and LZ (1) that makes the supercritical case harder than the critical case.

Finally, consider the blue edges that encode the Gibbs weights between consecutive
values of a given line, i.e. between EIN (j) and EZN (j + 1). Alone, these weights
define log-gamma increment random walks (with two-step periodicity in the law of
the increments). Thus, putting these three factors together one arrives at the picture
illustrated in Fig. 2A—an ensemble of softly non-intersecting log-gamma random
walks with starting points O (1) distance apart between the curves labeled 2i — 1 and
2i for each relevant i. In order to prove Theorem 1.1 we essentially need to justify the
distance scales in Fig. 2A. To do that, we use the Gibbs property for the line ensemble
described above along with some one-point control over £11v that we describe now.

1.3.2 Point-to-line free energy fluctuations

The HSLG Gibbs measures machinery gives us access to the behavior of the HSLG
line ensemble conditioned on the boundary data. However, we still need to understand
the behavior of the boundary data. The theory of (full-space) Gibbsian line ensembles
that has been developed over the last decade has become proficient at taking very
minimal seed information, such as the scale in which tightness occurs for the one-
point fluctuations of the top curve of a Gibbsian line ensemble, and outputting the
scaling and tightness for the entire edge of the line ensemble. We take the first step in
developing such a half-space theory.

There are currently only two fluctuation results about the #S.2G polymer. The first
(chronologically) is a result of [31] that we will recall below and appeal to, while the
second is the work of [76] that proves a limit theorem for N -1/ 3£{V (1) (i.e. Fy(0)).
Our work began prior to the release of [76] and thus we rely only on the work of [31].
The control [76] provides is for Liv (1) only and since we need some information away
from the boundary too, most of the work herein is unavoidable and not significantly
simplified by using [76]. It is natural to wonder if [76] could have been used alone,
in place of [31], at the seed for our analysis. While we do not rule this out, it would
certainly require a very different type of argument since we rely heavily on the fact
that [31] provides some information about £11V (j) as j varies.
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We recall the result of [31]. Foreach k > 0, define the point-to-(partial)line partition
function

N
ZNe (k) = Y Ziwoy(N +j. N — j). (1.8)
J=[kl
This sum is restricted to endpoints at least distance 2k from the boundary. Set p = %—f’g,
Let 6, be the unique solution to W' (6.) = pW¥'(20 — 6,) and set (recall the digamma
function ¥ from (1.4))

1/3
Jo,p = —W(:) — pV(20 —0.), 0p,)p:= <%(—‘1'”(9c) —py" (20 — 9c)) .

Theorem 1.5 (Theorem 1.10 in [31]) Suppose (kn)nez., is such that for some y €
R U {oo}, limpy_ oo (N — kN)1/309,p(a +60 —06.) =y. Then,as N — oo

log Zy* (k) = (N —kn) fop ),

(N —kn)'Bap,, -
where for y € R, U_y is distributed as the Baik-Ben Arous-Péché distribution with
parameter y (see Eq. (5.2) in [31]). When y = oo, U_« is distributed as the GUE
Tracy-Widom distribution.

The crucial deduction from Theorem 1.5 is that there exists v > 0 such that for
each M > 0,

log Zire (M N?/3) + 2w (0)N
V(M) + M2 =9 X,y where Viy(M) = EZNC ) ON
N—oo N1/3y

(1.9)

Here the BBP distributions of the limiting random variables (X37) p~0 form a tight
sequence in M, in particular they converge in law to the GUE Tracy—Widom distri-
bution as M — oo. A precise version of this deduction in given later in Lemma 3.7.
Essentially, the rescaled point-to-(partial)line free energy process Vy (M) looks like
an inverted parabola —M? with tight fluctuations around it.

1.3.3 Using the Gibbs line ensemble structure to prove Theorem 1.1

We now give a brief overview of the steps of our proof and how it relies on combining
the seed information from [31], i.e. (1.9), and the HSLG line ensemble Gibbs property.
Fixing a bit of notation, we will say that a sequence of random variables Xy is upper-
tight if max(Xy, 0) is tight, and lower-tight if min(Xy, 0) is tight. Recall that X y is
tight if for all & > 0 there exists K = K (&) > 0 such that P(|Xy| > K) < ¢ for all
N > Ny. If Xy is both upper and lower tight, then it is tight.
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We sketch the proof of the main theorem for » = 1 (r is as in the statement of the
theorem). Fix any Ny large enough so everything below is well-defined for N > Nj.
We consider a time

T = 8|N*3| (1.10)

(the key point is that time window [0, T'] scales like N%/3). By virtue of the relation
(1.7) in Theorem 1.3 (i), to prove our main theorem for » = 1 it suffices to establish
tightness of the top curve of the #5LG line ensemble £V (after appropriate scaling)
on the time window [0, T’ /4]. The broad steps used in establishing our main theorem
can be summarized as (i)-(iv) below.

(i) Given any M| > 0, prove that there exists M, > M/ such that N’%ﬂév(Zp* -1

and N_%Eév (2p*) are tight for some random p* € [M1N%, MZN%].

Here and below we consider staggered (i.e., even and odd) arguments for ﬁllv and Eév
(and L and L) due to the diagonal Gibbs interaction. This is a technical point which
can be ignored currently.

Owing to the Gibbs property, Theorem 1.3 (ii), enjoyed by the line ensemble £V,
the jointlaw of £ ([1, 2p* —1]) and £Y ([1, 2p*]) given the knowledge of LY (2p* —
1), EQ’ 2p*) and £§V ([1, 2p*])) (where p* comes from (i)) is that of a two-curve H5LG
Gibbs line ensemble (L1, Ly) with a bottom boundary data given by L3 = L:év and
right-boundary data determined by L (2p* — 1) = E{V(Zp* — 1) and LéV(Zp*) =
Eév (2p*). The point of this reduction is that we can now make use of a tool known as
stochastic monotonicity (see Proposition 2.6 and discussion later in the introduction).
This implies that if we instead condition on lower boundary data (i.e., lower L3,
LY @2p* — 1) or LY (2p*)), the resulting measure is stochastically dominated by the
original measure, i.e. the law of (v, Eév ).

By using stochastic monotonicity we see that conditioned on the values of £11V Qp*—
1), EQ’ (2p™*), it is possible to couple on the same probability space (Ellv ([1,2p* —
1)), £ ([1,2p*])) along with (L1, L) distributed according to a bottom-free HSLG
Gibbs measure specified by L3 = —oo, L1(2p*—1) = E{V(2p* —1)and Lév(Zp*) =
Lév (2p*) (see also (1.12) below, or Definition 2.4 for a precise definition) in such a way
that £ ([1,2p* — 1]) > Li([1,2p* — 1]) and £ ([1, 2p*]) > La2([1, 2p*]) point-
wise. In particular, this means that any increasing event (recall from Definition 1.2)
will have a larger probability under the bottom-free measure than under the original
measure. This is an important tool in establishing lower-tightness as well as control
over the modulus of continuity.

For the below three items we will assume that (L1, Ly) is specified in this bottom-
free manner and that the right-boundary data given by L{V Q2p* —1) and Eé\’ 2p
satisfies (i) above.

(i) Prove that N™ 3 Li(1)and N = L>(2) are lower-tight.
(iii) Prove that for any M* > 0, with positive probability (depending on M* and r
but not of N)

Li(p) = M*N'3, and Ly(p) > M*N'/3, forall p € [I,T].
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(iv) Prove process-level tightness of (N-Y3L, (xN2/3))x€[0,2].

We shall describe how we establish the above broad steps in a moment. Let us first
conclude how the above steps work together to yield our main theorem, Theorem 1.1.

We first argue that N ™ 3 E{V (1)and N~ 3 Kév (2) are tight. Indeed, since the point-to-
line free energy is an upper bound for the point-to-point free energy process, utilizing
(1.9) it follows immediately that N~ 5 [,Ilv ()and N~ 3 Eév (2) are upper-tight. To show
that they are also lower-tight we utilize the above mentioned stochastic monotonicity of
the HSLG Gibbs line ensembles (Proposition 2.6) and instead show lower-tightness for
the two-curve bottom-free line ensemble (L1, L») (i.e., under the condition L3 = 00),
which is what we established in item (ii).

The next step to proving Theorem 1.1 is to argue that with strictly positive prob-
ability (i.e., not going to zero with N — o0) there is a uniform separation of length
¢N/3 (for sufficient small ¢) between the first two curves E{V and EQ’ and the third
curve Eév . The argument to show this (Proposition 4.1 in the text) proceeds as fol-
lows. Once we have tightness at the left boundary, it is straight-forward to show that
N_%EZIV (2v—1) and N_%Eév (2v) are tight for any choice of v € [1, p*]. Combining
this with the soft non-intersection property of the line ensembles and (ii), we deduce
in Theorem 3.8 that SUP e [1,27] N_.%Eév (p) is upper tight. The result in (iii) shows
that the bottom-free line ensemble (L, L>) has a strictly positive probability of being
uniformly high on [0, 7] and thus by stochastic monotonicity so too does (L, Eév ).

Together with upper-tightness of sup peft.2r] N _%Eév (p), this shows that the proba-

bility that (£V, /.Zév ) stay separate from ,Cév stays bounded from 0 as N — oo.

Finally, we prove the process-level tightness of the top curve of our ensemble. Size
biasing plays a key role in this deduction (see around equation (5.25)). Indeed, once
we know that there is a positive probability of uniform separation (as deduced above),
we can use the fact that the Radon-Nikodym derivative defining our Gibbs measures
highly penalize configurations where the top two curves are close to the third curve.
Thus, the positive probability event of separation becomes a high probability event.
Finally, we are able to establish process-level tightness (i.e., control on the modulus of
continuity) by leveraging the separation and the process-level tightness of the first two
curves with the third curve moved to —oo that was shown in item (iv). This establishes
tightness of the first curve which, through identification with the free energy process,
yields Theorem 1.3.

Remark 1.6 The result of [76] immediately implies the tightness of N~!/ 3£11v (1).
However, to carry our proof outlined above we need tightness of EQ’ (1), and other fine

information about £} and £ away from the boundary, as described in item (ii) and
(iv), which to our best understanding is beyond the scope of [76].

We return to steps (i)-(iv) stated above and describe the main ideas in achieving
them.

Proof'idea for (i): We start by proving (Theorem 3.1) that the curves EZN are typically
non-intersecting (or at least do not overlap by much). Combining this with the fact that
the point-to-line partition function (controlled in [31]) dominates the point-to-point
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partition function for any point along the line, it follows that sup; ; N - 3[,;\’ (j) is
upper-tight. Lower-tightness is trickier.

From the parabolic decay of the point-to-(partial)line free energy (1.9), we deduce
that the point-to-point free energy process has to be in the N'/3 fluctuation scale at
some random p} in a O(N 2/3) window. We essentially (see Proposition 3.4) show
that for My large enough

LY @2p+1
o % +0° (111)
pe[ON3 (Mo+20)N23] N7

is tight as N — oo, uniformly over all Q > 0. The parameter v is an explicit function
of 8, see (3.13). The crucial point here is the uniformity, i.e., the K (&) in the definition
of tightness can be chosen independent of Q > 0. Thus, in N'/3 and N?/3 scaling Ellv
follows an inverted parabola.

We next essentially show (see Proposition 3.3) that there exists M| and M large
enough so that

sup N=Y3LN @2p))
pze[[M|N2/3,M2N2/3ﬂ

is tight. The idea is if EQ’ is uniformly low in [M| N 2/3 MyN?/3], then, due to the
Gibbs property of the line ensemble, the first curve EIIV behaves like a random bridge,
i.e., linearly, in that interval. However, as we show in proving Proposition 3.3, this
violates the inverted parabolic trajectory (1.11) for some Q thus leaving us with a
random p3 € [M; N2/3, My N?/3] so that N_1/3£§’(2p§) is tight. Owing to typical
non-intersection (Proposition 3.1) we have that N -173 Liv (2p; — 1) is tight.

WPRW machinery: The remaining proofs of (ii), (iii) and (iv) rely heavily on under-
standing the

HSLG Gibbs measure on (L1, Ly) with L1(2n — 1) = x,,, L2(2n) = yy, T
and L3 = —oo0, (1.12)
for L1 with domain [[1, 2n — 1], L, with domain [1, 2n], n of order N*/3 and x,, y,
of order N'/3 (i.e. order /1n). We referred above to this as the bottom-free measure.
Set M; = 16 (so that M;N2/3 > 2T, where T is defined in (1.10)) in (i) and
determine a random point p* from the same item. Essentially, we want to take n in
(1.12) to be this p*. However, one caveat in taking p* as a choice for n is that it
is random. So, instead we analyze (1.12) for all fixed n € [M; N23, My N?/3]. We
shall show (ii), (iii"), and (iv) under the law in (1.12) with estimates uniform over all
possible choices of n € [M] N2/3, M, N?/3). Here (iii’) is given by

(iii") Prove that any M* > 0, with strictly positive probability (depending only on
M* and M, M>)

under (1.12) Li(p) > M*N'/3, and La(p) > M*N'/3 forall pe[1,n—1].
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Note that as n > 2T, (iii’) implies (iii).
The law in (1.12) is closely related (see (1.16)) to the weighted paired random walk
(WPRW) law.

Definition 1.7 (Paired Random Walk and Weighted Paired Random Walk) Let QZ
R" x R" and .7-'2 be the Borel o-algebra associated to QZ Write w € 522 as w =
(w1(1), ..., 01(N), w2(1), ..., w2(N)). (For later purposes write Q,ll = R” let ]—',1Z
be its Borel o-algebra and write w=(w],...,op forwe Q,L.) Let fy(x) denote the
density at x € R of log Y] — log Y»> were Y1, Y are independent Gamma(6) random
variables and g, (x) = I'(a)~'e®*~¢" (see also (2.3) below). For (x,y) € R? and
n € Zx> The paired random walk (PRW) law on (Qﬁ, .7-'%) is the probability measure
P;ig,i}y ) proportional to the product of two Dirac delta functions 8., (n)=x 8w, (n)=y and
a density (against Lebesgue on R>"~D) is given by

9 (@2(1) — w1 (D) [ ] fo (@1 k) — @1tk = D)fg(@2k) — wa(k — 1)) dooy (k) dary (k).
k=2
(1.13)

As a slight abuse of notation we will say that the coordinate functions (i.e., random
variables)

Si(k)(w) := wi(k), kell,n],ie{l,2}

: n;(a,b)
under this measure Pppy

the PRW.
The weighted paired random walk (WPRW) law P@{jﬁ%} on (Q%, ]—"ﬁ) is absolutely

continuous with respect to IP’PR(Wy ) and defined through a Radon-Nikodym derivative

so that for all A € F,,,

are paired random walks. See Fig. 4 for an illustration of

(x,y)
P (x,y) (A) = ;Rsvy [WSC]-A] (1.14)
WPRW ,, (x, y)[W ] .
PRW ¢

where W, = Wy (w) is given by

n—1
We = exp ( SIS (esxk)fsl(m) n eSz(k)fsmk)) ) (115)
k=2

The ‘sc’ here refers to ‘super-critical’ as we will use a different representation of the
bottom-free law in the critical case. For the purpose of this introduction we will just
write W in place of Wy, below. The WPRW law can be seen as a ‘soft’ version of the
law that would result from conditioning on non-crossing. Crossing is now allowed but
subject to substantial energetic penalization.

@ Springer



G. Barraquand et al.

a, =0

by = — \/ﬁ

Fig.4 A paired random walk (PRW) with top curve (S (k));{'=1 and the bottom curve (Sp (k))z=l specified
by the condition that S| (n) = x,, = 0 and S»(n) = y, = —+/n. The PRW law is given in (1.13) and should
be seen as a reweighting of independent random walks by g, (S1 (1) — S2(1)). This explains why the paths
approach each other on the left of this figure. Also illustrated here is the situation where the two random
walks happen to also be non-intersecting

It follows from the Gibbs property for the WPRW law (see Lemma 4.4) that the

law of (L1 (2k — 1), Ly(2k))}_, in (1.12) equals law of (51 (k), S2(k))}_, under Pyt
(1.16)

where the latter depends only on n and not N. Thus, hereon out we study the WPRW
law.

Remark 1.8 The WPRW law described above only describes the behavior of points
(L1(2k — 1), L2(2k))}_; under the law in (1.12). This leaves half of the points unac-
counted for—even indexed points in L;[1, 2n] and odd indexed points in L,[1, 2n].
However, once we have controlled the behavior of the points (L1(2k—1), L2(2k));_;,
the complementary points can easily be controlled by use of the Gibbs property as
explained in Lemma 4.4.

Proof idea for (ii) and (iii): We now illustrate the proof idea of (ii). The proof idea
for (iii’) is quite similar and done in parallel in Section 4. To establish (ii), it suffices
to show that for A = {S1(1) < —M./n} or A = {Sa(1) < —M /n}, Pr\d™ (A) can
be made arbitrarily small by choosing M large enough in a manner that is uniform as
n — oo. Let us consider the case A = {S1(1) < —M/n} as the argument for the
other case is completely analogous. The event A is increasing (recall from Definition
1.2). Thus, by stochastic monotonicity of P&gﬁ{\’,&"’) (Proposition 2.6), decreasing the
values of the endpoints (x,, y,) can only increase the probability of A. Thus

PRSI (51 (1) < —M/n) < Primintonsad-minton sl =V (g, (1) < M. /n)
:(0,— .
— Plisrw” (51(1) < —M /i — min{x,, y)).

where the last inequality follows from shift invariance of the Gibbs measures (Lemma
2.1a). Recall that by the tightness afforded to us from (i) we were able to assume that
| min{x,, y,}| is of order 4/n. Since in (ii) and (iii) we are likewise trying to prove
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tightness or that certain events occur with positive probability, it suffices to show that
for all C > 0, those results hold under the assumption | min{x,, y,}| < C+/n. We do

not need uniformity in C and the argument is the same for any such value, so we will

currently assume C = 1. Thus we aim now to bound IP’%{,&;V‘/E)(S 1(1) < =M. /n)

(really M + 1, but since M is arbitrary we just write M here) for large enough M,
uniformly in n. To summarize, we have currently reduced our consideration to the
boundary data x, = 0,y, = —+/n. This type of reduction is also possible while
dealing with corresponding events in (iii") but not for the event (iv).

We next claim that there exists a constant C > 0 so that uniformly over all M and
n

PEOYP(A) < PRSP A)  for A= (S1(1) < —M/n).

The probability Pgi{(&_ﬁ) (A) can be readily shown to go to zero uniformly in n as M
grows. Thus, it suffices to prove the above comparison. In light of (1.14), it suffices
to show such a comparison for both the numerator and denominator. In particular, we
show that

where C > 0 is a universal constant that does not depend on M or n. Notice that while
both numerator and denominator terms in (1.14) go to zero with n — oo, they do so
at the same rate n~'/2 which cancels and yields the desired control on IP"@S;%\TV‘/?') (A).
Note also that the n~!/? decay behavior here is particular to x,, y, of order \/z and
that for general boundary values of x,, y,, the estimates in (1.17) may not be true.
The inequalities in (1.17) are established in the proofs of Lemmas 4.1 and 4.11, and
Corollary 4.12. We will describe their main ideas here.

Proof idea for upper bound in (1.17). We briefly explain the proof idea for the upper

bound on E;ﬁ&fﬁ) [W1a] and, along the way, we explain why the n~!/? factor shows
up. The starting point of our proof is to compare the soft non-intersection conditioning
by W to hard non-intersection conditioning in the following manner. Define

NI, := [Si(k) — Sa(k) = —p, forallk € [2,n —1]},  with NI:= Ni.
(1.18)

e

Under the complement event NIS, we have W < e~ " and thus the following deter-

ministic inequality:

o o0
W<lu+)y e Anpnne < Ini+ > e, (1.19)
p=0 p=0

Note that if we condition on (S1(1), S>(1)), the PRW law can be viewed as two inde-
pendent random bridges from (Si(1), S2(1)) to (0, —4/n). We denote this law as
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P S1(1D),52(10),0,=v1) I Lemma C.8, we show that there is an absolute constant
C > 0, such that

]P)n;(Sl(1),52(1)),(0,—ﬁ)(N|p) < P -[P’";(Sl(1)’52(1))’(0’_ﬁ)(N|) for all p > 0.

By this inequality and (1.19) along with the tower property of conditional expectations
we find

Epaw WAl = C-Egigyy " [1a - PESI 05010/ ) |

for some C > 0. Thus, to upper bound Egi{(g\}_ﬁ)[WlA] it suffices to do so to

[pm;(51(1),52(1)),(0,—«/5)(N|)_

Due to the presence of the g factor in (1.13), under the PRW law we expect a pinning
effect in the left boundary, i.e., S1(1) — S2(1) = O(1). Thus we expect the large scale
behavior under the PRW law should be comparable to that of two independent random
walks started close to each other. It is well known (see for example [82, 95]) that
when S (k), S2(k) are independent random walks with S1(1) — S2(1) = 0, the non-
intersection probability over a time horizon of n step is of the order n~1/%. This is why
we expect the n~!/2 behavior of the non-intersection probability under the PRW law
as well. We confirm this expectation with two lemmas. The first, Lemma 4.7, show
that [S1(1) — S2(1)|, S1(1)/+/n, and S;(1)//n all have exponential tails under the
PRW law. The second, Lemma C.9, bounds the non-intersection probability as

P D:5200).0.- V) ()

3 (1.20)

< < max{$i(1) = $5(1), 1}-max {JL;|S1(1)|, 2}2.

L5, (1) 418> (1) < log m)3/2

This lemma allows us to control the probability when |S1 (1)|+]S2(1)| < +/n(log n)3/2
(the complementary case probability is controlled by the exponential tails). Lemma
4.7 follows from the description of the PRW law in (1.13) and the exponential tails
for the densities fy and g,. Lemma C.9 is more subtle and requires various estimates
under the random bridge law that are uniform over a specified set of starting and ending
points. Let us briefly explain here why we have such a bound in (1.20). Intuitively,
the non-intersection probability should increase as the difference in starting points,
S1(1) — 8>(1), increases. Thus we see a term of the form max{S; (1) — S>(1), 1} on
the right-hand side of (1.20). The term involving JLE |S1(1)], on the other hand, arises
due to the nature of our proof. In the course of proving Lemma C.9, we proceed by
bounding the ratio of density of the random bridge and density of a (pure) random
walk. Such bound naturally depends on the slope of the random bridge and gets worse
as the slope |S;(1)|/+/n increases. This is why we encounter Ln|S1 (1)] term on the
right-hand side of (1.20). The details of the proof are presented in Appendix C. From
the above two lemmas the upper bound in (1.17) follows readily.

Proofidea for lower boundin (1.17). Lower bounding ]E;i{(g\}_ﬁ) [W]is more involved.
The first step is to find a lower bound for W in terms of the indicator function for an
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Fig.5 The modified random bridge is constructed by starting two random walks of length n/4, one from A
to B and another (run backwards) from D to C. The path between B and C is then chosen given the values
there according to a random bridge of length /2 (color figure online)

event which we call Gap. For simplicity we do this in a simpler setting to lower bound
Egi{(&_ﬁ) [W’] where

= exp( ZeSZ(k) Sl(k)> (1.21)

is obtain by deleting various terms in the exponential defining of W (see (1.15)). Note
that W' > W and thus the argument for W is necessarily more involved. It is known
from [90] that when a random walk (S (k))}_, is conditioned to stay positive, with high

probability S(k) has growth at least of the order k2= for any § > 0. Taking § = 4—1‘ this
implies that if we condition a random bridge (S(k))}/_, of length n starting and ending

at zero to stay positive, then S(k) should be at least of the order min{k, n — k + l}%
with very high probability. Treating S1(k) — S2(k) as a random bridge, this inspires
us to define

Gap); := {S1(k) — $2(k) = B - minfk, n — k + 1)7 forall k € [2, n])

We note that when Gapﬁ/ N{S1(1) — $2(1) € [0, 1]} occurs, the sum in the exponent

of W’ is bounded uniformly in n and hence W' is bounded below by a strictly positive

constant, say ag. Thus we have W' > a//slGap;gﬁ{Sl(l)—Sg(l)e[O,1]}' For W, we define a

similar, albeit more complicated, event Gapg (see (4.22) for definition) that captures

the above idea and we show in Lemma 4.8 that W > aglgap,nis; (1)-s:(1)efo,17) for
13 (0,—/n)

some deterministic constant ag > 0. Thus to lower bound Eppy [W] we lower

bound Pt ™™ (Gapg) and Phsw ™™ (S1(1) — Sa(1) € [0, 11).

Recall that by the Gibbs property, conditioned on (S1(1), S2(1)), the law of
(S1k), S (k))Z=1 under Pgiz({,)\}_ﬁ) is that of two independent random bridges (with
increment law fy as in all of our discussion above) started from (S;(1), S»(1)) and
ended at (0, —/n). In estimating the Gap event probability under this law we found
it easier to work with the law of two independent modified random bridges. These are
described in Fig. 5 and composed of random walks (with increment law fg) in the first
and last n/4 portion of its domain, and then a bridge to connect the resulting values.
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Lemma 4.10 shows that the density of the random bridge and modified random bridge
are comparable provided the values at k = 1,n/4,3n/4, n are all of order i/n. In
particular, if we set

E:={IS1(n/4) = $1Bn/4)| + [S2(n/4) — $2(3n/4)|
< Vn}, Fi={ISi(D]+1S2(D] < vn},

the results from Lemma 4.10 allows us to conclude that

PO (Gaps N (S1(1) — $>(1) € [0, 11})
> PV (Gapy N {S1(1) — S(1) € [0, 11} NENF) (1.22)

:(0,— Sn; _
= & B V" [Lsir-sero, e - BEE 0200~ Gapy n )|

where PrG1(D.520).0.~v) s the law of two independent modified random
bridges started from (S1(1), S2(1)) and ended at (0, —+/n). Using shorthand P for
ﬁn;(Sl(l),Sz(l)),(O,—\/ﬁ) and Bayes rule’

P(Gapy NE) = P(NI) - P(Gapy NE | NI).

Since the modified random bridge has two true random walk portion (first and last
quarter) we can now rely on standard non-intersecting random walk techniques to
eventually obtain a lower bound on the probability P(NI) above. In Appendix C we
establish various uniform estimates and in particular (combining Lemma C.3 and
Corollary C.10) show that for x,, y, of order nl/2,

BN > L - n= 12 pr/d o) (N, (1.23)

and fD(Gapﬁ NE | N) > % (for small enough B) uniformly over S1(1), S2(1) <
M J/n and S;(1) — S2(1) € [0, 1]. In (1.23), P"/4:@n2n)(Nl) denotes the probability
of non-intersection of two random walks of length n /4 started from x, and y,. As

x, = 0, y, = —+/n, we can show that pr/4 (x"')’”)(ﬁl) is bounded below. Finally,

Lemma 4.7 establishes that E;i{gfﬁ) [1(5,(1)=$,(1)e[0,1}nF ] is bounded below. Thus

combining all the estimates leads to an n~'/% order lower bound for the right hand
side of (1.22). Putting together the various bounds described above now yields the
desired lower bound on IE';;R(%,_‘/Z) [W]in (1.17). Since in Sect. 5.3, we prove (ii) and
(iii’) in parallel, some parts of the argument presented here in the introduction appear
in a more general or slightly different flavor later. However, the core idea and features
remain the same.

Non-intersecting random walks and random bridges that are pinned at the starting
and/or ending points have been studied extensively (e.g. [30, 55, 61] and the refer-
ence therein) and are known to converge under diffusive scaling to Dyson Brownian
motion and non-intersecting Brownian bridges. As demanded by our technical argu-
ments, our work establishes uniform (over starting and ending points) estimates for
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non-intersection probabilities of pairs of random walks and random bridges in such
scaling, i.e. uniform over all possible O (1) starting points that potentially can vary
in a diffusive O (4/n) window (precisely how (S1(1), S>(1)) behaves). Appendix C
develops the machinery to establish such uniform estimates under general assumptions
on increments of the random bridges.

Proof idea for (iv): The argument to prove (iv) also uses the machinery developed in
the proof of (ii) and (iii) and the reduction from (1.16) to the study of the weighted
paired random walks (S (k), Sz (k))Z: 1- Fory, 8, M > 0, consider the events

B=B(,y) = { sup [S1(1) — S1(i2)] 2)’\/5},
i],izeﬂl,n/4]]
i1 —iz2|<én

G =GM) := {ISI(D] + [S2(D)] = M/n}.

To prove tightness we will show that for each y > 0, as § — 0, we have

P&g‘R”\’g”)(B) — 0. Recall that as an input we know that x,, y, are of order nl/2,

In (ii), we observed that P&gﬁ\’g”)(G) — 0 as M — oo uniformly in n. Thus it suf-

fices to provide an upper bound for P"W;gi{\’,&'")(B N G¢) for each M > 0. Thanks to

(1.14), it suffices to give a upper bound for Eg;{(\);\’]hyn)[WIBﬁGl?] and a lower bound

for E;g&"y ”)[W]. An important difference from the discussion regarding (ii) is that
now the event B in question deals with two point differences of S;(-) which is not
an increasing event. Thus, the monotonicity of the Gibbs measure with respect to the
boundary data does not help here and, unlike in (ii), we cannot use monotonicity to
reduce consideration to x, = 0, y, = —/n.

Instead, using the soft non-intersection property of our Gibbsian line ensemble we
can deduce control on the difference of the exit points. We show in Theorem 3.1 that
for all large enough N

IE”(EIIV(Zn — 1) > £V @2n) — (log N)"/6 for all n € [M;N?/?, M2N2/3]]) >1-2°N

Note that in (1.12) we conditioned upon L{(2n — 1) = x,, and L{(2n) = y,. In view
of the above high probability event, we may thus assume x, — y, > —(logn)’/°.
Under these boundary conditions (x;, y, of order nl/2 and Xn — yn = —(log n)7/ 6)
the estimates in (1.17) may not hold.

Nonetheless, for the lower bound of Egiz(f;\’}’y") [W], all the arguments up to and
including (1.23) hold under the present assumptions on (x;, y,). We show in Lemma
5.6 that

Epiw " W1 = =7t PG (il > ¢ TemCaloen™, (1.24)

where the second bound above is true under our assumption x,, — y, > (logn)’/°. For

the upper bound on Egk(\f\;”y”)[WIBmgc] we first obtain a deterministic bound for W
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(similar to (1.19))

o _ 2toglog(n)]
W <C (e‘(log") + W) L W= Y e,
p=0

Due to the e=€20°2M™* [ower bound in (1.24), the ¢=0102m? factor above can be ignored
and we instead focus on upper bounding W. Using the Gibbs property and conditional
expectations

[2loglog(n)]—1
3 (X, Yn) 1Y —el 5(Xns Yn H 7
ESR(Q M [ Wignge] = Z ¢ E;R%V i) [IGCPH,(SI(1),s2<1))‘<xn,>n>(3 A N|p+1)]

p=0

[2loglog(n)]—1

—eP rn: (Xn, yn)
= Z e Epry

p=0

X [IGLPV!;(SI(1)+17+1<,SZ(1))-(xlx+P+1vyn)(B n Nl)i| .

where P'5 (S1(D:52(1). G y) i the law of two independent random bridges started from
(S1(1), $2(1)) and ending at (x,, y,). The last equality above follows by lifting the
S1(-) random walk by p + 1 units. We then apply the density comparison (Lemma
4.10) to modified random bridges to obtain

lge - ]P)n;(sl(1)+171S2(1))»(xn+[7,)’n)(B AN < C - 1ge - ﬁn;(sl(1)+[71S2(1))»(xn+[7’)’n)(B AND).

where BS1D+p.S2(0).utpyn) s the law of two independent modified random
bridges started from (S7(1), S2(1)) and ending at (x,, y,). The above comparison
is only possible when we have a control on the slopes of the random bridges. This
slope control is precisely furnished by 1ge.

Let us write ), for P=S1(W+p+1.50).Cotp+Lm) Using uniform estimates for
non-intersection probability for random walks and bridges from Appendix C (com-
bining Lemma C.3, Lemma C.8 and Corollary C.10) we obtain that

Bp(N) < -SeC7 - max{$1(1) — $a(1), 1} - P40 .

Since B depends only of the first quarter points, ﬁp(B | NI) can be controlled by
modulus of continuity estimates for (pure) random walks under non-intersection which
we deduce in Lemma C.12. In particular, we obtain that sup ,c o, |2 1og log(n) | 1] Fp (B |
NI) — 0 as § — 0. Combining all the above estimates, in view of the exponential
tail bounds for S;(1) — S>(1) under the PRW law from Lemma 4.7, this leads to the
desired estimate.
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1.4 Related works on half-space polymers

Half-space polymers are a particular variant of full-space polymers that are well-
studied in the literature (introduced in [23, 74, 77]). Full-space polymers are widely
believed to be in the KPZ universality class in the sense that they are expected to
have 1/3 fluctuation exponent and 2/3 transversal exponent. However, besides a few
solvable models, these exponents are not proven rigorously for general polymers. We
refer to [10, 12, 42, 58, 59, 92] and references therein for more details.

Half-space polymer models have been studied in the physics literature since the
work of Kardar [79]. They arise naturally in the context of modeling wetting phe-
nomena [1, 18, 89] where one studies directed polymers in the presence of a wall.
They have been of great interest due to the presence of phase transition (called the
‘depinning transition’) and a rich phase diagram for limiting distributions based on the
diagonal strength. This phase diagram was first rigorously proven for geometric last
passage percolation (LPP), i.e., polymers with zero temperature, in a series of works
by Baik and Rains [25-27]. Multi-point fluctuations were studied then in [94] and
similar results were later proven for exponential LPP in [6, 7] using Pfaffian Schur
processes. For further recents works on half-space LPP, we refer to [9, 14, 15, 63].

Positive temperature models such as polymers resisted rigorous treatment for longer
compared to LPP since they are no longer directly related to Pfaffian point processes.
For such class of models in the half-space geometry, the first rigorous proof of depin-
ning transition appeared in [31] where the authors proved precise fluctuation results
including the BBP phase transition [3] for the point-to-line log-gamma free energy.
For the point-to-point log-gamma free energy, the limit theorem along with Baik-Rains
phase transition was conjectured in [5] based on an uncontrolled steepest descent anal-
ysis of certain formulas coming from half-space Macdonald processes. This result was
proved recently in [76] using a new set of ideas, relating the half-space model to a
free boundary version of the Schur process. In fact, [76] also proves analogous results
for the half-space KPZ equation which is the free energy of the continuum directed
random polymer in half-space. The half-space KPZ equation arises as a limit of free
energy of HSLG polymer [11, 100]. Since the early work by Kardar [79], the half-space
KPZ equation has received significant attention, with a flurry of new results recently
in in both mathematics [5, 8, 11, 44, 76, 87, 88] and physics literature [4, 20-22, 50,
68, 78, 80]. Apart from log-gamma and continuum polymer, a half-space version of
the beta polymer was recently introduced and studied in [29].

Organization

In Sect. 2, we study several properties of #5LG Gibbs measures and Gibbsian line
ensemble, and prove Theorem 1.3. Section 3 is divided into three subsections that
discuss three important probabilistic results for the line ensemble. In Sect. 3.1, we
show a certain ordering of points on the line ensemble (Theorem 3.1). This is the
precise technical form of the typical non-intersection property discussed at the end
of Sect. 1.3.1. In Sect. 3.2, we show that there is a high point on the second curve
(Theorem 3.3) as discussed at the end of item (i) from Section 1.3.3. In Sect. 3.2,
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we provide high probability uniform upper bounds for the second and third curves
(Theorem 3.8). These bounds are used later in proving item (ii) from Sect. 1.3.3. In
Sect. 4, we prove one-point tightness on the left boundary and study the probability of a
certain ‘region pass event’. The study of the region pass event is utilized in proving the
lower bound on the uniform separation between the first two curves and the third curve
(described earlier in (ii) from Sect. 1.3.3). Finally, in Sect. 5, we study the modulus of
continuity under the WPRW law and prove Theorem 1.1. Appendix A includes the proof
of stochastic monotonicity for #S£G Gibbsian line ensembles. Appendix B collects
several basic facts about log-gamma random variables and related measures. Appendix
C is devoted to proving several technical estimates related to non-intersecting random
bridges which are required in studying the WPRW law.

Notations and conventions

Fora, b € R,wedenote [a, b]| := [a, b]NZ,anb = min(a, b),andaVvb = max(a, b).
Throughout this paper we work with three fixed parameters: 6 > 0 (bulk parameter),
¢ > 0 (supercritical boundary parameter), and ;€ R (critical boundary parameter).
All our constants appearing in the rest of the paper may depend on 6, ¢, u and possibly
other specified variables. We will only specify the dependency of the constants on
the variables besides 6, ¢, u by writing C = C(a, b, ¢, ---) > 0 to denote a generic
deterministic positive finite constant that may change from line to line, but is dependent

on the designated variables a, b, c, - - - . We write Lh.s. or r.h.s. to denote the left- or
right-hand side of an equation. Given a density f, X ~ f denotes a random variable
ii.d.

X whose distribution function has density f. We also write X; e fif{X;}arei.id.
with some common density f. We sometimes also use the notation X ~ e where e
is the name of a distribution (e.g. Gamma™! (B)) to mean X has distribution e and is
independent of all other random variables being considered. For two densities f and
g, we write [ * g(x) = f]R f(z)g(x — z)dz for the convolution density. We use the

notation o (e) for denote the o -algebra generated by the random variables e. We write

d d e .
¥> and @ for convergence and equality in distribution. There is a glossary at the end

of this text that recalls and points to the definitions of much of the notation introduced
elsewhere.

2 Half-space log-gamma objects and proof of Theorem 1.3

In Sect. 2.1, we gather several useful properties of HSLG Gibbs measures from Defini-
tion 1.2 including stochastic monotonicity (Proposition 2.6). The HSLG line ensemble
is defined in Sect. 2.2 which includes the proof of Theorem 1.3.

Here, we introduce few important functions that will come up often in our argu-
ments. We define

Wia; b, c) = exp(—e“‘b —e*79, a,b,c eR, 2.1
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For 6 > 0, m € Z we set

y

Go, 1y () i= VT rg) y R, 22)

One can check that Gg, (—1y» is a density (i.e., it integrates to 1). Using G, we define
two more probability density functions:

fo(x) :== Go41 % Gg,—1(x), g, (x) :=Gr1(x), 0,6 >0,xeR, (2.3)

where * denotes the convolution operation, i.e., p * g(x) := fR p()q(x — z2)dz.

2.1 Properties of 7(SLG Gibbs measures

We start by writing down several lemmas that all follow directly from the definition
of HSLG Gibbs measures (recall from Definition 1.2).

Lemma 2.1 Consider the graph Zz>1 endowed with directed/colored edges E (22> D) as
above. Let A be a bounded connected subset of ZZ>1- For each (i, j) € OA fix some
u;j € R Fixany c € R. Let (L(v) TV € A) be a collection of random variables
that are distributed as the HSLG ©-Gibbs measure on the domain A with boundary
condition (ui,j 1 (i, ) € BA).
(a) (Translation invariance) The law of (L(v) +c:ve A) is given by the HSLG ©-
Gibbs measure on the domain A with boundary condition (ul-,j 4+c:(,j) € aA).
(b) (Gibbs property on smaller domain) Take a bounded connected subset A’ C A. The
law of (L(v) : v € A) conditioned on (L(v) : v € A\ A) is given by the HSLG
®-Gibbs measure on the domain A’ with the boundary condition (L(v) cv €A )
where we set L(v) = uy for v € dA.

Proof Note that the density of a #5LG ®-Gibbs measure given in (1.6) only involve
terms of the form u,, —u,,. Thus adding a constant ¢ to every term does not change the
law. The fact that Gibbs property carries to smaller domains follows from the explicit
form of the density as well. O

Although #H5L£G Gibbs measures are defined for any bounded connected subset A,
we will be mainly concerned with two kinds of domains A. Givenk > 1 and T > 2,
we define

Kir =16 i e[Lk],je[l,2T =1 =1—1]}, K 7 :=[1,k] x 1,27 -2].
(2.4)

The domains Ky 7 and IC;(YT are shown as shaded regions in Figure 6. We state these
results for the homogeneous Gibbs measures, though they could easily be adapted to
©-Gibbs measures.

Lemma 2.2 (One-sided boundary Gibbs property) Fix k, T € Z>2 and o« > —6. Fix
yeRZeRT, and w e RT1,
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Fig.6 Two domains [Cy 7 and ch,T are shown in (A) and (B) with k = 3, T = 4 and boundary conditions
(3, 7) and (¥, w) respectively. They include all the vertices within the gray dashed box as well some labels
for the points. The directed edges with lighter colors are edges connecting vertices from A to d A or viceversa
(A =KgrorA= IC;(,T). The boundary variable z( does not actually play any role in the density of the

corresponding HSLG Gibbs measure after normalizing it to be a probability density. This point is explained
in the proof of Lemma 2.2 (color figure online)

(a) The HSLG Gibbs measure on the domain Ky 7 with boundary condition (y,?) is
a probability measure on RIET ywhose density atw = (u; j)(i,j)eky.r IS Propor-

tional to
. k ) T—1i=
fr = H ot~ 1ati H W(tit1,2j5 Wi 2j+1, Ui 2j—1)
i=1 j=1
2T—1-1;;
X 1_[ Gy (—nyi+1 (Wi j = ui j+1) (2.5)
j=1

where W(a; b, c) and Gg (—1y= (y) are defined in (2.1) and (2.2) respectively. Here
urs12j = zjforeach j € [1,T], ui2r—1 = y1, and uj ot = yji, Ui 27+1 = +00
(so that the factor exp(—e"i+12T~"i2T+1) = 1) for each i € [2, k].

(b) The HSLG Gibbs measure on the domain ch,T with boundary condition (¥, W) is

!
a probability measure on R%er! ywhose density atu = (ui,j)(,-,j)e/q( . is propor-

tional to
- k ) T—1
QI{,;(“) = 1_[ e~V aui l_[ W uig1,2); Wi2j+1, Ui2j—1)
i=1 =1
2T -2
X 1_[ Gy —nyivt (Wi j —uij1) | - (2.6)
j=1

Hereuyy12j = wj foreach j € [1,T —1], and u; or—1 = y; foreachi € [1, k].

Proof We refer to Fig. 6 for a visual representation of the above measures. Recall the
edge weights from (1.5). The blue edges in the figure corresponds to Gy (_yyj+1(-) fac-

tors that appear in (2.5) and (2.6). The (— 1)7*! factor is due to the alternate switching

@ Springer



KPZ exponents for the half-space log-gamma polymer

of the direction of blue weights as we read off from left to right. Here we have obtained
the G function from the blue edge weights by multiplying by a constant. This is done so
that the G function becomes density (i.e., integrates to 1), a fact that will be useful in the
later analysis. The black edge weights from (1.5) corresponds to the W factor in (2.5)
and (2.6). Finally the red edge weights are of type e ~*#2i-1.17H42i.1 = =%"2i-1.1. g¥U2i.1
Note that only for odd k£ we have (k + 1,1) € 9K T, 8]C§(’T. In that case, the fac-
tor e~ *"++1.1 can be absorbed into the proportionality constant. Thus, overall, the red
weights contributes the factor ]_[f‘= | e~D'%.1 in the above densities. This also explains
why the zo value does not play any role in the definition of these densities. O

Definition 2.3 We will mostly be concerned with the HSLG Gibbs measure on Ky, 1
with boundary condition (¥, 7) (see Lemma 2.2a for the probability density of this
measure). We will denote the probability and the expectation operator under this
law as Py <57 and EL %7 respectively and a random variable with this law by
L = (L@, j) :== Li(j) : (i, j) € Kr,r). We may drop « and write PY-2kT and
EY%%.T when clear from the context.

We now define the #5.G Gibbs measure on K, 7 with boundary condition y € R¥,
7:= (—o0)T.

Definition 2.4 (Bottom-free Gibbs measure) The bottom-free measure on the domain
Kk,7 with boundary condition y is the #$5.G Gibbs measure on the domain Ky 7
with boundary condition (¥, (—oo)”). By Lemma 4.2 this the corresponding density

¥, (—o0)T . . . .
fk} T( ) s integrable when k is even and & € R (in that case the measure does not
even depend on «) or when k is odd and « € (-6, 0). In this case the bottom-free
measure can be normalized to a probability measure so that for 7 € R”

T
32, 1 S (— T. . .
Py TR (A) = g B OO T 0 [T Wiz Le @) + D), Li(2 = 1) |
Vk ()’7 Z) j:1
2.7

for any event A, where we set Ly (2T + 1) = +o0 and the normalization is given by

T
> - Y (—oo)T - . .
VIG.2) =By O T Wiy Le@j + D, Le@j — 1) | (2.8)
Jj=1

In other words, we can build the full Gibbs measure ]P;g’akj by reweighting the
bottom-free measure by a Radon-Nikodym derivative given by the expression (except
14) inside the expectation in (2.7), normalized by dividing by VkT (5, 2).

Besides one-sided conditioning as in Lemma 2.1, we can also use the Gibbs property
when conditioning on boundary data on both sides as is standard in full-space discrete
line ensembles [12, 45, 57]. We record here one such result that will be useful in our
later proofs.
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Fig.7 The marginal distribution of the odd (black) points of the HSLG Gibbs measure shown above with
T1 = 1, Tp = 6 is described in Lemma 2.5 (color figure online)

Lemma 2.5 (Two-sided boundary Gibbs property) Fix 1 < T1 < T» — 1. Suppose L
is distributed as PYZ 112 et (X(j))jT.Qz_Tll_l be a random bridge from X(T) — 1) = a
to X(T, — 1) = b with i.i.d. increments from the density fy defined in (2.3). The law of
(Li@2j+1) : Ty < j < T» —2) conditioned on {L, 2Ty — 1) = a, LT, — 1) = b}
is absolutely continuous with respect to the law of (X (j ))szz—T? with Radon-Nikodym
derivative proportional to

T—1
W= exp < - Z (e =XW) 4 ezf_X(j_l))>.

J=T

Proof We utilize the form of the Gibbs measure density givenin (2.5). The Gg 1 %Gy —1
function appears in the statement of Lemma 2.5 as we focus on the marginal distribution
of the odd points only and hence we integrate out the dummy variables on the even
points (see Fig. 7). O

As with full-space line ensemble Gibbs measures [12, 35, 36, 57, 100], the HSLG
Gibbs measures satisfy stochastic monotonicity with respect to the boundary data.
The following, stated for the inhomogeneous ®-Gibbs measures provides a grand
monotone coupling over all boundary data.

Proposition 2.6 (Stochastic monotonicity) Fix ki < k», a; < b; for ki <i < k. Fix
O:={;>0:(G,j)eZ )} anda > —min{6; j : (i, j) € Z2 }. Let
A:={G,)): ki <i<ky,a <j=b).

There exists a probability space that supports a collection of random variables

(L(v; (w)wesn) v € A, Uw)wean € RIVAT)

such that

(1) For each (uy)wean € RIVA the marginal law of (L(v; (Uy)wedr) - VU € A) is
given by the HSLG ©-Gibbs measure for the domain A with boundary condition
(w)wean € RIVAL

(2) With probability 1, for all v € A we have

L(v; (uw)wea[\) < L(v; (u;})weaA) whenever u,, < u;ufOr allw € 0A.

Consequently, the probability of increasing events (defined in Definition 1.2)
increase with respect to decreasing the boundary conditions.
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The above proposition is stated for the general H5LG ®-Gibbs measure introduced
in Definition 1.2. In light of the second part of the above proposition, we will sometimes
say that an increasing event is ‘increasing with respect to the boundary data’. The proof
of the above proposition follows a similar strategy as in [12, 57] and is provided in
Appendix A for completeness.

2.2 The #5.G line ensemble and Proof of Theorem 1.3

In this section we define the half-space log-gamma (HSLG) line ensemble and prove
Theorem 1.3. We work with the inhomogeneous polymer model determined by param-
eters 6 1= (6:)iez-, - The construction of the line ensemble is based on the multi-path
point-to-point partition functions. These are defined in (2.10) as sums over multiple
non-intersecting paths on the full quadrant Z2 | (not just half-quadrant) of products of
the symmetrized versions of the weights from (1.1):

W;; wheni=j,
;i whenj>i, 2.9)

,j whenj <i.

=

Wi,j ~

==

Form,n,r € Z>1 withn > r,let 1'[5,:?,1 be the set of r-tuples of non-intersecting upright
paths in Z2>1 starting from (1, r), (1,r — 1), ---, (1, 1) and going to (m, n), (m,n —
1), ..., (m, n—r+1)respectively. We define the multipath point-to-point symmetrized
partition function as

Z$)(m.n) = Z ]_[ Wi, (2.10)

(1)) G )EmU-U,

with the convention that ZS((y)I)n (m,n) = 1forall m,n € Z>. The dependence on the

6:= (0i)iez., parameters that determine the weights through (1.1) is suppressed here
and below.

Definition 2.7 (Half-space log-gamma line ensemble) Fix N € Zs;. For each i €
[1, N] and j € [1,2N — 2i + 2], we set

ZZ§§)m(p, q)

ﬁfv(j)=10g< =
Zsym (P, q)

) +2W(O)N.

where p := N + |j/2] and ¢ := N — [j/2] + 1. We call the collection of random
variables

(N (j):ie[1,N],je[l,2N —2i +2])

the half-space log-gamma (#5£G) line ensemble with parameters (¢, 8), see Fig. 8.
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L1(:)

Lo(+)

1 2N

Fig.8 The half-space log gamma line ensemble £ = (£; (»))fv=1 (N = 6 in above figure). Each curve £; (-)
has 2N — 2i + 2 many coordinates. A%, in Theorem 1.3 is the set of all black points in the above figure.
Theorem 1.3 tells us that conditioned on the blue points, the law of the black points is given by the HSLG
Gibbs measures (color figure online)

Proof of Theorem 1.3 Recalling the convention Zé}%l (m, n) = 1, we can write
£ () =log (2Z{n(N + Lj/2). N = [j/21 + 1)) + 20 (©O)N.

Assuming Part (ii) of Theorem 1.3 (verified below), Part (i) follows immediately from
the identity 223(;311 (p,q) =Z (@.8) (P> q). The above identity is noted in Section 2.1
of [31] and follows easily due to symmetry of the weights (the factor of 2 comes
from a lack of double-counting the weight at (1, 1)). This is an equality (not just in
distribution).

Part (ii) is a highly non-trivial deduction from first principles. However, the works
of [31, 32,43, 84, 85] have built arich theory using the geometric RSK correspondence
from which this part follows in a rather straightforward manner, as now described. We
seek to determine the joint density of the H#SLG line ensemble defined above. Let us

start by defining

Ky :={G,j):i€[1,N],je[l,2N —2i +2]},
TN = (G, j)eZs i+ j <2N +1}.

Note that the map (i, j) — (N + [j/2] —i+ 1, N —[j/2] —i + 2) is a bijection
from Ky to 7NN {i > j}. Forany (i, j) € Ky, we then define

Z8m(N + 1j/2), N = Tj/21+ 1)
ZSD(N+ 120N =Tj/21+ 1)

TN+ j/2)—i+1,N=[j/2]—i+2 ‘=
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and then set T; ; := T; ; fori > j. From Proposition 2.6 in [84], (Ti,j)(i,j)ez("’) is
precisely the image under the geometric RSK map of the symmetrized weights (2.9)
with indices restricted to the ™) array. The density of this image has been computed
in [31]. Indeed, setting m = 0,n = N, o; = 6; fori > 1, and o9 = « in the final
two (unnumbered) equations on page 28 in [31] (in the arXiv version see the second
unnumbered equation on page 20), we see that the density of (27; ;);>; at (¢, j)i>; is
proportional to

N
,1 - Ht( DN-i+ly 1—[ (f2N72j+2 : 7—'2N72j)9j
2

j=1 ON—2j+1

X exp (_ 3 ti,li—.l _Zti—'ljj> [T /1,50 (2.11)

t t
i>j>1 b/ i>j "G her™

where the 7 variables are deﬁned as i = [] (t, i@, )€ Wi —j = k)
[1(tieki : 1 <i < N —*51). In fact, the density formula in [31] is for (27} ;);<;
at (4 j)i<j, thus we needed to permute the indices in that formula to arrive at the
above formula. The line ensemble /.ZlN (j) defined in Definition 2.7 is related to
(vaj)(i,j)eI(N) via the relation

LY () —2WO)N = log (Tn+1j/2)—i+1,N—[]/2]—i+2)-

Under the change of variables u; ; = log (1N+Lj/2J—i+1,N—(j/21—i+2) for (i, j) € Ky,
we claim that the density of (ElN (J) —2W(O)N) at (u;,j),j)eky is proportional to

N—i+l1
TN 1_[ (=Diu; 1 1_[ e ditian—2it2 1_[ ON—j+1 (i 2j—1—ui2))
i=1 j=1
N—i
1_[ e ON—j+1 (i 2j—ui2j+1) (2.12)
N N—i+ N—1N—i
- exp Z Z Ui2j—1—Ui2j _ eMit1.2j =i 241 (2.13)
i=1 j=1 i=1 j=1
N—1N—i N—1N—i
-exp i 2jH1Hi2j etit1.2j—uizj-1 | (2.14)
i=1 j=1 i=1 j=1

The justification of going from (2.11) to (2.12)-(2.14) is given in Appendix D. Recall
now that we are interested in the density conditioned on (KIN (j) — 2¥(O)N) at
(ui,j) (i, jyeky\A% - To compute this conditional density we may absorb all the u;,;
terms with (i, j) € Ky \ A}, into the proportionality constant. Thus in (2.12), we
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may absorb the e 7“N.1 term and e %% 2¥~2i+2 terms and observe

N
He(*l)lui.lol x 1_[ e (uaim11—u2i 1)
i=1

ie[1,N/2]

Upon a quick inspection of the form of the weight function in (1.5), one sees that
these factors are precisely the red edge weights functions in the #5S£G Gibbs measure
on the domain A%; see Fig. 3B and Definition 1.2. Combining the terms which have
(winj—1—ui2j)and (u; 2j41—u;2;)in(2.12),(2.13),(2.14) giverise to the following
factor

N N—i+l
Wit
[1 exp (On—j+1(i2j—1 — uipj) — e"i2i-171i20)
i=1 j=1
N—-1N—i
9 ( _ )_ Ui2j+1—Ui2j
Xp N—j+1 Ui 2j+1 — Ui 2j e .

i=1 j=I1

The above factor corresponds to the blue edge weight functions in the HSLG Gibbs
measure on the domain A%,. Finally, the remaining terms in (2.13) and (2.14) corre-
sponds to black edge weight function in the #5LG Gibbs measure on the domain
A% Thus the density of {£N(j) —2¥(@)N : (i,j) € A}} conditioned on
{Lfv(j) —2W(O)N : (i,j) € Ky \ A} ~ ] 1s precisely given by the HSLG Gibbs
measure with boundary condition {ElN(]) 2W(O)N : (i, j) € Ky \ A} } as in Def-
inition 1.2. By the Gibbs measures translation invariance (Lemma 2.1a), we obtain
Theorem 1.3 (ii) . O

3 Properties of the first three curves

In this section we extract probabilistic information about the first few curves of HSLG
line ensemble £V (Definition 2.7). In Sect. 3.1 we prove Theorem 3.1, which claims
that there is a certain high probability ordering among the points of the curve. Section
3.2 contains Theorem 3.3 which asserts that with high probability there is a point p =
O(N?%/3) such that LQ’ (p) is reasonably large. Finally in Sect. 3.3, we show Theorem
3.8 which argues that with high probability (£ (s))se[1 xn2/3] and (L5 (9))seq1 xn2]
lie below M N'/3 for large enough M.

3.1 Ordering of the points in the line ensemble
In this subsection we show that with high probability there is ordering among the points

of the HSLG line ensemble. Throughout this subsection we shall assume o € (—6, 00)
is a fixed parameter. The results can be easily extended to the case where ¢ = «(N)
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satisfying

—0 < liminf o(N) < limsupa(N) < oo.
N—o0 N—o00

We consider the #5.G line ensemble £V from Definition 2.7 with parameter (, 6).

Theorem 3.1 Fixany k € Z>1 and p € (0, 1). There exists No = No(p, k) > 0 such
that for all N > Ny, i € [1,k] and p € [I, N — k — 2] the following inequalities
holds:

P(cN@p+ 1) < £V 2p) + (log N)/6) = 1 — pV,

P(L¥2p — 1) < L¥2p) + (og N)/) > 1 — pV, .
P(LY 2p) < LY 2p+ 1) + (log N)/%) > 1 — pV, .
P(LN,2p) < £¥N@2p— 1) + (logN)"/%) > 1 - pV.

We refer to the caption of Fig. 9 for a visual interpretation of the above Theorem.
The 7/6 appearing above can be replaced with any y > 1. Ny will also depend on
y in that case. In order to prove the above theorem, we first provide an apriori loose
bound for the entries of the first k curves of the line ensemble £V

Proposition 3.2 Fix any p € (0,1) and k € Zx1. There exists a constant C =
C(p,k) > 0 and No(p,k) > O such that for all N > Ny, i € [l,k], j €
[1,2N —2i + 2] we have

P(ILV (Dl =CN)z1-p". (32)

We first prove Theorem 3.1 assuming Proposition 3.2.

Proof of Theorem 3.1 Fix any p € (0, 1) andk € Z>;.SetT := N —k.Fix i € [1, k]
and p € [1, T — 2]. We will show only the first of the inequalities in (3.1), as the rest
are all proved analogously. For simplicity, we write £ for £V . Consider the event

Vi={Lig@p + 1) = Lig@p) + (log N0}

We apply Proposition 3.2 with k +— k + 1 and p > p/2 to get C > 0 so that for all
large enough N, by union bound we have P(A) > 1 — 2Nk - (p/2)" where

A:= [lLk+1(j)|, |L;2T —1)| <C-N, forall j € [1,2T],i € [[l,k]]}.
Thus if we consider the o -algebra
Fi=o(Lin (D). LQT = 1): je[1.2T].i € [1A]),
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Fig. 9 The ordering of points within the #5LG line ensemble. The figure depicts of first four curves
of the line ensemble L. Points v and v’ connected by a black or blue arrow from v — v’ satisfy that
LN (') > £N (v) + (log N)/® with high probability (recall that for v = (i, j) we write LV (v) = LV (j)).
The blue arrows thus imply ordering within a particular indexed curve while the black arrow imply ordering
between the two consecutive curves (color figure online)

by union bound and tower property of the conditional expectation we have
P(V) < P(=A) + P(VNA) < 2Nk - (p/2)N + E[1aE[1y | F]]. (3.3)

Recall IC;C)T from (2.4). From Theorem 1.3 and Lemma 2.1b, the law of {L(v) : v €
K 7} conditioned on Fis given by the #$LG Gibbs measure on the domain K} ;- with
boundary condition y := {£; (2T — 1)}§:1. 7:= {£k+1(2i)}iT:711. In view of Lemma
2.2b we see that

Jy 017 (wdu

Elly | F1 = ==
vac;‘T\ Or.r(wdu

(34)

where Qi; (u) is defined in (2.6). We will now bound the numerator and denominator
of (3.4) respectively. We claim that there exists R, T > 0 depending only on k, ¢, 6, C
such that

y.Z 1 (logN)"/6 N y.Z N
1A-/VQi_T(u)du51Aexp(—§e<°g Yy RN, and 1, /RW,”‘ Qpr(wdu > 1a -7,
3.5)

Clearly plugging this bounds back in (3.4) and then back in (3.3) leads to P(V) < ,oN
for all large enough N, as desired. Thus we focus on proving the two inequalities in
3.5).

Proof of the first inequality in (3.5). Recall G defined in (2.2). Set

1,(-Dky ks
Hy _p(y):=e2® -Gy _p(y) = exp(6(—DFy — LD,

r'®)
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Set v/ W (a; b, ¢) := /W<(a; b, ¢) where W is defined in (2.1). From (2.6) we have

oy =

k T—1
l—[ (e(l)l‘”"*‘ 1_[ \/W(MH—LZ_/'Z Wi 2j+1, Ui2j—1)
el =1
272

1_[ Hg,(71)j+1 (uij — Mi,j+1))
j=1

kK [T-1 272 1
_1Jit sy
l_[ l_[ VW (uit12) Ui 2541, Ui2j—1) l_[ exp(— e D7 j=ui ey |
i=1 \j=1 j=1

On V, among the terms appearing in the last line of the above equation, the term

- . . 7/6
exp(—%e'”ﬂ*“o “2p.0) is at most exp(—%e(log N ). We bound the rest of the terms
_%eaogNﬂ/" ~3 7

QOpr(w)

in the above last line just by 1, so that on V, we have Q,}: ZT w) <e
where

k -1
3.2 . —Diou; / .
Q7 (u) = l_[ e~ e l_[ W(uit1,05; wi2j+1, Ui2j—1)
i=1 j=1
272
X 1_[ Hy pyivi (i j — ui j41)
j=1

By Lemma B.2 it follows that fR"Ci . éz:i(u)du < R" for some R > 0 depending
on k, «, 0 and C only. This verifies the first inequality in (3.5).
Proof of the second inequality in (3.5). We define the event

2T -2
D:= ﬂ () {£i(j) —CN —2N +2i € [0, 1]}.

i=1 j=1

Note that on D, |£;(1)] < CN +2N +3and £;+1(2j) < L;2j + 1), £; (2j — 1).
Hence on D we have

W(Liv1(2)); Li(2j+ 1D, Li(2) — 1))
— exp (_ell,-+1(2j)—£,-(2j+l) B e[:,-+1(2j)—£,-<2j—1)> > e 2.
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Hence on D we have

k T-1

y.2 — 1 au; .
Q,{’T(u) = l_[ e~ Do H W(uit1,05; wi2j+1, Ui2j—1)
i=1 j=1

2T -2

X 1_[ Ge,(_l)Hl(ui,j —ui,j+1)
Jj=1
k 2T-2

—ak(CN+2N) —2kT
>e (CNF2N), H H Ge,(_l)jﬂ(ui,j — Ui j4+1)-
izl j=1

Again note thaton D, |£;(j) — £;(j + 1)| < 2foralli € [1,k] and j € [1,2T — 3],
whereas on AN D,

Li2T —2)— L; 2T — 1) € [0,2CN + 2N].

Thus,on AND

. k(T -3) k
y.Z —ak(CN+2N)=2kT | - .
u) >e inf Gg 1(x inf Go.1(—x .
Opr(w) = < 0,1( )) (x€[0,2CN+2N] 0,1( ))

lx|<2

Note that the lower tail of Gg 1 (x) is exponential. Thus inf y¢[0,2cn 28] Go,1(—X) >

rlN for some 71 > 0 depending on «, 6, and C. Thus overall on AND, Q,{:ZT(u) > N

for some 7 depending on «, 8, k, and C. Since the Lebesgue measure of D is 1 we
have

1 / y’Z01>1/;”2d>1-N/01:1.N.
A/Ruck.ﬂQk,T(u)ll_ADQk’T(u)u_A-( Du AT

This proves the second inequality in (3.5) completing the proof. O

Proof of Proposition 3.2 Recall ElN (j) from Definition 2.7. Fix any k € Z>; and p €
(0,1).Forallr € [[1,k] and j € [1,2N — 2i + 2] set

Br(j) =Y LN(j)=rlog2+2r¥@)N +log Z{) (N + Lj/2]. N — [j/21+ D).

i=1

where recall Zs(g,zn(~, -) defined in (2.10). Set By(j) = 0. We claim that there exist
C =C(p, k) > 0and Ny = Ny(p, k) > 0, such that for all N > Ny and r € [1, k]

P([log N + 1j/21, N = [j/21+ D = C-N) 2 1-p". (G6)
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Setting C' = C + 2k|W¥(0)| + k log2 we see from above that, by triangle inequality
and union bound

P(L, () <2C" - N) = P(B,_1 (D] <C - N) +P(B, (DI <C -N) — 1= 1-2. oV

Adjusting p, Ny the above inequality yields (3.2). The rest of the proof is devoted in
proving (3.6).

Recall that Zé;}n(-, -), defined in (2.10), can be viewed as sum of weights of r-tuple
of non-intersecting paths. We first provide concentration bound for weight of a given
path w with endpoints in Z§§V.,>1 = {@,j):i+j < 2N + 1} via standard Chernoff
bound for i.i.d. random variables. Then we provide an upper bound on the number of
r-tuple of non-intersecting paths. Via union bound, this gives a concentration bound
of type (3.6) for Zm (-, -). ~

Recall the symmetric weight W; ; from (2.9). Note that for an upright path 7,
(i,j) € m and (j,i) € m cannot happen simultaneously provided i # j. Thus
( VT/i, j)G,j)ex forms an independent collection. Set

R1 := max{logI'(#) — log'(26), logI'(«x) — B log2 — log I' (@ + 6)},
Ry := max{log I'(36) — logI"'(20), log ' (& + 20) + 6 log2 — log I'(« + 0)}.

Using moments of Gamma distribution and Markov inequality for each s > 0 we have

~ R L ~
P Z log Wi ; > YJ;TI|7T| < ¢~ HRDIT] 1_[ E[Wig,j]
(i.j)em (i.j)en

L | I'®)

Qe
(. j)emi#j (20)

I1 ) sl
2T (a +6) ~ ’

(i,i)er

and

P > logWi; < —fn|| <e ORI T BIW, 7]
e Q. j)en
— ORI T I'(36)
41l T(0)
(i,j)em,i#]j
6
[ 25+ _
I'(a+0)

(i,i)erm
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This leads to the following concentration bound

< Z logW,J

(i, j)em
To upgrade the above bound to (3.6), we need an upper bound for the number of r-
tuples of non-intersecting upright paths. To do this, we introduce a few notations. Set

m:= N+ |j/2],n:= N —[j/2] + 1. Given two points (i1, j1), (i2, j2) € Ly, let
Fy((q, j1) — (i2, j2)) be the set of all upright paths from (i, ji) to (i2, j»). For any
T E H(m ny We have N < || < 2N. Furthermore, |Fy((i1, j1) — (i2, j2))| < 4N
for all (i1, j1). (i2. j2) € Zigm. Thus [[1{,) | < 4V as r < k. Fix s = s(p. k) > 0
such that 4*V . 2¢=5N < pN and consider the event

A::{ log 1_[ Wi’j <

@i,j)emU---Um,
Applying the concentration bound (3.7) for each path in n'

g v+R1+R2|n|> > 1 — 2, 3.7)

SERLERY  2r N forall (7)) € T1()) n)}

(m > @0 union bound yields

P(A) > 1 -4 267N > 1 — pV, (3.8)

Next set C = C(p, k) := klog4 + %2/(. Note that on A we have

log Zg;ﬁn (m,n) <log Z l_[ Wi,
(s m)el'lg;z » (@, yem U---Urmy (3.9)

< log (4kN Y+R(]9+R22rN) <kNlogd + %2](1\] <C-N.

(r)

(m.n) which forms a

Similarly for the lower bound we consider any (71, ..., m,) € I1
disjoint collection of paths. Then on A we have

log Z") (m, n) > log ]_[ Wij | = —2BitRopN > —C - N. (3.10)

sym
(@, j)emU--Um,

Now (3.6) follows from (3.9), (3.10) and the bound in (3.8). ]

3.2 High point on the second curve

The goal of this subsection is to show there is a point p = O (N?/3) such that with
high probability £Y (2p) > —CN'/3 where £V is the #{5.g line ensemble defined in
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Definition 2.7. For the rest of this section we work with the boundary parameter fixed
in the critical or supercritical phase. We assume « equals o1 or o where

a1 = a(N) := N~13 (Critical) 3.10)

ay =< (Super-Critical) '
where 1 € Rand ¢ > 0 are fixed numbers. The labeling of the parameter might seem
a bit unnatural at this moment. Essentially, when the boundary parameter is «;, we
shall resample the top i curves of the HSLG line ensemble in the arguments of Sect. 4.

Theorem 3.3 (High point on the second curve) Fix any ¢ € (0, 1) and k > 0. There
exist Ro(k, &) > 0 such that for all R > Ry

lim inf P sup £y @2p) = —(§R* +2VR)N'P | > 1 -2, (3.12)
N=o00  \ pekN?/3,RN?/3]

where

(')

The factor 1/8 appearing in (3.12) can be replaced by any constant y > 0. Ry will
depend on y in that case. The proof of Theorem 3.3 relies on two results related to the
first curve.

Proposition 3.4 (High pointon the firstcurve) Fixany e € (0, 1). There exists My(e) >
0 such that for all My, My > My and k > 0 we have

LVN@2p+1
lim inf P sup 1(+3) + k% <My|>1-—e¢, (3.14)
N—oo  \ pepn2a 120823 N /

LN2p+1
lim inf P sup I(+3) +Kv> My >1—¢ (3.15)
N—oo  \ pern23, o +20N823] N /

where v is defined in (3.13).
Figure 10 depicts the high probability events considered in Proposition 3.4.

Proposition 3.5 (Low point on the first curve) Fix any ¢ € (0, 1). There exists My(g)
such that for all M > M,

liminf P (LY QMNP + 1) = —pMPN' ) > 1 -, (3.16)
— 00
where v is defined in (3.13).
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EN2/3 (M +2k)N?/3

Fig. 10 Events considered in Proposition 3.4. Here [’11\1 (2p + 1) is given by the black rough curve. The

parabolic curves f4(x) := —(N v)*lx2 + MyN 1/3 are also depicted. Horizontal lines eminate from
these parabolas starting at x = kN 2/3_ The event in (3.14) tells us that on the horizontal interval Iy =
kN 23 (m 1 +2k)N 2/3 ] the black rough curve stays entirely below the black horizontal line while the
event in (3.15) tells us that there is a point in Z; at which the black rough curve exceeds the red horizontal
curve (color figure online)

Definition 3.6 (n-step random walk and bridge measures) Recall the spaces (2, F%)
for p € {1, 2} from Definition 1.7. For p = 2 that definition provided coordinate
function notation S; (k) := w; (k) fori € {l,2} and k € [1,n]. For p = 1 similarly
define coordinate functions S(k) := w (k) for k € [1, n]. Recall fg from (2.3).

For a € R define the probability measure P"*¢ on (Q}l, }',]l) for a single n-step
random walk started at a to be proportional to the product of the Dirac delta function

8s(1)=a and a density (against Lebesgue on R"~!) given by

[[fo(ok) — 0k — 1) dok).

k=2

Similarly, for (a1, a;) € R? define the probability measure P’ (@1:92) opn (Q,%, .7-",%) for
a pair of independent n-step random walk started at a; and ay by taking the product
of P:41 and P42,

For a,b € R define the probability measure P"%? <), }",ll) for a single n-step
random bridge started at @ and ended at b to be proportional to the product of two
Dirac delta function 6, (1)=¢04n)=» and a density (against Lebesgue on R"2) given
by

n n—1
[[fo(otk) — ok — D) []do®).

k=2 k=2
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Similarly, for (ay, az), (b1, b2) € R? define the probability measure [P (@1.a2): (b1.b2)
on (Q%, ]—%) for a pair of independent n-step random briges started at a; and a> and
ended (respectively) at b, and b> by taking the product of P:41:61 and Pr:a2:b2,

The proofs of Propositions 3.4 and 3.5 rely on the fluctuation results from [31], as
restated earlier in Theorem 1.5, and are postponed to the next subsection. Assuming
their validity, we complete the proof of Theorem 3.3.

Proof of Theorem 3.3 For clarity we divide the proof into two steps.
Step 1. In this step we define notation and events used in the proof. Fix ¢ € (0, 1) and
k > 0. Take M/ from Proposition 3.4. We set R large enough so that

2R =2k +1, My—2(§R*v + Mo) + R* < =My —27'°R*v, R >2M,
(3.17)

and Q := 27°R. We will assume some additional conditions on R later, which will
depend on certain probability bounds that will be specified in the next step. For con-
venience, we will also assume kN%/3 and RN?/3 are integers (instead of using floor
functions below). We set

a:=MN'3, b:=—LR*N'y,
ni= RN —kN*? +1, v:i=—(§R* +2VR)N'/.

Let us define the sets Z := [QN?/3, (Mo + 2Q)N?/3] and J := [kN?/3, RN?/3].
Due to (3.17), we have Z C J. Next we define the following events:

A= { sup L2(2p) < v}, B:= {Ll(sz2/3 +1)<a,Li2RN?P +1) < b}.
peJ

The A event demands that the second curve EQ’ (2p) does not rise above v for any
p € J. The B event requires both £11\7(2/’<N2/3 + 1) and Liv (2RN?3 4+ 1) to be less
than a and b respectively. Finally we set

C:= {sup/ﬁf’(Zp—i— 1)+ Q>vN'/3 > —a}
pel

In words, C ensures there exists some p € Z such that Eiv (2p + 1) is greater than
—a — szN 173,

Note that by Proposition 3.4 we have P(C) > 1 — ¢ . Furthermore, by Propositions
3.4 and 3.5 for large enough R we also have P(—B) < 2¢. We claim that for all large
enough R we have

P(ANBNC) <e. (3.18)
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Fig. 11 In this figure Ulv (2p + 1) (black curve) and LQ’ (2p) (blue curve) are plotted for p € J. A denotes
the event that the blue curve lies below the horizontal line y = v. B denotes the event that the black curve
starts below a and ends below b. The curve f in the figure is given by f(x) = —(Nv)_lx2 —a. The event
C denotes that there is a point p’ € T where the black rough curve stays above the red horizontal line (this
event does not occur in the above figure). The key idea is that on A N B, the blue curve lies below y = v
completely, and the black curve behaves like a simple random bridge and follows a linear trajectory with
starting and ending points less than a and b respectively. As a result, the event C (which requires the black
curve to follow parabolic trajectory) does not occur with high probability. But we know both B and C occurs
with high probability. Thus the event A occurs with low probability (color figure online)

We prove (3.18) in the next step. Assuming this, note that by union bound we have
P(—-A) > P(C) —P(—B) —P(ANBNC) > 1 — 4e.
Changing ¢ +— &/4 we arrive at (3.12). This completes the proof modulo (3.18).
Step 2. In this step we will prove (3.18). The reader is encouraged to consult with
Fig. 11 and its caption to get an overview of the key idea behind the proof.
We consider the o-algebra:
Fi=o(LY[1,2N = 2i], £V ([1,2kN** + 1] U 2RN?/? + 1, 2N])).
Note that A N B is measurable with respect to F. Hence
P(ANBNC) =E[1angE [1c | FII.
Using the Gibbs property for two-sided boundaries (see Lemma 2.5), the conditional

law is determined by the boundary data and is monotone with respect to the boundary
data (see Proposition 2.6). On the event A N B, Eév (on even points) is at most v,
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Fig. 12 In the above figure the
random bridge S(i) from a to b
is depicted by the black curve.
The event D ensures the random
bridge lies below the blue line
y=a+2%(b—a)++Rn. The
event C requires

S@) = —(Mo + Q*v)N'/3 for
somei € K :=[(Q —

KNZ3 (Mg +20 — k)N2/3].
One can choose R large enough
so that the horizontal black line
y=—a— QN3 =

—(Mo + QZV)NI/3 lies above
the blue line

y=a+ %(b—a)-i-mforall
x> (0 — k)N2/3. This forces
D ¢ —C (color figure online)

Eiv (2kN?/3 4 1) is at most a and [Z]lv (2RN?73 + 1) is at most b. Thus by stochastic
monotonicity we have

E%aP (W (S, v)1c) -1 E%b (C)

En;a;b (W(S, "l))) = 1ANB - ]En;a;b (W(S’_v)) . (319)

Iang - E(lc | F) < 1ang -

where S = (S(1), ..., S(n)) is distributed according to P4 the n-step random
bridge measure from a to b, and where W (S, v) := exp (—2 Zl”;zl e“’s(i)). The
event C should now be treated as being defined in terms of S as

C:{ sup S(p_kN2/3+l)+Q2vN1/SZ_a}
pe[QN?/3,(Mo+2Q)N?/3]

Note that

EBEh (W (S, v)) > exp (—2ne—ﬁ) P4t ($(i) > v+ /n forall i € [1,n])

> exp (—2ne7ﬁ) prab (S(i) —a— @ > —/nforalli € [I, n]]) .
(3.20)

where the last inequality follows by noting that S(i) —a — M’T_“) > —./n implies
S@i) > b — /n > v + 4/n. Since random bridges weakly converge to Brownian
bridges (see [83] and [56] for a quantitative version), using estimates for Brownian
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bridges, we see that the r.h.s. (3.20) is uniformly bounded below by some absolute
constant §. We now claim that for all large enough R

Dc—C, P"%’(D)>1-—¢gs, where D:= { sup <S(i) —a-— @) < «/Eﬁ} .
ie[l,n]
(3.21)

Note that (3.21) implies P":%:*(C) < &8. Plugging this back in (3.19) along with the
bound E%4:b (W (S, 7)) > 3, yields that r.h.s. (3.19) is at most ¢. This proves (3.18).

Let us now verify (3.21). Indeed, P™4:2(D) can be made arbitrarily close to 1 by
choosing R large enough (as random bridges weakly converge to Brownian bridges
[83]). We choose R so large that P"%:?(D) is at least 1 — 8. Let us now verify D ¢ —C
(see also Fig. 12 and its caption). For ¢ > Q we see that

a+ @RO=a) | JRn < (M — Q=k(IR%y 4+ My) + R3/2> N1/3

IA

(MO — 25 (LR + M) + R3/2) N1/3

IA

— (Mo + Q2v> N'/3

The penultimate inequality follows by observing that as Q = 275R, we have Q —
k>23R—-k) > 0. Finally the last inequality follows from (3.17). Thus for all
p= QN??,

2/3
x+ LENROZ0 | VR < MoN'/? — QPuN 113

Clearly this implies D C —C, completing the proof (3.21). O

3.2.1 Proof of Propositions 3.4 and 3.5
The proofs of Propositions 3.4 and 3.5 uses the following.
Lemma 3.7 (Uniform tightness) Recall Z}\i,“e(m), the point-to-(partial)line partition

function defined in (1.8). Fix ¢ € (0, 1). There exists Ky = Ko(e) > 0, such that for
all M > 0 and K > Ko we have

log Zline (M N2/3) 4 2w (9)N
liminfP | — Kk < 284N ) F2VON e k) a1
N—o0 N1/3

where v is defined in (3.13).

We remark that the above lemma was alluded in the introduction in the form of
(1.9).
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Proof We recall the notations introduced in Sect. 1.3.2. Fix any M > 0. Set k =
MN?*3and p := 1+ % Let 6. be the unique solution to ¥/ (4.) — p¥' (20 —6,.) = 0.
Set fo,, = —W(0.) — p¥Y (260 —6.) and 093’[) = %(—‘l’”(@c) — (20 —6,)) where ¥
is the digamma function defined in (1.4). A straightforward calculation (done at the
end of Appendix D) shows

(N —k)fo.p = —2NW(0) + M*N'3(W'6))*/¥”"0) + 0(1), and
00,/ (—W" (O "3 1, (3.22)
where O(1) terms depend on M, 6, but are bounded in N. When o = oy > 0, we

have that limy oo (N — k)30, ,(e2 + 6 — 6,:) = oo for each fixed M > 0. Thus by
Theorem 1.5 we get

log Zline(MN?/3) + 2w (0)N
(—N\I/”(Q))l/?’

d
+ M2 2 TWeug,

where TWgyg is the GUE Tracy-Widom distribution [97] and v is defined in (3.13).
Foroa = a1 = N_1/3;L, we have limy_, oo (N — k)1/3ag,p(a1 +60—-6)=y:=
0p.1(0 — MW/ (9)/¥"(0)). Another application of Theorem 1.5 yields

log Zline(MN?/3) + 2W(6)N
(=Nw"(6)'

+mMv Ly,

where U_, is the Baik-Ben Arous-Péché distribution [3] (see [31, (5.2)] for definition).

As M — o0, so does y — oo. Since U_,, % TWgug as y — oo (see [26, (2.36)]),
we thus get tightness uniformly in M. O

Proof of Proposition 3.4 Fix k > 0, ¢ € (0, 1). Since for any M > 0

sup Z(N + j, N — j) < Zhne(kN?/3),
jelkN2/3 (M, +2k)N2/3]

appealing to Lemma 3.7 with M +— k we see that

log Z(N i, N — ] 2W(O)N
IE”( “w 0g Z(N + j J)+2¥(0) n

NI k2v§M2>21—8,
JE[kN2/3 (M1 +2k)N2/3]
where M»> can be chosen to be any M > K, where Ko(¢) comes from Lemma 3.7.
Recalling that LiV(Zj +1) =logZ(N + j,N — j) +2W¥ ()N from (1.7), we get
(3.14).

The remainder of the proof is now devoted in proving (3.15). Towards this end,
set K| = %(Ml + 2k)2v. Choose M, large enough so that K| > Ko(¢/4) where K
comes from Lemma 3.7. Applying Lemma 3.7 with M — M; + 2k, K — K}, and
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& — &/4 we have

. (log Zire((My + 2k)N?3) + 2W(@O)N | > |
l}\glgoﬂ?( N3 < —5(M; +2k)v ] >1— e
(3.23)
Now we take K» = (w — k%)v —log2 > é—ltMlzv. We again choose M large

enough so that K» > Ko(¢/4). Then applying Lemma 3.7 with M +— k, K — K>,
and ¢ — ¢/4 we have

log Zline(kN2/3) + 2w (O)N
N1/3

N—o00

limianP’( > — (M +2k)%y +10g2) >1— e

(3.24)

By union bound the above two estimates implies for all large enough M we have

lim inf P (z}ivne(kzvm) > 2. Zline (M + 2k)N2/3)) >1—Le. (3.25)

N—o00

Letus temporarily set A = Z}{,ne (kN?/3)— Z}{,ne((Ml +2k)N?3and B = Z}\i,“e((Ml +
2k)N?/3. Observe that A + B > 2B implies 24 > A + B. Recall from (1.8) that

[(M1+2k)N?/37—1

2
A= Y Z(N+j.N—-j)<M+kN5  sup  Z(N+j N—j).
[kN2/3] je[[kN%,(MlJrzk)N%]]
We thus have

{Zhine(kN2/3) > 2 Zhne (M + 2k)N?/3))
- sup logZ(N + j, N — j) >10gZ}%,“e(kN%)—log(2(M1 —l—k)N%)}.
je[[kN%,(MHQk)N%}]
(3.26)
By Lemma 3.7, one can choose M large enough (but free of k) so that
lim inf P(log Zhine(kN?3) + 2w ()N + k*vN'/3
N—o00

> —MaN5 +log(M; + NS ) > 1 - fe.

Using this, in view of (3.26) and (3.25), and using E{V 2j+1)=1logZ(N+j,N —
J) +2W(O)N (see (1.7)) we arrive at (3.15). This proves Proposition 3.4. O
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Proof of Proposition 3.5 We use the same notations as from the proof of Proposition 3.4
and utilize (3.23) and (3.24) obtained there with k = 1. Set M = M/ 4 2. Combining
(3.23) and (3.24) implies

lim inf P (log Zine(N23) > LM2N'3y + log Z}iv“e(MNz/3)) >1- e
—00
As ZIi(MN?3) > Z(N + MN?/?; N — MN?/?), this leads to

lim inf P (log Zine(N?3) > LM2N'3y 4 log Z(N + MN?3 N — MN2/3))

N—o00

1
21—58

Again by Lemma 3.7, one can choose M large enough so that
lim ianP(log Zhire (NP < LMPN'By — 2\1/(9)1\7) >1— L,
N—o0

which forces

lim inf P (log Z(N + MN*3: N — MN*?) < 2N W (6) — %Mle/?’v) >1—¢
—00

By (1.7), LN 2MN?3 + 1) = log Z(N + MN?/3; N — MN?/3) — 2¥(9)N hence
(3.16) follows. O

3.3 Spatial properties of the lower curves

In this subsection, we study spatial properties of the lower curves of the HSLG line
ensemble. The main result of this section is the following.

Theorem 3.8 Fixany p € {1, 2}. Seta := «p, according to (3.11). Consider the HSLG
line ensemble from Definition 2.7 with parameters («, 0). Given any k, ¢ > 0, there
exist constants M = M(k, &) > 1 and Ny(k, &) > 1 such that for all N > Ny(k, €)
and v € {2, 3} we have

P sup  LN(s) = MN'3| <. (3.27)
se[1,kN2/3]

In plain words, Theorem 3.8 argues that with high probability on the domain
[1,kN 2/ 3ﬂ, the entire second curve and third curve lies below a threshold M N1/3.
The proof of Theorem 3.8 can be easily extended to include other lower indexed
curves as well. However, for the proofs of our main results, it suffices to consider the
first three curves.

Recall from Theorem 1.3 that the conditional laws of the #HSLG line ensemble
are given by #HSLG Gibbs measures introduced in Definition 1.2. The key technical
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ingredient in proving Theorem 3.8 is the tightness of left boundary points of the first
two curves under the bottom-free measure defined in Definition 2.4.

Proposition 3.9 Fix any p € {1, 2}. Set a := a according to (3.11). Fix any r > 1
and e > 0. Set T = |rN?/3|. Define
1 (e ifp=1,
A VIR (G0) l.fp (3.28)
1 if p=2.

There exists M = M () > 0 and No(e) > 0 such that for all N > No we have
Pg(i;fAﬁ),(fOO)T;Z,T(|Ll(1)| + L (2)| > Mﬁ) <e. (3.29)
Pg,p(—oo)";z,T

where the law is defined in Definition 2.4. Furthremore, there exists
M = M(¢e) > 0 and No(e) > 0 such that for all N > Ny we have

Pg,](—oo)T;I,T(|L1(1)| > Mﬁ) <e. (3.30)

As we shall see in the next section, the proof of the above lemma can be extended
to include L, (1) instead of L, (2). For technical reasons we work with L, (2) here.

As mentioned in the introduction, the proof of Proposition 3.9 relies on several
ingredients related to non-intersecting random walks. We postpone its proof to Sect. 4.
We now complete the proof of Theorem 3.8 assuming Proposition 3.9.

Proof of Theorem 3.8 We prove the v = 2 case and then use it to show the v = 3 case.
Part I: v = 2 case. For clarity we divide the proof into two steps.
Step 1. Recall that the points in the line ensemble satisfy certain high probability
ordering due to Theorem 3.1. In particular, if we know the even points on EQ’ are not
too high, Theorem 3.1 will force that with high probability the odd points are not too
high as well. Thus it suffices to control the even points on Lév . In this step, we flesh
out the details of the above idea. The proof of control on even points on Eév appears
in the second step of the proof.

We begin by defining a few events that will appear in the rest of the proof. Fix
k,e > 0.Foranyr € [1, kN2/3]] N 27, define

A(r, M) =LY () = MN'PY, For, M) = (LY (r — 1) = 3N
Define

B(r.M):=A(r.M)N [ —AGs. M),
se[r+2,kN?/3]N2Z

so that (B(r, M)),<[1 xn2/3] forms a disjoint collections of events. Note that

| | 8.y = | J AC, M):{ sup L:Q’(r)zMNW}.

2/3
relLAN2A]MZ  re[1kN23])2Z re[1.kN?]n2z
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In the above equation, we use LI instead of U to stress on the fact that it is an union
of disjoint events. Thus the above union demands at least one of the even points in
[1, kN3] of £Y to exceed M N'/3. We next define

Gty = | | Be.M)NF@. M), G (M):= | | B, M) N —F(r, M).
re[1,kN23]n2z re[1,kN2/3]n2z

Finally set G(M) := G (M) LI G~ (M). Observe that the event

-~G(M) = sup LY (s) < MN'/3
se[1,kN2/3]N2zZ

controls the supremum of the second curve over the even points. Take 0 < k’ < k. By
the union bound we get that

IP’( sup LY (s) > 3MN§) < P(G2M))
se[1 KN

+IP>< sup £§(s)23MN§,—-G(2M)>. (3.31)
se1,k'N?3]
SE€QZA1)

Note that on —G(2M) the supremum of Eév (s) over all s € [1,kN?/3] is at most
2MN'/3. Then by the ordering of the line ensemble (Theorem 3.1) on —=G(2M) it is
exponentially unlikely that any odd point within [1, K’ N2/3] will exceed 2M N'/3 +
(logN Y7/6 In particular the second term in r.h.s. (3.31) can be made smaller than %
by choosing N large enough and taking M > 1. For the first term we claim that there
exists My, No depending on k, € such that for all N > Ny and M > M, we have

P(G2M)) < 5. (3.32)

Clearly plugging this bound back in r.h.s. (3.31) proves (3.27) with M +— 3M and
k" + k. For the remainder of the proof we focus on proving (3.32).

Step 2. In this step we prove (3.32). Observe that from the definition of G~ (2M) we
have

P(G™(2M)) < P(Liv(r — 1) = LY = —2 N3 for some r € [1, kN3] 0 ZZ).

However by Theorem 3.1 the right-hand side of the above equation can be made smaller
that § for all N > Ng and M > 1, by choosing Ny := No(k, &) > 0 appropriately.
We next claim that

P(GT(2M)) < 2P(A(2, M)) < (3.33)

£
7
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As G2M) = G~ (2M) U GT(2M), in view of the above claim, (3.32) follows via a
union bound.
Let us now prove (3.33). Observe that by definition of G (2M) we have

P(AQ2, M)) = P(GT(2M) N A2, M))

= > P(B(r,2M) NF(r, 2M) N A2, M)). (3.34)
re1,kN2/3]n2z

We focus on each of the terms in the above sum. Using the tower property we have

P(B(r, 2M) NF(r,2M) N A2, M))

=E [1B(r,2M)ﬂF(r,2M)E (1A(2,M) lo (LY, £y [r — 1, kN*], LY [r, kN2/3ﬂ)>] .
(3.35)

Using the Gibbs property (see Theorem 1.3 and Lemma 2.2a) we have almost surely
that

1s¢ 2m)nF(r 2 E (lA(z,M) Lo (LY, £y [r — 1,kN*], LY [r, kN2/3ﬂ))
= ¢ 2k 2 PL 2 (La(2) > MN'P) (3.36)
> lB(r,ZM)ﬂF(r,ZM)Pg}l;(ioo)r;z’r/z(L2(2) > MN'/3),

where 5 = (LY (- — 1), £Y (1), 7 = (LY @u))!2, and @ := U N1/3, 3M Ny1/3

A\/r/2) (A > 1is defined in (3.28)). The last inequality above follows by stochastic
monotonicity (Proposition 2.6). We now briefly explain how stochastic monotonicity
works here. Note that the event {L>(2) > MN1/3} is decreasing thus by stochastic
monotonicity to achieve a lower bound, we can reduce the boundary Z to (—o0)”.
Furthermore, on B(r, 2M)NF(r, 2M), we may reduce y to w as y; > w; on B(r, 2M)N
F(r,2M).

Note that MN'/3 > M k_%\/m. By translation invariance (Lemma 2.1a) and
Proposition 3.9, we may choose M (k, €) large enough so that for all M > M, and
r € [1,kN?3] N 2Z we have

By 2R (1o2) > MNP = BT 1y 0) > N1 =

| —

Inserting the above bound in (3.36) and then going back to (3.35) we get

rhs. (3.35) > $P(B(r, 2M) N F(r, 2M)).
Recall that B(r,2M) N F(r,2M) are all disjoint events whose union over r €
[1,kN?/3] N 27Z is given by GT(2M). Summing the above inequality over r €
[1,kN?/3] N 2Z, in view of (3.34), we thus arrive at P(A(2, M)) > 1P(GT(2M)).
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This proves the first inequality in (3.33). For the second one observe that by union
bound

PAQ, M) < P(LY(3) — £ @) < —=N'P) +P(LY (3) = (M — DN'7).

By Theorem 3.1 the first term on the right-hand side of the above equation can be
made arbitrarily small by choosing N large enough. As for the second term, recall
the point-to-line partition function Z}\i,“e() from (1.8). From Theorem 1.5 we know
N~13[log Zne(1) + 2w (9) N is tight. Since L) (3) < log ZiMe(1) 4+ 2W(O)N (see
(1.7)), one can make the second term arbitrarily small enough by choosing M, N large
enough. This completes the proof of (3.33).

Part II: v = 3 case. Fix k > 0. Let us define

E::{ sup Lg"(s)zMN‘/S}, F:={ sup £§’(s)z%MNl/3}.
se[1.kN2/3] se[1kN?3]

By repeated application of the union bound we have
P(E) < P(F) + P(EN —=F)
< P(F) + P(ﬁgv(s) — LY (s) < —AMN'7, for some s € [1, kN2/3]])

<PE+ Y P(LY ) — LY () = —3MN'/). (3.37)
[1.kN2/3]

By Theorem 3.1, there exists an absolute constant Ny such that for all s > 1, and
M > 1,wehaveP (LY (s) — LY (s) < =3 MN'/3) < 27N _Since we have established
v = 2 case of Theorem 3.8, we may directed use (3.27) withv > 2, M +— %M and
£ %5, to get that P(F) < %8 for all large enough N, M. Thus for all N, M large
enough we have (3.37) < %8 + kN2/32"N <¢. O

Theorem 3.8 and Proposition 3.9 can be used to deduce left boundary tightness for
the #S5LG line ensemble. We shall refer to this property as endpoint tightness.

Theorem 3.10 (Endpoint tightness) Fix any p € {1,2}. Set a := o, according to
(3.11). Recall the HSLG line ensemble from Definition 2.7 with parameters (o, 0).
The sequences {N_1/3£iv(1)}N21 and {N_l/?’EéV(Z)}NZ] are tight.

Again the proof can be extended to include tightness of N ~1/3 /39’ (1) as well, once
we have the corresponding version in Proposition 3.9. We again refrain from doing so,
as it is inconsequential to the proofs of our main theorem. We refer to the discussion
in the introduction (Remark 1.6) about how Theorem 3.10 relates to the work of [76].

Proof of Theorem 3.10 Fix an & > 0. We shall show that for all large enough N, M we
have

P(LY (1) < MN'3) > 1 -3¢, P(LY(2) < —MN'/3) < 3e. (3.38)
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In view of the ordering of points in the line ensemble (Theorem 3.1), we know E{V e
Eév (2) — (log N)7/6 with probability at least 1 — 2=V, This along with the above
equation ensures endpoint tightness. We thus focus on proving (3.38).

Proof of the first inequality in (3.38). Recall the point-to-line partition function
Zline(.) from (1.8). From Theorem 1.5, we know N~1/3(log Zli"(1) + 2W(9)N) is
tight. Since L) (3) < log Zlin®(1) +-2W(0) N, there exists M (¢) > 0 such that for all

N > 3 we have IP’(EiV 3) < M1N1/3) > 1 — ¢&. Thanks to Theorem 3.1, there exists
Mj(e) > Mi(e) such that forall N > 3

PA)>1—2¢, A:= {,cf’(3) <M N3, sup LY(j) < M2N1/3}.
Jje[1.4]

Define F := o ((LY (j)) >3, (LN[1,2N — 2i + 2]);>>). By the union bound and
tower property of the conditional expectation, for any M3 > 0 we have

PLY () 2 MoN' 4 M3) = 26 + B [WE[Leyq i s, | 7]

Using Theorem 1.3 we have

LN 3).(LY 2).LY @);1,2
E[Ly )= atynissny | Fl = Pay S (Li(1) = MoN'3 + M3)

Onevent A, the boundary data are at most M, N /3. By stochastic monotonicity (Propo-
sition 2.6) and translation invariance of the Gibbs measure (Lemma 2.1a) we have

£V 3, @),y @);1,2 .
1 - Byt D OE 2 ) N8 ) < 14 BE OO L (1) = ).

The last probability can be made less than ¢ by taking M3 large enough. Thus setting
My = My(e) := M3 + M, we see that for all N > 3, the first inequality in (3.38)
holds with M = M,.

Proof of the second inequality in (3.38). We start by defining two high probability
events By and B;. The idea is to then show IP’({C%V (2) < —MNY3)}nBi N Bz) can be
made arbitrarily small by choosing N, M large enough.

We shall use Theorem 3.3 (high point on the second curve) with k + 1. Consider
Ry = Ro(1, &) > 0 from Theorem 3.3. Set R = max{Ry, 1}. By Theorem 3.3 with
k — 1, there exists M5(e) > 0 such that for all large enough N

PBN=1-e Bi:=  [J B, Bi@ ={£C29 = -MsN'"}.
q€[N?/3,RN?/3]

We write the set B; as a union of disjoint sets as follows:

Cil@):=Bi@n () B, G:= || C@=8.

selq+1,RN%/3] ge[N?/3,RN?3]
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By Theorem 3.1, for large enough N we have

P®y) >1-¢ By:i= ]  Bag)
q€[[N2/3,RN2/3]]

Ba(q) == (£ (2) — L1 (2 — 1) < N'/*}.

Set 7y = o ((LY(j — D, LY (j))jz29. (CN[1,2N — 2i + 2]);>3). Observe that
B2(g) N Ci(g) is measurable with respect to ;. Note that for any Mg > 0 we have

]P’( {EQ’(Z) < —M6N1/3] NB N Bz>

< > p({zgv(z)s—MﬁNW}mc1<mez(p)>
qe[N2/3,RN2/3]]

= Z E [le(qul(q)E [1£§(2)§7M6N1/3 | ]:q]] : (3.39)
q€[N?3,RN?/3]

By the Gibbs property (Theorem 1.3) we have

Lg,()nCi(g) - E [%;v(z)f_MﬁNl/s | fq]

Ly @q—1),LY @, (LY @int_ ;2.4 1
= 1g,()nCi(q) - Par,’ ’ PUTENTN(L(2) < —MN3)

= 1g,(9)nCi(9) ‘Pglypl’m'(_oo)q;z’q(L2(2) < —MgN'/?),

where y; = —(Ms 4+ )N'/3, y, = —M5N'/3. The last inequality follows due to
stochastic monotonicity (Proposition 2.6) as on the event By(¢) N Ci(g) we have
Lév(2q) > —Ms5N'/3 and LiV(Zq — 1) > —(M5 + 1)N''/3. By translation invariance
(Lemma 2.1a) and stochastic monotonicity (Proposition 2.6) we have

—MeN') = By~ NPT 1,0
(Ms +1—Mo)N'") < e,

IA

HD((X);I ,¥2),(=00)4:2,9 (La2(2)

IA

where the last inequality is uniform over ¢ € [N 2/3 RN?/ 3]] and follows from Propo-
sition 3.9 by taking M large enough (A > 1 is defined in (3.28)). Plugging the above
bound back in (3.39), and noting that (B2(q)) q€e[N2/3,RN/3] forms a disjoint collection
of events we have that (3.39) < e. Using the fact that P(—B;) < ¢ fori = 1,2, an
application of the union bound yields the second inequality in (3.38) with M = M.
O
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Fig. 13 The above figure depicts
the event RPy s under the law

3 (—oo)2T -
IEDZ\);,2( 00)~";2,2T

2M N3

—MN/3

—(M +1)N/3

g g g Sy Sy S A

N}
S
S
N

4 Properties of the first two curves of Gibbs measures with no bottom
curve

In this section, we prove Proposition 3.9 that asserts endpoint tightness of bottom-
free measures defined in Definition 2.4. Along with Proposition 3.9, we also study
probabilities of a certain event which we call region pass event under the bottom-free
measure.

Proposition 4.1 Fixanyr, M > Oand p € {1,2}. Set T = |[rN*/3|. We set « = ap
according to (3.11). Recall the bottom-free measure from Definition 2.4. Let y € RP
with yi = —(M +i — 1)N'/3. There exists ¢ = ¢ (r, M) > 0 and No(r, M) > 0 such
that for all N > Ny we have

P02 RP, 4y > g, @.1)

where the region pass event is defined as

RP, v = inf L,(j)=2MN'3¢. (4.2)
jel1,27+p-2]

The event RP, js requires the first 27 + p — 2 points of the p-th curve to lie above
2M N'/3. Although this is a low probability event, Proposition 4.1 says that this event
always has positive probability (independent of N) under the bottom-free measure.
(see Fig. 13 for p = 2 case).

Recall from (3.11) that oy and a» are the boundary parameters corresponding to
critical and supercritical phases respectively. Depending on the phase being critical
or supercritical, the arguments for proving Proposition 3.9 and Proposition 4.1 are
markedly different. We first give interpretation of the bottom-free laws under the two
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phases in Sect. 4.1. In Sects. 4.2 and 4.3, we provide proofs of the aforementioned
lemmas for critical and supercritical phases respectively.

In the critical phase, the left boundary attraction between the first two curves is
weak as o = O(N~1/3)—it is the soft-intersection that only comes into the effect.
The analysis of the Gibbs measures in this case is similar to the one done in studying
full-space line ensembles and relies on KMT coupling type results. In the supercritical
phase, we have o = O (1) and the soft-intersection and attraction acts as two opposite
forces: one tries to repel the curves and another tries to attract. This situation has
asymptotically zero probability. The KMT coupling is no longer suitable to analyze
events under this setting. This makes the argument for the supercritical phase more
involved.

Letus first introduce a piece of notation that we will use frequently for the remainder
of the paper. Consider any probability measure P* on R/*7! equipped with Borel o -
algebra on R where Kk, 1 is defined in (2.4). For w € RI«71| we denote the
coordinate functions as L; (j)(w) := w;(j) for (i, j) € Kk 7. We will simply write
(Li(j)) . jyekyr ~ P* for the random variables (L;(j)), j)ek,  under the measure
Pe.

4.1 The bottom-free laws under critical and supercritical phase

In this section, we provide two alternative (and ultimately equivalent) representations
of the bottom-free laws defined in Definition 2.4. The first representation, provided
in Lemma 4.3, is most suitable for studying the critical phase while the second rep-
resentation, provided in Lemma 4.4 (see also Definition 1.7 and the discussion in the
introduction), is most suitable for studying the supercritical phase.

We begin with the following lemma where we mention how the bottom-free measure
on the domain Ky 7 (see (2.4)) with boundary condition y is well-defined under certain
cases.

Lemma 4.2 (Well-definedness of bottom-free measures) Take y € R¥. Fork > 1 and
v (— T
o € (—0,0), flgT( o) (u) (see (2.5)) is proportional to

—1iz k 2T—1-1;—;
1_[ W(Mi+l,2j3”i,2j+l’”i,2j—1)H 1_[ Gop(—nyiti—la,(—1yi+1 Wi j = Ui jy1)-
1 j=1 =1 j=1

4.3)

o

k
i

S (— T
where W and G are defined in (2.1) and (2.2). Furthermore, fz‘T( o) (u) is propor-
tional to

exp (—e">27"3) Gy 1 (u22 — u1,1)Go,1 (1,1 — u1,2)Gayo,1 (2,1 — U2.2)
-1 2 2T—1-1,_

[T Waazjiuizjmwoi- 0[] 1 Gooryin (i — uijy).

j=2 =1 j=2

“4.4)

Moreover, the above two densities are integrable.
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Fig. 14 Redistribution of edge weights for « € (—6,6) (A) and for « > 0 and k even (B). The weights

of green, yellow (dashed), and purple edges are ¢@ ¥ —e* g@x—¢" and e®ta)x—e’ respectively. The

weights of black, blue edges are defined in (1.5). (A) can be derived from Fig. 3 by observing the equality
(as weight functions) in (C). The red circle around vertex v signifies a vertex weight of the form ¢**. The
red vertex weight on the right boundary can be absorbed in the constant of proportionality of the Gibbs
measure. B Can be derived from Fig. 3 by observing the equality (as weight functions) in (D) (color figure
online)

Proof Recall the definition of the #$5LG Gibbs measure from (2.5) and the corre-
sponding graphical representation from Fig. 3. Note that the red colored edges comes
with a weight of the form exp(—a (u2;—1,1 — u2;,1)) which can be written as a prod-
uct e~ *#2i-11 . ¢@2i1 Thus we will think of each red edge as two red rings on the
endpoints of the edges that comes with the (vertex) weight e(~D'®%i.1 (see Fig. 14C).
Upon doing this vertex weight identification, the case k = 1 and T = 3 corresponds
to the top graph of Fig. 14C. One can check that the weights corresponding two graphs
in Fig. 14C are equal. The red vertex weight on the right boundary of Fig. 14C can
be absorbed in the constant of proportionality of the Gibbs measure. Thus ignoring
this weight, the remaining weight is precisely given by the expression in (4.3). The
general k odd case follows by redistributing the weights according to Fig. 14A. For
the case when k is even and o > 0, we redistribute according to Fig. 14B. This leads
to the k = 2 density given in (4.4). One can compute also the explicit density for the
general even case from Fig. 14B. Since 0 < W < 1 and Gs are densities, it is clear
that the expressions in (4.3) and (4.4) are integrable. m]

This redistribution described in Fig. 14 will allows us to view the bottom free laws as
laws which are absolutely continuous with respect to random walks. We give two such
representations which will be useful in our critical and supercritical phase analysis.
Towards this end, we introduce &-distributions. Given 0;,6, > 0 and a,b € R, we
consider the following two probability density functions

£ () X Ggy 11(@ — X)Goy 41 (b — ). 4.5)
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T T e e NG BN

0 —c0):1, b b
(a) Py oo (B) &)1 and &)

(c) P&yuyz).(—oo)3;2,3
1
—oo)d
Fig. 15 Figures (A) and (B) are graphical representations of the probability distributions ]pgtll’( 00)*:1,4
and 59(;1:32) 4 respectively. We use the representation from Fig. 14A here. The black edge labeled as 6; in

P(}ils}'2)~,(—00)4;2,4

bix—=¢* C shows the decomposition of Py

B represents that the edge carries a weight of e

into PO1:72) (middle figure) and W, (right figure). The marginal law of the gray (blue resp.) shaded region
is a random walk started at y; (y resp.) with increment Gg4o,—1 * Go—ay,+1 (Go+ay,+1 * Go—ay,—1
resp.) (color figure online)

The graphical representation of the above two distributions are given in Fig. 15B.

Lemma 4.3 (Critical phase representation) Conszder an independent collection of ran-

dom variables Y; (j) I "Gota,,1 and Ul(j) i "Beta(6 — oy, 2a1) fori = 1,2 and
J € Z>1. Define

Vi(j) :=Yi(2)) +1og Ui (2)) — E[log Ui 2))] — Yi(2j — D). (4.6)

so that V;(j) form an i.i.d. collection of mean zero random variables. Set L; (2T +
i —2)=y;andfork € [1,T — 1] define

-1
Li@T +i =2k =2) = (i + (=)' (k= DE[log Ur(D]) + (=1)*! kZ Vi(j),
= 4.7)
and set
T-1
Wer 1= exp (_ (eLz(Zk)—Ll(Zk—l) + eL2(2k)—L1(2k+l)>> ’ (4.8)
k=1

where ‘cr’ stands for critical. Conditioned on (Li(2j +1i —2));ic(1,2), je[1,7]> We Set

LiQk +i— 1) ~ gl 2tr 2D fori e 1,2), ke [1,7 — 1]

and Ly(1) = X + Ly (2) where X ~ Ggyq,,1. We have

(a) (L1(J)q,jek, ; is distributed as ]P’y]’( o)’
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(b) Let ﬁ(yl,)Q) denotes the joint law of {(L;(j)),jeKks 7} This law has graphical

) _ T.
representation given by the middle figure in Fig. 15C. The law ]P;l(xylmz)»( o) iz T
is absolutely continuous with respect to F(yl ) with
dP‘(ny.,szfoo)S;z,T
< Wer.

d@(yl ,¥2)

Proof Letus consider (L1(j))q, jyek; + ~ lel’(_oo)r;lj. See Fig. 15A for the graphi-
cal representation of the law. We focus on the odd points (shaded inside the gray box in
the figure). Note that (L1 (27 — 1 — 2k)),{;01 is arandom walk startingat L1 (27 —1) =
y1 with increments distributed as Gg44,.1 * Gg—q,,—1. Conditioned on the odd points,

we have L (2k) ~ &52 2 L) gince vy ; + Ellog Uy 1] ~ Goat * Go—a,-1.
Part (a) of the lemma follows.

: T
Let us now consider the ]P’(%I 27052 T 1w whose graphical representation is
given in Fig. 15C. We view the graph as superimposition of two graphs where in one
graph we collect all the non-black edges and the other graph we include only the black

edges (see Fig. 15C). We denote the law of the Gibbs measure formed by deleting the

black edges as ﬂf”/(\” 22) (middle figure in Fig. 15C). The law P3 P T2T o e
recovered from P12 by viewing the black edges as a Radon-Nikodym derivative.
Note that W, defined in (4.8), precisely contains all the effect of the black edges in
the Gibbs measure.

If (Li(G) . jpekar ~ @(>’1’y2), we have Li(-) independent of L,(-) and L is

_ T M . . . . .
distributed as IE”Z,Il (=m0 LT L, has asimilar representation with even points (L, (2T —
2k)),{:_01 forming arandom walk starting at y, with increments distributed as G4, —1*
(LK), LQA+2)) g

Gp—q.1- Conditioned on the even points, we have Lo (2k 4+ 1) ~ ég_al bron:—1

Ly(1) ~ Ggiay,1 + L2(2). Since — V3, j — E[logUy,1] ~ Ggia,—1 * Gg—q,1, WE s€€

that PO1-32) is equal to the law P defined in Part (b) of the lemma. This completes
the proof of Part (b). m]

In the supercritical phase, the weighted paired random walk (WPRW) measure

(recall this and the PRW measure from Definition 1.7) provides a useful way to describe

b T.
(= 2,7
the measure ]P’;ﬁz( ) .

Lemma 4.4 (Supercritical phase representation) Fix any y € R?> and T € L.
Suppose (L1(2j — 1), La(2j))jef1,r-1] ~ Py Conditioned on (Li(2i —
D), La(2i))jeq1,7—1] set L2(1) ~ X + L2(2) where X ~ Gay+9,1 and

L1(2k) ~ g5 PR p ) 0k 1) ~ 20020 for ke 1, T - 1],

v (— T.
Then (Li(}))(. jyeicy ; is distributed as Py, T
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1 . * oo
~ Y2 =| ¢ /"\/" b2

law is decomposed into two parts. We use the representation from Fig. 14B
here. The first part (middle figure) shaded region corresponds to a paired random walk. The second part
(right figure) corresponds to Wy (color figure online)

IO, _ 3.
Fig. 16 PY12) (7007523

Proof We use the alternative graph representation of Pg;’z“"")T;z’T law from Fig. 14B.
We decompose this graph into two graphs: one without the black edges (middle figure
of Fig. 16, and one with the black edges, (right figure of Fig. 16. However, unlike the
critical phase, the Gibbs measure corresponding to the middle figure does not split
into two independent parts because of the yellow (dashed) edge. For this measure, the
marginal law of the odd points of the first curve and even points of the second curve
together form the paired random walk. Upon taking the black edges into consideration
(which corresponds to the Wy, weight), the odd points of the first curve and even points
of the second curve jointly follow the WPRW law. O

4.2 Proof of Propositions 3.9 and 4.1 in the critical phase

We continue with the notations from Lemma 4.3. By the KMT coupling for random
walks [81], we may find independent Brownian motions By, B, defined on the same
probability space such that the following holds. There exists a constant C > 0 depend-
ing only on 6 and p such that for all 7 large enough,

k
F k?ra‘fz';‘/i(j)_“&(kﬂZClogT <1/T. (4.9)
J:

Vi (1) defined in (4.6) and o2 := Var(V;(1)). Recall that in the critical phase we have
oy = N"13pu. Setk := %|M|\P’(%9) > 0. As W' is a decreasing nonnegative function
on [0, 00), for large enough N

|Eflog U1 (D] = [W(0 — a1) — WO +a1)| < 2len|W'(360) = N3 (4.10)
Propositions 3.9 and 4.1 can now be proven using the above coupling and estimate for

[Ellog Ui (D]].
Proof of Proposition 3.9 in the case p = 1 (critical phase). Fix ¢ € (0, 1). Set

i = IP’( sup Bj(x) < 4) = IP’( sup Bj(x) < é) > 0,
x€[0,T] x€[0,1]

B2 := inf exp (—2(n — l)e*%ﬁ) > 0.
neN
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Set T := [rN%/3]. Continuing with the notations from Lemma 4.3, let us assume

) —(0,—AT)
(Li(N . jekor ~ P :

Observe that [(T — DE[logU;(1)]| < ﬁxﬁ Following the relation in (4.7) and
the estimate in (4.9) we get that

—(0,—AVT)

P <L1(2k—1)z—gﬁ—ﬁxﬁ—cmgnorauke [1,7], and

Ly(2k) < —AVT + IVT + /rkv/T + Clog T forall k € [1, T]]) >p7— 2.

Recall that A = 1 + 2/rk from (3.28). Thus for large enough T we can ensure that
(—%ﬁ—ﬁkﬁ—ClogT)— (—Aﬁ-}—%ﬁ—{-«/;/(ﬁ—FClogT) > VT,
and ,312 — % > % /3%. Thus for large enough 7' we have

pO-4vD (L1(2k — ) ALk +1) = Ly(2k) + VT, forallk € [1,T — 11]) > 1p2.

Following the definition of W, from (4.8) we thus get

—(0,—AVT)

E [Werl > 187 - exp (= 2(T — 1)6—%~/T) > 1828,

By Lemma 4.3, this forces

E(O’_Aﬁ)[w 1 ]
P&?,—Aﬁ),(—oo)T;Z,T(|L2(2)| > MJT) = — Ajf)le(z)lZMﬁ
E™ [Werl
2,1 =0,—AVT
<2728 B (1L22)| = MVT).
nder P , Lo as variance T - Var(V) and mean — + —
Under POV, 1,2) h T - Var(V;(1)) and AVT + (T

1)E[log Uy (1)]. One can thus choose M large enough so that the last term in the
above equation is at most €. Similarly one can show ]P,gg,—Aﬁ),(—oo)T;Z,T (|L1 (D] >
MNT ) < ¢ for all large enough M. This proves (3.29) for p =~1. For (3.30), observe
that by Lemma 4.3a and the Markov inequality one can take M large enough so that
have

—oo)T - ~
PO LT (1L (1)) = MVT)

< 7 (T - Var(Vi(1)) + ((T = DE[log U1 (D])?) < e.
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Proof of Proposition 4.1 in the case p = 1 (critical case). We continue with the same
notations as in Lemma 4.3 with T+ 2T. Set T := [rN?/3]. Consider the collection

of random variables (L; (j)), j)ek, ,r defined in (4.7) with y; = —MN%. By Lemma
4.3a, we get that

. —MNY3: (—c0)2T:1,2T
(L1, jrekiar ~ Py, oo ’

We may assume V| (j) are defined in a probability space that includes a Brownian
motion B (-) such that (4.9) holds. Recall that given a standard Brownian motion B
and an opensetYd C C ([0, 1]) with {f : f(0) = 0} C U, we have P(B|jo,1] € &) > 0.
Thus by the scale invariance of Brownian motion, there exists ¢ (6, w, r, M) > 0 such
that

IE”(O < oB1(x) — (16M + 5kr)N'/3 < MN'/ forall x e [%, 2T]) > 26.

Herex = +u|W'(36) > 0.Nowfory = —MN5 wehave |y+(k—DE[log Uy (D)]] <

M + /cr)N% for all k < 2T. For large enough N we also have Clog2T < MN/3
where C comes from (4.9). Thus in view of (4.7) and (4.9) we have

P, ((14M Fder)N3 < Ly(4T — 1 — 2k)
@.11)
< (19M + 6kr)N5 forall k € [£,21 — 1]]) > 2¢ — 5,

1
3 (— 2T.
MN3,(=00)" 12T o us set

where for simplicity we write P; := Py,
1 1
A= {(14M+4/<r)N§ < L{(4T — 1 —2k) < (19M + 6kr)N 3 forall k € [[g,ZT — 1]} s
1
B(k) := {|L1(2k — 1) = LK), |1L1 2k + 1) — L1 (2k)| = 2(5M + 2kr)N 3 } }

Recall the event RP s from (4.2). Observe that

RPLyDAN () Bk
ke1,3T/2—1]

Thus by applying the union bound we get

P (RP1 i) > P (A n N B(k)) >PiA- Y, B (A N ﬂB(k>>
ke[[1,3T/2—1] ke[1,3T/2—1]
(4.12)

Let us denote Foqq := o ((L1(2k — 1))77,). Note that the event A is measurable with
respect to Foqq. On the event A, |L1(2k + 1) — L1(2k — 1)| < (O5M + 2/<r)N% for
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all k € [1,37 /2 — 1]. Recall that the distribution of even points of L; conditioned
on Foqq are given by the &-distributions (see (4.5) and Lemma 4.3). Applying the tail
bound for the &-distribution from Lemma B.4 we have

1AE; (1-8k) | Fodda) < 1a - exp (—C(SM + 2/<r)N-%) ,

forall k € [1,37T /2 — 1]. Taking another expectation with respect to Foqq above and
then plugging the bound back in (4.12), along with the lower bound of PP (A) from
(4.11) we get that

P(RPy31) = 2¢ — & — 3rN 7 exp ( C(5M + 2/<r)N%) .
For large enough N, the right side of above equation is always larger than ¢. O

4.3 Proof of Propositions 3.9 and 4.1 in the supercritical phase

. . (—00)T:2,T .
Recall that Lemma 4.4 establishes that the law of P, is related to the law
of weighted paired random walk (WPRW) defined in Definition 1.7. We will start by
developing a few important properties of the paired random walk and weighted paired
random walk measures before going into the proof of Propositions 3.9 and 4.1 in the
p = 2 case (supercritical phase).

Lemma 4.5 (Properties of the increments) The densities fy and 9 defined in (2.3),
enjoy the following properties.

(1) The density fy is symmetric and log fy is concave.

(2) Let  denote the characteristic function corresponding to fy. || is integrable.
Given any § > 0, there exists n such that sup,~.5 |Y ()| =n < 1.

(3) Foranya < b, inf y¢[q,p) fo(x) > 0 and infxe[;,b] g; (x) > 0.

(4) There exists a constant C > 0 such that fy(x) < Ce=¥/C and g, (x) < Ce IXI/C,
In particular, this implies that if X ~ fg and Y ~ g, there exists v > 0 such that
and

sup [E[e'*] + E[e'"]] < oo.

[t|<v

In other words X and Y are subexponential random variables.

Proof Recall that fg = Gy 41 * Gg —1. Thus the random variable corresponding to fy
can be viewed as difference of two independent random variables drawn from Gy 4.
Hence symmetricity claim of part (1) follows. Concavity of log fy can be checked by
computing the second derivative explicitly. For the characteristic function from [48,
Formula 5.8.3] one has

INCESHIE
r'®)

o) —1 tz —1
H( (9+n)2) 5<1+9—2> ) (4.13)

V() = ‘
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From here, one can verify part (2) of the above lemma. Part (3) and (4) follows from
the explicit form of the G function. O

The following corollary allows us to use estimates developed in Appendix C regard-
ing non-intersection probabilities for random walks and bridges with general jump
distributions.

Corollary 4.6 The density fy defined in (2.3) satisfies Assumption C.1.

Proof This follows immediately from Lemma 4.5. O

Recall the PRW law from Definition 1.7. Let f; " be the density of w

i d — 1
' fe(n ). Note that for

where X (i) are i.i.d. drawn from fy. Assume U (n), V (n) "
any Borel set A C R? and x, y € R we have

Ppis” ((S1(1), $2(1)) € A)
E[g; (ﬁ(V(n) - U(l’l) — %))I(U(n)er,V(n)+y)en‘1/2A]
- Elg; (Va(V(n) = Un) = *72))]

(4.14)

The above formula is the guiding principle for extracting tail estimates of various kinds
of functions of (S1(1), S>(1)). We list few of them that are indispensable for our later
analysis.

Lemma 4.7 (Tail estimates for the entrance law) Fix any M > 0, n > 1, and consider
Xn, Yn € R with |x,|, |ynl < M/n. Fix two open intervals 1y, I, > 0. Under the
above setup, there exists a constant C = C(M, Iy, Iy) > 1 such that for alln > 1 and
T > 1, we have

PG (15)(1)] > To/n) < Ce™TF, (4.15)
PRSI (181 (1) — Sa(1)] = 7) < Ce™ ¢, (4.16)
Phiaw ™ (S1(1) — $2(1) € I, $1(1) € Vb)) = L. (4.17)

Proof of Lemma 4.7 For simplicity let us write z,, := % It is enough to prove the

Lemma 4.7 for large enough n. So, throughout the proof we will assume # is large
enough. We first claim that the denominator of the right-hand side of (4.14) is of the
order n=!/2, i.e. there exists a C > 1 such that for all large enough n we have

1
Cy/n

< Elg, (Wn(V(n) = U(n) — z,))] < (4.18)

Slo

@ Springer



G. Barraquand et al.

Fix any 7 > 0. Using the exponential tails of g, (part (4) from Lemma 4.5) we have

E[gq(ﬁl(v(") —Um— Zn))IW(V(n)fU(n)fzn)\zr]
= E[gc(ﬁ(v(”) —Um - Zn))IW(vm)—U(n)—zn)\zr+ﬁ]

+ D E[gc(ﬁ("(")—U(”)—Zn))lw(Wn)—U(n)—zn)le[p,p+11]

pelr,t+/n]
< Ce_%(ﬁ"’_r) —+ Z Ce_%p
pelr,t+/n]
B(Le < V)~ Um) =zl < 20).

(4.19)

Note that 6(’1) (x) = /nf}" (x/n) where f;" denotes the n-fold convolution of fg. As
n — oo, we know by central limit theorem that this should converge to a Gaussian
density with appropriate variance. Lemma C.2 (recall Corollary 4.6) records a sharp
quantitative version of this convergence. Indeed, the estimate from Lemma C.2 (recall

Corollary 4.6) ensures that given any interval B := [ \% L H

enough n, we have
P((V(n) = U(n) = z4) € B) = (1 + 0(1)P(Z1 — Z2 — 2 € B)

where Z1, Z, are independent Gaussian random variables with same variance as of
fo. By Gaussian computations we can ensure that for all large enough n we have

P((V(n) —Un) —z,) € B) € [R™"//n, R//n]

for some R > 1 depending only on M. This ensures IP’( <|V(n) —Um) —z,| <

p—j;ll) < % for all p € [0, «/n]. Plugging this bound back in r.h.s. (4.19) leads to

C
E|:9; (Vn(V(n) —U(n) — Zn))llﬁ(V(n)—U(n)—zn)zr] =< ﬁe—r/C. (4.20)

Taking v = 0 leads to the upper bound in (4.18). For the lower bound we note

E[g(v/n(V(n) — U(n) — zx))]

> E[g(«/ﬁ(V(n) - U(n) — zn))lvn_Un_xnﬂne(lf,})]
4.21)
(V(n) U) —z, € (f f)> 'xlnf g, (x)
> ’% inf 9;(x),
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which is bounded below by 1/[C./n], by the property of g ¢ from part (3) of Lemma
4.5. This proves the lower bound in (4.18).

Let us now prove the inequalities in Lemma 4.7 one by one. Inserting the upper
bound in (4.20) and lower bound in (4.18) in the formula (4.14) leads to (4.16). For
(4.17) notice that due to (4.14) and (4.21) we have

P(S1(1) = S2(1) € 11, Si(1) € V/nh)
> Cy'n - mf g(=x)- P(U(n)+ e Vnh,Un)+z,—V(n) en” 1/211)

Using Lemma C.2 (recall Corollary 4.6) again, the probability above can be shown

lower bounded by % for some C;, depending on M, I, I, but free of n. This proves
(4.17). For (4.15) we observe

E[g(V/n (V<n> —U®m) —z) um)=7]

< Ce™ C + Z Ce™ CP<—n<|V(n) U(n)—zn|§p—+nl,|U(n)|2‘C>.
pel0,+/n]

By a union bound followed by tower property of conditional expectation, we have

P(% <V = UM =zl = 22 U] = 7)

<E[1 ,<|U<n),<aogn)s/zp(¢—; SV - U -zl < 25 1 UM))]
+P(|U®m)| = (logn)*?).

By Lemma C.2 (recall Corollary 4.6), the conditional probability above can be uni-
formly bounded above by S—% for some C3 independent of p and n. Exponential tail

estimates of U (n), which follows from sub-exponential property (part (4) of Lemma

4.5) of fg (see Theorem 2.8.1 from [98]), show that the right-hand side of the above

L _1 . . .
equation is at most %e C*. Combining these estimates yields

E [g(«/ﬁ(V(n) —U@m) — Z"))llU(n)IZr] = \%e—éf

Using the lower bound for the denominator from (4.21), in view of (4.14), we get
(4.15). O

In order to deal with the WPRW law, the weighted version of the PRW law (see Def-
inition 1.7), we next analyze the W, weight defined in (1.15). We record a convenient
lower bound for Wy that will be useful in our later analysis. Fix any p, ¢ € Z> with
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p+q <n—1.Given any § > 0, we consider several ‘Gap’ events:

Gap, g = {S1(k) — S2(k) = Bk'/* for all k € [2, p]},

Gapy g = {S1(k) — S2(k) = B(n —k)'/* forall k € [n — q,n — 1]},

Gap; g := {S1(k) — S2(k) > n'/* forall k € [p + 1,n — ¢]},

Gapy g := {S1(k — 1) — S1(k) < p~'k"/® forall k € [2, p]}.

Gaps g == {Si(k— 1) = Si(k) < B~ '(n—k+ 1)/ forallk € [n —q + 1,n]},

Gapg g = {IS1(k) — S1(k — )| < p~'(logn) forall k € [p+ 1,n — q]}.
The events depend on p and g as well, but we have suppressed it from the notation.
Gap; g, Gap, g, and Gaps g requires Sj(k) — S2(k) to be bigger than a threshold
pointwise in the left ([2, p]), right ([n — ¢, n — 1]), and middle ([p + 1,n — ¢q])

region respectively. The type of threshold depends on the region. Gapy g, Gaps g, and
Gapg, B controls the increments of Sy (k). Set

6
Gapg =[] Gap; 5. (4.22)
i=1
We have the following deterministic inequality for Wyc.

Lemma 4.8 Recall Wy from (1.15). Given any B > 0, there exists ag > 0 such that
foralln > 1,

Wse = ap - Lgap,n(isi(h—s2(hi=p1)-
where Wy is defined in (1.15).
Proof Assume Gapg holds. For k € [2, n — 1] we have

Sr(k) — S1(k) < —min(Bk'*, B(n — k)4, n'/*) = £ (k).

Clearly Zz;; eS20=51t) < ZZ;} " ® is uniformly bounded in n and hence can
be bounded by some constant Cg € (0, 0o0). Similarly for k € [2, n — 1] we have

Sa(k) = S1(k+ 1) = S2(k) — S1(k) + S1(k) — Si(k+ 1)
<tV k) + B max((k + D8, (n — k)'3, (logn)) =: T (k).

Clearly ZZ;% eS2=Sitk+1) < Z,Z;ll ¢7"® is uniformly bounded in n and hence
can be bounded by some constant Cg € (0, c0). Finally,

$a(1) = S1(1) = Si (1) — $2(2) + $2(2) — $1(2) < 387!
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on the event {|S1(1) — S>(1)] < B~} n Gapy, g Thus from the definition of Wy in
(1.15) we have

3871 ~
Wie = Lgap,n(is,(1)-s(<p-1) - exp(—e*? = Cg — Cp).

Taking ag := exp(—ez’ﬂq —Cg — Eﬂ) completes the proof. O

Note that upon conditioning on the values of S; (1) and S>(1), a paired random walk
(recall Definition 3.6) has the law of two independent n-step random bridges (recall
Definition 3.6) starting from (S1(1), S>(1)) and ending at (x, y).

We now introduce modified random bridge above as they are easier to work with than
random bridges. Indeed, as described in the proof idea section of the introduction, the
main advantage of working with modified random bridges is that they have a (true)
random walk portion and one can appeal to classical non-intersection probability
estimates available for the random walks. On the other hand, the laws of random
bridge and modified random bridge can be compared with the help of Lemma 4.10
below. Figure 5 contains an illustration of such a bridge for p = g = [n/4].

Definition 4.9 ((n; p, q)-modified random bridge) Fix n > 1, and p, q € [0, n] with

p+q <nand p # 0. Take any a, b € R. Let (X(i), Y (i))iez., P fy where fy is
defined in (2.3). Set S(1) := a and S(n) := b. Set For k € [2, p], set

k—1 k
Stky:=a+Y Xjforke[2,p], Sn—k :=b—)Y Y;jforke[lq].
j=1 j=1

Conditi~0ned on (S)ke[1, pUfn—g.a]> €t (S(k));‘;; ~ PrP=athab where @ =
S(p), b := S(n — q), and P"5%? s a m-step random walk from a to b. We call
(S(k))ke[“,n]] a (n; p, g)-modified random bridge of length n starting at a and ending
at b and denote its law as P P:@)ia:b. Again, we shall often consider two independent
(n; p, g)-modified random bridges starting from (a1, a») and ending at (b1, b3). Such
bridges can be viewed as a measure on (Q2, fﬁ) space introduced in Definition 1.7.
We write P P-9):(@1.@2).(b1.52) (4 denote its law.

Lemma 4.10 (Comparison Lemma) Fix any M, M > 0 and 81,682 € [0,1/2), and
n>1.Set p = |nd1) and g = |né). For X € R"72, let V, »(X) and \7[,7;7()?) be the
Jjoint density of a n-step random bridge and (n; p, q)-modified random bridge starting
at a and ending at b. Suppose a, b € R with |a — b| < M.\/n. Then, there exists two
constants C1 = C1(M, 61,62) > 0and Cy = Cr(M, 1\71, 81, 82) > O such that for all
¥ eR"2andalla,b € Rwith |a — b| < M./n we have

Vap(®) < C1-Vap(X), (4.23)
Vap@ -1, o ity = G Vap )y o i (4.24)
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Proof We have

n—2 n—2
—ofoGxjri—xp)  ~ —ofo(xj1r —xj)
H]_o J+ J V@) = ]_[J—O J+ J

Vip(@) = - =0 .
£ b — a) 5P () — Xag)

where x¢ := a and x,_1 := b. We thus have

Va,b()-é) _ f;(n—p—q)(xp - xnfq)

~— = (4.25)
Vo p(X) £V b — a)
By [62, Theorem 2, Chapter XV.5] we know
_ 2 k— 00
sup [V (z) — —A—e 27 0, (4.26)
2€R 0 V2mo

where o0 = fR x2f9 (x)dx. Thus, there exist a constant 61 > 1 depending on M, 61, 62
such that

i () < € forall z € R, éT < /nf" Vb —a) <C.

for all large enough n. Inserting these bounds in the numerator and denominator of
r.h.s. (4.25) we get the (4.23) by setting C; := E? When |x), — Xn—gl < Mﬁ, we
may utilize the limit result in (4.26) to obtain a new constant C; > 0 depending on
M, 81, 87 such that

*(n—p—q) 1 ~
\/Efg b (xp — Xn—g) = 5 whenever [x, — x,_4| < MA/n,

for all large enough n. Using this bound and the upper bound for ﬁfz("_l)(b —a)
we get the desired result. We arrive at (4.24) by setting C, := C; - Cj. O

With all the preparatory results in hand, we are now ready to prove Propositions
3.9 and 4.1. Recall that in the introduction we gave a proof sketch for Proposition 3.9
(that does not appeal to Proposition 4.1). In what follows, we shall use the techniques
outlined in that sketch to establish more sophisticated intermediate results (such as
Lemma 4.11). These results will allow us to prove Proposition 4.1 first. Then using
those intermediate results we shall then establish Proposition 3.9.

Proof of Proposition 4.1 for the p = 2 case (supercritical phase). We split the proof
into several steps.

Step 1. In this step, we reduce the proof of Proposition 4.1 to the claim around (4.27).
Fix r > 0. Set T := [rN%/3] and n = 2T . Recall y;’s and the event RP2 s from the
statement of the lemma. Since RP_js is a monotone event, by Proposition 2.6 we have

S 2T, = N\2T.
Py, 22T (RPy, ) = P09 22T (R ).
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where x| = —2MN'/3, x; = —2MN'/3 — \/n. By translation invariance (Lemma
2.1a), we may lift the Gibbs measure by 2M N /3 units so that the boundary conditions
changes from (xi, x2) to (0, —/n). The RP, s event now requires the second curve
to be above the (lifted) barrier 4M N'/3 under this new boundary condition. Since
AMN'3 < 8Mr=1/2 /n. it thus suffices to show that there exists ¢ = ¢ (r, M) > 0
such that

pgg!—ﬁ%(—m)’”l”( inf Ly(i) > SMr—l/zﬁ) > ¢.

ie[l,n]

for all large enough n. Towards this end we claim that there exists ¢ = ¢(r, M) > 0
such that

2n.
lim inf PO ~V-(0O™20 1y 5 0, 4.27)
n—oo
where

Dy = {(L1(2i — 1), L2(2i)) € (10m+/n, 11m~/n)* forall i € [1, n/z]}},

and m = Mr~'/2. Let us complete the proof assuming (4.27). Note that (4.27)
controls the even points of the second curve. By Lemma 4.4, we know conditioned on
the even points, Ly(2k + 1) ~ & 22D 124D for k = 1,2, ... 2n — 1. In view of
Lemma B.4, on the event D,,, we have

1
E [, 0esnyzsmyi | 0 (L2@0), Lok +2) ] < Cem eV,

ByLemma4.4, Ly(1) ~ Gg,40,1+L2(2). Since the density G, 44,1 have exponential

tails, we see that on the event D,,, we have P(Ly(1) < 8m./n | L2(2)) < Ce= MV,
Thus by a union bound,

_ _ 2n.
PO~V (=) 2( inf Lz(i)szﬁ)

ie[l,n]

_ _ 2n.
= P YT D,) — CpemeT 2 g,

for large enough n. This establishes Proposition 4.1 for p = 2, modulo (4.27).
Step 2. In this and subsequent steps we prove (4.27). Recall the PRW and WPRW
laws from Definition 1.7. Recall from Lemma 4.4 that (L{(2i — 1), L2(2i)),-e[[1,n]] ~

P&g&,ﬁ). We the terminology from Definition 1.7 to write

3(0,—+/m)
PEC YD (D,) = Epw " Wielo, ] (4.28)
WPRW - 222 i (0, /) '
IEPRW [Wicl
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where Wy is defined in (1.15) and D,,, is now defined as
Dy = {(S1(1), $2(i)) € (10m+/n, 11m/n)* forall i € [1,n/2]}.

For the remainder of the proof we write [P and E for P’;}g&}_“/j) and Egi{(&}_‘/ﬁ) respec-

tively. We claim that there exists constants C > 0 and C = C(m) > 0 such that

E[Wsclp,,] < E[Ws] = 7. (4.29)

6—1
e
Clearly plugging these bounds back in (4.28) verifies (4.27). Let us thus focus on

proving (4.29). For the upper bound we use the following lemma. O

Lemma 4.11 There exists a constant C > 0 such that for all Borel sets A C R> we
have

3/2
E[Welal < € + %E[IA((&(I) — S+ D) (v o) }

where A := {(S1(1), S2(1)) € A).

Note that taking A = R? in Lemma 4.11 and utilizing the exponential tail estimates of
[S1(1) — S>(1)| and |S;(1)|/+/n from Lemma 4.7, the upper bound in (4.29) follows.

Proofof Lemma 4.11 As in (1.18), define

NI, == {Sl (k) — Sa(k) > —p forallk € [2,n — 1]]} . (4.30)
We set NI := Nlp. Here NI stands for non-intersection. Observe that for any g € Z> |
we have
q
I+ D Inyoneg + g = 1. (4.31)
p=0

Thus, taking ¢ = |loglogn| we have

[loglogn]—1
E[Wselal = EWselaoml + ) ElWeelaoni,gonie 1+ ElWselaon, ]
p=0
|loglogn]
-1
< Y T P(ANN) + 1, (4.32)
p=0

where the above inequality follows by noting that on NI}, we have W < ="' For

the probability term above we condition on F := o (S1(1), S2(1)) and write P(A N
NI,) = E[1aE[1n, | F1]. Upon conditioning on S;(1), S>(1), the paired random
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walk Pﬁi{(&}_ﬁ) law is equal to the law of two independent n-step random walks
starting from (S1(1), S2(1)) to (0, —4/n). Thanks to this observation, we may now
appeal to Lemma C.8 to conclude that E[1N|p | Fl < eCPE[1n | F1 holds for some

deterministic constant C > 0. This allows us to conclude
P(A N NI,) < 7 - P(ANNI).

eP!

Plugging this into (4.32) and observing that the series | p>0€ -eCP is summable

shows
E[Wslal < 1 +C-P(ANNI). (4.33)
Thus to suffices to bound IP(A N NI). Towards this end, we first define the event
B:= {|S,~(1)| < (logn)*?/nfori = 1,2, and |S1(1) — $(1)| < (10gn)3/2} .

By the union bound we have P(A NNI) < P(ANBNNI) +P(B). For the second term
note that by tail estimates from Lemma 4.7 we have

2
P(B) = Y_P(Si(D] = (ogm*?) + P (IS1(1) = S:(1)] = Gogm*?) = €.
i=1
(4.34)

For the first term we write P(A N B N NI) = E[1angE[1n | F]]. Again, since upon
conditioning on S1(1), S>(1), the paired random walk law is equal to the law of of
two independent n-step random walks starting from (S (1), S2(1)) to (0, —/n), we
may use random bridge estimates from Appendix C. In particular, Lemma C.9 (recall
Corollary 4.6) shows there exists a constant C > 0 such that

B[ | 71 < Tg - G (($1(D) = Sah) + D v 1) (BgDl v 2>3/2.

for all n. Taking expectation with respect to J on both sides of the above equation and
then using the fact that 1aong < 14 leads to

3/2
P(AmBle)g%.E[1A<(Sl(1)—sz(1)+1)v1)(%vz) ] (4.35)

Inserting this bound along with the bound in (4.34) back in (4.33), we arrive at the
desired bound stated in the statement of the lemma. O

Step 3. In this step we prove the lower bound in (4.29). Towards this end, consider
the event

En = {1 < S1(1) — S2(1) <2, and Si(1), S2(1) € (Y'm/n, Em/n)},
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and o -algebra F := o (S1(1), $2(1)). Fix any g > 0 and recall Gapg from (4.22). We
have

E[Wsclp, ] > E[Wsc1E, 1p, 1cap, ] = asEl1e, E[1p,,nGap, | 1] (4.36)

where the second inequality above follows by noting that W > ag on GapgNE (Lemma

4.8). As mentioned in the proof of Lemma 4.11, upon conditioning on F, the paired
random walk IP);;R(%,_“/E) law is equal to the law of two independent n-step random
walks starting from (51 (1), S2(1)) to (0, —+/n). For simplicity setb; = 0, by = —./n.
We shall use the comparison between random bridge to (n; np, 0)-modified random
bridge from Lemma 4.10, for a special p € (0, 1) coming from Corollary C.6 (recall

Corollary 4.6). Using the lower bound in (4.24) we get

Ig,, - Ellp,nGap, | 1> 1, C7" - BS1D-20) (D, N Gapy)

— 1E,,,C71 -IFE,SI(”’SZ(]))(D”, N Gapy | N|)ﬁ251(1),52(1))(N|)
(4.37)

forsomeC > 0dependingonm and p. Here P (520 .= Plninp.0):(51(1).52(1)). (0./m)
is the joint law of two independent (n; np, 0)-modified random bridge from S; (1) to
b; defined in Definition 4.9. We now claim that there exists ¢ = ¢ (m) > 0 such that

P@142)(D,, | NI) > 24. (4.38)
uniformly over all (a1, az) € P where we define
Pri={G1.22) € Emyn, By 1 <21 -2 <2}

We postpone the proof of this claim to the next step. Let us complete the proof of
the lemma assuming it. Since, under ﬁﬁ,a"a”, S1([1, np]), S2([1, np]) are two inde-
pendent random walks, we may use non-intersection type estimates for random walks
from Appendix C. In particular, using Lemmas C.3 and C.5 (recall Corollary 4.6) we
can get constants § > 0, M> > 0 and C; > 0 all depending on m and p such that
uniformly over (a1, az) € P; we have

ﬁg‘l’“z)(sl (k) > Sy (k) for all k € [2, np], Si(np) — S2(np)

c-!
> 84/n, |Si(np)| < Ma/n) = R
Set G := {S1(np) — Sa(np) > 8/n, |S;(np)| < Ma./n}. Recall from the definition
of (n; np, 0)-modified random bridge that on [np, n] the modified random bridge is
just a random bridge from S;(np) to b;. Applying Lemma C.7 (recall Corollary 4.6)
it follows that

16 - P (5, (k) = Sy(k) for all k € [np,n —1]) = 16 - C5 ",
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for some constant C; > 0 depending on m and p only. Thus we get Fﬁfl' 42) (NI) > %
uniformly on E,, for some deterministic constant C4 depending on m and p only. By
Lemma C.11 (recall Corollary 4.6), we may choose 8 small enough depending on m
and p such that ﬁﬁ,‘“’“z)(Gapﬂ [ NI) > 1 — ¢ uniformly over (a1, a») € P;. Plugging
this estimates back in (4.37), we see that

~ ;!
Ie, - Ellp,nGap, | F1= 1g, - 6 - ﬁ

Now, by Lemma 4.7 (equation (4.17) in particular) we know that P(E,,) > C5 'S0
for some Cs depending on m. Plugging this back in (4.36) we see that

-1 ~
¢ _.c (4.39)

E[Wschm] >ag- P(E,,) 5 W =: vk

where C > 0 is a constant depending only on m and p.

Step 4. In this step we prove (4.38). By equation (C.1) in Lemma C.5 (recall Corollary
4.6), we know there exists § € (0, %(m A 1)) small enough depending only on p such
that

Pl (81 (np) — S2(np) = 8v/n | NI) > 13 (4.40)

uniformly over (ay, az) € P;. We shall now choose p as p(%, ’"T“) where the latter
is a constant depending on m and comes from Corollary C.6 (recall Corollary 4.6).
In view of this choice of p, applying Corollary C.6 (recall Corollary 4.6), we see that
uniformly over (a1, az) € P; we have

P ( sup [ (k) = Si(D)] < "gt/n | NI) > 3 (4.41)
ke[l,np].i=1,2

Since on P; we also have (aj, ap) € (‘%m\/ﬁ, %m\/ﬁ), combining (4.40) and (4.41)
we get

FE;‘““”({Sl (np) — S2(np) = 8/n} NK; | NI> >,

where

Ki := {S1(k), S2(k) € (Bm/n, 8m/n) forall k € [1, np], and
1S110) = 2010 = .
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Following the definition of (n; np, 0)-modified random bridge, to prove (4.38) it suf-
fices to show

P"*”H‘;(C"Cz%(”bbz)({sl (k), $2(k) € (10m+/n, 11m</n) forall k € [1,n/2]} N NI>

> 163 (4.42)
uniformly over (c1, ¢2) € P, where
Pri={(c1,2) e R* 1 ¢; € Bmy/n, ¥my/n), and 1/n > ¢ — o > 8/n).

and Pr—7ptli(cne2).(brb2) g the law of two independent random bridges of length
n —np + 1 starting at (cq, c2) and ending at (b1, b2). For simplicity set u := n —
np+1=> %n. By the KMT coupling of random bridges [56] we may assume there are
two independent Brownian bridges B, B> (with variance f x2fy(x)dx) on the same
probability space such that

P (cre2).(br.b) ( sup ISi(k) — VuBj(k/u) —c; = (b — )| = c10gn> <k
ke[[l,u]],i:l,Z

~
~
~

43)
Let r, ;(x) be the piece-wise linear function interpolated by three points: r, ; (0) =
rai(1) = 0and r,;(3/4) = ﬁﬁ(bi — ¢;). Let U; be the L> open ball of r,, ; (x) of

radius %8 (this is the same § that was chosen at the beginning of Step 4). By properties
of Brownian bridge, there exists a ¢ = ¢(m) > 0 such that for all (c1, ¢z) € P2, we
have

pui(cre-Grb) (B0 e i fori = 1,2) = 2¢.

Note that the above equation along with (4.43) implies that with probability 37—2 b — %,

for all n large enough (and hence u large enough) under the law P% (€1:¢2)(b1.b2) e
have the following items simultaneously:

e Forall k € [1,3/4u]
|Si (k) — ¢i| < Clogn + $/us < 2Ju < 2./n.
e Forallk € [[l, u]] we have

S1(k) > ury 1 (5) +e1 + &by — ¢1) — 1/us — Clogn
> Sy(k) + Vulrn1(5) —rp2(5) = IVus +c1 — o
+ %y — by — c1 +¢2) —2Clogn
> Vu(rn, (k/u) — rp(k/u)) + 35/us — 2Clogn + Sy(k).
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We have ry, 1 (x) > r, 2(x) by construction, and ¢; — ¢z + §(b1 —by—c1+c2) >
J/us for all (c1, cz) € P,. Thus for all large enough n, S;(k) > S»(k) for all
k € [0, u].

For n large enough 725 }l > 176$ This establishes (4.42) and hence also Proposition
4.1. o

Corollary 4.12 There exists an absolute constant C > 0 such that for alln > 1.

1;(0,—+/n) c!
Eprw [Weel > R

The above corollary follows from (4.39) as Egi{&_[)[WSC] > ]E" {0, ‘F)[WSCIDI].
We remark that here it is important that the endpoints are O(f ) apart to get the
precise order of E[W,.]. We expect a different order if the endpoints are closer or lie
in a reversed order. Later, in Lemma 5.6, we shall prove a different lower bound for
E;i{({;y ) [Wqc] that is uniform over all possible endpoints (x, y) in a specific window.
Proof of Proposition 3.9 in the p = 2 case (supercritical phase). Given the machinery
developed in the above proof, proof of Proposition 3.9 follows easily. By Lemma 4.4

we have

_ _ T. . . _
POD 2T (11| = MYT) = PtV (1S:(D) = MVT)

T:(0,—/T)
_ Eerw T Wl )iy “.44)
ETZ(O,*\/T)[W ] ' ’
PRW Y

Now by Corollary 4.12 we have Egﬁ(\%_f) [Weel > \/» and by Lemma 4.11 we have

T;(0,—v/T)
Eprw " [Wsel g, (1y2m 7]

A(O— 3
<7+ %Egﬁgf’ v |:ls (1)|>Mf((51(1) - S+ DV 1)(T v 2) i|

2
<7+ %\/EIZR(V?/ - |:<(Sl(1) - S +1v 1) }

T:(0.—/T) 1S5, 5)\®
\/EPRW [llS (1)|>Mf< \l/“ v2):|

where the last inequality follows from Cauchy—-Schwarz. Taking 7 and M large
enough, in view of the tail estimates from Lemma 4.7, it follows that (4.44) can be made

T.
arbitrarily small. By a union bound, we can thus make ng’fﬁ)’(*oo) ’Z’T(lLl M|+

|L>(2)| > M«/T) arbitrarily small by taking 7 and M large enough. O
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5 Modulus of continuity: proof of Theorem 1.1

In this section we prove our main theorem, Theorem 1.1, about spatial tightness of
HSLG polymers. Due to the relation in (1.7), Theorem 1.1 essentially follows by
controlling modulus of continuity of the first curve of log-gamma line ensemble.
Towards this end, we recall the definition of modulus of continuity function. Given a
continuous function f : Z>; — Rand U > 1, we define the modulus of continuity
function as

of (s [LUD == sup  |f(i1) — fG)l. (5.1
i|,i2€[[1,Uﬂ
li1—iz| <8N?/3

We have the following result that is proved in Section 5.2.

Proposition 5.1 Fixr,y > O and p € {1,2}. Set « = a) according to (3.11). We
have

lim lim sup P,,, (wg’(cf’, [1,21rN*3) —1]) = yN1/3) =0. (5.2)
340 N—oo

Proof of Theorem 1.1 By a standard criterion for functional tightness [19, Theorem
7.3], Proposition 5.1 along with endpoint tightness from Theorem 3.10 implies tight-
ness of the probability law of N=1/3£¥ ([1, 2|rN?3] — 1]). In light of the matching
in distribution in Theorem 1.3 (i), this immediately translates into tightness of the
measure IP’(IXV desired to prove Theorem 1.1. Note that cases (1) and (2) of Theorem 1.1
follow by using the p = 1 and p = 2 cases of Proposition 5.1 and Theorem 3.10. O

The rest of this section is devoted to proving Proposition 5.1. This relies on the
following technical result which deals with the modulus of continuity for the bottom-
free measure.

Proposition5.2 Fix any M,V , ki, ka2, y > O with ky > ky. For each N > 0, define
the sets

Iy =y €R, |yl <2MN'?}, and
Lo = {1, y2) € R? 1 y; € I mpo, y1 — 2 > —(log N)7/®}.

For each p € {1,2}, there exist § = §(M,V, ki, ky,y,e) > 0 and Ny =

No(M, V. ki, ka,y,€) > 0 such that forall X € I, y, T € [kiN?/3, ko N3], and

N > Ny we have

P 2 T. i
Po, P S Leol = VN, and o (L, [1T/4+1 =2 = NP <.

— k=1

i=1

We postpone the proof of Proposition 5.2 to Sect. 5.3. Section 5.1 contains a few
lemmas that are used in the proof of Proposition 5.1 later in Sect. 5.2.
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0/\/\/'.\.0 OW\/O

Fig. 17 Graphical representation of X (left) and Y (right) distribution from Lemma 5.3

5.1 Preparatory Lemmas

We first discuss a few consequences of Proposition 3.9 that form the preparatory tools
for our modulus of continuity analysis.

Lemma 5.3 Fix any ¢ € (0, %) and T > 2. Let (X(i))izil_1 be a random vector with
X(1) = X@2T — 1) = 0 and density at (X; )2T 2 (ui)iil_z proportional to

2T-2

l_[ Gg’(_l)iJrl (Mi - ui+1)
i=1

respectively where uy = 0 and urr—1 = 0 and G is defined in (2.2). Similarly, define
an independent random vector (Y (i ))1.2;_ ! precisely as with X except that Gy (_y)i+i
is replaced by Gy (_y)i. Then, there exists Mo(e) > 0 such that for all T > 2 we have

]P’( sup  (IXG)| + 1Y (D)) = MWT) <e. (5.3)

ie[1,27—1]

We refer to Fig. 17 for graphical representation of the distributions appearing in
Lemma 5.3.

Proof Fix ¢ € (0, 1). Note that (X (2i — 1))I.T:1 forms a random bridge from 0 to 0 with
increment from Gy 11 * Gg,—1. By the KMT coupling for random bridges [56] along
with Brownian bridge estimates, there exists a constant M > 0 such that (here we
temporarily use P and E for the probability and expectation for the X and Y vectors)

P(A) < £, where A := { sup |XQ2i —1)| > Mﬁ}.
ie[1,7]

Let us write 7 := o ((X(2i — 1))__,). By a union bound we have

IP’( sup |X(z)|>5M\/_)

ie[1,27-1]

-lklm

g: [ A E[ X 20)|25SMT | f]]

(5.4)

Note that the distribution of even points given the odd points are given by the &-
distribution introduced in (4.5). Observe that by Lemma B.4,

Lyoicn,x@ithemyT.uyT * E [1|X(21)|>5Mf | 7:] = Cexp(——\/—)
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for some absolute constant C > 0. Plugging the above bound back in (5.4) and
taking T large enough we get that rh.s. (5.4) is at most 5. Similarly we see that

P(sup;eqi or—17 1Y ()| = SMV/T) < §. Adjusting M, we arrive at (5.7). o

Lemma 5.4 Recall for p € {1,2}, a := a, from (3.11). Fix anyr > 1 and & > 0. Set
T = |rN?3]. There exists M = M(g) > 0 and No(g) > 0 such that for all N > Ny
we have

]pgyl(—oo)T;l,T( sup  |L1()] > Mﬁ) <e, (5.5)
ie[1.27-1]

P&‘i"m(“"’”’< sup L]+ sup |Lz(j)|2Mﬁ)se, (56)
ie[1,2T—1] je[1,27]

z 2T.
where the bottom free law Pé’p( T T g defined in Definition 2.4.

Proof For clarity we divide the proof into two steps.

Step 1. Fix any ¢ € (0, %) and consider My (¢) from Lemma 5.3. In this step we prove
(5.5). From Proposition 3.9 choose Mj(g) > 0 such that for all large enough T we
have

]P)gsl(_OO)T;l,T(|L1(1)| z Mlﬁ) Z g,
_ T
POVD-COB2T (114 (1] 4 |L22)] = MIVT) = e (5.7)

We will use the first bound immediately, and the second a bit later. Set M3 := 2Mqy +
M+ 1, and

Aj = { sup L1(i) > (M3 + Mo)ﬁ} :

ie[1,27-1]

Ay = { sup Lo(@) = (My +M1)ﬁ}.

ie[2,27]

_ T,
Finally, introduce shorthand notation [P; for IP’,(XOI’ V). (=) 1T and P, for

T.
P&g’_ﬁ)’(_w) 2T (and likewise for [E). In view of (5.7), by a union bound we have

Py(AD < &+ B [1, )y, 7B [1a Lo (LiD)]].

As Ap is an increasing event with respect to the boundary data, due to stochas-
tic monotonicity (Proposition 2.6), increasing the boundaries will only increase the
conditional probability. Thus to get an upper bound, we may assume Li(l) =
Li(2T — 1) = M;~/T. But note that under this boundary condition we have

(L1G) — M, \/T)isz] @ (X(i))l.zifl, where X () is defined in Lemma 5.3. Thus,
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Fig. 18 In the above figure, we have plotted L1[1, 2T — 1] (black curve) and L, [2, 2T] (blue curve).
Endpoint tightness, Proposition 3.9, ensures that L1 (1), L»(2) € (—Mo~/T, Mo~/T). Assuming this, in
order to seek an uniform upper bound for the blue curve, by stochastic monotonicity we may push the black
curve all the way to 4+-o0. The resulting law for the blue curve is given by Y (-) (upto a translation) introduced
in Lemma 5.3. A uniform upper bound for the resulting law for the blue curve law can then be estimated by
Lemma 5.3. The upper bound is shown in the dashed line above. Once we have a uniform upper bound for
the blue curve, we may elevate the endpoints of black curve much higher (from black points to red points
in the above right figure) so that the curve no longer feels the effect of the blue curve. The red curve above
denotes a sample for L from this elevated end points. Without interaction with the blue curve, its law (upto
a translation) equals to X (-) in Lemma 5.3. A uniform upper bound for the red curve can then be estimated
by Lemma 5.3 (color figure online)

owing to (5.3), almost surely we have

1,y v Bt [1a 1o (Li()] = P(ie[[f??u] XD = Mo + M)ﬁ) <e.

This implies P; (A;) < 2e. Following similar calculations one can show

[P’1< inf L@ < —(M3—|—Mo)\/7> <2e.
ie[1,27-1]

This proves (5.5) with M = M3 for ¢ — 2e.
Step 2. In this step we prove (5.6). At this point we encourage the readers to look at
Fig. 18 and its caption for an overview of the proof idea.

Letus set Fi = o(L2(2), (L1())2L ") and > = o (L1(1), (L2(0))2L,). In view
of (5.7), by a union bound

Pa(Ay) < & + Py <{L2(2) < MoVT}N Ag) <e+E, [1L2(2)§M0ﬁ]E2 [1a, | ]—'1]] .
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As A, is an increasing event with respect to the boundary data, due to stochas-
tic monotonicity (Proposition 2.6), increasing the boundaries will only increase
the conditional probability of A,. Thus, to get an upper bound, we may assume
Ly(2T) = L2(2) = M/T, and L (i) = +oo for all i € [1,27 — 1]. Under

this boundary condition we have (L>(i + 1) — M; ﬁ)g;l @ (Y(i))l.zlf1 where
Y (-) is defined in Lemma 5.3. Thus, almost surely we have (recall PP is the law of Y
below)

1, oy<moyr B2 [1a | Fi] = P( sup X (@)| > Moﬁ) <e.
ie[1,27-1]

Thus P, (A;) < 2e. In view of this bound, applying a union bound we have

]P)Z(Al) =< 3e 4 EZ [I{Ll(l)SMlﬁ}ﬁ—'Az]Ez [1A1 | fZ]] .

As A is an increasing event with respect to the boundary data, due to stochastic mono-
tonicity (Proposition 2.6), increasing the boundaries will only increase the conditional
probability. Thus, to get an upper bound we may assume Li(1) = L12T — 1) =
M3+/T and Ly (i) = (Mo 4+ M{)~/T for all i € [2,2T]. From the definition of the
Gibbs measure, almost surely we have

1
L, y<mn viyn-a B2 [1a, | F2] < ME [A-1a].

where on the right-hand side, A is defined as the event {sup; ¢ o7 _1) X (1) = Mo VT})
and

T—1

A = exp <_ Z (ef(M(H»])«/TfX](Zif]) + e(M0+1)ﬁx.(2i+1))> .
i=1

As A < 1,by (5.3), E[A-1a,] < E[1a,] < ¢. By (5.3) we have E[A] > (1 — &) -

e‘z(T_l)fﬁ > B for some absolute constant 8 > 0. Thus, P2(A;) < 3 + ﬂ_l)e.
Similarly one can show

P, ( inf  Lr(i) < —(Ms + Mo)ﬁ) <B+p e,

ie[2,27]

P, ( inf  Li() < —(My + Mﬂﬁ) < 2e.

ie[1,27—1]

Thus adjusting the constants we can find M such that

]P’z( sup L)+ sup  [L2(j)| = (M — 1)ﬁ> =¢/3.
ie1,2T7-1] jel2,21]
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Finally via Lemma 4.4 we know Ly (1) — L2(2) ~ Gg,+6,1. Thus, by a union bound,
for all T large enough we have P2 (|L2(1)| > MV/T) < &/3+P2(|L2(1) — L2 (2)| >
VT) < 2¢/3. By another union bound, we arrive at (5.6). O

Recall the normalizing constant VPT (¥, 2) from (2.8). One can easily obtain a lower
bound for this normalizing constant as a consequence of the Lemma 5.4.

Corollary 5.5 Fixanyr > 0 and for each N > Oset T = |rN?/3|. Fixany p € {1,2}
and set o = o, according to (3.11). Recall VPT (¥, 2) from (2.8). There exists Q¢ =
Qo) > 0, Ngo = No(r) > 0 such that for all Q > Qo and N > N, VI,T(§, 7) > %
forallz € RT withz; < QN'3 fori € [1, T] and y € R? with y; > (2Q — 1)N'/3
fori €[1, p]. Here we assume L,(2T + 1) := oo.

Proof Consider the event

A::{ inf L,2j—1)=(Q+ N>
Jjel1.1]

Observe that

T
- o 5.(—oo)T: , .
VIGD =By I [ Wzjs Ly2j + 1), Ly(2j — 1)
j=1
> exp(—2Te V') PLTPT ()
Taking N large enough ensures exp(—ZTe_Nl/S) > 1/+/2. Since A is an increasing
event with respect to the boundary data, applying stochastic monotonicity (Proposition
2.6) and translation invariance (Lemma 2.1a) of HSLG Gibbs measures we have

LT (A) = PO PT ( inf 1,27 = 1) = —(Q —2)N'7
4 4 jell,T]

where ¥ = 0if p = 1 and ¥ = (0, —/T) if p = 2. Appealing to Lemma 5.4 we may
choose Q large enough so that the above probability is at least 1/+/2. O

5.2 Proof of Proposition 5.1

For clarity we divide the proof into three steps.

Step 1. In this step, we give a roadmap of the proof of (5.1) leaving the technical
details to later steps. Fix r, ¢, > 0 and p € {1, 2}. Fix N > 3 large enough so that
T = 8LrN2/3J > 24. Set a = «, according to (3.11) and consider the HSLG line
ensemble £V from Definition 2.7 with parameters (¢, €). Consider the modulus of
continuity event

MCs := {w (LY, [1,T/4 —1]) = yN'/3}.
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By Theorem 3.10, there exists V = V(¢) > 0 such that
PAD 2 1—e, where A= [N"PL¥ )1+ N Pc¥ @1 = v 68)
By Proposition 3.4, there exists M;(g) > O such that for all large enough N
P (ﬁ{v(zr —1> M1N1/3) <e. (5.9)
We claim that there exists M (r, ¢) > 0 such that for all large enough N
P (cg(ZT tp-2)< —M2N1/3> <s. (5.10)

We shall prove (5.10) in Step 2. Let us assume it for now. Set M = max{M, M>, 4}
and consider the events

By := {I£) T — 1| <2MN'73},
B, := {zg(zr) > —MN3, LYQT — 1) < MN5,

£NeT —1) > £Y@T) - (og N)7/6},
For each B > 0 we define
Cp. B =V (€Y T+ =2 jequpp €N @) 2 B 11

where VpT (-, -) is defined in (2.8). We now claim that there exists 8(r, ¢) > 0 such
that

P(=C(p,B)) <e. (5.12)

We work with this choice of S for the rest of this step. We postpone the proof of (5.12)
to Step 3. Let us now complete the proof of Proposition 5.1 assuming it. Consider the
following o -algebra:

For =0 (V112N =20 + Wiz pits (YD) poanricienipg) - (G13)

Clearly B, N C(p, B) is measurable with respect to F, 7. By union bound and tower
property of conditional expectation we have

P(MCs) < P(=A1) + P (—B,) + P (=C(p, B))

(5.14)
+E[18,nc(p.p)E [1ame; | Fp.7]]-

We bound the four terms on the right-hand side of the above equation separately.
A1 event: We have P(—A{) < ¢ due to (5.8).
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B, event: Note that for large enough N, B, C Bj. Combining (5.9), (5.10), and
Theorem 3.1 (with p — %, M +— M), by a union bound we see that for all large
enough N,
P(—=Bp) < P(—By)
<PLY@QT) < —MN'3) +P(LN QT — 1) = MN'/3)
4P (ﬁ{v QT —1) < £V 2T) - (log N)7/6)
<2e+27N <36

C(p, B) event: We have P(—C(p, B)) < & due to (5.12).
Conditional probability: By Theorem 1.3 and (2.7) we have

S ao)2T. R )
BTV (55 (20, @iDE ) - Taiowc

E|1 -
[ AINMCs | fp,T] VpT (}; (£g+1(2i)),~T:1)

(5.15)

where y := (E;V Q2T +j— 2))je[[1,p]] and VpT(~; -) is defined in (2.8). From definition

we have V7 (y; (Lg+](2i))f:1) € [0, 1]. On C(p, B) we have

_ 3 (— 2T.
Ic(p,p) - Ths. (5.15) < Icpp) - B - P30T (AL NMGy)
Observe that the event B, ensures y € I, y where the set I, y is defined in the

statement of Proposition 5.2. We can thus apply Proposition 5.2 with ¢ = B - ¢, to
geta § > 0 such that

1, - PL 7P T (A AMGy) < 1g, -,
for all large enough N. Thus overall we have

E[18,nc(p.p)E [1anmes | Fpr]] < e

Plugging the above four estimates into r.h.s. (5.14) and taking limsup N — oo, then
8 | 0, yields

lim sup lim sup P(MCs) < 6¢.
510 N—o00

As ¢ is arbitrary, we thus have (5.2), completing the proof.

Step 2. In this step we prove (5.10). We write P, instead of I to stress the fact that
the HSLG line ensemble has boundary parameter ), defined in (3.11). We claim that
there exists My (r, ¢) such that for all large enough N
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P, (Fall?™) < 5, Fall(” := { LV () < —MN'A Y

in
je[1,4T+4],ie[1,p]
(5.16)

Note that as {L) 2T + p —2) < —M,N'/3} C Fall(*, (5.16) implies (5.10). To

show (5.16), we first define a few more events. For each R > 32r + 1 we define

B =V ej+i-n = NP B =g ) 8,
ke[j+1,RN?/3]

- U e[

Je[AT+4,RN2/3] je[4T+4,RN?/3]
G ={ sup LN@j+i-2) > —R2N1/3},
jE[AT+4,RN?/3]

Dif ® = [V @) = 1) = £} @)) + (log N)? forall j & [1, RN?]}.

By Theorem 3.1, Theorem 3.3, and Proposition 3.4, we can finda R = R(r,¢) > 1
such that for all large enough N, and for v € {1, 2}

Py, (ﬁsf)) + Py, (ﬁB;R)) + P, (ﬂDif(R)) <t (5.17)
We fix this choice of R. Observe that for large enough N, we have
BY) A DIFD ¢ B  BRR,

uniformly for alli € [4T +4, RN 2/3 ]. For p = 2, by the union bound and the tower
property of conditional expectation, in view of (5.17), we have

P, (Fall{"™) < P, (-B{") + P (-Dif ®)
+ Y Py (B 0 nrall)

je[4T+4,RN2/3] (5.18)

<g+ Z E |:1§;R~j)mB§2R,j)]Ea2 |:1FaII(M2) | fz,;ﬂ ,
je[4T+4.RN?3] :

where F), i is defined in (5.13). For p = 1, applying union bound and using (5.17)
we have

Py, (Falli") <Py, (-81")+ 3 Py, (B nFal™)
jel4T,RN23]

+ Z E |:1§§R,j)Eot1 |:1Fa||iM2) | ~7:1»j:|] :
JE[AT+4,RN?/3]

(5.19)

=

oo™
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We now proceed to control the conditional expectation Py, (FaII;MZ) | Fp, j> sepa-
rately for p = 1 and p = 2. Applying the Gibbs property (Theorem 1.3), we have

2, M
13<R g Eq, [Fall( M) | P, ]] =1z B AgCR D) Pazz ]<Fall( 2))

V(=00 32, Mr—4R?
< 1’§;R,j)ﬂBng,_i) -P&z V(=) ’(Fallé 2 )>.

Here y = (LN 2j -1, EN (2j)) and 7 = (EN (2m))£1:1. Let us briefly explain the
above inequality. Note that on B(R A B(ZR 7 wehave y; > (—4R2N3 — (i — 1)/7)

fori = 1, 2. Furthermore Fall( 2) is an event which decreases with respect to boundary

data. Thus to obtain an upper bound by stochastic monotonicity (Proposition 2.6), we
may take the boundary data from (yq, y2) to (—4R2NY3 —4RIN'/3 — A/j) and Z
to (—00)/. The above inequality then follows by translation invariance (see Lemma
2.1a). Similar applications of the Gibbs property and stochastic monotonicity yield

that on §§R’j ) we have
0.(—o0)/:1, (M>—4R?)
Eo, [1F6“5M2) | Fa, ,} < PYoosL (Fan1 2 ) .

We now claim that one can choose M;(r,e) > 0 large enough such that for all
j €[4T + 4, RN?/3],

]P;x( );p,j (Fa”(Mz —4R )) % (5.20)

where X := 0 (Gf p = 1) or X := (0, —=/)) (if p = 2) Plugging the above bound

back in (5.19) and (5.18) and using the fact that {B( }/€H4T+4»RN2/3H is a disjoint
collection of events we arrive at the bound in (5.16). Thus we are left to verify (5.20)
in this step. Observe that

¥,(—00):1p, j (M2—4R?) X, (—00)/;p,j
P (Fau,, ) <P

( inf Li(k) < —(My — 4R2)N1/3>
kel1,2j+i—2],i€[1,p]

By Lemma 5.4, one can choose M large enough such that the above expression is
bounded above by ¢/8 for all j € [4T, RN 2/ 3]]. This proves (5.20) completing our
work for this step.

Step 3. In this step we prove (5.12). For each Q > 0 consider the event

Dg = sup LN, () < ON'3, inf E;V(4T+j+2)z—QNl/3+«/2T+1}.
ie[1,4T+4] jelt.p]
(5.21)
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By Theorem 3.1, Proposition 3.8, and (5.16) there exists Q(r, ¢) > 0 large enough
such that P(=D, ¢) < % Consider F), 2742 from (5.13). Recall the event C(p, B)
from (5.11). By union bound and the tower-property of the expectation, we have

P(~C(p, B)) < P(~C(p, ) NDo) + 5 = E[ 1o Ellcipp) | Fporia]] + 5.
(5.22)

Applying the Gibbs property and (2.7) we have

Ell-cp.p) | Fpor+2l = sz;pl”z(—'c(p, B))

with y = (vi,...,yp) and y; = LY@ET + j +2) for j € [, p], and Z =

oy L @OEETR Set ¥ = (—QN'3 + V2T + 1)P. We claim that there exists

Qo(r,e) > 0, No(r,e) > 0 and B(r,e) > 0, such that for all N > Ny, Q > Qy,

yi > x; and 7 € R>T+2 with SUP; e1,2742] & = QN'/3 we have
PYEPATR2 (—C(p, p)) < §, where C(p, B) == {V, = B}, (5.23)
where we set (see (2.8))
Vp =V ((LiQT +i = 2)icqi,p]- @1. - - 27)).- (5.24)

Clearly in view of the definition of Dy from (5.21), the above claim shows that
r.h.s. (5.22) is at most ¢ (5.12). Thus, to complete our proof it suffices to check (5.23).
Towards this end, we first claim that for all y € R?,z € R27T+2

Y;w; p,2T+2 [ 4
Ea, " [IC(p,m "Rp - Vp]

vizip2T+2 (¢ =
Fo, 0w P) = e [Ry- V]
o) P p

—eiT *L2(2T+l)1p=2
B

where R, :=e (5.25)

and where w € [—o0, oo)zT"’2 is defined by setting w; = —oo fori < T and w; = z;
fori > T. We postpone the proof of (5.25) to the next step.

Assuming (5.25), to prove (5.23), we provide upper and lower bounds for the
numerator and denominator of r.h.s. (5.25) respectively. Consider the events

Ry = {L1(2T > 2QN1/3} ,

Ry = {L2(2T) >20N'3 LT +1) 2 20N"?, LT - 1) = 20 — 1>N”3}
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Note that

R p 2742 [Rp-Vp]

ap

v

PP (1, Ry - V]

exp(—eiQNm) ) ]P)i,l]ﬂz;pJTJrZ(Rp)

exp(—eiQNl/S) ) ]}D},(*N)2T+23P’2T+2(RI,). (526)

ot,,

v

1
2
1
2

v

where the penultimate inequality follows from the definition of R, and Corollary 5.5
and the final inequality follows via stochastic monotonicity (Proposition 2.6) as R, is
an increasing event with respect to the boundary data (recall y; > x;). To lower bound
the above expression, we proceed into two cases depending on the value of p.

Case 1. p = 1. Note that R; D RPj ¢ event defined in (4.2). By Proposition 4.1, we
have Pé,](foo)2T+2;l,2T+2(Rl) > PJIQN1/3,(700)2T+2;1,2T+2

¢1 free of N.
Case2. p =2.Letii := (—QN'/3 + /2T +2, —QN'/3). Let us use the shorthand
VY2 o PO Y2 (-0 T H22,0T 42
2 o2

(RP1,0) > ¢1 > 0 for some

notation P
union bound we have

. Note that by stochastic monotonicity and

PiRo) = PRy > P (IL20T) = 20N )N (L@T + D 2 208'7) -
—PE(L 2T — 1) < L,2T) — N'/3).

Note that RPy 9 C {L2(2T) > 20N} N {L,(2T + 1) > 2QN'/3} (with T
replaced by 7 + 1 in (4.2)). Applying stochastic monotonicity (Proposition 2.6) and

Proposition 4.1 with p +— 2 and T — T + 1, we see that the first term in the above
equation can be bounded as

Pg({Lz(ZT) >20NY3Y N (LT + 1) > 2QN1/3})
> POV @ N pp, ) > g, (5.28)

for some ¢ > 0 free of N. As for the second term in r.h.s. (5.27), by translation
invariance (Lemma 2.1a) we have

P4(L1 (2T — 1) < Ly2T) — N'3) = P VD (1,21 — 1) < L,2T) — N'/3)

2742;(0,4/2T+1)
_ Eprw [Weels, (r—1y=syr—1)—n13]
2T 42:(0./2T 1 :
IE:PR\J”&_’ ( * )[Wsc]

where the last equality follows from Lemma 4.4 (recall the PRW law from Defini-
tion 1.7 and Wy, from (1.15)). Now by Corollary (4.12), E2R+ZOV2THD gy 1 >
C/ /2T + 2 for some absolute constant C > 0. However on the event {SI(T —-1) <
So(T — 1) — N3}, W < exp(—eM'"). Thus,

\Y

P (LT — 1) < Ly(2T) — N'/?) > 0
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as N — oo. Hence, inserting (5.28) back in r.h.s. (5.27), we see that for all large
enough N,

Pi(Ry) > ¢ — PE(L12T — 1) < Lo2T) — N'/3) > ~¢hy.

N =

Summarizing the above two cases, for all large enough N, (5.26) is lower bounded
by some ¢ > 0O free of NAFor the numerator in r.h.s. (5.25) observe thatas R, < 1,
by definition of the event C(p, 8), we have 1—6(,),,3) “Rp-Vp < B.Letus now choose
B = ¢¢. Plugging these bounds back in r.h.s. (5.25) yields (5.23).

Step 5. All that remains is to prove (5.25). We will do this for the p = 2 case. The p = 1
case is done analogously. Fix any y € R?, 7 € R27+2 and define w € [—o0, 00)?T+2
such that w; = —oo fori < T and w; = z; fori > T. Assume (L; [1,4T +
3], L1, 4T +4]) ~ Py ™ Let G := o (Li[2T +i — 2,4T +i + 2]);cp1.a].
Fix any event F measurable with respect to G. Set L,(4T + 1) = co. We claim that
(recall W(a; b, ¢) from (1.5), V), from (5.24), and R, from (5.25))

¥,(—00)?T 122,27 +2 il ' '
o 2, Iee ] Wy La@j+ 1. La@2j — 1)
i=1
j (5.29)

2T+2
F,(—00)2T+2:2 2T 42 i . . .
=E3) Ie Ry Vo [ Wwjs La@j+ 1), La@2j — D) | .
j=1

Assuming (5.29) we can finish the proof of (5.25) (for p = 2) via the following string
of equalities:

P22 <ﬂ5<2, ﬁ))

(—00)2T+2,2. 2T 42 [1 2T+2 ]

K Zep [l We L@+ 1. LQ2j ~ 1)
/:

5:(—o0)2T+2,2, 2742 [ 2142 . .
(o0 AT [ [T W(zji La@2j + 1), La2j — 1))
Jj=1

¥i(— 2T+2;2’2 2 2T+2 ) .
g, o0 AT [Lam RaVa [l Wewyi La@j +1). L22) = 1)
J:

2T+2

S 2 2.
(o0 22T 42 [Rz TV 1 Wwjs La@2j + 1), La2j — 1))]

j=1
y;w;2,2T+2
Eo" |:1ﬁ5(2,ﬁ) Ra VZ}

Eg;zzf);Z,ZT+2 |:R2 ) V2j|
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Let us briefly explain the above equalities. The first equality is due to (2.7) and (2.8).

In the second equality we have applied (5.29) to the numerator and denominator by

taking F = —C(2, ) and F = 2 (the full set, i.e., 1f = 1) respectively. The last

equality follows by applying (2.7) and (2.8) again. This proves (5.25) modulo (5.29).
To see why (5.29) holds, observe that

2T+2
S 2T+2. . .
(o222 | e T Wiejs La@) + 1), La@2j — 1)
Jj=1
2T+2

3o 2T+2. . .
= B2 e Ry T Wizys La@j + D). La2)j — 1)
j=T+1
2T+2 r-l
3 +2.
BT TR Ry [T Wiz La@j + 1. Lo@j — 1) | G
j=1

By the Gibbs property, the inner expectation, when viewed as a random variable, is
almost surely equal to V), defined in (2.8). On the other hand, we have

2T+2 2T+2
[T Wi La@j+ 1), La@j — D) = [] Wwj; La@2j + 1), La2j — 1)).
j=T+1 j=1

Combining the above two observations, leads to (5.29).

5.3 Proof of Proposition 5.2

As with the proof of Propositions 3.9 and 4.1, we divide the proof of Proposition 5.2
into two parts depending on p = 1 (critical) or p = 2 (supercritical).

Proof of Proposition 5.2 in the p = 1 case (critical phase). Fix any T €
[k1 N %, ko N %]] Fix any § < y/6k. We recall the representation of bottom-free law
in p = 1 case from Lemma 4.3. Consider the Brownian motion B; obtained via the
KMT coupling that satisfies (4.9). Define

As = { sup |L1(2iy — 1) = Ly 2i — 1)] = Ly N }
i1,i2€|Il,T]]
liy—iz| <§ N/

B(K) = [IL12k — 1)~ Li@R)L, L1 2k + 1) — Li2k)| = byN¥].

Fix any x € R and write P := Py, (o)1 T . Observe that by union bound we have
T—1
P, (w{;’(Ll, [,27 —1]) = yN1/3) <Pi(A) + Y Pi(-A;s NBK).  (530)
k=1
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We now proceed to bound each of the above term separately. For the first term, by
(4.7) and (4.9), in view of the estimate in (4.10) we have for all large enough N that

]P’I(A,;)§]P>1< sup alBl(T—il—1)—Bl(T—i2—1)|z%N1/3—2ClogT>
i1,i2€[[1,Tﬂ
lit—iz| <3 N?/3

slP’1< sup a|Bl<i1>—Bl(iz>|z{—4N1/3>.
i],izE[[l,T]]
lit—iz|<3 N?/3

By modulus of continuity of Brownian motion, the right-hand side of the above
equation can be made smaller than %8 by choosing § small enough depending on
W, 0, v, ki, ka. For the second term in r.h.s. (5.30) we use Lemma B.4 to get

1 1
Py (—=A; NB(k)) < Ce CTYN?,

Plugging the bounds back in (5.30) and taking N large enough we get the desired
result. o
Proof of Proposition 5.2 in the p = 2 case (supercritical phase). Fix any (x1, x2) €
Db y,and T € [[klN%, kzN%]]. Set n := T. Recall the law paired random walk and
weighted paired random walk defined in Definition 1.7. We recall from Lemma 4.4

T . . ..
that the bottom-free law PG~ 22T s equal to IP’”“’,S;{\’VXZ) for the supercritical

case. At this point is it also good to recall the random walk measures from Definition
3.6.
A key to this proof is the following estimate for Egi{(&}’“)[wsc] (recall Wy, from

(1.15)).

Lemma 5.6 There exist constants C1, Cy > 0, depending on M, such that for all
(x1,x2) € I, we have

Egi{%\}’xz)[wsc] > \/L;Cfl .PLn/4J;(x1,xz)(/'\7/) > szle—Cz(logn)SM7 5.31)

where NI := {S1(k) > Sy(k) for all k € [1,n/4]} and Sy, Sy are random walks under
the law PLA/4L:(x1.x2)

Before proving Lemma 5.6 we complete the proof of Proposition 5.2 in the follow-
ing two steps.
Step 1. Fixany V,y > 0. Setv = y/ka,u = V//ki,and t = [2loglogn]. Let
F:=0(S1(1), S2(1)). Consider the events
MCs := {|S1(1)| +18(D] < uv/n, 0 (8;(), [0, 2]) = Lv/n, fori =1, 2}, for § > 0.

We claim that given ¢ > 0, there exists § small enough and N large enough such that

P2 (MCy) < e. (5.32)
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We finish the proof of the lemma assuming (5.32). Lemma 4.4 implies that (L 127+
1), Ly(2j + 2))720 is distributed as WPRW. Write L§*"(k) := L»(2k) and P, :=

PL " 2T Then (5.32) implies

P (L1 + (L@ < VNP AR) <o A= {off 0§, [1,7/8]) = §y N/},
(5.33)

On the event —A the increments of L5*" are well controlled. By Lemma 4.4, condi-
tioned on the even points of L, the distribution of the odd points of L, are given by
&-distributions defined in (4.5). Once we have a bound on the increments of L5V¢",
we may invoke the tails estimates of &-distributions from Lemma B.4 to control incre-
ments of Lj. In particular, due to Lemma B.4,

1op - B [1|L2(2k+1)—Lz<2k>|,|L2(2k+1)—L2(2k+z)\z§y1vl/3 | o (L5 1, T/Sﬂ)]
< Cexp(—gyN'?)

for all k > 1. For the first point in Lj, i.e., Ly(1), we recall from Lemma 4.4 that
Ly(1) ~ X 4 L»(2) where X ~ Gg,+0,1. The explicit form of G,46,1 from (2.2)
allow us to derive that

P2<|Lz<1> — L@ = gy NP o (L1, T/8]])> < Cexp(—¢yN'P).
Thus, in view of (5.33), by the union bound

Py (ILi(DI + 1L2@)] < VNS 0 (Lo, [1.T/4]) = yN¥)

<e+C. kQN% exp(—éyN%)

which can be made arbitrarily small taking N large enough. A similar argument shows
that

Py (11D +[L2@)] < VNS, 0} (L1, [1,T/4 = 1) = yN7)

can be made arbitrarily small as well taking N large enough. This proves Proposition
5.2.
Step 2. In this step we prove (5.32). First, recall that due to (1.14),

3 (x1,x2)
Pn;(m,m)(MC ) = Eprw ™ [Wselmcs ]
WPRW 8= RS G Lx) ry
PRW [Wecl
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where Wy is defined in (1.15). We first define a few more necessary events.

G = {ISID] + 2D < uy/n, |S1(1) = S2(D)] < (logn)*/?},
Gy = {ISI(D)| + 1S2(D] < uv/n, 1 < Si(1) = Sp(1) < 2}.
Recall the non-intersection event NI, from (4.30). Let us temporarily set t =
[2loglogn]. As Wy, < 1, we write
Epiew ™ [Wecuc,
< Egi{é&’XZ)[Wsclmcmem,] + EEQ{;}’“)[WSCLM,] + Egﬁ(@’m[lﬂel] .

@ (€19]

For (II), note that on —NI,, we have Wy, < e < e_(log")2 and by Lemma 4.7,
P12 (=Gy) < Ce=C'Mogm™? Thys, (IT) < Ce=C'1oem™? n view of Lemma
5.6, (E;i{(&}’”)[wsc])_l - (II) — 0. For (I), note that

1t
D = Egﬁ({i}'m[WsclMcmemo] + Z E;ﬁ(\);}*xﬁ[WSCIMC(;(']G]PIN'pm_‘NIP*l]
p=1
t

Z " Epa ™ [16, Epn ™ [vcsoni, | F1]-

(5.34)

Upon conditioning on F, the conditional law is the law of two independent n-step
random bridges from (S1(1), S2(1)) to (x1, x2). We may lift the bridges by p units.
The modulus of continuity event remains unchanged and NI, event turns into NI. Now
we apply the comparison trick between random bridges and modified random bridges
via Lemma 4.10. By Lemma 4.10, there exists a constant C depending only on « such
that

lGlEgi{(\);}’XZ)[lMC,;ﬁNIP | Fl = 16, PES1D:200).(102) (mcs A NIy)
— lGl]p’l;(sl(l)JrI%Sz(l));()fl+PJCZ)(MQS AN (5.35)
< C-16,P,(MCs NNI) = C- 16, B, (MCs | NI) - P, (NI)
where IP’ denote the law of a (n; [n/4], [n/4])-modified random bridge defined in

Deﬁnmon 4.9 starting from (S7(1) + p, S2(1)) to (x1 + p, x2). Observe that P »(NID)
is F-measurable. By Lemmas C.3 and C.8 (recall Corollary 4.6),

Ig, -P,(N) <1g, - &

" ¢CP - max{Si (1) — $r(1), 1} - PL/4-C12(N]). - (5.36)

We plug the estimates from (5.35) and (5.36) back in (5.34). Thus setting C3 :=
>, 2C1C3eC e (with C| coming from Lemma 5.6) and utilizing the lower bound
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for Egﬁ(@,m) [Wqc] from Lemma 5.6, we have
Epigw ™ [WseD) ™'+ (D) = C3 - By ™ [lel
-max{S; (1) — S2(1), 1} - sup ﬁp(MCB | NI)

pef0.]

Now we claim that one can choose § sufficiently small such that

Bt [161 -max {8y (1) — S»(1), 1} - sup P,(MC; | Nl)] <icrle. (537)
pel0.]
We write G| = Gy p, U GI,MZ, where

Gim, = {IST(DI+1S2(D] < u/n, [S1(1) = S2 (D] < Mp}, a1,M2 =G NGy p,.

Given the tail estimates, one can choose M large enough such that
E142) [1511M2 -max{S; (1) — S»(1), 1}] < lcite.

This fixes our choice for M;. Now note that the event MCs depends only on the first
ln/8] points of the two (n; [n/4], |[n/4])-modified random bridges. By definition,
the first | n/4] points of a (n; |n/4], |n/4])-modified random bridge is just a random
walk. Thus, in view of Lemma C.12 (recall Corollary 4.6), one can then choose § small
enough and N large enough such that on uniformly on Gy, », we have

sup P,(MCs | NI) < 1c7'my e

pef0.]

Thus, we have

Lhs. (5.37) < B+ [15% max{S; (1) — S2(1), 1}]
+ M B (16, sup Byp(MCs [ ND)]
pef0.7]
1C129+M2 4C1 28—2C1 g,

verifying the inequality in (5.37). O

Proof of Lemma 5.6 Recall the definition of (n, p, g)-modified random bridge from
Definition 4.9, in particular that Plrln/4l.ln/4Di(a1.a2).(x1.%2) denotes the law of two
independent (n, |n/4], |n/4])-modified random bridge started at (a;, a2) and ended
at (x1, x2). We shall use the shorthand P@1-@2) for PO Ln/41.1n/4]): (@1.a2).(x1.%2) - Alg0
recall the notation P (%1:52) from Definition 3.6 to denote the law of two independent
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random walks of length m started at (b1, by) with same increment law as the modified
bridges.

Recall the events Nl and Gapg from (4.30) and (4.22) respectively. Invoking Lemma
C.llwefirstfixag =B(M) < small enough so that it satisfies

P19 (Gapy | NI) > 3,

for all |a;| < \/n with 1 < a; —ap < 2. Nextby Lemma C.5, we fix £ = £(M) > 0
so that

PG (15, (1 /4D, 12(Ln/4D)] < &/ | ) = J3

for all |b;| < (M + 1)./n. Here Nl := {S1(k) > S»(k) forallk € [2,n/4]} is the
non-intersection event over |n /4] points.
We consider the following events

Gy = {IS;(D)] < V/nfori = 1,2, 1 < Si(1) — Sp(1) <2},
Te == {ISi(ln/4D)1, 1S;(n — [n/4])] < €v/n fori = 1,2},
where T stands for tightness. Observe that by Lemma 4.8 we have
Epinn ™ Weel = B ™ [Weelgap, nesne |
> L P (Gaps N G3 N Ty) (5.38)

1 ( ) ;(x1,x2)
= E;R\);} i [leEgR@l 2 [lGapﬁ’TE | j']]

where F := o(S1(1), $2(1)). Under the event G3 and T¢ we may invoke Lemma 4.10
to get

1, - Epid ™ Meapynr | 71> €' 1g, - PSS Gapy nTe) - (5.39)
almost surely. By Corollary C.10 (recall Corollary 4.6),

1, - BOD-510) (Gap, N Ty)
=1g, - P51 (Gapy N Te | NDPay,ay) (ND)

> C g, - PSS (Gap,y N T | NI)
. pla/AL S, S (2))([\~||)IP>L"/4J;(X1»X2)(|'\T|).

(5.40)

By our choice of 8 and &, we have 1g; - PG, 51 (2))(Gapﬁ, Te | ND) > %163 almost
surely. By Lemma C.3 (recall Corollary 4.6), we have 1g, - PL*/4:S1(D.S12)(NJy >
% almost surely. Thus combining (5.38), (5.39), and (5.40) we have

]E” (1, xz)[WSC] > TC 1 ]P)U’l/‘” (x1, XZ)(N') " (xl XZ)(G )
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By Lemma 4.7 ((4.17) in particular), Pgﬁ({f&}’xﬁ (Gz) > C~L. Plugging this back in the
above equation we get the first inequality in (5.31). For the second inequality, we
consider the event:

Gy == {I151(2) —x1 = 1, [$2(2) —min{x; — 3, x2}| < 1}.

Observe that
pLr/4kGra) (N > plr/4)itx) (G4 N{S1(j) = Sa(j) forall j € [3, n/4ﬂ}).

By the tail bounds of the increments from Lemma B.3, and given the condition x| —
x3 > —(log N)7/®, we have PL"/4l:(01.x2)(G,) > C~! exp(—C(log n)7/%) (recall n >
ki N2/3 — 1). Furthermore, on G4 we must have S| (2) > $2(2). By Lemma C.3 (recall
Corollary 4.6), we have

plr/Al=l@a (5, (j) > $,(j) forall j € [2,n/4 = 1]) = C'/V/n

for all a; > ay. Thus we have

plr/4Li(x1.x2) <G4 N{S1(j) = S»(j) forall j € [3, n/4]]})

> Cexp(=C(logn)"/®) - %

Adjusting the constant we get the second inequality in (5.31). O

Appendix A Stochastic monotonicity

The goal of this section is to prove the stochastic monotonicity of #5.2G Gibbs measure
(Proposition 2.6). Let A = {(i, j) : k1 <i < kp,a; < j < b;}.Letwy, ..., wy| be
the enumeration of points in A in the lexicographic order. Set A, = {wy, wa, ..., w},
so that Ajp) = A. Let E, := E(A, UJA,) (the edges in Vi connecting points in
A, UO9A,), and, recalling the weights W, from (1.5), let

H, (63 () acin,) = /R o T W — e T du A

e={vi—>wn}€E, VEA,_|
where u,,, = x. The proof of Proposition 2.6 relies on the following technical lemma.

LemmaA.1 Fix r € [[1, |Al]. For each v € dA,, fix any uy, u, € R with u, < u,
Foralls >t

H, (S§ (uU)UE3Ar)Hr (t§ (M;)vea/\,) < H, (S; (u;)veaA,)Hr (IQ (uv)veaA,) (A.2)

@ Springer



G. Barraquand et al.

We prove Lemma A.1 at the end of this section and now complete the proof of
Proposition 2.6.

Proof of Proposition 2.6 Fix r € [1, |A|]. We first claim that for all boundary condi-
tions (uy)vean, and (u))yean, with u, < u) forallv € dA,,and s € R,

P(L(w,) <s|L{)=uyforallve 8A,)
> IF’(L(wr) <s|L@w) = u; forall v € 8Ar). (A3)

To show this, observe that H, (x; (4y)vesa,) in (A.1) is proportional to the conditional

density at x of L(w,) given (L(v))veaA = (Uy)vesa, - Thus,

P(L(wy) <s| L(v) =u, forallvedA,)
. fjoo H, (x; (uv)veaA,)dx
S0 Hy (x3 (uy)vean, )dx

= Fr(5§ (uv)veaAr) : (A4)

To prove (A.3) observe that owing to Lemma A.1, the derivative of
s N
tog [ Ayt unoean ) —tog [ Hy i )ean, )
—00 —00

is non-positive for all s. This implies for s’ > s we have

ﬁmmwwm%MMx>ﬁmmummwmwx
S oo Hr(xs )vean)dx — [ H,(x; (u))pean, )dx

Taking s' — oo and cross-multiplying yields the desired inequality (A.3), in light of
(A4).

Given (uy)yegn € RI9A1 we now define a sequence of random variables according
to the following algorithm. Note that below, x <— y means to assign the value y to the
variable x.

Algorithm 1 Defining the random vectors
Generate Uy, ..., U|p| ii.d. random variables from U[0, 1]
Y|A] < Wv)yesa
r < |A|
while r > 1 do
L(wys uw)yean) < Fr ' (Ur; Yr)
Uy < uy forallv € dA,_1 NIA,
Ewr < L(Nwﬂ (Uw)vean)
Y1 < (Uv)yean,_,
r<r—1

end while

@ Springer



KPZ exponents for the half-space log-gamma polymer

Fig. 19 A A possible domain A includes all the vertices in the shaded region. w;’s are the vertices of A
enumerated in lexicographic order. Directed edges e, going are shown above for r = 5 and r = 8. These
are the blue edges with w, as the left point of e,. B The domain A5 includes the vertices in the shaded
region. Qs is the set of all red and black edges that have one vertex as wg and one vertex in d Ag. In the
above figure, Q5 is composed of two black edges that points toward wg (color figure online)

This defines a collection of random variables L(w;; (#y)yesa) indexedby i € [1, |Al]
and (uy)yeya € RIAL 4]l on the common probability space on which Uy, ..., U}
are defined. It is clear from the definition that for each (uy)yega € RI?21, the law of
(L(wi; (”U)UEBA))ie[[l,|A|]] is given by the HSLG Gibbs measure on the domain A with

boundary condition (#)yeaa - Take two boundary conditions (uy)yena and (u),)yesn
with u, < u) forall v € dA. As each F, is stochastically increasing with respect to
the boundary condition, i.e., (A.3), sequentially we obtain that with probability 1 on
our probability space L(w;; (uy)pean) < L(wy,; (),)vean) for all r, thus completing
the proof. O

Proof of Lemma A.1 Let us begin with a few pieces of notations. Fix any 1 < r < |A|.
Set e, = {w, — (w, + (0, 1)), (w, + (0,1)) - w,} N E,. In words, this is the
directed blue edge (see Figure 19 A) with w, as the left point of e,.

Define

hr(X; (uv)veaA,-) = /R'A L 1_[ We(uvl - uvz) l_[ duy,

e={vi—>uv}ek,\{er} VEA,_|

with the convention u,,, = x. Observe that the difference between H, from (A.1) and
h, above is that the weight of the directed blue edge e, is included in the former but
not in the latter. Note that the vertices of e, are not in A, _1. Thus in the definition of
H,, the edge weight function corresponding to e, can be pulled out of the integrand
leading to

Hy(x: (uo)vean,) = hr (x5 Wolvean, ) - Frw,+0,1) — X) (A.5)
where F,.(y) is the directed blue edge weight corresponding to e,, i.e., F.(y) :=
eVry=¢" or F-(y) = e Ury—e? depending on the direction of the e, edge between w,

and w; + (0, 1). Here ¢, is the parameter linked to the blue edge e, .
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With the above introduced notation, we now turn towards the proof of (A.2). Note
that given a function P (x) = ¢~ ™) with R being convex, we have

P@E—-B)P(y —a) = PE—a)P(y — B) (A.6)

forall o, B, y,8 € Rwitha < B and y < §. All our weight functions in (1.5) are of
this type. In particular, this implies that (A.6) holds for P = F;. In view of this and
the relation (A.5), to show (A.2) it suffices to show the same holds for 4, replacing
H,, ie.,

hr(s; (uv)veaAr)hr (t; (”;)veaA,) <h (S; (u;)veaA,)hr (t; (uv)veaAr)~ (A7)

We shall prove (A.7) via induction. Note that

hi(x; (uy)veatu}) = l_[ We(uy, — uvy)

e={vi—>w}eE\{e1}

is the product of edge weights without any integration and with the convention u,,, =
x. Applying (A.6) to each such weight function yields (A.7) for r = 1. Observe the
recursion relation for A, :

hr+1(X; (uv)veaA,-H) =d, (x§ (uv)veaA,H) : / hy ()’§ (uv)veaAr)Fr(x —y)dy
R
where by convention we set iy, ., = x and where we define

dr(x; (”v)veBA,_H) = 1_[ We(uy, — uy,)

e={vi—>v2}€0,

with O, being the set of all red and black edges that have one vertex as w,4| and
another vertex in dA,41, see Fig. 19B. Note that the blue edge e,4 between w1
and wy41 4 (0, 1) is excluded from Q,. Appealing to (A.6) again, we have

dr(s; (uv)veaA,+1)dr(t§ (u;)veaAH_]) <d(s; (u;)veaArH)dr(t; (“v)veBA,_H)
(A.8)

for all s > ¢ and for all u/, > u, with v € dA,4;. Under same conditions we claim
that

/2 hr(y; (uv)veBA,)Fr(S — Y)hr(x; (u:;)veaA,)Fr(t —x)dxdy
R (A.9)
< /]RZ hr(y; (M;)veaA,)Fr(S — V)hr(x; (uv)ve(’)Ar)Fr(t —x)dxdy.

Combining the above inequality with (A.8) we have (A.7) completing the proof. To
see why (A.9) holds, we split the integrals in (A.9) over {x < y} and {y < x} and
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swap the x, y labels in the region {y < x} to get that (A.9) is equivalent to
| A0rmBex@ +Cw0Z@DOWE)
x<y
< / D(y)Y (»)C(x)X(x) + B(x)Z(x)A(y)Z(y)
x<y

where we let

A(Y) = hy(y; (y)vean,), B(x) = hp(x; (U))vean, ),
C(x) = hy(x; (Uy)vean,), DY) = hr(y; (U))vean,)s
XxX)=F@C—x), YY) =FG6—y), W)y =Ft-y),Z(x) = F(s —x).

The integral above can be rewritten as fx<y (A()B(x) — C)D)) (XY (y) —

Wy)Z (x)) and thus it suffices to show for each x < y the integrand is non-positive.
By induction hypothesis, A(y)B(x) < C(x)D(y) for all x < y and since the weight
function F, satisfies (A.6) (with P = F;.), we also have X (x)Y (y) > W(y)Z(x). This
proves (A.9), completing the proof of the lemma. O

Appendix B Basic properties of log-gamma type random variables

In this section we collect some basic facts about log-gamma type random variables.
Towards this end, foreach 6, k > 0, and m € Z>; we consider the following function:

%
r'®)

Hy (—1ym i (y) = exp(@(— 1)y — ke =",

Itis plain to check H is a valid probability density function. Observe that Hy (_1yn 1 =
Gy, (—1y» where G is defined in (2.2). The following lemma collects some useful prop-
erties of H. Its proof follows via straightforward computations and is hence omitted.

LemmaB.1 Suppose X ~ Hp | ,. Then —X ~ Hp _1 . For all &« > —0 we have

X1 _ I(e46)
E’[ea ]— kT (@)

We next define generalized #SLG ©-Gibbs measures in the same vein as HSLG
®-Gibbs measures (see Definition 1.2) but by considering the weight function

exp(Px —ke*) if eis blue(?)
W.(x) = { exp(—ye®) if ¢ is black

exp(—ax) if e is red.
instead of W defined in (1.5). x = y = 1 in above weights lead to the usual Gibbs

measures. The following result ensures that generalized HSLG ®-Gibbs measures (and
hence the usual ones from Definition 1.2) are well-defined.
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LemmaB.2 Fix any y,k > 0, ® := {§,, > 0 : (m,n) € Zil} and o >

—min{d,, : (m,n) € ZZZ }. Recall the graph G from Sect. 1.3.1 used in defin-

ing HSLG ©-Gibbs measures. Given a domain A and a boundary condition {u; ; :
(i, j) € 0A}, we have

/]R\A\ 1_[ Wf(uvl — Uyy) l_[ du, < co.

e={v1—>v2}e E(AUIA) veA

Let us suppose |u; j| < R for all (i, j) € 0A. Let us assume A = Ky 1 or IC}(’T
defined in (2.4). There exists a constant C that depends only on y, k, 0, and a such
that

1/ k
/]5{\M l_[ We(”vl - Mvz) 1_[ du, < C T+R.

e={vi—>v}eE(AUIA) vEA

Proof We shall prove this lemma only for the homogeneous case, i.e. %, , =6 > 0.
The general case is notationally more cumbersome but follows in an exact same manner
as the homogeneous case. First note that for red edges {vi — v»} the corresponding
weight function W, (u,, — u,,) factors out as e~ *“*1 - ¢***2. Hence they can be viewed
as vertex weight functions. More specifically, at each vertex (k, 1) we can associate the
vertex weight function Vi (u) := e Dfau, They replace the role of red edge weights.
We denote this vertex weights as red circles in Figure 20. We now divide our analysis
into two cases based on the value of «.

Suppose o € (—6, 0). As black edge weights are less than 1, we may drop all of
them to get a Gibbs measure based on the blue and red edge weights only, see Fig. 20B.
The integral of the reduced Gibbs measure can be viewed as a product of integrals of
several smaller Gibbs measures that are two types: Type I and Type II as in Fig. 20D
and E respectively. Type I Gibbs measures are those for which red vertex weights do
not appear. The integral corresponding to Type I takes the following form:

k k—1
k
0 -1
(" en) /R kfl_l_!Ha,K,(_w(uifl—u,»)]_!du,»
1= 1=

where uo and uy are in dA. In this case, we may use Hy o (—pyivm (Ug—1 — ug) < C
and the fact that H is a probability density function to get that the integral is bounded

by C- (/c9 (F(@))’l)k. Type II Gibbs measures are the ones where red vertex weights
are present. The integral corresponding to the Type II Gibbs measures takes the form

k m itm (=M u; _—u;) k
/ He(_l) aug _e(—l) O(uj—1—u;)—ke i—17Uj Hdui~
k
RY i i=1
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Fig.20 A A possible domain A. B Reduction in the case of « € (—6, 8). C Reduction in the case of o > 0.
D Type I Gibbs measures. The figure shows two of them of even length. It may also have odd length with
one edge at either of the end removed. E Type II Gibbs measures. It may also have odd length with one
edge at right end removed. F Few examples of Type III Gibbs measures (color figure online)

The integrand can be manipulated to show that the above integral is equal to

k—1
e(*l)m+k—lauk H(F(Q + (_1)m+i+la))K79+(,1)m+ia

i=1

k k
-/]Rk l_[ H0+(—1)m+i+1a,x,(—l)i*1 (xi) l_[ dx;

i=l i=1
k—1 »
= V" T + (— 1)+t a0+ D" e,
i=1
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Since we factor out the measure into these independent pieces and all integrals are
finite, the claim follows for « € (—6, 6).

For @ > 0, we remove all the black edges except the ones connecting (2i — 1, 1)
to (2i, 1) (again since weights of black edges are atmost 1, removal of them only
increases the integrand). This leads to a reduced Gibbs measures shown in Fig. 20C.
The reduced Gibbs measure decomposes into several Type I Gibbs measures and Type
IIT Gibbs measures. Type III Gibbs measures are those for which red vertex weights
do appear. Because of the presence of black edge in this case, Type III Gibbs measures
are different from Type II. A few of the possible Type III Gibbs measures are shown
in Fig. 20F.

o If a Type III Gibbs measure has two red vertices in its domain or boundary, we
may use the fact that the weight of the figure

a

b

is e(@—Q—a)(b—c)—Keb"' . ea(c—a)—ye""’ < €(9+a)(b—c)—xeb"' . (sup R gax—ye") <
= X =

C. €(0+a)(b—c)—xeb—0_

e If a Type III Gibbs measure has only one red vertex in its domain or boundary,
then it must contain either of the two following figures

. . . . . b— .
with ¢ € dA. The corresponding weights are ¢*¢ - ¢@+@)(b=€)=ke™™ < /pe¢ apd
—ac | ea(c—a)—ye”_” otx—ye".

c

e < C'e™*¢ respectively where C' := sup,.g e

Based on the kind of Type III Gibbs measures, we may insert the above bounds
on the Gibbs weights in the integrand of this type of Gibbs measures. The resulting
integral can then be computed explicitly to yield a bound of the form CY el*¢! where
V is the number of vertices in the Gibbs measures. For example, for the middle figure
in Fig. 20F we have (with u4 := u)

3
_ 4 _ o, C—U
(kT ®)) / e MoeTYe °]_[H9,K,(_1)i(ui—ui+1)dui
R i=0
4 s 4
< (c'r®)" - Ce @HHG,K,(_W-(W—ui+1>duz- = (k7T ®)" - Cell.
i=0

This establishes the lemma for « > 0. O

We end this section we two lemmas concerning with the tail properties of fg and
&-distributions defined in (2.3) and (4.5) respectively.
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LemmaB.3 For all x € R we have
e < () fh(x)e’™ < T (20),

where fy is defined in (2.3).

Proof Since fy is symmetric, it suffices to show the lemma for x > 0. We have

(I‘(G))zf@(x) = / YO —e T gy Ox f 0=’ =" gy
R R

Now for the lower bound we observe

1
/ 20y—¢ ,eyfxdy > / 629yfe«‘fey”‘dy > 67267
R 0

whereas for the upper bound we have

/ezey*eyfeyﬂdy < / = dy = 1(20).
R R

O

LemmaB.4 Fix any 6y > 1. For any 01,0, € [90_1, 6o] and a,b € R, define the

- @b) _ gab)
random variable X91,92;:|:1 0.6

a constant C > 0depending only 6y such that for all 61, 6, € [9_1, 6ol, foralla,b € R
and for all v > |a — b| we have

4 Where ééla’gz ) 4 is defined in (4.5). There exists

]P’(Xg::gz);il ¢ [min{a, b} — 2r, max{a, b} + 2r]> < Ce_%r.

Proof Fix any 01, 6, € [0y ! , 60]. We shall prove the bound for X é‘;gz) 1~ The proof for

the case X'*? | is analogous. Without loss of generality assume b < a. Observe

01,625 —
that
P(X{ 4 4y ¢ [minla, b} — 2, max{a, b} +2r])
- Joob—2r1utat2r.00) Gor1(@ — x)Ge, 1 (b — x) B
B f;“ Go,,1(a —x)Gg, 1 (b —x)
Note that

a+1
/ Goy1(a — )Gy 1 (b —x) = & - e~ MXOLORIED),
a
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where we have used the factthat Gg 1 (—y) > C~leBY (recall G from (2.2)). Similarly

/ Go,,1(a — x)Go,,1 (b — x)dx
x<b-—2r

* / Goy.1(a — x)Goy 1 (b — x)dx < C. e 2OH0r,
x>a+2r

Thus as long as r > a — b, inserting the above two bounds back in (B.1) and adjusting
the constant C we get the desired result. O

Appendix C Estimates for non-intersection probability

In this section, we study non-intersection probability of random walks and random
bridges (defined in Definition 3.6), and modified random bridges (defined in Definition
4.9). Throughout this section we shall assume the increments are drawn from a density
f that satisfies the following assumptions. It is worth recalling that due to Corollary
4.6, fy defined in (2.3) satisfies the conditions of Assumption C.1 and hence all results
of this section can be applied to random walks with that increment law.

Assumption C.1 (Assumption on the increments) The density f satisfies the following

properties.

(1) The density f is symmetric and logf is concave.

(2) Letyr denote the characteristic function corresponding tof. || is integrable. Given
any § > 0, there exists n such that sup,s [ (1) = n < 1.

(3) There exists a constant C > 0 such that f(x) < Ce /€ 1n particular, this implies
that if X ~ f, there exists v > 0 such that and

sup [E[etx]] < 0.

lr|<v
In other words X is an subexponential random variable.

The following lemma concerns with sharp rate of convergence of the probability

density function of (X (1)+X(2)+- - -+ X (n))/+/n, where X(z) i~ " f, to the Gaussian
density with appropriate variance.

Lemma C.2 Let " be the n-fold convolution of f. There exists a constant C > 0 such
that

1| <c-n34

V/nf™ (xy/n)
sup  |— —

[x|<(logn)2 ¢o (x)

2

\/271172e_2)672 and 0% := [ x*f(x)dx.
(o2

where ¢y (x) 1=

@ Springer



KPZ exponents for the half-space log-gamma polymer

Proof This proof is adapted from Theorem 5 in Chapter XV in [62]. In what follows
we shall use the big O-notation and write a, = O (b,) if a,,/b,, is uniformly bounded
above by some universal constant. Let ¥ denote the characteristic function of fy. The
explicit form of v was given in (4.13). In particular, || is integrable. In what follows,
for simplicity we will assume o> = 1. Set f,(x) := fR ey (t//n)dt. By the
Fourier inversion formula, f;,(x) is the density of (X (1) + X(2) + --- + X(n))/s/n

where X (i) 44" £ Hence we have nf" (x//n) = fu(x). Since f is symmetric and
has all finite moments, by Taylor expansion we have

Yt/ =1 -5+ 0().

Set @ = 1/16. Thus for |t| < n%, we have V¥ (t//n) = 1 — % + Omte2) =

e=2/2m+0* ) g Y (t//n) = e 121 4+ 0 (n=3/4)), where the O term is free
of ¢ in that specified range. Thus,

@) =1+ 0m%) e P + / ey (1 //n)dt

[t|<n* [t[=n¥

— (1 + 0(”73/4))/ eitxefﬂ/zdt
R

+/ YN (1) m)dt — (1 + O(n=3%) e e 24s.
[t|>=n%

[t|=n®

We next compute the order of the last two integrals above. Clearly f‘ t>n® e~"2dt <

Ce="*" . For the second one, we choose § > 0 small enough such that [y (¢)| < et/

for all |¢| < §. This implies
/ W (t//m)ldi < Ce™ ™.
n®<t<./né
For |t| > /n8, we know sup;>s ¥ (1)] = n < 1 by part (2) of Lemma 4.7. This forces

f [ (t//m)ldt < "' /n f Y (t)dt.
[t|=/né R

. _La18 . . .

Thus the error integrals are at most Ce” "' in absolute value uniform in x. Fur-
. 2 . .

thermore if we assume [x| < (log n)?, g1 (x) > ﬁe—(log m7/2 which dominates the

error coming from the integrals. Hence we may divide ¢ (x) and still obtain that the
errors are going to zero. O

For any p € [0, 00), s, t € [1, n], we set

NI, [s, 1] == {S1(k) — S2(k) = —p, forallk € [s, (]}
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Whens = 2,1 =n—1wewrite Nl,, := NI, [2, n — 1] so that it coincides with the NI,
event defined in (1.18). When a; — a, = O(1), it is well known that P (@1-42) (N[) =
O (n~1/%). We record this classical fact in the following lemma.

Lemma C.3 For all (aj, az) € R? we have P:@-a)(NJ) < CW for some

absolute constant C > 0. If in addition a1 > a,, we have P @42 (N]) > %

Proof The first part is [82, Theorem A] and the second part is [95, Theorem 3.5]. O

We again remind the readers that the above result, as well as all the results stated
below within this section, the random walks/bridges or the modified random bridges
are assumed to have increments drawn from a density f satisfying Assumption C.1.
In many of our arguments below, we shall often appeal to stochastic monotonicity of
non-intersecting random walks or bridges with respect to boundary data. We record
this result below.

Proposition C.4 (Stochastic monotonicity of random bridges and random walks) Fix
n € Zs. et ai(]), bl(]) € [—o0, 00] fori, j € {1, 2}. Suppose ai(l) > ai(z) and bfl) >

@) .
b~ fori € {1,2}.

(a) There exists a probability space that supports a collection of random variables
(SV(k), S (k) = j € (1,2}, k € [1,n])

such that SO (k) > S (k) for all i € {1,2} and k € [1,n], and marginally
(S (). 8 () ~ B’ a6 50 (| i) for each j € (1, 2).
(b) There exists a probability space that supports a collection of random variables

(S (), 8 (k) + j € (1.2}, k € [1.n])

such that S (k) > S (k) for all i € {1,2} and k € [1,n], and marginally
(S0, 85 () ~ B’ (| N for each j < {1,2).

Proof This proposition of as a discrete analogue of Lemma 2.6 in [35] and is true
under log-concavity assumption on f. Instead of giving the full details, we explain the
two possible ways in proving this proposition. One is via Markov Chain arguments
as done, for example, in [35, 93, 100] previously. In [93] for example, the stochastic
monotonicity was proved for non-intersecting random bridges under discrete bounded
increment assumption. One can take a discrete to continuous limit of the increments
to obtain the above result. The second route is via direct construction argument is the
style of [12, 57]. We have, in fact, already adapted that technique in proving stochastic
monotonicity for #$LG Gibbs measures in Appendix A and a similar argument can
be carried out to prove Proposition C.4. O

Next we study diffusive properties of the random walks under the non-intersecting
event.
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Lemma C.5 Givenanye > O there exists a constant 5(g) > 0 such that foralln € Z>
and (a1, az) € R? we have

pi(ana2) (Sl (n) — Sa(n) = 8/n | Nl) > 1—¢, (€D
P”?(”l*“z)( sup (S1(k) — Sp(k)) < 8~ '/n 4+ max{a; — aa, 0} | N/) >1—e¢,
kel[1.n]
(C.2)
P";(‘“»@)( inf Sik)—a; >—56""Vn| NI) >1—g¢, (C.3)
kel[1.n]
IP’”?(‘“*“Z)( sup Sa(k) —ay <8 '/n | NI) >1—¢. (C.4)
ke[1,n]

We remark that Lemma C.5 holds if NI = Nlg[2, n — 1] is replaced by Nlp[2, n].
The same argument presented below essentially works when the conditional event is
the latter one instead.

Proof Proof of Eq. (C.1). Set U (k) := Si(k) — S»(k). Under P™@1:92) (U (k))}_,
is a random walk starting from a; — ap with increments drawn from f x f. The
non-intersection condition for (87 (k), S2(k));_, translates to (U (k))}_, staying non-
negative. If a; > ay, since {U(n) > 8§./n} is an increasing event with respect to the
boundary conditions, we have

pr@na) (& (n) — Sa(n) > 8/n | NI) > pr0.0 (Sl (n) — S$2(n) > 8/n | NI)

But under P (-9 it is known from [75] that the random walk (U (k))}_;, conditioned
to stay non-negative converges weakly to a Brownian meander under diffusive scaling.
Since the endpoint of a Brownian meander is a strictly positive continuous random
variable, we thus have (C.1). If a; < ay, the argument is a bit more involved. We first
write the (complement of the) conditional probability as a ratio:

P @@ ({81 (n) — S»(n) < 83/n} NNI)

]P;n;(al,az)(sl(n) —S(n) < 3ﬁ| Nl) = IP"?(W#Z)(N])

For the denominator we condition on (S1(2), S2(2)) and use the lower bound from
Lemma C.3:

P (NI = B0 (15,612 6,0 E 0 [y 3,17 | 0(512), 220 ]|
(C.5)

c!t .
> WIPW““”(SI (2) = $(2)). (C.6)
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For the numerator, we again condition on (S1(2), $2(2)) to get

]P)n;(al,az)({sl (n) — S2(n) < 8\/;} N N|)

=K [lsu @z50E [1{s] () —S$2(m)<8/m)NIg[3.n—1] | & (S1(2), 52(2))]] - (€D

Upon conditioning on (S7(2), S2(2)), the random walks starts at (S1(2), S2(2)). For
any by > b, utilizing the upper bound from Lemma C.3 and stochastic monotonicity
we have

Pl (51 (n — 1) — Sr(n — 1) < 8/n} NNIp[2, n — 2])
_ Pn_l;(bl’bZ)(Nlo[[Z, n— zﬂ)P”—li(blabz)
(15100 — 1) — Sy(n — 1) < 5/m) | Nig[2. n —2])

< % max{by — by, 1} - P""EO0 (510 — 1) — Sy(n — 1) < 8v/m) | NIp[2, n —2])

Taking b1 = S1(2) and by = $2(2), we insert the above bound back in (C.7) to get

Pn;(al,az)({sl(n) — S(n) < Sﬁ} N NI)
C .
- ﬁEn,(m,az) [131(2)252(2) max{S1(2) — $2(2), 1}]

P00 (81 (n — 1) — Sa(n — 1) < 8/} | NIp[2, n — 2]) (C.8)

Note that under P’ (41:92)  §;(2)— S, (2) D 7 _pwhere Z ~ fxfandb = ay—a; > 0.

We claim that there exists a constant C > 0 such that for all » > 0 we have
E[max{Z — b, 1}17=5] < C-P(Z > b). (C.9)
Plugging this bound in the expectation in (C.8) we have
P @92 (181 (n) — S2(n) < 84/n} NNI)
< SR 2) 2 $0) P00
((S101 = 1) = Sa(n — 1) < 8/n} | NIp[2, n — 2])
Combining this with the lower bound on the denominator from (C.6) we get that

P (S (n) — Sy(n)
<8/n INI) < C-P" OO (15,00 — 1) — Sr(n — 1) < 8/n} | NIg[2, n —2]).

From here, we can again appeal to [75] and Brownian meander properties to show that
the above bound can be made arbitrarily small by choosing § small enough. Thus we
are left to (C.9).
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Suppose Z ~ f x f. Observe that for any b € R we have

o0

E[max{Z — b, 1}1zzp] = Y E[max{Z — b, Wl zepprk—1.5+41]
k=1
. P(Z>b+k-1)
5P(Zzb)|:1+2k- = }
k=2 P(Z = b)

If we assume b > 0 additionally, using exponential tail bounds for f (and hence f * f),
we may get a constant C > 0 free of b, such that % < Ce X/Cforall k > 2.
This ensure the infinite sum above can be bounded uniformly over b € [0, oo). This

proves (C.9).

Proof of Eq. (C.2). Set U (k) := S1(k) — S2(k). To obtain (C.2), observe the following
inequalities

P”““l’“z)( sup U(k) <8~ '/n+max{ar — a2, 0} | [ J{U k) zO})
ke[1,n] k=2

n
> Pn;(max{al,az},az)< sup U(k) < 3—1ﬁ+max{a1 — ay, 0} | ﬂ{U(k) > O})
ke[1.n] k=2

> Pm(ma"{“h“z}’“z)( sup U(k) <8 '/n 4+ max{a; — ay, 0} |
ke[1,n]
n
(U k) = max{a; — as, 0}}>

k=2

_ Pn;(az,az)< sup U(k) < 5—lﬁ| ﬂ{U(k) > O}> >1—e.

ke[1,n] k=2

Let us briefly explain the above inequalities that imply (C.2). The first inequality fol-
lows from stochastic monotonicity applied to the boundary point. We are conditioning
on the event that requires the random walk (U (k))}_, to stay above the barrier zero.
By stochastic monotonicity, increasing this barrier will only decrease the conditional
probability. This implies the second inequality. The equality in the last line follows by
translating the random walk. The final inequality follows by taking § small enough due
to the tightness of the random walk paths conditioned to stay positive (when scaled
by diffusively) [75].
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Proof of Eqs. (C.3) and (C.4) Note that due to stochastic monotonicity (Proposition
C.4), taking a; | —oo we get

Pn;(m,az)( inf S;(k) —a; > _3—1ﬁ| N|>

kef1,n]

v

zpn;(al»—oo)< inf S1(k) —ay
ke[1,n]

s 'n| NI)

v

=[P>";(“1~—°°>< inf (k) — a —5‘&/%)
kef1,n]

= IP’”;(“““Z)( inf Sy(k) —a; > —5_1\/’7)

ke[1,n]

The first equality above is due to the fact that NI happens almost surely when the
second walk starts at —oo. The second equality follows from noting that S;(-) and
S>(+) are independent and hence the probability is independent of the starting point of
the second walk. Thus the non-intersecting condition makes S () stochastically larger
than a usual random walk. By diffusive behavior of random walks one can choose §
small enough so that the above quantity is at least 1 — €. Similarly the non-intersecting
condition makes S»(-) stochastically smaller than a usual random walk. Combining
this with the diffusive behavior of random walks leads to (C.4). m]

Corollary C.6 Fix any n € Z>>. Suppose ay, ax € Rwith |a; — az| < n/logn. Given
any &,y > 0 there exists a constant p(g, y) € (0, 71;] such that for all large enough n
we have

IP"““"“”( sup  |Sitk) —ai| = y/n | NI) >1-—e.
ke[l,np].i=1,2

Proof Let us focus only on S;(-). We may control lower drift of S;(-) around a1, i.e.,
infke[[l’np]] [S1(k) — a1] by an argument similar to the proof of (C.3). For upper drift
we use

sup [S1(k) —a1]l <ax —a1+ sup [Si1(k) — S2(k)]+  sup [S2(k) — az]
ke[1,np] ke[[1,np] ke[1,np]

The second and third term can be controlled by an argument similar to the proof of

(C.2) and (C.4) respectively. Note that by diffusive properties all the fluctuations are
of the order ,/np. Hence one can choose p small enough so that

Pn;(al,az)( sup ‘Sl(k) —(11‘ > ya/n | NI) >1—e.
kel,np]
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We now study non-intersecting probabilities for random bridges P (@1:42):(b1,b2)
defined in Definition 3.6 (increments drawn from f). The following lemma shows
that when the starting points and endpoints are far apart in the diffusive scale, non-
intersection probability is bounded from zero.

Lemma C.7 Fix 6 > 0. For each n € Zx>4, consider the set
Rus = {(x1,%2) : |xi| < 2/n(logn)¥/?, x| — xa > 8+/n} (C.10)

There exists ¢ = ¢ (8) > 0 such that for all n large enough and all (a1, az), (b1, by) €
Ry.s we have

P (@1a2).(b1.b2) ( i[flf ﬂ [S1(k) — S2(k)] = %5ﬁ> > ¢.

kel

Proof Fixany (ai, az2), (b1, ba) € R, 5. For simplicity letus write P for P (ar,a2).(b1.b2)
Note that |b; —a;| < 4./n(logn)3/%. By the KMT coupling for Brownian bridges (The-

orem 2.3 in [56] with z = b; — a; and p = 0), there exists a constant C > 0 such that

for all n € Z>1 we have

pana).(b1.by) [ _gcl1:2) ) o 1
(ap,a0) | = n*

Si(k) — v/nB;(k/n) — a; — % b; —ay)

where scb1-02) . { sup

3
= < Clog n},
(a1.a2) ke[1,n].i=1.2

(C.11)
and where By, B, are Brownian bridges on the same probability space with variance

s x2f(x)dx (SC stands for ‘strong coupling’). By Brownian bridge properties, there
exists ¢ = ¢(5) > 0 so that

w*wzwhbﬁ( sup (|B1(x)|+ [B2(x)]) < %8) > 2¢.
x€[0,1]

Combining the previous two math displays we see that with probability 2¢ — % we
have

S1(k) — S2(k) = a1 — az + £(by — ay — by + ap) — 2C(logn)® — 16V/n
= "k 4y —ay + k(b — by) — 2C(ogn)® — Lo/

n

> —2C(logn)® + 18v/n > s/

for all large enough n. Taking n large enough ensures 2¢ — % > ¢ completing the
proof. O

Our next lemma gives a crude bound for the weak non-intersection probability in
terms of true non-intersection probability.
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Lemma C.8 There exists C > 0 such that for all p € [0, 00), (a1, az), (b1, b2) € R2,

]}DVL;(fll,uZ)y(bl,bZ)(N/p) < eCP _Pﬂ;(al,az),(bl,bz)(N/).

Proof By lifting the first random bridge by p units we see that

IED";(alsaZ);(blbe)(Nlp) — ]pn;(aﬁp»az),(lerpgbz)(N|).

Conditioning on the second point and the penultimate point of both the random bridges
we get

n;(y1,y2) .
Pn;(al+[7,a2),(b1+p,bz)(N|) _ flexz,,Vlzyz Axix (Nl)Tp(xl’ X2; Y1, y2)dx1dxpdyidys )

FO=D (@) — b)F D gy — by)

(C.12)
where
Yp(x1, x2; ¥1, y2) :=f(a1 + p — x)f(ax — x2)f(y1 — b1 — p)f(y2 — b2),
] n—2 n—2
AZ}%’)Z)(ND = / _ l_[ frj 1 —xjp1,0f(xj 2 —xj41,2) 1_[ dxjdx;j .
ijlzxj',z,jElIS,an]] j=2 ./:3

Here in the above integration we set x2, 1 1= X1,X2,2 1= X2,Xp—1.1 := Y1, Xn—1,2 := 2.
From Lemma B.3, we have that Y, (x1, x2; y1, ¥2) < eCPY(x1, x2; y1, y2), where
the C > 0 depends only on 6. Plugging this bound back in (C.12) we get the desired
result. o

The following technical lemma, which can be thought of as the bridge analog of
Lemma C.3, studies the non-intersection probability for random bridges when the
starting points are close.

LemmaC9 Fix M > 0 and n € Z>». There exist a constant C = C(M) > 0 such
that for all |a;| < /n(logn)3/? with |a; — az| < (logn)>?, and |b;| < M./n with
by > by we have

. 372
pritaa-Gri) (V) < ¢ Lmax(ar — az, 1) - max { Lolar = bil, 2}

Proof 1t suffices to prove the lemma only for large enough n (since we can always
choose the C large enough). Set r = max{ﬁlal —by],2} and p = [nr—3]. We first

claim that there exists m(M) > 0 such that
Ipn:(al,az),(bl,bz)(ND

< 2. pri@a).bib) ({|Si (p) — ai| <m/nr~"fori = 1,2} N NI) . (C.13)
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Let us first complete the proof of the lemma assuming (C.13). Note that the density
f*(P*l)(x_ai)f*(’l*P) (b;

FO (b —ap)
n-fold convolution with Gaussian densities at the expensive of a multiplicative factor
close to 1. In particular for large enough n we have

of S;(p) at x is given by =), By Lemma C.2, we may replace the

f*(n_p)(b' —X) =12
sup L . = 2exp <—12 ( 2 (rlftrr%) ))
|x—ai|<m/nr=! f* (bi — a;)

:2exp (m (—r_l — 2 _2+2m)>
< 262m/02.

frp=D *(n—p) bi— —1
Thus (x(nalg(fb 7%( X) < 2e2m/o a2 )(x

m+/nr~!. This allows us to go from random bridge laws to random walk laws. We
thus have

— a;) whenever [x — a;| <

pri@ra-0rb) ({15 (p) — ;| < m/nr~" fori =1,2) NNI)

p
< Pn;(d],a2)s(bl,b2) ({'Sl(p) _ail < mﬁril fori = 1, 2} n m{Sl(k) > Sz(k)})
k=1

14
< 262/ . i@ @) (usi (p) —ajl <m/nr~"fori = 1,2y [{S1k) = Sz(k)})
k=1

p
< 2¢2m/0% . ppiarar) (ﬂ{31 (k) > Sz(k)}) < %rS/Z -max{a) — ap, 1}.
k=1

where the last inequality uses Lemma C.3. This completes the proof modulo (C.13).
The rest of the proof is devoted to showing (C.13).
We claim that

pritara: G2 (5 (p) —ar < —m/nr ' | ND) < g, (C.14)
P G () (p) — ay = my/nr ! [N < 4,
P Crb2 (S (p) —ay < —my/nr”' [ NI) < g,
it G102 (5y(p) —ay = my/nr ™! [ND) < g (C.15)

for all large enough n. Applying an union bound, leads to (C.13). We shall prove
the first two inequalities: (C.14) and (C.15), the remaining two follows in a similar
fashion.
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Proof of Eq. (C.15). Similar to the proof of (C.3) and (C.4), by stochastic monotonicity
for random bridges (Proposition C.4) we have

Pn§((ll»a2),(blsb2)(sl(p) —a; < —m\/ﬁrfl | NI)
< P b (g (p) —ay < —my/nr™") (C.16)
We invoke the KMT coupling for random bridges [56] to define Brownian bridge

Bi1, By on [0, 1] on a common probability space such that (C.11) holds. By (C.11),
with probability 1 — 1,

S1(p) —a1 = v/nBi(p/n) + £ (b1 — ar) — Clog’ n
= VnBi(p/n) — nr=2 —Clog*n > VnB(p/n) — 2/nr".
for large enough n. Since p/n is of the order » 3, Bi(p/n) fluctuates of the order

r~3/2. By Brownian bridge one point tail estimates, there exists a constant ¢ > 0 such
that forallm > 3

P @@L (B (p/n) > —(m —2)r~') = 1 — e~
Thus by an union bound we have

P @@L (5 (p) —ay > —mfur~y = 1= L —gmem’r, (C.17)

Taking m, n are large enough, ensure that 1 — % — e‘cmzr > %. This verifies (C.14).

Proof of Eq. (C.15). By stochastic monotonicity (Proposition C.4) at the starting
points,
P Crb2) (§y (p) —ar = m/nr~" [N
< prilrtVirla) ouba (5, (p) — ay = my/nr =" | NI)
n;(a1++/nr~taz), (b1,b2) — -1
_P (S1(p) — a1 = my/nr ).

C.18
- Prs(ar+/nr=ta2), (b1,b2) (N]) ( )
Using an argument similar to the derivation of (C.17), we find that
S(ar+y/nr~!a2), (b1.b2) 1y < 1 —cm?
P (an Jnr~a), (b 2(Sl(p)—a12mﬁr )Sﬁ‘f‘é’ emer (C.19)
This gives an upper bound for the numerator of (C.18). For the denominator, recall the
event SC(b' b2) and the Brownian bridges B, B, from (C.11). Note that on the event
(a1,a2)
1
(b1,b2) : _ _ -1
Sc(a1+\/ﬁr*1,a2) n {xé%fl](Bl(x) By(x)) = 2” } )
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for large enough n we have

S1(k) = /nBi(k/n) +ar + v/nr~" + (b1 —ar) — Cllogn)®
> /nBy(k/n) + 33/nr~" +ay + £(by — az) — 2C(logn)’
> S2(k) + 3+/nr~" = 3C(ogn)* = S>(k).

where we used that |a; —az| < (log n)3/2, b1 > by, andr < (log n)3/2. Thus for large
enough n,

H;Dn;(a1+ﬁr’1,az),(bl,bz)(Nl) > Ip)";(a1+«/'7"71,612),(b1,b2)< inf (Bl (@) = By(x)) = —% 1)
- x€l0,1
_ prtarty/nr=an), (b1,b2) (g b1:02)
(@1+y/nr=1a)
Sor?o1s o,

where the penultimate inequality follows from (C.11) and Brownian bridge calcula-
tions (see Lemma 2.11 in [36] for example). Combining (C.19) and the above lower
bound we have

rhs. (C.18) < & (§ + rzefcmzr) <3

for all large enough n and m (as r < (logn)>/?). O

Corollary C.10 Fix any M > 0 and n > 1. Suppose |a;|, |b;| < M/n fori = 1,2.
There exists a constant C = C(M) > 0 such that

Pn;(al,az),(bl»bz)(/\//) < C,]ptn/“J:(al,az)(ﬁ/)[ptn/‘U:(bl,bz)(NI)
Pn:(al,az),(bl,bz)(/\”) > %.[[DL”/4J:(al,az)(ﬁ/)PLnMJ:(bl,bz)(ﬁ/)_
where NI := {S1(k) = S1(k) forall k € [2,n/4]}.

Proof The upper bound follows by applying (4.23) with §; = 4—1‘ and integrating over
the non-intersection event. Let us focus on the lower bound. For simplicity we will
drop the floor functions from |n/4]. By Lemma C.5, we can choose a constant M
depending only on M such that for all |c;| < M./n with |x;| < M./n, we have

pr/4ier, cZ)(ﬂHS (n/4)| < Mf} | N|) % (C.20)

i=1

By Lemma C.5 we can next choose a § = §(M) > 0 small enough such that

pr/4(cr.c2) ((Sl(n/4) Sr(n/4)) € Rys | N|) % (C.21
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where R, s is from (C.10). By Lemma C.7, there exists ¢(5) > 0 so that for all
(x1,x2), (1, y2) € Rus

n/2

Pn/Z;(x1,xz)-,(y1,yz)<ﬂ{sl (k) > Sz(k)}> > ¢. (C.22)

k=1

We next consider the events
Ei = {ISi(n/d)| < My/nfori = 1,2}, E»:={1S;G3n/4)| < M/nfori=1,2}.
Using (4.24) with § = ?1L we have

pri(ana2). (b2 (Nfy > pri(ana2)-(trb2) g, N By NI > CLP(E; NE; N NI
= CL.P(NDP(E; NE, | NI).

for some C > 0 depending on M, M. Here P := Pun/4n/4:a1.02).(b1.02) denotes
the joint law of two independent (n; n/4, n/4)-modified random bridges of length n
starting at (a, a2) and ending at (b1, b>) (see Definition 4.9). In view of our M choice
and by the definition of modified random bridges, we have

2
P(E; NEy | NI) = P/4(@na) ( ({18 (/4] < M/n} | ﬁ,)pn/4;(b1,bz)

i=1

2
(ﬂ{|sl~<n/4)| SNAY m)
i=1

which is lower bounded by (3 /4)? from (C.20) and (C.21). Furthermore, in view of
(C.22), we have

ﬁ(ND > ¢ - p"/4;(al,az)(N~|)pn/4:(b17b2)(f\n)_

We thus have the desired lower bound. O

We now analyze the Gapg event defined in (4.22) under modified random bridge
law. Fix any M > 0, n > 1, and (a1, a2), (b1, by) € R2. Suppose |a;|, |bi| < M/n
and a; > ap. Take p,q € [0,n] with p +¢g < n/2 and p # 0. Suppose further
that there exists p € (0, 1) such that either ¢ > np or by — b, > p+/n. Consider
two independent (n; p, ¢)- modified random bridges (S; (k))ie[1,,],i=1,2 Starting and
ending at (a1, a2) and (b1, by) respectively. We denote its law by P p.q)i(a1,a2),(b1,b2)
The following lemma asserts Gapg event is very likely under non-intersection.
Lemma C.11 Fixe, p € (0, 1)and M > 0. There exist B(e, p, M) > 0, no(e, p, M) >
0, such that for all n > ny

P@:p.q)i(ar,a2),(b1,b2) (Gapﬂ | NI) >1—c¢.
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Proof Recall that Gapg eventis intersection of six smaller ‘Gap’ events: Gap; g defined
around (4.22). For simplicity write P for Pr:p-@)i(a1.a2).(b1.52)  We now analyze each
‘Gap’ event separately.

Gap; g and Gap, g4. Note that for k € [1, p], Si(k) — S2(k) is itself a random walk.
The NI event corresponds to the event of this random walk being non-negative. By
classical result about growth of random walks conditioned to stay non-negative (see
[90, Theorem 2]) it follows that one can choose B small enough such that P(Gap, g |
NI) > 1 — . By the same argument one has ﬁ’(Gapz_ﬂ | N) > 1 — ¢ for all large
enough n by choosing 8 small enough.

Gap; g. Note that combining (C.2), (C.3), and (C.4) from Lemma C.5 we have tightness
of the endpoint of random walks conditioned on non-intersection. Combining this with
(C.1), one can choose y small enough such that

P((S1(p). $20p)). (S1(n — @), San — @) [N) € Pry) = 1 — 5, (C.23)

where
Puy i=1{(z1,22) € R* : |zi| <y ", z1 — 22 > y/n). (C.24)

In other words, with probability 1 — {5, the endpoints of the middle portions of the
modified random bridges are in P,, when conditioned upon non-intersection . Thus,

P(Gaps 5 |ND) > (1 — 5) - inf pr—pr=atli@.a).(b1.b2)(Gap, 4 | NI).
P3.z 27" 41,42, (b1 b2) Py P3.5

(C.25)
Since the increments are drawn from a smooth density, for each fixed n, the probability
Pr—p—q+Li(a1,a2),(b1,b2) (Gap; g | NI)

is jointly continuous with respect to the starting and ending points of the random bridge.
As P, is closed, the infimum in (C.25) is attained at some point (af, a3), (b}, b3) €
P,y - Take any subsequential limit of \/Lﬁ(a]", az), ﬁ(b*, b}) say (u1, uz), (v, v2).

Then |u;]|, |vi| < y_l and uj —uy, v; — vz > y. By invariance principle for Brownian

bridges, this conditional law under diffusive scaling converges to non-intersecting
Brownian bridges (with variance fxzf(x)dx) (B1, By) starting at (ug, up) ending at
(v1, v2). We have P(infyc(o,17(B1(x) — B2(x)) > 0) = 1. This implies along this
subsequence the limit of P"~P~4+1:(@[.42)-(b1.52) (Gap; 4 | NI) is 1. Since this holds
for all subsequences, we thus see that for all large enough n, r.h.s. (C.25) can be made
at least 1 — £.

Gap,, g and Gaps g. We shall first show Gapy g happens with high probability under
non-intersection. Note that this event only depends on the first part of the modified
random bridge (which is just two independent pure random walk) independent of the
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other two parts. Hence

P(=Gap, g | NI) (C.26)

p
ARIGE Sz(k)}> (C27)

k=2

p
= ﬁ( ((S100) = Stk — 1) = g~k ¥} |
k=2

F({Sl (k) = S1(k = 1) = B3 N jeppupesa, pp (516 = Sz(k)})

’

Mm

~
||
)

ﬁ( N t81060 > Sz(k)})
(C.28)

where the above inequality follows via an union bound. Since under P,
(S1(0), $2(0)) te[1,p] are two independent random walks starting from (a1, a;). From
(C.6) we get that

—1

P
C ~
( ﬂ S1() = SH(k)} ) N RSCEE) (C.29)

( Si) —Sik—1 =7 B0 ) sk = Sz(k)}) (C.30)
je{2}U[[k+2,p]]

- 14
Lk 'E[ [T 15100250 Lo (510, Sz(@)ee[[l,kﬂﬂ)]]

= E[lsl @=5@1
j=k+2
(C31)

S1(k) =81 (k=1)=p~

By Lemma C.3, we have the following bound for the interior conditional expectation
above:

p
E[ [T iz |U((Sl(g)vS2(£))£g[[l,k+l]]):|

j=k+2
_Cmax(Sik+ 1)~ SHk+ 1. 1)

C.32

=t (C32)

Under ﬁ, the increments of S;(-) and S(-) are independent and distributed as f which
has exponential tails by assumption. We now claim that

E[1S1(2)>52(2)151(k)—sl(k—l)zﬁ1k1/8'maX{S1(k +1)— Sk +1), 1}] €33

<Cok e B B(812) = $(2)
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We shall prove (C.33) later. Assuming it, combining the estimates from (C.31), (C.32),
and (C.33) we get

P
(C.28) < C? ZF L
k=2

Taking B small enough, the right-hand side can be made smaller than ¢/6. Thus,
P(Gapyg | NI) > 1 — % for all small enough 8. An exact same argument leads to
ﬁ(Gapiﬂ IND>1-— % for all small enough 8 as well.

To prove Eq. (C.33), we start by writing X (k) := S1(k) — Si(k — 1) and Y (k) :=
S>(k) — S>(k — 1). For k = 2, observe that

Lh.s. (C.33) < IE|:151(2)>52(2)-max{Sl (3) — 52(3), l}j|

¢

< E|15,2)>52) max{S1(2) — $2(2), 1}}

+ ]173|:151 @)= 5,2 max{X (3) — Y (3), 1}}.

By (C.9), the first expectation above is less than C’ - ﬁ(Sl (2) = $2(2)). For the second
expectation by independence we get

fE’[ls. @)>5,2) - max{X(3) — Y(3), 1}} =P(51(2) = 52(2)) - Elmax{X(3) — Y(3), 1}].

Since X (3) and Y (3) have exponential tails, by adjusting the constant C' we get
Lh.s. (C.33) < C'-P(S1(2) > $2(2)). This proves (C.33) for k = 2 upon adjusting C.
For k > 3, using the fact that max{) ; A;, 1} < >, max{A;, 1}, we get

k+1
Lh.s. (C.33) < ZEl:lsl(2)252(2)1X(k)>ﬂ—1k1/8 -max{X (i) — Y(@), l}i|
i=3

+ E[ls] =5 x> p-1x1/8 - max{S1(2) — $2(2), 1}]
(C.34)
k41 B
< ZIP’(Sl(Z) > $2(2)) ‘E|:1X(k)zﬁ|k1/3'max{x(i) = Y(@). 1}}
i=3

+ E[1S1(2)3S2(2)'max{51(2) - $2(2), 1}i| @(X(k) > ﬂ7]k1/8)~
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Using (C.9) again, we have E 1s,2)>5,(2 ' max{S1(2) — $2(2), 1} | < C'- @(Sl 2) >
$2(2)). Using exponential tail estimates for X (£), Y (£) we obtain that

E[1X(k)zﬂ1kl/s -max{X (i) — Y (i), 1}] < Cexp(— B k'),
P(X(k) > B 'k'/8) < Cexp (— L7 'k8).

Putting this estimates back in r.h.s. (C.34) we arrive at (C.33).

Gapg, g. From (C.23), we get that the endpoints of the middle part of the modified
random walk are in P, , (defined in (C.24)) with probability 1 — 15_2 Whenever the
endpoints are in P, ,,, by Lemma C.7, the probability of non-intersection of the middle
portion of the walk is lower bounded by some constant ¢ > 0. Under this event, we
may use the KMT coupling [56] on the middle portion bridge of the modified random
bridge to deduce that

propmarleee @R (s, (k) — Stk = D = p~' logn) < 1.

for all small enough 8 and for all (c1, c2), (d1,d2) € Pp,,,. Combining all these
estimates, by a union bound we have the desired result. O

We end this section with a modulus of continuity estimate for non-intersecting
random walks.

LemmaC.12 Fix M,y > 0. There exists no(M,y) > 0and §(M, y) > 0 such that
foralln > ng and for all 0 < ay —ay < M + 2loglogn we have (recall the modulus
of continuity ws from (5.1))

2
QP (ws(s,-o), [1.n]) = y</n | Nig[2, n]]) e,

i=1

Proof Fix y > 0. We write PP for P":(41:¢2)_ By Corollary C.6 one can choose p such
that

]P’( sup ws(S; (+), [1,np]) > V\/ﬁ| Nio[2, n]]) =&
i=1,2

Thus it suffices to control the modulus of continuity away from zero: on the inter-
val [np/2,n] (assuming § < p/2). Towards this end let I, := {(x1,x2) : |xi] <
v_lﬁ,x1 — xp > va/n}. By Lemma C.5, one can choose v small enough to
get P(A, | NIp[2,n]) = 1 — & where A, := {(S1(np/2), S2(np/2)) € I,}. Let
F = a(Sl(np/Z), Sz(np/2)). Note that

P(s(Si), [np/2.n]) = v/ | Nio[2. ]

P(A, N {ws(Si (), [np/2,n]) = y/n} NNIo[2, np/2])
=et P(NIo[2, n]) - €39
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Note that {ws(S;(-), [np/2,n]) > y+/n} is independent of F. By Lemma C.7, we
have 1a, - E[Inyg[np/2,0] | F1 = 1a,¢ for some ¢ > 0. Combining these two facts we
get

P (Ay N {w5(Si (), [np/2,n]) = y+/n} N NIg[2, np/2])
=P (A, N NIp[2, np/2]) P (5 (S: (). [np/2.n]) = y+/n)
<¢ " E [lAme)[[2,np/z1]E[1N|0[[np/2,n]] | f]] P (ws(Si(), [np/2,n]) = y/n)
< ¢~ P(A, NNI[2, n]) - P (ws(Si (). [np/2, n]) = y/n)
< ¢~ P(NIp[2. n]) - P (w5(Si (). [np/2,n]) = y/n). (C.36)

Invoking the modulus of continuity of random walks we can choose § small enough
such that P (a)a (Si (), [np/2,n]) > yﬁ) is at most e¢ for all large enough n. This,
implies

(C.36) < & - P(NIp[2, n]).

Using this inequality we see that r.h.s. (C.35) is at most 2¢. Hence combining the near
zero and away zero modulus of continuity we get the desired result by adjusting y and
€. O

Appendix D Supporting calculations

In this section we provide a detailed verification of various tedious calculations. We
first show how to go from (2.11) to (2.12)-(2.14) under the change of variables u; ; =
10g (tN+1j/2)—i+1,N—[j/21—i+2) for (i, j) € Ky. This follows from the fact that the
factor [ | tl.jjl in (2.11) is absorbed as the Jacobian of the change of variables, as well
as the following four relations:

N ' A% N N—i+1
1_[ TON-2j+2T2N-2j _ 1_[ e OitiaN-2it2 1_[ ON—j+1 (i 2j—1—1i 2})
2

j=1 DN-2j+1 i=1 j=I1
N—i
l_[ ON—it1 Wi 2jr1—ui2)) (D.1)
j=1
- N—i+1 o NoINoE
Do =Y Y T g Y ) et (D2)
izl i=1 j=1 i=1 j=1
b N—1N—i o NoINe
l". — QUi 2jH1 i) | pHi+1.2j i 21 (D.3)
i.j

I
N
<
I
N
I
_
~
I
—
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N N

>N e D/ (=Diu;

H NN =] [T e (D.4)
j=1 i=1

||:|2

While (D.4) is obvious, (D.1), (D.2) and (D.3) are shown below. We continue with the
same notations as in the proof of Theorem 1.3.
Verification of (D.1). Note that from the transformation we have

Ui_i Yy Wi: Yy
et i+12N=2j+1 — ti+2N—2j,iv eti i+1,2N=2j+2 — ti+2N—2j+1,i~

This yields

J J
OjUj—i+12N=2j+1 — 1_[ Ojui 2N-2j+1
TzN 2j = Htl-‘er 2ji = He“' =1 ]eTT

i=1 i=1 i=1
Similarly we have
0 / 6 !
J — ,OjujaN-2j+3 1_[ Ojui 2N-2j+3 i — l_[ Ojui 2N-2j+2
TON—2j+2 = € € v Dn-—2j+1 =] |€ .

i=1 i=1

Thus,

e OjujaN-2j+3 1_[69 (i 2N—2j 41U ON—2j4+3—2Ui IN—2j+2)

—

<~
Il
—

N 0;
I (TzN—2j+2sz—2j) r
A

j=1 ON-2j+1 i=1

e biti 2N-2i43

Il
/.:IZ\

I
-

o0 Wi 2N =241 H1i 2N 243 =2Ui 2N —2j+2)

1=
=

~.
1

e 0iti 2N-2i+3

2 P

1

1

N—i+1
H IN—j+1 Wi 2j 14U 2j41=2ui 2f)

1 j=1

—

1

where the last equality follows by changing the dummy variable j has been changed
to N — j + 1. The last term above is clearly equal to the right-hand side of (D.1).
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Verification of (D.2). Let us write

N 2N—j+1 N 2N-2j+1
Z il Z Z o ==l Z Z J+r_1 ’
t
i>j j=1 i=j+1 fi.j j=1  r=1 )

N N—j+1

_ Z Z tj+2r—1 j Z Z tj+2r 2]

tj+2}’j i=1 =1 tj+2r lj

(D.5)
Observe that
eMNfrfjJrl.ZH»l — tj-‘rzr,ja euN7r7j+2,2r — tj+2r—1,j- (D6)
Thus we have
N N—j N N—j+l1
(D.5) = Z Z EUN=r—j4+2,2r TUN—r—j+1,2r+1 Z Z UN—r—j+22r—1 —UN—r—j+2.2r
j=1r=1 j=1 r=1
N j-—1 N j
— Z eMi—r+1.2r —Uj—r2rt1 4 Z Ze”j7r+l,2r—l_”j7r+l,2r (> N-—j+1
j=lr=1 j=lr=1
N-1 N N N
— Z eti—r+1.2r —Uj—r2r+1 | Z Z eUi—r+1,2r—1=Uj—r+1,2r
r=1 j=r+l1 r=1j=r
N—1N-r N N-r+1

— eHit+1.2r TUi 2r+1 + E E eti2r—17 Ui, Zr

r=1 i=1 =1 i=1l

where (j + N — j + 1) means the dummy variable j has been changedto N — j + 1
to obtain the equality in the second step. The last equality follows by setting j —r +— i
and j —r +— i — 1 in the first and second sum respectively. A final interchange of
sum in each of the two terms leads to the right hand side of (D.2).

Verification of (D.3). We follow the same above strategy and write

t N 2N—- ]+1t N 2N— 2j+2t
b j-1 1]—1 jH+r—1,j—1
Ry 3 ey e
i>j>1 ’
N N—j+1 N N—j+1

:Z Z Litor—1,j— 1+Z Z Lj+2r=2,j—1
j=2 r=1

Ljyor—1,j o R Ljyor—2,j
{D.7)
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Due to (D.6) we have

N N—j+l1 N N—j+1
(D.7) = Z Z UN—r—j+2,2r+1 —UN—r—j+2,2r +Z Z UN—r—j+3.2r —UN—r—j+2,2r—1

j=2 r=1 j=2 r=1
N-1 j N—-1 j

— Zeuj—r+1,2r+|*uj—r+1.2r + Z Zeuj—r+2,2r*uj—r+1,2r—1 (> N—j+1
j=1r=1 j=1lr=1
N—1N—-1 N—IN-1

uj— —uj_ uj— —uj_ -

— eti r+1,2r+1 Jj—r+1.2r + Z Z et r+2,2r Jj—r+1,2r—1
r=1 j=r r=1 j=r
N-—1 N—1N-—r

Nf
— Zet2r+l Mer_’_ZZeuH—er_uerl (]-rf-)l—l)

r=1 i=1 r=1 i=1

A final interchange of sum in each of the two terms leads to the right hand side of
(D.3). This completes the verification of all three equalities.

Verification of (3.22). Note that 6, is a function of p defined as a solution of the
equation ¥'(0.) — p¥W'(20 — 0.) = 0. Set g(p) = O.. Note that g(1) = 6. By
differentiating the equation with respect to p we get

gV (g(p) — V' (20 —g(p) + p¥'(20 — g(p)g'(p) =0

This implies g’(1) = W/(0)/2¥" (0). Since p — 1 = O(N~'/3). By Taylor expansion
around 1 to first three terms we get
(N = k) fog.p =—(N —k)(¥(g(p) + p¥ (20 —g(p))
- (N - k)(Z\I/(@) +(p— DHWO)

+(p = DX O) ' (1) = g (HW'©) + 0N )

= -2NW¥ (0 R©) o(l
= - ( )+W+ (1),

where in the final line we used the fact that p — 1 = 2k /(N — k) and the formula for
g'(1) derived above. Taking k = M N?/3 we arrive at the leading orders claimed in
the first part of (3.22). The second part follows by observing that by Taylor expansion
up to first order we have

logoy,p =logay1 + O(p — 1) =logop 1 + O(N~'/).

3N—>

Thus, 0y, /06,1 = og,,,/(—\p”(e))l/ 1, proving the second claim in (3.22).
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Glossary

General notation used throughout the text

HSLG half-space log-gamma Sec. 1.1
Li> set of all integers > k Sec. 1.1
zhaif (G, ) e @s)?:j<i) Sec. 1.1
Wi, j inverse-gamma polymer weights Eq. (1.1)
nn set of all directed paths from (1, 1) to (m, n) in Zhalf Sec. 1.1
w(m) weight of path & Eq. (1.2)
V4 (@.8) (m,n) = Z(m,n) point-to-point HSLG polymer partition function Eq. (1.2)
]:7\/ (s) centered and scaled HSLG free energy process Eq. (1.3)
W(z) digamma function Eq. (1.4)
Z}{,“e (k) point-to-line #$5LG polymer partition function Eq. (1.8)
Zg,l)n (m, n) multipath point-to-point symmetrized log-gamma polymer Eq. (2.10)
partition function
LN HSLG line ensemble Def. 2.7
Kk, 7 and IC;(’T two important domains for #SLG Gibbs measures Eq. (2.4)
o and ap scalings for the boundary parameter Eq. 3.11)
Gapg gap event Eq. (4.22)
a)gv(f; [, uh modulus of continuity Eq. (5.1)
Basic probability densities and distributions
Gamma ! B) inverse-gamma distribution with density against Lebesgue Sec. 1.1
given by 1{x > 0} ~1(B)x A1~ 1/x
We (x) weight function for edges Eq. (1.5)
W(a; b, c) := exp(feafb —e?79), a,b,ceR Eq. (2.1)
Go, iy () i= PV 5= o) g e Rom e Zog.y e R Eq.(22)
fo(x) = [ Go.41()Gp,—1(x —y)dy, 6 €eR,x €R Eq. (2.3)
9;(x) = G 41(x) Eq. (2.3)
5(5;1:32);11 ) Eq. (4.5)
Probability distributions on random walks and bridges
fk)Z‘TZ(u) density of the #5£G Gibbs measure on the domain Ky 7 Eq. (2.5)
o with boundary condition (¥, 7)
Pg’z;k’T HSLG Gibbs measure on Ky 7 with boundary condition Def. 2.3

(3, 2) (the « subscript is sometimes dropped when clear)

Si—oo T
IP’;Y/( °0)" sk, T bottom free #5LG Gibbs measure on Ky 7 with boundary Def. 2.4
condition (¥ (the a subscript is sometimes dropped when
clear)
o
QZTZ (u) HSLG Gibbs measure on the domain lC;c,T with boundary Eq. (2.6)

condition (¥, W)
P@gﬁ\’{fz) and ng(g‘} 92) Jaw of weighted paired random walk and paired random Def. 1.7
walk of length n started from (ay, ap)
Pep.)i(a1.a2).(b1.52)  Jaw of two independent (n; p, ¢)-modified random bridges of length Def. 4.9
n started from (ay, ap) ending at (b1, bp) with increments drawn
from fy
Pri(ar.az) law of two independent random walks of length n started from Def. 3.6
(a1, ap) with increments drawn from fg

Acknowledgements The project was initiated during the authors’ participation in the ‘Universality and
Integrability in Random Matrix Theory and Interacting Particle Systems’ semester program at MSRI in fall

@ Springer



G. Barraquand et al.

2021. The authors thank the program organizers for their hospitality and acknowledge the support from NSF
DMS-1928930. GB was partially supported by ANR Grant ANR-21-CE40-0019. IC was partially supported
by the NSF through grants DMS-1937254, DMS-1811143, DMS-1664650, DMS-2246576, as well as
through a Packard Fellowship in Science and Engineering, a Simons Fellowship, a Simons Investigator
Award, a Miller Visiting Professorship from the Miller Institute for Basic Research in Science, and a W.M.
Keck Foundation Science and Engineering Grant. SD’s research was partially supported by Ivan Corwin’s
NSF grant DMS-1811143 and the Fernholz Foundation’s “Summer Minerva Fellows” program.

Author Contributions All authors contributed equally.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Abraham, D.B.: Solvable model with a roughening transition for a planar Ising ferromagnet. Phys.
Rev. Lett. 44(18), 1165 (1980)
2. Aggarwal, A., Huang, J.: Strong characterization of the Airy line ensemble. arXiv:2308.11908 (2023)
3. Baik,J., Arous, G.B., Péché, S.: Phase transition of the largest eigenvalue for nonnull complex sample
covariance matrices. Ann. Probab. 33(5), 1643-1697 (2005)
4. Borodin, A., Bufetov, A., Corwin, I.: Directed random polymers via nested contour integrals. Ann.
Phys. 368, 191-247 (2016)
5. Barraquand, G., Borodin, A., Corwin, I.: Half-space Macdonald processes. Forum Math. 8, e11 (2020)
6. Baik, J., Barraquand, G., Corwin, 1., Suidan, T.: Facilitated exclusion process. In: The Abel Sympo-
sium. pp 1-35. Springer (2018)
7. Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur processes and last passage percolation
in a half-quadrant. Ann. Probab. 46(6), 3015-3089 (2018)
8. Barraquand, G., Borodin, A., Corwin, 1., Wheeler, M.: Stochastic six-vertex model in a half-quadrant
and half-line open asymmetric simple exclusion process. Duke Math. J. 167(13), 2457-2529 (2018)
9. Betea, D., Bouttier, J., Nejjar, P., Vuleti¢, M.: The free boundary Schur process and applications I.
Ann. Henri Poincaré 19(12), 3663-3742 (2018)
10. Bates, E., Chatterjee, S.: The endpoint distribution of directed polymers. Ann. Probab. 48(2), 817-871
(2020)
11. Barraquand, G., Corwin, L.: Stationary measures for the log-gamma polymer and KPZ equation in
half-space. Ann. Probab. 51(5), 1830-1869 (2023)
12. Barraquand, G., Corwin, 1., Dimitrov, E.: Spatial tightness at the edge of Gibbsian line ensembles.
Comm. Math. Phys. 397, 1-78 (2023)
13. Barraquand, G., Corwin, L., Yang, Z.: Stationary measures for integrable polymers on a strip.
arXiv:2306.05983 (2023)
14. Betea, D., Ferrari, PL., Occelli, A.: Stationary half-space last passage percolation. Comm. Math.
Phys. 377(1), 421-467 (2020)
15. Betea, D., Ferrari, P.L., Occelli, A.: The half-space Airy stat process. Stoc. Proc. Appl. 146, 207-263
(2022)
16. Basu, R., Ganguly, S., Himmond, A.: Fractal geometry of Airy, processes coupled via the Airy sheet.
Ann. Probab. 49(1), 485-505 (2021)
17. Bates, E., Ganguly, S., Hammond, A.: Hausdorff dimensions for shared endpoints of disjoint geodesics
in the directed landscape. Electr. J. Probab. 27, 1-44 (2022)
18. Brézin, E., Halperin, B.I., Leibler, S.: Critical wetting in three dimensions. Phys. Rev. Lett. 50(18),
1387 (1983)
19. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (2013)
20. Barraquand, G., Krajenbrink, A., Le Doussal, P.: Half-space stationary Kardar-Parisi-Zhang equation.
J. Stat. Phys. 181(4), 1149-1203 (2020)
21. Barraquand, G., Krajenbrink, A., Le Doussal, P.: Half-space stationary Kardar—Parisi—Zhang equation
beyond the Brownian case. J. Phys. A: Math. Theor. 55(27), 275004 (2022)

@ Springer


http://arxiv.org/abs/2308.11908
http://arxiv.org/abs/2306.05983

KPZ exponents for the half-space log-gamma polymer

22.

23.

24.
25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.

38.

39.

40.

41.

42.
43.

44.

45.

46.

47.

48.

49.

Barraquand, G., Le Doussal, P.: Kardar-Parisi-Zhang equation in a half space with flat initial condition
and the unbinding of a directed polymer from an attractive wall. Phys. Rev. E 104(2), 024502 (2021)
Bolthausen, E.: A note on the diffusion of directed polymers in a random environment. Comm. Math.
Phys. 123(4), 529-534 (1989)

Borodin, A.: Periodic Schur process and cylindric partitions. Duke Math. J. 140(3), 391-468 (2007)
Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1-65
(2001)

Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J.
109(2), 205-281 (2001)

Baik, J., Rains, E.M.: Symmetrized random permutations. Random matrix models and their applica-
tions. Math. Sci. Res. Inst. Publ. 40, 1-19 (2001)

Borodin, A., Rains, E.M.: Eynard-Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat.
Phys. 121(3-4), 291-317 (2005)

Barraquand, G., Rychnovsky, M.: Random walk on nonnegative integers in beta distributed random
environment. Comm. Math. Phys. 398, 823-875 (2022)

Baik, J., Suidan, T.M.: Random matrix central limit theorems for nonintersecting random walks. Ann.
Probab. 35(5), 1807-1834 (2007)

Barraquand, G., Wang, S.: An identity in distribution between full-space and half-space log-gamma
polymers. Int. Math. Res. Not. 2023, 11877 (2022)

Bisi, E., Zygouras, N.: Point-to-line polymers and orthogonal Whittaker functions. Trans. AMS
371(12), 8339-8379 (2019)

Corwin, I., Dimitrov, E.: Transversal fluctuations of the ASEP, stochastic six vertex model, and
Hall-Littlewood Gibbsian line ensembles. Comm. Math. Phys. 363(2), 435-501 (2018)

Corwin, I., Ghosal, P., Hammond, A.: KPZ equation correlations in time. Ann. Probab. 49(2), 832-876
(2021)

Corwin, I., Hammond, A.: Brownian Gibbs property for Airy line ensembles. Invent. Math. 195(2),
441-508 (2014)

Corwin, I., Hammond, A.: KPZ line ensemble. Probab. Theor. Rel. Fields 166(1), 67-185 (2016)
Calvert, J., Hammond, A., Hegde, M.: Brownian structure in the KPZ fixed point. To appear in
Astérisque, arXiv:1912.00992 (2019)

Corwin, 1., Hammond, A., Hegde, M., Matetski, K.: Exceptional times when the KPZ fixed point
violates Johansson’s conjecture on maximizer uniqueness. Electr. J. Probab. 28, 1-81 (2023)
Caputo, P., Ioffe, D., Wachtel, V.: Tightness and line ensembles for Brownian polymers under geo-
metric area tilts. In: International Conference on Statistical Mechanics of Classical and Disordered
Systems, pp 241-266. Springer (2018)

Caputo, P, Ioffe, D., Wachtel, V.: Confinement of Brownian polymers under geometric area tilts.
Electr. J. Probab. 24, 1-21 (2019)

Corwin, 1., Nica, M.: Intermediate disorder directed polymers and the multi-layer extension of the
stochastic heat equation. Electr. J. Probab. 22, 1-49 (2017)

Comets, F.: Directed Polymers in Random Environments. Springer, Berlin (2017)

Corwin, I., O’Connell, N., Seppiliinen, T., Zygouras, N.: Tropical combinatorics and Whittaker
functions. Duke Math. J. 163(3), 513-563 (2014)

Corwin, L., Shen, H.: Open ASEP in the weakly asymmetric regime. Comm. Pure Appl. Math. 71(10),
2065-2128 (2018)

Dimitrov, E., Fang, X., Fesser, L., Serio, C., Teitler, C., Wang, A., Zhu, W.: Tightness of Bernoulli
Gibbsian line ensembles. Electr. J. Probab. 26, 1-93 (2021)

Das, S., Ghosal, P.: Law of iterated logarithms and fractal properties of the KPZ equation. Ann.
Probab. 51(3), 930-986 (2023)

Dimitrov, E.: Characterization of H-Brownian Gibbsian line ensembles. Probab. Math. Phys. 3(3),
627-673 (2022)

NIST Digital Library of Mathematical Functions. https://dImf.nist.gov/, Release 1.1.10 of 2023-06-
15. Olver, EW.J., Daalhuis, A.B. Olde, Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W.,
Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M. A. eds

Dimitrov, E., Matetski, K.: Characterization of Brownian Gibbsian line ensembles. Ann. Probab.
49(5), 2477-2529 (2021)

@ Springer


http://arxiv.org/abs/1912.00992
https://dlmf.nist.gov/

G. Barraquand et al.

50.

51.

52.
53.

54.

55.

56.

57.

58.

60.

61.
62.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

De Nardis, J., Krajenbrink, A., Le Doussal, P., Thiery, T.: Delta-Bose gas on a half-line and the Kardar-
Parisi-Zhang equation: boundary bound states and unbinding transitions. J. Stat. Mech. Theory Exp.
2020(4), 043207 (2020)

Dauvergne, D., Nica, M., Virag, B.: Uniform convergence to the Airy line ensemble. arXiv:1907.10160
(2019)

Dauvergne, D., Ortmann, J., Virdg, B.: The directed landscape. Acta Math. 229(2), 201-285 (2022)
Dauvergne, D., Sarkar, S., Virdg, B.: Three-halves variation of geodesics in the directed landscape.
Ann. Probab. 50(5), 1947-1985 (2022)

Dauvergne, D., Virdg, B.: Bulk properties of the Airy line ensemble. Ann. Probab. 49(4), 1738-1777
(2021)

Denisov, D., Wachtel, V.: Conditional limit theorems for ordered random walks. Electr. J. Probab. 15,
292-322 (2010)

Dimitrov, E., Wu, X.: KMT coupling for random walk bridges. Probab. Theor. Rel. Fields 179(3),
649-732 (2021)

Dimitrov, E., Wu, X.: Tightness of (H, H R W) Gibbsian line ensembles. arXiv:2108.07484 (2021)
Das, S., Zhu, W.: Localization of the continuum directed random polymer. arXiv:2203.03607 (2022)
Das, S., Zhu, W.: Short and long-time path tightness of the continuum directed random polymer. Ann.
Inst. Henri Poincare B Probab. Stat. 60, 343 (2022)

Das, S., Zhu, W.: The half-space log-gamma polymer in the bound phase. Commun. Math. Phys. 405,
1-46 (2024)

Eichelsbacher, P., Kénig, W.: Ordered random walks. Electr. J. Probab. 13, 1307-1336 (2008)
Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 2. John Wiley & Sons,
New York (2008)

. Ferrari, PL., Occelli, A.: Time-time covariance for last passage percolation in half-space.

arXiv:2204.06782 (2022)

Ganguly, S., Hammond, A.: Stability and chaos in dynamical last passage percolation.
arXiv:2010.05837 (2020)

Ganguly, S., Hegde, M.: Sharp upper tail estimates and limit shapes for the KPZ equation via the
tangent method. arXiv:2208.08922 (2022)

Ganguly, S., Hammond, A.: The geometry of near ground states in gaussian polymer models. Electr.
J. Probab. 28, 1-80 (2023)

Ganguly, S., Hegde, M.: Local and global comparisons of the Airy difference profile to Brownian
local time. Ann. Instit. Henri Poincaré (B) Probab. Stat. 59(3), 1342-1374 (2023)

Gueudré, T., Le Doussal, P.: Directed polymer near a hard wall and KPZ equation in the half-space.
Europhys. Lett. 100(2), 26006 (2012)

Hammond, A.: Modulus of continuity of polymer weight profiles in Brownian last passage percolation.
Ann. Probab. 47(6), 3911-3962 (2019)

Hammond, A.: Exponents governing the rarity of disjoint polymers in Brownian last passage perco-
lation. Proc. LMS 120(3), 370-433 (2020)

Hammond, Alan: A patchwork quilt sewn from Brownian fabric: regularity of polymer weight profiles
in Brownian last passage percolation. Forum Math. 7, e2 (2020)

Hammond, A.: Brownian regularity for the Airy line ensemble, and multi-polymer watermelons in
Brownian last passage percolation. 277(1363) (2022)

He, J.: Boundary current fluctuations for the half space ASEP and six vertex model. arXiv:2303.16335
(2023)

Huse, D.A., Henley, C.L.: Pinning and roughening of domain walls in Ising systems due to random
impurities. Phys. Rev. Lett. 54(25), 2708 (1985)

Iglehart, D.L.: Functional central limit theorems for random walks conditioned to stay positive. Ann.
Probab. 2(4), 608-619 (1974)

Imamura, T., Mucciconi, M., Sasamoto, T.: Solvable models in the KPZ class: approach through
periodic and free boundary Schur measures. arXiv:2204.08420 (2022)

Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys.
52(3), 609-626 (1988)

Ito, Y., Takeuchi, K.A.: When fast and slow interfaces grow together: connection to the half-space
problem of the Kardar-Parisi-Zhang class. Phys. Rev. E 97(4), 040103 (2018)

Kardar, M.: Depinning by quenched randomness. Phys. Rev. Lett. 55(21), 2235 (1985)

@ Springer


http://arxiv.org/abs/1907.10160
http://arxiv.org/abs/2108.07484
http://arxiv.org/abs/2203.03607
http://arxiv.org/abs/2204.06782
http://arxiv.org/abs/2010.05837
http://arxiv.org/abs/2208.08922
http://arxiv.org/abs/2303.16335
http://arxiv.org/abs/2204.08420

KPZ exponents for the half-space log-gamma polymer

80.

81.

82.

83.

84.

85.

86.

87.
88.

89.

90.
91.

92.

93.
94.

95.
96.

97.
98.
99.
100.
101.

102.
103.

Krajenbrink, A., Le Doussal, P.: Large fluctuations of the KPZ equation in a half-space. SciPost Phys.
5(4), 032 (2018)

Komlés, J., Major, P., Tusnddy, G.: An approximation of partial sums of independent RV’-s, and
the sample DF. 1. Zeitschrift fiir Wahrscheinlichkeitstheorie und verwandte Gebiete 32(1), 111-131
(1975)

Kozlov, M. V.: On the asymptotic behavior of the probability of non-extinction for critical branching
processes in a random environment. Theory Prob. Appl. 21(4), 791-804 (1977)

Liggett, T.M.: An invariance principle for conditioned sums of independent random variables. J.
Math. Mech. 18(6), 559-570 (1968)

Nguyen, V.-L., Zygouras, N.: Variants of geometric RSK, geometric PNG, and the multipoint distri-
bution of the log-gamma polymer. Int. Math. Res. Not. 2017(15), 4732-4795 (2017)

O’Connell, N., Seppildinen, T., Zygouras, N.: Geometric RSK correspondence, Whittaker functions
and symmetrized random polymers. Invent. Math. 197(2), 361-416 (2014)

O’Connell, N., Warren, J.: A multi-layer extension of the stochastic heat equation. Comm. Math.
Phys. 341, 1-33 (2016)

Parekh, S.: The KPZ limit of ASEP with boundary. Comm. Math. Phys. 365(2), 569-649 (2019)
Parekh, S.: Positive random walks and an identity for half-space spdes. Electr. J. Probab. 27, 1-47
(2022)

Pandit, R., Schick, M., Wortis, M.: Systematics of multilayer adsorption phenomena on attractive
substrates. Phys. Rev. B 26(9), 5112 (1982)

Ritter, G.A.: Growth of random walks conditioned to stay positive. Ann. Probab. 9(4), 699-704 (1981)
Rahman, M., Virdg, B.: Infinite geodesics, competition interfaces and the second class particle in the
scaling limit. arXiv:2112.06849 (2021)

Seppéldinen, T.: Scaling for a one-dimensional directed polymer with boundary conditions. Ann.
Probab. 40(1), 19-73 (2012)

Serio, C.: Tightness of discrete Gibbsian line ensembles. Stoc. Proc. Appl. 159, 225-285 (2023)
Sasamoto, T., Imamura, T.: Fluctuations of the one-dimensional polynuclear growth model in half-
space. J. Stat. Phys. 115(3), 749-803 (2004)

Spitzer, F.: A Tauberian theorem and its probability interpretation. Trans. AMS 94(1), 150-169 (1960)
Sarkar, S., Virdg, B.: Brownian absolute continuity of the KPZ fixed point with arbitrary initial
condition. Ann. Probab. 49(4), 1718-1737 (2021)

Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Comm. Math. Phys. 159(1),
151-174 (1994)

Vershynin, R.: High-Dimensional Probability: An Introduction with Applications in Data Science,
vol. 47. Cambridge University Press, Cambridge (2018)

Wau, X.: Tightness of discrete Gibbsian line ensembles with exponential interaction hamiltonians. To
appear in Ann. Instit. Henri Poincare (B) Probab. Stat., arXiv:1909.00946 (2019)

Wu, X.: Intermediate disorder regime for half-space directed polymers. J. Stat. Phys. 181(6), 2372—
2403 (2020)

Wau, X.: Brownian regularity for the KPZ line ensemble. arXiv:2106.08052 (2021)

Wu, X.: Convergence of the KPZ line ensemble. Int. Math. Res. Not. 2023, 18901 (2022)

Wau, X.: The KPZ equation and the directed landscape. arXiv:2301.00547 (2023)

Publisher’'s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/2112.06849
http://arxiv.org/abs/1909.00946
http://arxiv.org/abs/2106.08052
http://arxiv.org/abs/2301.00547

	KPZ exponents for the half-space log-gamma polymer
	Abstract
	1 Introduction
	2 Half-space log-gamma objects and proof of Theorem 1.3
	3 Properties of the first three curves
	4 Properties of the first two curves of Gibbs measures with no bottom curve
	5 Modulus of continuity: proof of Theorem 1.1
	Appendix A  Stochastic monotonicity
	Appendix B  Basic properties of log-gamma type random variables
	Appendix C  Estimates for non-intersection probability
	Appendix D  Supporting calculations
	Glossary
	Acknowledgements
	References


