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Abstract
We prove that the stationary measures for the free-energy increment process for the
geometric last passage percolation (LPP) and log-gamma polymer model on a diag-
onal strip is given by a marginal of a two-layer Gibbs measure with a simple and ex-
plicit description. This result is shown subject to certain restrictions on the parameters
controlling the weights on the boundary of the strip. However, from this description
and an analytic continuation argument we are able to access the stationary measure
for all boundary parameters. Taking an intermediate disorder limit of the log-gamma
polymer stationary measure in a strip we readily recover (modulo convergence of the
polymer to the open KPZ equation, Conjecture 4.2) the conjectural description from
(Barraquand, Le Doussal in Europhys. Lett. 137(6):61003, 2022) of the open KPZ
stationary measure for all choices of boundary parameters u,v ∈ R (thus going be-
yond the restriction u + v ≥ 0 from (Corwin, Knizel in Stationary measure for the
open KPZ equation, 2021, arXiv:2103.12253)).

1 Introduction and main results

1.1 Preface

This paper brings structures that have been valuable in studying full or half-space
integrable probabilistic models to bear on time-homogeneous models on an interval
with two-sided boundary conditions. Our aim is to provide exact and concise descrip-
tions of the stationary measure for these models. The structures are Gibbs measures
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(or line ensembles) related to the branching rule for symmetric polynomials (e.g.
Schur, q-Whittaker, Hall-Littlewood, and spin variants). In the full and half-space
context these families of measures (special cases or variants of Macdonald processes)
are preserved under Markovian dynamics that include, as marginals, various inte-
grable probabilistic models. Thus the study of these measures, their marginals, and
their asymptotics contains rich information about the original models.

Until now it was unclear how to define versions of these measures indexed by
the interval with two-sided boundary conditions. The accomplishment of this paper
is the understanding of how to properly define these, now infinite mass, measures
(our two-layer Gibbs measures) and the realization that the preservation of Marko-
vian dynamics (which follow from summation identities reminiscent of the Cauchy
and Littlewood type identities for symmetric functions) translates into the fact that
these measures contain as marginals the stationary probability measures for inte-
grable probabilistic models on an interval. Our approach is structural – the stationary
measures come from variants of known identities in a way that should be generaliz-
able to other Yang-Baxter solvable models in integrable probability. Our work here
only focuses on the construction of stationary measures. It is a compelling direction
to probe temporal correlations and fluctuations (as has been a focus of attention in
the full and half-space contexts for many years).

We demonstrate our approach for two well-studied models, the geometric last pas-
sage percolation and log-gamma polymer models. In particular, we show that station-
ary measures for the increment processes of the last passage time in geometric LPP
and the free energy in the log-gamma polymer can be realized as a marginal of cer-
tain exponential reweightings of a pair of geometric or log-gamma increment random
walks with free starting point (hence the infinite mass of the measure). These are the
first descriptions of the stationary measures for these two models in a strip.

Besides serving as a proof of concept for our approach, we chose these models for
two other reasons. The first is that the method of matrix product ansatz (MPA) does
not easily apply here. That approach [52] involves writing the stationary measure
in terms of a product of matrices, one for each particle occupation number (e.g. for
open ASEP where there are particles and holes, there are two matrices, D and E),
which satisfy a certain quadratic algebra with boundary vectors. This approach has
been extensively studied for the last 30 years and notably related in the case of open
ASEP to Askey-Wilson polynomials [82] (see also [41]) and processes [34] where
it has enabled an understanding of the precise phase diagram, large deviations and
fluctuations of the open ASEP stationary measure.

Though there has been work involving multiple particles per site or species of
particles, to our knowledge the MPA has never been developed to deal with infinite
(countable or uncountable) occupation numbers per site. In particular, for the geo-
metric LPP and log-gamma polymer, the increments of the last passage time or free
energy play the role of occupation variables and are precisely of this countable and
uncountable type, respectively. We do show here that it is possible to formulate a MPA
for these models, though the quadratic algebra relations now involve infinitely many
matrices (in the countable case) or operators (in the uncountable case) satisfying rela-
tions with infinitely many other of the matrices or operators. Finding representations
for these algebras seems quite challenging. However, we show here that the relevant
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marginal of our two-layer Gibbs measures that describes the stationary measure for
these models can be rewritten in matrix product form and verify that our two-layer
Gibbs measures satisfy the relevant quadratic algebras. To our knowledge this is the
first instance where techniques from integrable probability (i.e., measures written in
terms of symmetric functions) have come into direct contact with the method of MPA.
We anticipate (and plan to develop in subsequent work) that our two-layer Gibbs ap-
proach will also be applicable in many other cases, including those where the MPA
has been previously applied, e.g. for open ASEP, and will provide a new and direct
route to describe stationary measures and perform asymptotics.

The second reason for our choice of models here is that they permit analytic con-
tinuations that allow us to move beyond certain initial limitations on boundary pa-
rameters so as to access asymptotics for all choices of boundary parameters. In par-
ticular, doing this for the log-gamma polymer and applying an intermediate disorder
scaling limit allows us to access the conjectural description from [6] of the open KPZ
equation stationary measure for all choices of Robin boundary condition parameters
u,v ∈ R (thus going beyond the restriction u + v ≥ 0 from [46]). The restrictions
in [46] stem from a similar restriction in the rewriting of the matrix product ansatz
in terms of Askey-Wilson processes in [34]. The conjecture in [6] came from the
Laplace transform formulas for the open KPZ equation stationary measure derived in
[46] for u+v ≥ 0 in two steps. First [6, 36] inverted the multipoint Laplace transform
formulas to yield a description of the stationary measure in terms of a free-starting
point Brownian motion reweighted by a certain exponential functional of its trajec-
tory. This description made sense for u + v > 0 but not when u + v ≤ 0. However,
[6] then implemented an idea from Liouville quantum mechanics, integrating out the
‘zero-mode’. The result, remarkably, made sense for all u,v ∈ R and thus led to the
conjectured general stationary measure. Justifying the continuation to all u,v ∈ R

at the level of the open KPZ equation stationary measure seems quite difficult, e.g.
it is unclear how to show that the stationary measure and its conjectural description
depend in some manner analytically on the boundary parameters, or that such a de-
pendence results in a unique extension. See [42] for more on these works.

The conditions u + v > 0 and u + v < 0 define the so-called ‘fan’ and ‘shock’
region in the phase diagram for the open KPZ equation, and likewise arise in the phase
diagram for other models like ASEP (along the line u + v = 0 separating the two
phases, stationary measures are Brownian for the KPZ equation, and are generally
product measures for discrete models). To our knowledge our work here is the first
rigorous derivation of fluctuation limits in the entire phase diagram – previous work
was restricted to the fan region and the product measure line.

The story we develop here puts the reweighted free-starting point Brownian mo-
tion stationary measure description from [6, 36] and the conjectured extension from
[6] into a general context in which the first description follows from the two-layer
Gibbs measure structure and preservation property, while the second follows (rigor-
ously) from the uniqueness of analytic continuation of real analytic functions and the
analytic dependence of the LPP and the log-gamma stationary measures on boundary
parameters.

The stationary measures of geometric LPP or the log-gamma polymer in full space
or on a strip with periodic boundary conditions are random walks, i.e. described by a
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Gibbs measure with only one layer. In full space, this was proved in [4] for exponen-
tial LPP and in [78] in the log-gamma case, using elementary identities in distribu-
tion. The arguments could be adapted to address periodic boundary conditions. It is
remarkable that in presence of more complicated boundary conditions, it suffices to
add another layer to the Gibbs measure.

The rest of this introduction is structured as follows. Sections 1.2 and 1.3 respec-
tively introduce the geometric LPP and log-gamma polymer on a strip and Theorems
1.3 and 1.6 provide a concise formulas for the stationary measures of these models
for all choices of boundary parameters. Section 1.4 explains how, modulo the con-
vergence (in the spirit of [2, 5, 74, 85]) in Conjecture 4.2 of the log-gamma polymer
in a strip to the open KPZ equation, we are able to prove in Theorem 1.8 the con-
jectural open KPZ equation stationary measure formula from [6] for all boundary
parameters. Section 1.6 explains the Gibbs measure structural mechanism and subse-
quent analytic continuation argument behind our construction of stationary measures.
Section 1.7 discusses potential extension of our approach.

1.2 Geometric LPP on a strip

We first introduce the geometric last passage percolation (LPP) on a strip and then
state the first main theorem of the paper (Theorem 1.3) that shows that its stationary
measure can be seen as the marginal of a certain reweighting of two independent
geometric random walks.

Fix any N ∈ Z≥1 and consider the strip
{
(n,m) ∈ Z

2 : 0 ≤ m ≤ n ≤ m + N
}

of
width N on the integer lattice Z

2. Each point (n,m) in the strip is called a vertex
of the strip. Vertices (n,m) satisfying 0 ≤ m < n < m + N are called bulk vertices.
Vertices (m,m) for m ≥ 0 are called left boundary vertices and vertices (m + N,m)

for m ≥ 0 are called right boundary vertices. Edges of the lattice Z
2 connecting two

neighboring vertices of the strip are called edges of the strip.
We will use the word ‘down-right path’ to refer to a path P that goes from a

left boundary vertex of the strip to a right boundary vertex of the strip, with each
step going downwards or rightwards by 1. We always label vertices and edges of P
from the up-left start of the path to the down-right end of the path: vertices p0 =
(n0,m0), . . . ,pN = (nN,mN) and edges ei that connect pi−1 with pi for 1 ≤ i ≤
N . For k ∈ Z≥0, we denote by τk : Z2 → Z

2 the up-right translation by (k, k), i.e.
τk(x, y) = (x + k, y + k). Then the down-right path τkP has vertices τkpi for 0 ≤ i ≤
N and similarly shifted edges. We denote by Ph the horizontal path starting at (0,0),
i.e. form by pi = (i,0) for 0 ≤ i ≤ N .

Definition 1.1 (Geometric LPP on a strip) A random variable X ∼ Geo(a) has geo-
metric distribution with parameter a ∈ (0,1) if P(X = k) = (1 − a)ak for k ∈ Z≥0.
Let a ∈ (0,1) be a ‘bulk parameter’ and let c1, c2 > 0 be ‘boundary parameters’
such that ac1 < 1 and ac2 < 1. Let (ωn,m)0≤m≤n≤m+N be a sequence of independent
geometric random variables indexed by the vertices of the strip. On a bulk vertex
(n,m) we assume that ωn,m ∼ Geo(a2). On a left boundary vertex (m,m) we assume
that ωm,m ∼ Geo(ac1) and on a right boundary vertex (m + N,m) we assume that
ωm+N,m ∼ Geo(ac2). An ‘initial condition’ is given by a down-right path P and a
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Fig. 1 The width 6 strip with a down-right (thick) path P and an up-right (thin) path π (that intersects
P only once at π(0) = (4,0) and ends at (6,3)). The weights ω are shown along the path π as well as
two boundary weights (with the distributions of the boundary weights and one bulk weight indicated). The
initial condition along P is given by the G0 random variables labeled there

process
(
G0(j)

)
0≤j≤N

, independent of the geometric variables (ωn,m)0≤m≤n≤m+N ,
where below we treat the random variable G0(j) as the initial condition for the LPP
recurrence relation at j -th vertex pj = (nj ,mj ) of the path for 0 ≤ j ≤ N . Given
such initial condition, define the associated last passage time for all points (n,m)

above the path P (i.e. all points (n,m) that can be reached from a point pj ∈ P via
an up-right path of lattice edges in the strip) as

G(n,m) := max
π

(

G(π(0)) +
�∑

i=1

ωπ(i)

)

. (1)

The maximum is taken over all the up-right lattice paths π in the strip that starts from
a vertex π(0) ∈ P and ends at π(�) = (n,m) for some length � ≥ 0, and which only
touches P at point π(0). We have also used the convention that G(pj ) = G0(j) for
0 ≤ j ≤ N . See Fig. 1 for an illustration. The above defined last passage times satisfy
the recurrence relation that for all (n,m) above the path P ,

G(n,m) = ωn,m +

⎧
⎪⎨

⎪⎩

max(G(n − 1,m),G(n,m − 1)) if 0 < m < n < m + N,

G(n,m − 1) if 0 < m = n,

G(n − 1,m) if 0 < m < n = m + N,

(2)

with initial condition that if (n,m) = pj for any 0 ≤ j ≤ N , then G(n,m) = G0(j).
Observe from the recurrence (2) that the expectation of G(n,n) for n = 1,2, . . .

strictly increases, hence no solution of (2) is invariant in law under translations τk .
We instead look at the increments of G along edges. The law of a process G0 =(
G0(j)

)
0≤j≤N

with G0(0) = 0 is said to be stationary for the geometric LPP on a
down-right path P if the solution of (2) with initial condition specified along P by
G(pj ) = G0(j) for 0 ≤ j ≤ N has the property that the joint distribution of Gk :=(
G(τkpj ) − G(τkp0)

)
0≤j≤N

is the same for all k ∈ Z≥0, and hence coincides with
that of G0. Since we are only concerned with differences, we have normalized G0
to have G0(0) ≡ 0. The process (Gk)k≥0 is Markov and we say it is ergodic if there
exists is a unique stationary measure that is the limit law as k → ∞ for all choices of
initial condition G0.
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Definition 1.2 (Reweighted geometric random walks) For a ∈ (0,1), consider two
independent random walks L1 = (

L1(j)
)

1≤j≤N
∈ Z

N
≥0 and L2 = (

L2(j)
)

1≤j≤N
∈

Z
N
≥0 starting from L1(0) = L2(0) = 0 with i.i.d increments distributed for 1 ≤ j ≤ N

as

L1(j) − L1(j − 1) ∼ Geo(a1), and L2(j) − L2(j − 1) ∼ Geo(a2),

and let us denote by P
a1,a2
GeoRW and E

a1,a2
GeoRW the associated probability measure and

expectation. For c1, c2 such that a, ac1, ac2 ∈ (0,1), we define a new probability
measure P

a,c1,c2
Geo by reweighting the measure P

a,a
GeoRW as

P
a,c1,c2
Geo (L1,L2)

:= 1

Za,c1,c2
Geo

(c1c2)
max1≤j≤N

(
L2(j)−L1(j−1)

)
c
L1(N)−L2(N)
2 P

a,a
GeoRW(L1,L2),

(3)

where Za,c1,c2
Geo is a normalizing constant which will be proved to be finite.

The following is the first main result in this paper.

Theorem 1.3 Assume a, ac1, ac2 ∈ (0,1). The law of L1 under Pa,c1,c2
Geo is the (unique)

ergodic stationary measure on the horizontal path Ph for geometric LPP recurrence
relation on a strip (see Definition 1.1).

This theorem is a particular case of Theorem 2.3, which will be proved in Sect. 2.
When c1c2 = 1, it is clear from (3) that the law of L1 under Pa,c1,c2

Geo is a Geo(ac2)

distributed increment random walk starting from 0. In this case there are no spatial
correlations on the increments and the stationarity measure could have been guessed
and verified in a simple way using elementary properties of geometric random vari-
ables by adapting the local arguments, e.g. as in [16, Lemma 2.1], [4, Lemma 4.1].

The restriction to considering the stationary measure on a horizontal path is un-
necessary (though simplifies the description of the measure). Our techniques en-
able us to determine the stationary measure on any down-right path, see Theorem
2.16 below which provides a description of the stationary measure for an arbi-
trary path P . The stationary measure allows us to define a stationary solution to
the recurrence (2), but now for all (n,m) in the bi-infinite strip. Specifically, let
G be the solution to the recurrence with stationary initial condition from Theo-
rem 1.3 along the horizontal path from (0,0) to (N,0) and for any k ∈ Z≥0 and
(n,m) ∈ S

(k)
N := {

(n,m) ∈ Z
2 : −k ≤ m ≤ n ≤ m + N

}
define G(k)(n,m) := G(n +

k,m + k) − G(k, k). By stationarity, for any k′ > k, the law of G(k′) restricted to S
(k)
N

is the same of that of G(k′). Thus, we can take a limit k → ∞ to define a bi-infinite
stationary solution G(∞). The increments of this solution along any down-right path
coincide in law with the stationary measure on that down-right path from Theorem
2.16.

Exponential LPP is a simple scaling limit of geometric LPP and thus its stationary
measure is also a reweighting of random walks, now with exponentially distributed
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jumps, of a very similar nature to (3). (See also [5, Sect. 3], where a similar limiting
procedure is discussed in the case of LPP in a half-quadrant). Exponential LPP can
also be obtained as a (different) scaling limit of the log-gamma polymer model on a
strip, which we discuss in the next section.

There is a well-known mapping [77] between the exponential LPP and the to-
tally asymmetric simple exclusion process (TASEP) in the quadrant where in the
level-lines of LPP record the evolution of the TASEP height function. This mapping
survives when the geometry is that of the strip, and the boundary parameters now
correspond to the rates at which particles are inserted into TASEP on the left bound-
ary and removed on the right. The stationary measure of this version of TASEP (i.e.,
open TASEP) can be found using the matrix product ansatz [52]. The open TASEP
stationary measure is also implicitly defined from the bi-infinite (as described above)
stationary solution to the exponential LPP recurrence. It is unclear how to obtain an
explicit description of the open TASEP stationary measure from this implicit relation-
ship. However, as explained in Sect. 1.7, our approach developed here should also be
directly applicable to construct the stationary measure for open (T)ASEP, without
using such an implicit route.

1.3 Log-gamma polymer on a strip

The log-gamma polymer is an exactly solvable directed polymer model on the quad-
rant Z2

>0, with inverse-gamma distributed weights introduced in [78]. Here we intro-
duce a variant, the log-gamma polymer model on a strip and then state the second
main theorem of the paper giving its stationary measure in terms of a reweighting of
two independent log-gamma random walks.

Definition 1.4 (Log-gamma polymer on a strip) A random variable X ∼
Gamma−1(θ) has inverse-gamma distribution with parameter θ > 0 if it is sup-
ported on R>0 with density 1

�(θ)
x−θ−1e−1/x . We will write Y ∼ log Gamma−1(θ)

if eY ∼ Gamma−1(θ). Y is supported on R with density

1

�(θ)
exp(−θy − e−y). (4)

Let α > 0 be a bulk parameter and let u,v ∈ R be boundary parameters such that
u + α > 0 and v + α > 0. Let (	n,m)0≤m≤n≤m+N be a sequence of independent
inverse-gamma random variables indexed by the vertices of the strip. On any bulk
vertex (n,m) we assume that 	n,m ∼ Gamma−1(2α). On any left boundary vertex
(m,m) we assume that 	m,m ∼ Gamma−1(u + α) and on any right boundary vertex
(m + N,m) we assume that 	m+N,m ∼ Gamma−1(v + α). An initial condition is
given by a down-right path P and a process

(
z0(j)

)
0≤j≤N

which is independent of
the inverse-gamma variables (	n,m)0≤m≤n≤m+N , where below we treat the random
variable z0(j) as the initial condition for the partition function recurrence relation
at the j -th vertex pj = (nj ,mj ) of the path, for 0 ≤ j ≤ N . Given this, define the
associated polymer partition function for all points (n,m) above the path P as

z(n,m) :=
∑

π

(

z(π(0))

�∏

i=1

	π(i)

)

. (5)
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The summation is taken over all the up-right lattice paths π in the strip that starts
from a vertex π(0) ∈ P and ends at π(�) = (n,m) for some length � ≥ 0, and which
only touches P at point π(0). We have also used the convention that z(pj ) = z0(j)

for 0 ≤ j ≤ N . This partition function satisfies the recurrence relation that for all
(n,m) above the path P ,

z(n,m) = 	n,m ×

⎧
⎪⎨

⎪⎩

z(n − 1,m) + z(n,m − 1) if 0 < m < n < m + N,

z(n,m − 1) if 0 < m = n,

z(n − 1,m) if 0 < m < n = m + N,

(6)

with the initial condition that if (n,m) = pj for any 0 ≤ j ≤ N , then z(n,m) = z0(j).
As in the LPP case, this recurrence does not have solutions (in law) invariant under

translations by τk . However, the natural analog of the last passage values here are the
free energies h(n,m) := log z(n,m) along a down-right path. The partition function
recurrence relation (6) could be rewritten as a recurrence relation for the free energy.
The law of a process h0 = (

h0(j)
)

0≤j≤N
with h0(0) = 0 is said to be stationary for

the log-gamma polymer on a down-right path P if the solution of (6) with initial
condition specified along P by h(pj ) = h0(j) for 1 ≤ j ≤ N has the property that
the joint distribution of hk := (

h(τkpj )− h(τkp0)
)

0≤j≤N
is the same for all k ∈ Z≥0,

and hence coincides with that of h0. As with LPP, (hk)≥0 is Markov and the same
notion of ergodicity applies.

Definition 1.5 (Reweighted log-gamma random walks) For θ1, θ2 > 0, consider two
independent random walks L1 = (

L1(j)
)

1≤j≤N
∈ R

N and L2 = (
L2(j)

)
1≤j≤N

∈
R

N starting from L1(0) = L2(0) = 0 with i.i.d increments distributed for 1 ≤ j ≤ N

as

L1(j) − L1(j − 1) ∼ log Gamma−1(θ1), and

L2(j) − L2(j − 1) ∼ log Gamma−1(θ2),

and let us denote by P
θ1,θ2
LGRW and E

θ1,θ2
LGRW the associated probability measure and ex-

pectation. For u, v such that α,u+α,v +α > 0, we define a new probability measure
P

α,u,v
LG by reweighting the measure P

α,α
LGRW as

P
α,u,v
LG (L1,L2)

= 1

Zα,u,v
LG

⎛

⎝
N∑

j=1

eL2(j)−L1(j−1)

⎞

⎠

−(u+v)

e−v(L1(N)−L2(N))
P

α,α
LGRW(L1,L2),

(7)

where Za,u,v
LG is a normalizing constant which will be proved to be finite.

The following is the second main result in the paper.

Theorem 1.6 Assume α,u + α,v + α ∈ (0,∞). The law of L1 under P
α,u,v
LG is the

(unique) ergodic stationary measure of log-gamma polymer on a strip on the hori-
zontal path Ph (see Definition 1.4).
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This theorem is a particular case of Theorem 3.3, which will be proved in
Sect. 3. When u + v = 0, it is clear from (7) that the law of L1 under P

α,u,v
LG is a

log Gamma−1(α + v) random walk starting from 0. In this case, the result could be
alternatively proved using properties of inverse gamma random variables, adapting
the local arguments in full-space [78, Lemma 3.2] and half-space [9, Proposition
4.5]. As in the LPP case, this stationary measure can be used to define a bi-infinite
stationary solution to the polymer recurrence relation. By a ‘zero-temperature’ limit
transition, the polymer recurrence relation and stationary measure can be shown to
converge to the exponential LPP analogs. Another, considerably more complicated
limit transition of the log-gamma polymer is to the open KPZ equation.

1.4 Stationary measure of the open KPZ equation

For L > 0, the open KPZ equation on [0,L] with Neumann boundary conditions with
parameters u,v ∈ R is the stochastic PDE formally written as

⎧
⎪⎨

⎪⎩

∂th(t, x) = 1
2∂xxh(t, x) + 1

2 (∂xh(t, x))2 + ξ(t, x),

∂xh(t, x)
∣∣
x=0 = u,

∂xh(t, x)
∣∣
x=L

= −v,

(KPZu,v)

where h is a function of t ∈ R+ and x ∈ [0,L], and ξ(t, x) is a space-time white
noise. Definition 4.1 provides a precise meaning via the Hopf-Cole transform to what
it means to solve the open KPZ equation.

Let C([0,L],R) denote the space of continuous functions from [0,L] to R. We
will say that the law of a random function h0 ∈ C([0,L],R) with h0(0) = 0 is sta-
tionary for the open KPZ equation on [0,L] if the solution to (KPZu,v) with initial
condition h(0, x) = h0(x) is such the law of ht := (

h(t, x) − h(t,0)
)
x∈[0,L] is the

same for all t ≥ 0, and hence coincides with that of h0. In recent works by several
authors [6, 32, 36, 46] (see also the review [42]), the stationary measure for the open
KPZ equation was determined when u + v ≥ 0 and L = 1, and in the general case, a
conjectural formula of the stationary measure appears in [6] (see below Theorem 1.8
for further discussion and background).

We prove in Proposition 4.5 that this conjectured open KPZ stationary measure
arises as an ‘intermediate disorder’ limit of the log-gamma stationary measure from
Theorem 1.6. Intermediate disorder scaling of polymers to the KPZ equation was first
introduced in [2], where the convergence was proved for directed polymers in the
quadrant Z2≥0, i.e. for models in ‘full-space’ without boundary (see also [39, 47] for
further developments). The result was later extended in [85] to discrete directed poly-
mer models in a half-quadrant (‘half-space’), whose free energy converge to the KPZ
equation on R≥0 with Neumann boundary condition at 0 (see also [5, 74] for general-
izations). The methods in those works reduce the convergence to sharp estimates on
convergence of random walk to Brownian heat kernels with the specified boundary
conditions. Conjecture 4.2 formulates the precise intermediate disorder scaling limit
under which the log-gamma polymer in a strip (whose width grows with the scaling)
should converge to the open KPZ equation, as a space-time process. Combining this
conjecture with the convergence in Proposition 4.5 of the log-gamma polymer sta-
tionary measure under this scale proves the conjectural description from [6] of the
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stationary measures of open KPZ equation for general boundary parameters u, v and
arbitrary interval length L. We state this result as Theorem 1.8 below.

The following process is the intermediate disorder limit (see Proposition 4.5) of
the reweighted log-gamma random walk P

α,u,v
LG from Definition 1.5 and the conjec-

tured open KPZ stationary measure from [6].

Definition 1.7 (Hariya-Yor process) For v1, v2 ∈ R let Pv1,v2
BM be the probability mea-

sure on C([0,L],R)2 of two independent standard Brownian motions B1, B2 on
[0,L] with drifts v1 and v2 respectively. For u,v ∈ R define the probability measure
P

u,v
KPZ on C([0,L],R) through its Radon-Nikodym derivative by

dPu,v
KPZ

dP0,0
BM

(B1,B2) = 1

Zu,v
KPZ

(∫ L

0
dse−(B1(s)−B2(s))

)−u−v

e−v(B1(L)−B2(L)). (8)

By the Cameron-Martin theorem, we may also include drifts in the reference measure
and define P

u,v
KPZ as

dPu,v
KPZ

dP−v,v
BM

(B1,B2) = ev2L

Zu,v
KPZ

(∫ L

0
dse−(B1(s)−B2(s))

)−u−v

. (9)

Theorem 1.8 (conjectured in [6] – proved here modulo Conjecture 4.2) For any
u,v ∈ R, the law of B1 under P

u,v
KPZ is the (unique) ergodic stationary measure for

(KPZu,v).

The measure P
u,v
KPZ was first considered in [60] in a completely different context,

motivated by considerations around the Matsumoto-Yor identity [68, 69]. The nor-
malization constant Zu,v

KPZ was computed explicitly for u,v > 0 in [56, Proposition
4.1] and a formula (the analytic continuation of the formula for u,v > 0) is given in
[32] for all u, v such that u + v > 0. The fact that the normalizing constant Zu,v

KPZ is
finite for all u,v ∈R was implicit in [60]. It is equivalent to the fact that when B is a
Brownian motion,

E

[(∫ t

0
e−B(s)−μsds

)m]
< ∞ (10)

for any t > 0 and μ,m ∈ R. When m > 1 or m < 0 Jensen’s inequality and the
convexity of the function x 
→ xm imply that

E

[(∫ t

0
e−B(s)−μsds

)m]
≤ tm−1

∫ t

0
E

[
e−mB(s)−mμs

]
ds < ∞.

When m ∈ (0,1), (10) follows from the case m = 1, which is easy to check.
The stationary measure for the open KPZ equation was first explicitly described

in [46] via multi-point Laplace transform formulas. As mentioned in the preface,
this result was limited to u + v > 0 and L = 1. The u + v > 0 restriction is serious,
coming from limitations of the Askey-Wilson process [34, 82] method used in [46];
the L = 1 restriction can likely be lifted. By inverting the Laplace transform formula,
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an explicit probabilistic description was given in [6, 36], showing that the stationary
measure (constructed in [46]) has the law of the process W(x)+U(x)−U(0), where
W is a Brownian motion with diffusion coefficient 1/2 and W(0) = 0, and U(x) is
independent from W . The law of U is absolutely continuous with respect to the free
Brownian (infinite) measure with Lebesgue measure for U(0) and Brownian law from
there with diffusion coefficient 1/2, with Radon-Nikodym derivative proportional to

exp

(
−2uU(0) − 2vU(L) −

∫ L

0
dse−2U(s)

)
. (11)

This is reminiscent of path integrals encountered in Liouville quantum mechanics
(see references in [6]) and is a continuum version of the two-layer Gibbs measure
that we introduce below in Sect. 1.6.

It was further observed in [6] (see also Sect. 5 of [42] for a summary of this cal-
culation) that it is fruitful to explicitly average over U(0) in the probability mea-
sure above, as is a standard procedure in Liouville quantum mechanics. Letting
X(x) = U(x) − U(0) and performing this integration out over U(0), the stationary
measure has the law of the process

(
(W(x) + X(x)

)
x∈[0,L], where, again, X is inde-

pendent from W , and its law is absolutely continuous with respect to the Brownian
measure with diffusion coefficient 1/2 and X(0) = 0, with Radon-Nikodym deriva-
tive proportional to

(∫ L

0
dse−2X(s)

)−u−v

e−2vX(L). (12)

Via the change of variables W = B1+B2
2 , X = B1−B2

2 , it is easy to check that the
process B1 = W + X is exactly distributed as P

u,v
KPZ defined above. This shows that

Theorem 1.8 was already proven (combining results in [6, 32, 36]) when u + v ≥ 0
and L = 1.

It was observed in [6] that the law of B1 = W + X defined above makes sense
for any u,v ∈R. Thus they conjectured that these measures remain stationary for the
open KPZ equation for any u,v ∈ R. More precisely, it was argued in [6] that the
result in the u + v > 0 phase should extend to all u,v ∈ R by analytic continuation.
However, it is not at all clear how to make this argument mathematically rigorous. In
particular, one would need to define what it means for a distribution on C([0,L],R)

to be analytic, that the open KPZ stationary measure and the law of B1 both depend
in this manner on the boundary parameters, and that this notion of analyticity implies
uniqueness. Our Theorem 1.8 confirms this conjecture by essentially developing such
an argument at the level of the pre-limiting log-gamma polymer. As explained above,
Theorem 1.8 is a limit of Theorem 1.6, which is proven from the analytic continuation
of the u + v > 0 phase to all u,v ∈ R, but in the case of the log-gamma polymer, we
are able to justify rigorously this analytic continuation procedure.

We finally remark that ergodicity of the open KPZ equation and uniqueness of
its stationary measure included in Theorem 1.8 follows directly from recent work of
[64, 75], using ideas from [59]. Thus, the content of the theorem is the confirmation
of the conjectured form of the stationary measure for all u,v ∈ R and particular for
u + v < 0.
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1.5 Universality

The stationary measures of geometric LPP (3), the log-gamma polymer (7), and the
open KPZ equation (8) converge to the same large-scale limit, defined as follows. For
ũ, ṽ ∈ R we define the probability measure P

ũ,ṽ∞ on C([0,1],R) through its Radon-
Nikodym derivative with respect to P

−ṽ,ṽ
BM by

dPũ,ṽ∞
dP−ṽ,ṽ

BM

(B1,B2) = 1

Z ũ,ṽ∞
e(ũ+ṽ)minx∈[0,1]{B1(x)−B2(x)}.

For the KPZ equation, recall the probability measure Pu,v
KPZ that implicitly depends

on a length L which we set to be L = ε−1. For i = 1,2 we introduce rescaled
processes B

(ε)
i (x) = ε1/2Bi(ε

−1x) and scale boundary parameters as u = ε1/2ũ,

v = ε1/2ṽ. Then (B
(ε)
1 ,B

(ε)
2 ) weakly converges as ε goes to 0 to P

ũ,ṽ∞ [6].
For geometric LPP, consider the measure P

a,c1,c2
Geo (L1,L2) and let N = ε−1 and

B
(ε)
i (x) = ε1/2

σ

(
Li(ε

−1x) − mε−1x
)

,

where m = a/(1 − a) and σ 2 = a/(1 − a)2 are the mean and variance Geom(a),
and scale boundary parameters as c1 = exp(−ũε1/2/σ), c2 = exp(−ṽε1/2/σ). Then,
(B

(ε)
1 ,B

(ε)
2 ) weakly converges as ε → 0 to P

ũ,ṽ∞ .
For the log-gamma polymer, consider the measure P

α,u,v
LG (L1,L2) and let N =

ε−1. The rescaled processes are defined as in the geometric LPP case above except
that now m = −ψ(α) and σ 2 = ψ ′(α) (where ψ(z) = ∂z log�(z) is the digamma
function) are the log Gamma−1(α) mean and variance, and now we scale boundary
parameters as u = ũε1/2/σ , v = ṽε1/2/σ . Again, (B

(ε)
1 ,B

(ε)
2 ) weakly converges as

ε → 0 to P
ũ,ṽ∞ (to see that, it is more convenient to use the alternative definition of

P
α,u,v
LG (L1,L2) from Lemma 4.3 below).
The fact that the stationary measures of the three models converge to the same

limit (as implied by the above convergence results) is not a coincidence, but a sign of
universality. Indeed, the three models are expected to converge at large scale to a uni-
versal space-time process defined on the strip [0,1]×R≥0, depending on two bound-
ary parameters ũ, ṽ: the open KPZ fixed point. The law of B1 under the probability
measure P

ũ,ṽ∞ should be its (unique for each choice of (ũ, ṽ)) stationary measure, as
predicted in [6]. Let us mention that the KPZ fixed point has been constructed only
for models without boundaries [67], and its construction on domains with boundary
is an open problem. Let us also remark that stationary measures of ASEP converge as
well to the same limit [35], and that by scaling boundary parameters slightly differ-
ently than above, one could recover all limiting processes studied in [33, 53]. To our
knowledge all previous fluctuation limit results have been restricted to the fan region
where u + v ≥ 0 while we access the full range of u,v ∈ R (here for the geometric
LPP and log-gamma polymer) by our methods.



Stationary measures for integrable polymers on a strip 1579

1.6 Stationary Gibbs line ensembles

In this section, we will explain a general mechanism behind our construction of sta-
tionary measures for the geometric LPP and log-gamma polymer models. Though the
stationary measures will generally not be of product form, they will have a relatively
simple structure – namely, they will arise as the law of the top layer of certain two-
layer Gibbs measures. As we will explain in Sect. 1.6.2, the nature of these Gibbs
measures and idea behind showing their invariance under the LPP or polymer recur-
rence dynamics comes from the study of dynamics on variants and generalizations
of Schur processes. Our initial motivation for recognizing this structure came from a
comparison between the open KPZ equation stationary measure (for u + v > 0) and
the Gibbs property of the KPZ line ensemble. With that in mind, we first relate that
motivation and then introduce our two-layer Gibbs measures. This motivation can, in
principle, be skipped and one can go immediately to Sect. 1.6.2

1.6.1 Gibbs line ensembles and stationary measures

Gibbsian line ensembles are useful to describe our guiding principle and understand
its potential for applications beyond the scope of the present paper. The distribution
of the process U in (11) is closely related to the interaction potential appearing in the
definition of the KPZ line ensemble [45]. We will not review here the exact definition
of this object, but simply mention that it is a probability measure on a family of
processes (�i(x))x∈R,i∈Z>0

such that

• The first curve �1(x) has the law of the solution to the KPZ equation on R, with
narrow-wedge initial condition, at a fixed time t (the line ensemble may be con-
structed for any fixed t > 0);

• If we fix a subset [a, b] × �1, n� ⊂ R × Z>0, the law of (�i(x))x∈[a,b],i∈�1,n�,
conditionally on the law of (�i(x)) on the exterior of the subdomain, is absolutely
continuous with respect to the law of Brownian bridges joining �i(a) to �i(b),
with a Radon-Nikodym derivative proportional to

exp

(

−
n∑

i=1

∫ b

a

e−(�i(s)−�i+1(s))ds

)

. (13)

Line ensembles corresponding to various types of initial conditions for the KPZ equa-
tion can be considered as well (e.g. the classes of initial data considered in [29, 30]).
The stationary initial condition is somewhat singular, but it can be seen that if the
initial condition approaches a Brownian motion, the first line �1(x) gets shifted up-
wards to +∞, away from the other lines �i(x) for i ≥ 2. Due to the form of the
interaction (13), in this limit the first curve becomes independent from the others so
that �1 is distributed as a Brownian motion and we recover that Brownian motion is
stationary for the KPZ equation on R [13].

Gibbsian line ensembles can be constructed for various models. They were orig-
inally introduced in the context of Brownian last passage percolation [44], and can
be defined as well for discrete models such as geometric LPP [51, 76, 79, 80] and
log-gamma polymer models [11, 50, 55, 63, 84] in the quadrant Z2

>0. In the case
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of lattice models, the analog of the curves �i(x) are no longer absolutely continu-
ous with respect to the Brownian bridge measure, but with respect to random walk
bridges with geometric or log-gamma distributed increments respectively. The curves
are no longer indexed by x ∈ R, but rather by the vertices along a down-right path
in the quadrant Z2

>0, such that the distribution of �1(x) coincides with the distri-
bution of passage times and free energies, respectively, along the path. The interac-
tion potential (13) needs to be replaced by some discrete analogue which takes the
form of a product of Boltzmann weights, as in a usual Gibbs measure. The structure
of Boltzmann weights for geometric LPP or the log-gamma polymer comes respec-
tively from the definition of the Schur process [18, 23, 72] and the Whittaker process
[22, 50] (in particular, their branching rules) and the relation between these models
and Schur/Whittaker processes comes from Markovian dynamics that map between
these processes and have marginals that recover the LPP or polymer recurrence rela-
tions. These dynamics ultimately relate to the skew Cauchy identity satisfied by the
Schur or Whittaker symmetric functions. Note that, as in the continuous case, station-
ary measures of both models can be understood as the law of the first line of the line
ensemble after it has detached from the other lines.

Line ensembles can also be constructed for models with a single boundary, in par-
ticular the log-gamma polymer model in a half-quadrant [10]. The specific form of
interaction between the lines comes from the half-space Whittaker process [8, 17, 71]
and ultimately from the skew Littlewood identities. The half-space KPZ line ensem-
ble (�i(x))x∈R≥0,i∈Z>0

has not been constructed yet in the literature, but we expect
that it can be constructed as a limit of the half-space log-gamma line ensemble intro-
duced in [10]. Anticipating a bit, we expect that the half-space KPZ line ensemble
would satisfy the following Gibbs property: the law of (�i(x))x∈[0,a],i∈�1,n�, con-
ditionally on the law of (�i(x)) on the exterior of the subdomain, is absolutely
continuous with respect to Brownian motions on [0, a] terminating at �i(a), with
a Radon-Nikodym derivative proportional to

exp

(
n∑

i=1

(−1)iu�i(0) −
∫ b

a

e−(�i(s)−�i+1(s))ds

)

. (14)

We emphasize that there is now a boundary interaction potential of the form
−u(�1(0) − �2(0) + �3(0) − · · · ), where u is the boundary parameter of the KPZ
equation on R≥0. A similar boundary interaction potential appears in the Radon-
Nikodym derivative (11) above, upon identifying 2U with �1 − �2. Stationary mea-
sures for the log-gamma polymer and the KPZ equation in a half-space have been
studied in [5, 6]. The present paper is largely inspired from the observation that for
such initial condition, not only the first line of the line ensemble should separate
from the bulk of the line ensemble, but the first two lines together, and the stationary
measure for both models should then relate to the distribution of half-space KPZ or
log-gamma line ensembles with only two lines. This phenomenon seems to be quite
general, as it can be shown that stationary measures of open ASEP also present a
similar structure [7]. Note that the work [5] constructs stationary measures using dif-
ferent ideas that do not involve Gibbs line ensembles, but the framework used in [5]
(half-space Macdonald processes) is not available in the context of models with two
boundaries, which are the focus of the present paper.
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Fig. 2 (a) Strip SN for N = 6, with a down-right (thick) path P depicted. (b) Two-layer graph GP asso-
ciated to the path P

Let us now turn to models with two boundaries. When u + v > 0, the stationary
measure of the KPZ equation on [0,L] (KPZu,v) can be seen as the distribution of
�1(x) − �1(0), where the law of the pair of continuous processes (�1,�2) is ab-
solutely continuous with respect to the product of two Brownian measures on [0,L]
(where �1 and �2 have starting value distributed as Lebesgue measure and then
Brownian law from there with diffusivity 1), with Radon-Nikodym derivative pro-
portional to

exp

(
−u(�1(0) − �2(0)) − v(�1(L) − �2(L)) −

∫ L

0
e−(�1(s)−�2(s))ds

)
. (15)

This is just a restatement of (11). It becomes clear now that this description matches
the Gibbs property of the KPZ line ensemble on [0,L] restricted to two lines with the
interaction potential at both boundaries of the form as in half-space models. Strictly
speaking, the probability measure defined by (15) is invariant by translation, so that
it is an infinite measure. However, since we are eventually interested in the spatial
increments �1(x) − �1(0), we may fix the value of any point, e.g. �2(0) = 0. Pro-
vided u + v > 0, doing this results in a finite measure that can be normalized to be a
probability measure.

1.6.2 Gibbs measures on two-layer graphs and stationary measures on a strip

Motivated by the discussion above, we formulate here the stationary measures for the
geometric LPP and log-gamma polymer model on a strip in terms of the top curve of
discrete analogues of the two-line Gibbsian line ensemble (15). The construction is
very similar for both models, and we describe below the main ideas.

As explained above, in the discrete setting, the Gibbsian line ensemble should be
indexed by the vertices along a down-right path. Let us consider some down-right
path P in the strip (see Fig. 2 (a)). To such a down-right path, we associate a two-
layer graph GP , depicted in Fig. 2 (b), which consists of two copies of the path P ,
rotated counter-clockwise by π/4, with certain interaction edges between the two
paths. We refer to Definition 2.4 below for a precise definition.

A two-layer configuration is an assignment of numbers λ
(j)
i , i = 1,2, 1 ≤ j ≤ N

to each vertex of two-layer graph GP , see Fig. 2 (b). These take integer values in the
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case of geometric LPP and real values in the case of log-gamma polymer. We will
use the shorthand λi := (λ

(0)
i , . . . , λ

(N)
i ) for i = 1,2 and λ = (λ1,λ2).

We assign to any two-layer configuration on GP a weight wtGP (λ) given by the
product of (model dependent) Boltzmann weights over all edges in the graph. The
specific form of Boltzmann weights (see (20a)–(20c) and (57a)–(57c) below) comes
from the structure arising in discrete half-space Gibbs line ensemble [3, 10] discussed
in the previous section. We will view the weight of a two-layer configuration as an
infinite measure over all configurations on GP – referred as the two-layer Gibbs
measure below – which is translation invariant under adding the same constant to all
λ

(j)
i . It may be thought of as a discrete analogue of the measure (15).

It turns out that for both geometric LPP and the log-gamma polymer, the dynamics
of the height function can be seen as a marginal of more general Markov dynamics
that map the two layer Gibbs measure associated to one path to the two-layer Gibbs
measure associated to another path. These Markov dynamics are constructed as fol-
lows. First, we notice that any down-right path P can be updated to any down-right
path Q above it by sequentially performing the following three types of ‘local moves’:


−→
,


−→
,


−→
,

which we respectively refer to as the bulk/left boundary/right boundary local move.
We associate to each local move P 
→ P̃ of a down-right path the corresponding local
move of the two-layer graph GP 
→ GP̃ .

We will define three types of Markov kernels U , U and U that map two-layer
configurations λ on GP to two-layer configurations λ′ on GP̃ . These Markov kernels
are local, in the sense that they only update the configuration on the vertex which
moves during the local move, and the update only depends on the configuration on
neighbouring vertices. The bulk kernels U that we chose below are reminiscent
to so-called push-block dynamics, originally introduced in the context of the Schur
process [18, 23, 83] building on ideas from [54]. It is possible that other type of
dynamics, such as the so-called RSK-type dynamics [24, 37, 38, 70] could be used
as well, though the push-block type kernels seemed to be the most convenient choice
for our purposes. Likewise, our boundary kernels U and U are similar with push-
block type dynamics introduced in the context of half-space Schur and Macdonald
processes [3, 8]. The existence of these kernels follows from certain identities that
we show about the local weights in the bulk and boundary for the two-layer Gibbs
measures. For instance, in the bulk we have

∑

κ1,κ2

wt

⎛

⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

b

b

a

a

κ1

κ2

⎞

⎟⎟⎟
⎠

=
∑

π1,π2

wt

⎛

⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

π2

π1

a

a

b

b

⎞

⎟⎟⎟
⎠

, (16)

where on each side of the equation, the weights are products of Boltzmann weights
over all the edges of the subgraphs depicted above. We have only stated here the
identity corresponding to a bulk local move, and we refer to Propositions 2.6 and 2.7
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(geometric LPP case) and Lemmas 3.5 and 3.6 (log-gamma polymer case) for details.
As we explain in Remark 2.8, these identities may be seen as variations of the (skew)
Cauchy and Littlewood identities in symmetric function theory.

The kernels U , U and U also have the property that the first layer marginal
of the two-layer dynamics coincides with the recurrence relations (2) and (6) satis-
fied respectively by geometric LPP passage times and by the log-gamma polymer
partition functions. Hence, by construction, those marginal distributions of two-layer
Gibbs measures wtGP (λ) are precisely the stationary measures we are after.

In order to arrive at a simple description for the stationary measures, we perform
several additional steps, by adapting to the discrete setting the procedure that trans-
forms the measure (15) to the one in Definition 1.7. First of all, the two-layer Gibbs
measures are translation invariant infinite measures. To normalize them into proba-
bility measures, we notice that under certain restrictions of the range of boundary
parameters (analogous to u + v > 0 in the case of the open KPZ equation), the mass
of these infinite measures with fixed value λ

(0)
1 is finite. Therefore one obtains bona

fide stationary probability measures under those conditions.
To get rid of the contraint on boundary parameters, we finally average the afore-

mentioned (stationary) probability measures over the ‘zero mode’ � = λ
(0)
1 − λ

(0)
2 .

Remarkably, this yields probability measures on Z
N or R

N that are well-defined
without any restrictive constraint on boundary parameters. This procedure is anal-
ogous to the one performed non-rigorously in [6] for stationary measures of the open
KPZ equation, as we have mentioned below Theorem 1.8. Eventually, the proofs of
stationarity of these measures to the full-range of boundary parameters follow ana-
lytic continuation arguments. More precisely, let us denote the stationary measure by
P : KN → [0,1], where K is Z or R. The dynamics of each model can be encoded
by a Markov transition kernel U(L′

1|L1) for L1,L′
1 ∈ K

N , where L1 denote the se-
quence of last passage times or free energies along a path centered by the value on the
left-boundary, and L′

1 denote the same sequence along the same path translated by
(1,1), i.e., by τ1. Assume that under some restriction on boundary parameters (say
u + v > 0), for all L′

1 ∈K
N , we have an equation of the form

∑

L′
1∈KN

U(L′
1|L1)P(L1) = P(L′

1), (17)

such as (45) and (82) below (the summation is an integral when K = R), where U
and P depend on boundary parameters. The equation may be analytically extended to
a larger range of u, v, provided both sides of (17) are real analytic functions of the
variable u. In the case of geometric LPP, we show that the RHS is analytic by direct
inspection of an explicit formula, and we prove that the LHS is a power series in the
boundary parameter with appropriate radius of convergence. In the log-gamma case
the argument is considerably more involved as the sum in (17) becomes an integral. In
Sect. 3.6, we demonstrate a stronger result than real analyticity. Using Morera’s the-
orem and bounds on integrability we show that both sides are holomorphic functions
in u in a suitable open set.
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Remark 1.9 For open ASEP a simple argument shows that its stationary measure
depends real analytically on bulk and boundary parameters q , α, β , γ , δ, in the region
of the parameter space when the stationary measure is unique (we refer to [52] for a
precise definition of the model). This actually holds for a wide class of Markov chains
with finite state space. Suppose Cθ is a family of continuous-time Markov chains with
the same state space S (where |S| < ∞) and with infinitesimal generator matrices Lθ

depending real analytically on a set of parameters θ = (θ1, . . . , θm) ∈ �, where � is
an open subset of Rm. We also assume that the stationary measure of Cθ , denoted μθ ,
is unique. Then μθ depend real analytically on θ ∈ �.

Indeed, by definition, the column vector μθ ∈ R
|S| is the unique solution of equa-

tions L∗
θμθ = 0 and [1, . . . ,1]μθ = 1. The system can be solved by Gaussian elimi-

nation, so that each component of μθ can be expressed as a rational function of the
coefficients in L∗

θ , hence μθ depends real analytically on θ ∈ �.
This argument does not apply for the geometric LPP and log-gamma polymer

models, which have infinite state spaces. It may, however apply to some of the models
that we mention now in Sect. 1.7

1.7 Extensions of our method

Our methods should be extendable to a broad class of models on a strip from in-
tegrable probability that satisfy Cauchy and Littlewood type summation identities.
From these it should be possible to construct two-layer Gibbs measures and Marko-
vian dynamics that preserve them as well as project on the top layer to the models
in question. The class of models we anticipate being able to approach includes those
coming from symmetric functions with explicit and local branching relations in the
Macdonald hierarchy as well as the symmetric functions coming from stochastic ver-
tex models.

As explained in Sect. 2.3, our construction of geometric LPP stationary measures
is closely related to Schur functions. Based on [71], and the form of the weights
(57a)–(57c) below, there exists a similar relation between the log-gamma polymer
on a strip and gln(R)-Whittaker functions. We have not made this connection fully
explicit in Sect. 3 below, in order to keep the proofs elementary and self-contained,
see Remark 3.7. Since the family of q-Whittaker functions interpolates between the
Schur and Whittaker functions, our methods should be adaptable to the q-Whittaker
case. Models connected to the q-Whittaker process, such as the q-pushTASEP are
discussed in [21, 70] in full-space and in [8, 62] in half-space. It would also be in-
teresting to adapt our methods to models related to Hall-Littlewood functions, in par-
ticular the stochastic six-vertex model and ASEP [20, 31, 61]. In this case, the Gibbs
line ensemble structure has been already studied in [43] (in the full-space setting),
and it turns out that the summation identity of the form (16) has already been proved
in [37] (see more details in Remark 2.8 below). Hence, provided the appropriate Lit-
tlewood type summation identity holds as well, it seems very likely that the method
of the present paper can be adapted.

Beyond the class of Macdonald symmetric functions, it would be interesting to
consider models associated with symmetric rational functions built as partition func-
tions of stochastic vertex models [25, 48], in particular the spin Hall-Littlewood func-
tions [19] and spin q-Whittaker functions [27]. Again, the summation identity (16)
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has also been proved for the spin Hall-Littlewood functions, using a Yang-Baxter
“zipper” argument which is likely to be applicable to many other cases, including
non-symmetric functions that are related to colored vertex models and interacting par-
ticle systems with particles of multiple types [1, 28]. Skew Littlewood type identities
for spin Hall-Littlewood functions have been also proved in [40, 57], and although
these are slightly different from what we need to build stationary measures (we need
to consider summations over all integer signatures instead of summations over non-
negative signatures), we believe that similar arguments would yield the appropriate
identities.

There exists another direction in which our method could be extended. In the case
of the geometric LPP model, our two-layer Gibbs measures can be viewed as products
of skew Schur functions indexed by integer signatures (not necessarily nonnegative)
of length 2. We refer to Sect. 2.3 for background on Schur functions and signatures.
Thus, the two-layer Gibbs measures have a structure similar to Schur processes [72]
and their variants with boundaries [14, 26], modulo the important difference that our
measures live on sequences of integer signatures instead of sequences of partitions,
and we are considering an infinite measure instead of a probability measure. We refer
to Remark 2.9 for more details on Schur processes. Based on this analogy, our con-
struction may be generalized in the following directions. As the summation identities
from Sect. 2.3 hold for an arbitrary number of variables, they must hold in the ring
of symmetric functions, and hence one could study the Gibbs measures associated
to other types of specializations of the ring of symmetric functions (see [70] for an
illustration of how different specializations are related to different stochastic mod-
els). Moreover, these summation identities (Proposition 2.6 and Proposition 2.7) also
hold for signatures of arbitrary (even) length. Hence one can construct n-layer Gibbs
measures and associated Markov dynamics on sequences of signatures of length n. It
would be interesting to understand the probabilistic information that is contained in
those (infinite) measures.

1.8 Outline of the paper

In Sect. 2, we consider an inhomogeneous generalization of the geometric LPP model
from Definition 2.1 and prove Theorem 2.3 which generalizes Theorem 1.3. Sec-
tion 3 contains an inhomogeneous generalization of the log-gamma polymer model
from Definition 3.1 and proves Theorem 3.3 which generalizes Theorem 1.6. Sec-
tion 4 consider the intermediate disorder scaling of log-gamma polymer model on
a strip (Conjecture 4.2). Proposition 4.5 shows that the stationary measure for the
log-gamma polymer in Theorem 1.6 converges to the open KPZ stationary measure.
Hence, modulo Conjecture 4.2 on convergence of the model, we prove Theorem 1.8,
verifying the conjectured [6] open KPZ stationary measure.

1.9 Notation

We write Z≥a := Z∩ [a,∞). Bold face letters such as X are used to denote vectors.
For a distribution D, we write X ∼ D to mean that X is a random variable with dis-
tribution D and generally assume X to be independent of other random variables. We
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Table 1 Table of notations

Geometric LPP Log-gamma polymer

Two-layer First-layer marginal Two-layer First-layer marginal

Random walk measures P
a,b
GeoRW P

α,β
LGRW

Reweighting functions V
c1,c2
Geo V

u,v
LG

Reweighted random walks P
b,c1,c2
Geo P

b,c1,c2
Geo P

β,u,v
LG Pβ,u,v

LG

Gibbs measures wtGPGeo wtPGeo wtGPLG wtPLG

Gibbs probability measures PPGeo PPLG

Markov Dynamics UGP,GQ
Geo UP,Q

Geo UGP,GQ
LG UP,Q

LG

Bulk Markov operators UGeo UGeo ULG ULG

Left boundary operators UGeo UGeo ULG ULG

Right boundary operators UGeo UGeo ULG ULG

write U(x′|x) (or U in various fonts) for transition probabilities from x to x′. When
the x, x′ take discrete values (i.e., Z or products of Z) as in the ‘geometric’ case, U

is a transition probability; when x, x′ take continuous values (i.e., R or products of
R) as in the ‘log-gamma’ case, U is a transition probability density. In that case, we
will also use Dirac delta functions if we want to indicate that U acts as the identity
on certain coordinates. We will use a subscript Geo and LG to distinguish between
the ‘geometric’ and ‘log-gamma’ cases of various notation. A summary of much of
the notation used is contained in the Table 1.

2 Stationary measure for geometric LPP on a strip

2.1 LPP with inhomogeneous weights

We define the geometric LPP with inhomogeneous weights and then state the main
theorem of this section constructing its stationary measure on a horizontal path, which
generalizes Theorem 1.3 in the introduction.

Definition 2.1 (Inhomogeneous geometric LPP) Let a1, . . . , aN > 0 and c1, c2 > 0
be such that:

aiaj < 1, aic1 < 1, aic2 < 1, ∀1 ≤ i, j ≤ N. (18)

We will always assume these conditions in this paper as they are necessary for the
geometric random variables below to be defined. We call the ai ‘bulk parameters’
and the c1, c2 ‘boundary parameters’. Define aj+kN = aj for k ∈ Z and 1 ≤ j ≤
N . We define the inhomogeneous version of geometric LPP on a strip by the same
recurrence (2) and initial condition as the homogeneous model, but now with ωn,m ∼
Geo(anam) in the bulk 0 ≤ m < n < m+N , ωm,m ∼ Geo(amc1) on the left boundary
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Fig. 3 Definition of the model for N = 5. The numbers on vertices are parameters of the geometric random
variables. The numbers labelling the edges are in red (Color figure online)

and ωm+N,m ∼ Geo(amc2) on the right boundary. We label each edge of the strip by a
number, which will be needed later to define Gibbs measures. In particular, we label
the horizontal edge (n − 1,m) → (n,m) by an and the vertical edge (n,m − 1) →
(n,m) by am. See Fig. 3 for an illustration.

Next we introduce the inhomogeneous version of reweighted geometric random
walk generalizing Definition 1.2. We then introduce the main theorem of this section
that this reweighted random walk is stationary under inhomogeneous geometric LPP,
which generalizes Theorem 1.3.

Definition 2.2 (Reweighted inhomogeneous geometric random walks) Assume
that (ai)1≤i≤N ∈ (0,1)N and c1, c2 satisfy (18). Suppose P is a horizontal path with
labels on edges b = (b1, . . . , bN) from left to right (b must be a cyclic shift of a =
(a1, . . . , aN)). Consider two independent random walks L1 = (

L1(j)
)

1≤j≤N
∈ Z

N
≥0

and L2 = (
L2(j)

)
1≤j≤N

∈ Z
N
≥0 starting from L1(0) = L2(0) = 0 with independent

increments distributed for 1 ≤ j ≤ N as

L1(j) − L1(j − 1) ∼ Geo(bj ), and L2(j) − L2(j − 1) ∼ Geo(bj ).

We use shorthand L = (L1,L2) and denote by P
b,b
GeoRW (L) and E

b,b
GeoRW the associated

probability measure and expectation. We define a new probability measure Pb,c1,c2
Geo by

reweighting the measure P
b,b
GeoRW as

P
b,c1,c2
Geo (L) := V

c1,c2
Geo (L)P

b,b
GeoRW(L)

Zb,c1,c2
Geo

where

V
c1,c2
Geo (L) := (c1c2)

max1≤j≤N(L2(j)−L1(j−1))c
L1(N)−L2(N)
2 ,

(19)
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and the normalizing constant Zb,c1,c2
Geo := E

b,b
GeoRW

[
V

c1,c2
Geo (L)

]
will be proved to be

finite in Proposition 2.18. Let Pb,c1,c2
Geo (L1) denote the marginal law of L1 for the

probability measure P
b,c1,c2
Geo (L) where L = (L1,L2).

The following is the main theorem in this section.

Theorem 2.3 Assume that (ai)1≤i≤N ∈ (0,1)N and c1, c2 > 0 satisfy (18). Suppose
b = (b1, . . . , bN) are labels on some horizontal path P , and τ1b = (b2, . . . , bN , b1)

are labels on the translated path τ1P . Consider the inhomogeneous geometric LPP
model from Definition 2.1 starting from an initial condition along P given by
(G(pj ))0≤j≤N where (G(pj ) − G(p0))1≤j≤N is distributed according to Pb,c1,c2

Geo .

Then the distribution of (G(τ1pj ) − G(τ1p0))1≤j≤N coincides with Pτ1b,c1,c2
Geo . For

the homogeneous (i.e. a = (a, . . . , a)) case, Pa,c1,c2
Geo is the (unique) ergodic station-

ary measure on the horizontal path Ph for the geometric LPP recurrence relation
(Definition 1.1).

The proof of this theorem is given in Sect. 2.6. In Sect. 2.2 we construct the
two-layer Gibbs measures indexed by down-right paths. We prove certain summa-
tion identities of symmetric functions in Sect. 2.3, based on which we will construct
in Sect. 2.4 a Markov dynamics under which the two-layer Gibbs measures are sta-
tionary. Under c1c2 < 1, in Sect. 2.5 we will turn the two-layer Gibbs measures into
probability measures which are stationary under geometric LPP. To obtain stationar-
ity outside c1c2 < 1, in Sect. 2.6 we argue by the uniqueness of analytic continuation
of real analytic functions. Let us also note here that though this theorem is formulated
along only horizontal paths, it is possible to formulate and prove such a result along
any down-right path in a similar manner.

2.2 Two-layer Gibbs measure

Definition 2.4 (Two-layer graph) For any down-right path P on the strip we create a
two-layer graph GP by the following steps. We first rotate P counter-clockwise by
π/4 to get the upper layer (i.e., all ↓ edges in P become ↘ in GP and → edges in P
become ↗ in GP). The vertices of the upper layer are denoted by p(0)

1 , . . . ,p(N)
1 and

edges e(1)
1 , . . . ,e(N)

1 from the left to the right, where e
(j)

1 connects p(j−1)

1 and p(j)

1 ,
for 1 ≤ j ≤ N . The lower layer is the downwards translation of the upper layer by√

2, with vertices p(0)
2 , . . . ,p(N)

2 and edges e(1)
2 , . . . ,e(N)

2 from left to right. We draw
dotted edges of slope π/4 or −π/4 to connect those pairs of vertices with distance 1
that have not been connected by the edges in the layers (i.e., the edges between the
layers). Finally, we draw two solid arcs on the left and right boundaries, connecting
respectively p(0)

1 with p(0)
2 and p(N)

1 with p(N)
2 . This is the graph GP . Next we label

all the solid edges and arcs real numbers (i.e., one-variable ‘specializations’). For
1 ≤ j ≤ N the label for edges e

(j)

1 in the upper layer and e
(j)

2 in the lower layer is
that of the edge ej in the down-right path P in the strip. The left boundary arc is
labelled by c1 and the right boundary arc is labelled by c2.
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Fig. 4 (a) A down-right path P is depicted (the thick path) in the strip S6. (b) Associated to P , the two-
layer graph GP is depicted. The solid edges are labelled by numbers in red, which are the same as those
labelling edges of P in the strip. The left and right boundary arcs are labelled respectively by c1 and c2

in red. A two-layer configuration is an assignment of numbers λ
(j)
i

∈ Z to the vertices p(j)
i

of GP , for
i = 1,2 and j = 0, . . . ,N (Color figure online)

A two-layer configuration λ = (λ
(0)
1 , . . . , λ

(N)
1 , λ

(0)
2 , . . . , λ

(N)
2 ) is an assignment of

λ
(j)
i ∈ Z to each vertex p(j)

i of GP , for i = 1,2 and j = 0, . . . ,N . See Fig. 4 for an
illustration of these definitions.

Now we define the Gibbs measure on the set of two-layer configurations on the
two-layer graph GP .

Definition 2.5 (Two-layer geometric Gibbs measure) For x, y ∈ Z, the weights of
solid, dashed and arced edges are

wtGeo

⎛

⎜⎜
⎝

x

y

c1

⎞

⎟⎟
⎠ = c

x−y

1 , wtGeo

⎛

⎜⎜
⎝

x

y

c2

⎞

⎟⎟
⎠ = c

x−y

2 , (20a)

wtGeo

⎛

⎜
⎝

y

x
a

⎞

⎟
⎠ = wtGeo

⎛

⎜
⎝

y

x
a

⎞

⎟
⎠ = ax−y1x≥y, (20b)

wtGeo

⎛

⎜
⎝

y

x
⎞

⎟
⎠ = wtGeo

⎛

⎜
⎝

y

x
⎞

⎟
⎠ = 1x≥y. (20c)

We define the weight wtGPGeo(λ) of a two-layer configuration λ associated to a two-
layer graph GP to be the product of the above weights over all labelled solid edges,
dotted edges and arcs in GP . In what follows it will also be convenient to be able to
write wtGeo of a configuration drawn on a sub-graph of GP to denote the weight of
that configuration (thus extending the notation in (20a)-(20c). For example, in (25)



1590 G. Barraquand et al.

below,

wtGeo

⎛

⎜⎜⎜
⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

b

b

a

a

κ1

κ2

⎞

⎟⎟⎟
⎟⎟⎟⎟
⎠

= aλ1−κ11λ1≥κ1a
λ2−κ21λ2≥κ2b

μ1−κ1

× 1μ1≥κ1b
μ2−κ21μ2≥κ21κ1≥λ21κ1≥μ2

(21)

Notice that wtGPGeo(λ) is always positive and translation invariant, in the sense that, for
all x ∈ Z,

wtGPGeo(λ) = wtGPGeo(λ + x), (22)

where we write λ + x = (λ
(0)
1 + x, . . . , λ

(N)
1 + x,λ

(0)
2 + x, . . . , λ

(N)
2 + x).

We will view the weight wtGPGeo(λ) as a measure on {λ ∈ Z
2N+2}. In fact, using

the notation Sign2 that will be introduced momentarily in Sect. 2.3, the measure is
actually supported on SignN+1

2 since each λ(j) ∈ Sign2 has λ
(j)

1 ≥ λ
(j)

2 . Due to the

translation invariance (22), wtGPGeo must have infinite mass. However, as we will see in

Proposition 2.15, the measure of λ with fixed λ
(0)
1 (or any other fixed coordinate λ

(j)
i )

is finite under the assumption c1c2 < 1. This will be key in turning these measures
into probability measures.

2.3 Skew Schur functions indexed by signatures

Our construction of Markov dynamics on two-layer Gibbs measures (in Sect. 2.4)
will be based on certain summation identities that we discuss now that are similar to
Cauchy and Littlewood identities for Schur functions in symmetric function theory.

Fix some positive integer n. A signature of length n is a nonincreasing sequence of
integers λ = (λ1 ≥ · · · ≥ λn) where λi ∈ Z (note that this λ should not be confounded
with λ). Let us denote by Signn the set of all signatures of length n. For two signatures
μ,λ ∈ Signn, we will say that μ interlaces with λ, denoted μ � λ, if λi ≥ μi ≥ λi+1 ≥
μi+1 for all 2 ≤ i ≤ n. We will also use the notation |λ/μ| = ∑n

i=1(λi − μi). For
μ,λ ∈ Signn we define a polynomial in the variable a ∈C by

sλ/μ(a) = 1μ�λa
|λ/μ|.

More generally, we define multivariate polynomials sλ/μ(a1, . . . , ak) by the branch-
ing rule

sλ/μ(a1, . . . , ak) =
∑

ν∈Signn

sλ/ν(a1, . . . ak−1)sν/μ(ak). (23)
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When the signatures λ and μ are nonnegative, sλ/μ are skew Schur polynomials,
which are symmetric polynomials. We refer to [66] for background on symmetric
functions and Schur polynomials.

We have the following skew Cauchy type identity:

Proposition 2.6 (Cauchy identity) Fix n, k, � ∈ Z≥1. For any complex a = (a1, . . . ,

ak) and b = (b1, . . . , b�), such that |aibj | < 1 for all 1 ≤ i ≤ k, 1 ≤ j ≤ �, we have
for all λ,μ ∈ Signn

∑

κ∈Signn

sλ/κ (a)sμ/κ(b) =
∑

π∈Signn

sπ/λ(b)sπ/μ(a), (24)

with both sums finite. When k = � = 1, n = 2, this says that for all a, b ∈ C with
|ab| < 1 and λ,μ ∈ Sign2

∑

κ1,κ2∈Z
wtGeo

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

b

b

a

a

κ1

κ2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

=
∑

π1,π2∈Z
wtGeo

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

π2

π1

a

a

b

b

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

. (25)

Proof In view of (23), it suffices to prove the k = � = 1, n general case (the only one
we actually use):

∑

κ∈Signn:κ�λ,κ�μ

n∏

j=1

aλj −κj bμj −κj =
∑

π∈Signn:λ�π,μ�π

n∏

j=1

bπj −λj aπj −μj .

Both sums are geometric sums that converge when |ab| < 1. The equality follows
from the change of variables

πj = −κj−1 + max{λj ,μj } + min{λj−1,μj−1},
for all 1 ≤ j ≤ n, where indices are modulo n, i.e. κ0 = κn, λ0 = λn, μ0 = μn. This
concludes the proof. �

For λ ∈ Signn and c ∈C we define the monomial

τλ(c) := c
∑n

j=1(−1)j−1λj = cλ1−λ2+λ3−λ4+···.

Proposition 2.7 (Littlewood identity) Fix n ∈ 2Z≥1. For any c ∈ C and any complex
a = (a1, . . . , ak) such that |aiaj | < 1 for all 1 ≤ i < j ≤ k and |aic| < 1 for all
1 ≤ i ≤ k, we have for all κ ∈ Signn

∑

λ∈Signn

τλ(c)sκ/λ(a) =
∑

π∈Signn

τπ (c)sπ/κ(a), (26)
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with both sums are finite. When k = 1, n = 2, this says that for all c, a ∈ C with
|ca| < 1 and κ ∈ Sign2

∑

λ1,λ2∈Z
wtGeo

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

λ2

λ1

a

a

c

⎞

⎟⎟⎟⎟⎟⎟
⎠

=
∑

π1,π2∈Z
wtGeo

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

π2

π1
a

a

c

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (27)

Proof Using the branching rule (23) and the skew Cauchy identity (24), it is enough
to prove the result for k = 1 (the only case we actually use below):

∑

λ∈Signn,λ�κ

c
∑n

j=1(−1)j−1λj

n∏

j=1

aκj −λj =
∑

π∈Signn,κ�π

c
∑n

j=1(−1)j−1πj

n∏

j=1

aπj −κj .

Both sums are geometric sums that converge when |ac| < 1. The equality follows
from change of variables

πj = −λj−1 + κj + κj−1

for all 1 ≤ j ≤ n, where the indices are modulo n. �

Remark 2.8 The summation identity (24) is similar to the skew-Cauchy identity for
Schur functions (see e.g. [66, Chap I.5 Ex.26]), while (26) is similar to skew Little-
wood identities [66, Chap I.5 Ex.27]. In contrast with these more usual skew Cauchy
and Littlewood identities that involve sums over integer partitions, our identities in
Propositions 2.6 and 2.7 involve sums over signatures (not necessarily nonnegative)
and do not involve any normalization by the Cauchy kernel. Some generalizations of
Proposition 2.6 have been considered for other families of symmetric functions, in
particular the Hall-Littlewood functions [37] and the spin Hall-Littlewood functions
[38]. Although [37, Eq. (3.7)] can be shown to imply our Proposition 2.6, we give
another proof that simply matches terms on both sides of the identity.

Remark 2.9 Using the notations above, wtGPGeo(λ) can be written as a product of skew

Schur functions multiplied by boundary weights of the form c
|λ(0)|−
1 and c

|λ(N)|−
2

where |λ|− = λ1 − λ2. This structure is similar to the Schur process, originally in-
troduced in [72] (as well as the variants considered in [14, 26]), but there are two
important differences: (1) wtGPGeo(λ) does not define a probability measure, it has in-
finite mass, and (2) it is a measure on sequences of signatures of fixed length (i.e.,
length 2), instead of integer partitions (which have nonnegative coordinates and ar-
birary lengths).

The form of boundary weights that we use is essentially the same as in [26] which
introduced a variant of the Schur process with one boundary (there, for a partition

λ the boundary weight c
|λ(0)|−
1 is defined by taking |λ|− = ∑

i (−1)i+1λi ). In con-
trast, the work [14] uses a different type of potential at the boundaries, rather of the
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type c
|λ(0)|
3 and c

|λ(N)|
4 with |λ| = ∑

i λi , and this allows to construct a Schur process
with two boundaries. Further, [14, Remark 2.4] explains that one can mix the two
types of boundary condition (i.e., involving c1, c2 and c3, c4). Provided c3, c4 < 1,
the resulting measure on sequences of partitions is finite, and hence can be normal-
ized to be a probability measure. There is an LPP model on a strip connected to such
two-boundary Schur processes that involves more complicated and inhomogeneous
geometric weight parameters than those in Definition 2.1 (see [15] for some details).
In the c3, c4 → 1 limit, the restriction to the first two layers of this two boundary
Schur process formally converge to our Gibbs measure and the inhomogeneous LPP
model converges to the homogeneous version from Definition 2.1. It would be inter-
esting to see if further information can be obtained by use of this relationship and if
this provides another route to verify the stationarity of our Gibbs measure under the
LPP recurrence relation.

Finally, let us also mention that a two-sided Schur process, which is a probability
measure on sequences of signatures (not necessarily nonnegative) of varying length,
was considered in [18], but it does not seem to be related to our Gibbs measures.

2.4 Local Markov kernels

In this subsection we will define a two-layer local (in a sense that will be describe
below) Markov dynamics on the strip that preserves the two-layer Gibbs measure in
Sect. 2.2. These are inspired by the push-block dynamics in the full-space [23] and
half-space [3] and built from the Cauchy (Proposition 2.6) and Littlewood (Proposi-
tion 2.7) identities.

Definition 2.10 (Local moves) We first define three types of local moves to evolve
down-right paths:


−→
,


−→
,


−→
. (28)

The solid lines show the path prior to the move and the dotted lines after the move.
These moves can be applied anywhere along a down-right path where admissible
(i.e., where the down-right path looks like the starting state of the move). The first is
a ‘bulk’ move and the second and third are ‘boundary’ moves. We will denote a down-
right path before and after a local move by P and P̃ . Notice that the vertex set of P
and P̃ differ precisely by one vertex. Call the vertex in this symmetric difference in
P the ‘update vertex’ and in P̃ the ‘updated vertex’. Similarly, call all vertex touches
the edges that are updated between P and P̃ the ‘proximate vertices’. These local
moves induce local moves on the associated two-layer graphs:


−→
,


−→
,


−→
.
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We use the same language of ‘update’, ‘updated’ and ‘proximate’ vertices when talk-
ing about configurations of the associated two-layer graph, e.g. if pj is the update

vertex for a move then (λ
(j)

1 , λ
(j)

2 ) are the update coordinates in the configuration λ

for the two-layer graph GP . The shift of P by τ1 can be realized as the composition
of a sequence of N bulk moves and a left and right boundary move (in any admissi-
ble sequence). Note that after applying a sequence of local moves that transforms a
down-right path P to its shift by τ1, the associated two-layer graph cycles back to its
starting state. This is key for the stationarity we will prove.

Definition 2.11 (Two-layer geometric Markov dynamics) A two-layer geometric
Markov dynamic on the strip is defined as a collection of transition probabilities
(i.e., Markov kernels) {UGP,GP̃ } on the state space SignN+1

2 associated to each pair
(P, P̃) of down-right paths connected by a single local move, i.e. P 
→ P̃ . Here

UGP,GP̃
Geo

(̃
λ|λ) is the probability of transitioning from configuration λ ∈ SignN+1

2 for
the two-layer graph GP to the configuration λ̃ ∈ SignN+1

2 for the two-layer graph GP̃ .
We require that these transition probabilities are local in that they only depend on the
coordinates in λ associated to vertices proximate to the local move; and they act on
the identity on all coordinates except for the update/updated vertices. Specifically, if
the updated vertex from P to P̃ is a bulk vertex pj then

UGP,GP̃
Geo

(̃
λ|λ) =

∏

i �=j

1λ̃(i)=λ(i) · UGeo(̃λ
(j)|λ(j−1), λ(j), λ(j+1);a, b)

where UGeo(π |λ,κ,μ) is a probability distribution in π ∈ Sign2 given λ,κ,μ ∈
Sign2, and where a, b are the bulk parameters labeling the edges (pj−1,pj ) and
(pj ,pj+1) respectively. If the update vertex from P to P̃ is a boundary vertex (say
p0, the left-boundary) then

UGP,GP̃
Geo

(̃
λ|λ) =

∏

i �=0

1λ̃(i)=λ(i) · UGeo(̃λ
(0)|λ(0), λ(1); c, a)

where UGeo(π |λ,κ) is a probability distribution in π ∈ Sign2 given λ,κ ∈ Sign2, and
where c = c1 is the boundary parameter labeling the left-boundary arc, and a is the
bulk parameters labeling the edge (p0,p1). Similarly, if the update vertex was on

the right boundary UGP,GP̃
Geo

(̃
λ|λ) is defined via UGeo(π |κ,μ;a, c) for the associated

bulk and (right) boundary parameters a and c = c2. Our notation here for the local
transition probabilities emphasizes their bulk or boundary nature via the superscript
which is harvested from (28).

In order that UGP,GP̃
Geo preserves the two-layer Gibbs measures it will be sufficient

that the local transition probabilities UGeo, UGeo and UGeo preserve the local weights
(this is why we have included the dependence on the edge parameters that figure
into the weights). Specifically we will assume that for all π,λ, κ,μ ∈ Sign2 and all
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a, b, c1, c2 > 0 such that ab, ac1, ac2 < 1,

∑

κ∈Sign2

UGeo(π |λ,κ,μ;a, b)wtGeo

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

b

b

a

a

κ1

κ2

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

(29a)

= wtGeo

⎛

⎜⎜⎜⎜
⎜⎜
⎜
⎝

μ1

μ2

λ1

λ2

π2

π1

a

a

b

b

⎞

⎟⎟⎟⎟
⎟⎟
⎟
⎠

,

∑

λ∈Sign2

UGeo(π |λ,κ; c1, a)wtGeo

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

λ2

λ1

a

a

c1

⎞

⎟⎟⎟⎟⎟⎟
⎠

(29b)

= wtGeo

⎛

⎜⎜⎜
⎜⎜⎜
⎝

κ2

κ1

π2

π1
a

a

c1

⎞

⎟⎟⎟
⎟⎟⎟
⎠

,

∑

μ∈Sign2

UGeo(π |κ,μ;a, c2)wtGeo

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

μ2

μ1

a

a

c2

⎞

⎟⎟⎟⎟⎟⎟
⎠

(29c)

= wtGeo

⎛

⎜⎜
⎜⎜⎜⎜
⎝

κ2

κ1

π2

π1

a

a

c2

⎞

⎟⎟
⎟⎟⎟⎟
⎠

.
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These equations do not uniquely specify the transition probabilities. Definition 2.13
exhibits one solution.

For any down-right paths Q sitting above P (i.e., achievable via a sequence of
local moves), we define U(P,Q) the set of vertices between P and Q, including
those on Q but excluding those on P . We compose the Markov kernels defined
above according to local moves at the sequence of vertices in U(P,Q) in the lex-
icographical order of their coordinates (n,m) ∈ U(P,Q) (in fact, any admissible se-
quence will result in the same transition probability). This defines a transition prob-
ability UGP,GQ

Geo

(
λ′|λ), where λ ∈ SignN+1

2 represents a configuration on GP and
λ′ ∈ SignN+1

2 a configuration on GQ.

Corollary 2.12 (Measure preservation and shift-invariance) We have the following
properties:

(1) For all λ′ ∈ SignN+1
2 , we have

∑

λ∈SignN+1
2

UGP,GQ
Geo

(
λ′|λ)wtGPGeo (λ) = wtGQGeo

(
λ′) . (30)

(2) For all x ∈ Z and λ,λ′ ∈ SignN+1
2 we have

UGP,GQ
Geo

(
λ′|λ) = UGP,GQ

Geo

(
λ′ + x|λ + x

)
. (31)

Proof Since (30) is preserved by composition, we only need to show this property for
Q = P̃ being a local move of P , which follows from the assumptions (29a), (29b)
and (29c). The translation invariance (31) follows from (30) and the weights being
translation invariant. �

Definition 2.13 (Geometric push-block dynamics) For the bulk, there is a unique
solution UGeo(π |λ,κ,μ;a, b) to (29a) which does not depend on κ . Denoting this

by UGeo(π |λ,μ;a, b) observe that it is given by the weight on the right-hand side of

(29a) divided by the sum of weights on the left-hand side (without the UGeo factor).
Explicitly plugging in the weights, this can be written as

UGeo(π |λ,μ;a, b) = bπ1+π2−λ1−λ21π�λa
π1+π2−μ1−μ21π�μ∑

κ aλ1+λ2−κ1−κ21λ�κbμ1+μ2−κ1−κ21μ�κ

. (32)

Due to the Cauchy identity (Proposition 2.6) this is a Markov transition matrix, i.e. it
is stochastic. Similarly, for the left boundary, the unique solution to (29b) which does
not depend on λ is given explicitly by

UGeo(π |κ; c1, a) := 1π�κaπ1+π2−κ1−κ2c
π1−π2
1∑

λ 1κ�λaκ1+κ2−λ1−λ2c
λ1−λ2
1

. (33)

Owing to the Littlewood identity (Proposition 2.7), this is a Markov transition matrix.
Likewise, at the right boundary the unique solution to (29c) which does not depend
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on μ is given explicitly by

UGeo(π |κ;a, c2) := 1π�κaπ1+π2−κ1−κ2c
π1−π2
2∑

μ 1κ�μaκ1+κ2−μ1−μ2c
μ1−μ2
2

. (34)

2.5 First layer marginal

We first show that the marginal distribution on the first layer of the two-layer geo-
metric push-block Markov dynamics (Definition 2.13) correspond to the recurrence
relation defining geometric LPP. For a configuration λ on a two-layer graph we will
use the shorthand λi := (λ

(0)
i , . . . ,λ

(N)
i ) for i = 1,2 so that λ = (λ1,λ2). Under the

additional restriction that c1c2 < 1, we will then take the marginal measure of the
two-layer Gibbs measure wtGPGeo on the first layer λ1 and multiply it by a finite normal-
ization constant to define a probability measure PPGeo. We then prove the stationarity
of PPGeo under the geometric LPP recurrence relation.

Lemma 2.14 (First layer dynamics match the geometric LPP recurrence relation)
The geometric push-block Markov dynamics (Definition 2.13 and (2)) restricted
to the configuration on the upper layer of the two-layer graphs are marginally
Markov and agree with the dynamics imposed by the geometric LPP recur-
rence relation (Definition 2.1). In particular, this means that the law of π1 under
UGeo(π |λ,μ;a, b) only depends on λ, μ through λ1, μ1 and that law, which we write

by UGeo(π1|λ1,μ1;a, b), is given explicitly by

UGeo(π1|λ1,μ1;a, b) = (1 − ab)(ab)π1−max(λ1,μ1)1π1≥max(λ1,μ1), hence

π1 = max(λ1,μ1) + Geo(ab)

for some independent geometric random variable Geo(ab). Similarly, on the left
and right boundaries, the law of π under UGeo(π |κ; c1, a) and UGeo(π |κ;a, c2) de-

pend on κ only through κ1. Those laws, which we write as UGeo(π1|κ1; c1, a) and

UGeo(π1|κ1;a, c2) respectively, are given explicitly by

UGeo(π1|κ1; c1, a) = (1 − ac1)1π1≥κ1(ac1)
π1−κ1 ,

UGeo(π1|κ1;a, c2) = (1 − ac2)1π1≥κ1(ac2)
π1−κ1 .

These (respectively) imply that for independent geometric random variables Geo(ac1)

and Geo(ac2),

π1 = κ1 + Geo(ac1) and π1 = κ1 + Geo(ac2).

Thus, the law of λ′
1 under UGP,GQ

Geo

(
λ′|λ) only depends on λ1 and hence is writ-

ten as UP,Q
Geo

(
λ′

1|λ1
)
. These transition probabilities define Markov dynamics on the

first layer of the two-layer graph which coincide with the recurrence relation (2) for
geometric LPP, and if we initialize that with G(pj ) = λ

(j)

1 , 0 ≤ j ≤ N on P then the

probability that G(qj ) = λ
′ (j)

1 , 0 ≤ j ≤ N on Q is precisely UP,Q
Geo

(
λ′

1|λ1
)
.
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Proof This type of result for push-block dynamics has appeared in many cases pre-
viously, e.g. [3, 23]. We will prove the claim about the bulk kernel UGeo and left

boundary kernel UGeo, since the case of right boundary kernel UGeo follows by re-

naming the variables in UGeo.
By the Cauchy identity (Proposition 2.6), the bulk local kernel (32) can be written

as:

UGeo(π |λ,μ;a, b) = 1max(λ1,μ1)≤π1(ab)π1

∑
max(λ1,μ1)≤π1

(ab)π1

1max(λ2,μ2)≤π2≤min(λ1,μ1)(ab)π2

∑
max(λ2,μ2)≤π2≤min(λ1,μ1)

(ab)π2
.

Summing over π2, we arrive at the claimed property and formula

∑

π2

UGeo(π |λ,μ;a, b) = (1 − ab)(ab)π1−max(λ1,μ1)1π1≥max(λ1,μ1)

= UGeo(π1|λ1,μ1;a, b).

By the Littlewood identity (Proposition 2.7), the left boundary local kernel (33) sim-
ilarly can be written as:

UGeo(π |κ; c1, a) = 1κ1≤π1(ac1)
π1

∑
κ1≤π1

(ac1)π1

1κ2≤π2≤κ1 (a/c1)
π2

∑
κ2≤π2≤κ1

(a/c1)
π2

.

Summing over π2, we arrive at the claimed property and formula
∑

π2

UGeo(π |κ; c1, a) = (1 − ac1)(ac1)
π1−κ11π1≥κ1 = UGeo(π1|κ1; c1, a).

The claimed law of λ′
1 under UGP,GQ

Geo

(
λ′|λ) and relation to the LPP recurrence now

follows immediately. �

We now show that fixing the value of λ at some vertex in the two-layer graph
results in a finite partition function and hence the marginal law given that conditioning
can be normalized to be a probability measure.

Proposition 2.15 Assume (18) and the additional condition c1c2 < 1. For any down-
right path P let

ZGeo =
∑

λ
(j)
i ∈Z,(i,j) �=(1,0)

wtGPGeo(λ),

where λ
(0)
1 is fixed and the summation runs over all λ

(j)
i ∈ Z for i = 1,2 and j =

0, . . . ,N with (i, j) �= (1,0). Then, ZGeo is finite and does not does not depend on
the choice of P or λ

(0)
1 .

Proof For any local move P 
→ P̃ , we can use the Cauchy identity (25) and the
Littlewood identity (27), possibly multiple times, to check that the sum ZGeo is the
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same for P and for P̃ . Therefore this quantity is the same for every down-right path
P , and we only need to prove that it is finite for the horizontal path Ph. Similarly, the
independence with respect to the fixed choice of λ

(0)
1 follows immediately from the

fact that all weights in wtGPGeo(λ) are invariant by translation. In fact, on this account

we could have instead fixed any other variable than λ
(0)
1 without changing the value of

ZGeo. In fact, let us instead fix λ
(0)
2 = 0 for this proof. Hence, letting λ = (λ

(0)
1 , λ

(0)
2 )

and μ = (λ
(N)
1 , λ

(N)
2 ), and using the branching rule (23), we can write ZGeo explicitly

in terms of skew Schur polynomials (extended to signatures as in Sect. 2.3) as

ZGeo =
∑

λ,μ∈Sign2

1λ2=0c
λ1−λ2
1 sμ/λ(a1, . . . , aN)c

μ1−μ2
2 .

Since λ2 = 0, we may write c
λ1−λ2
1 = sλ/(0,0)(c1), so that via the branching rule (23),

ZGeo =
∑

λ,μ∈Sign2

sλ/(0,0)(c1)sμ/λ(a1, . . . , aN)c
μ1−μ2
2

=
∑

μ∈Sign2

c
μ1−μ2
2 sμ/(0,0)(a1, . . . , aN , c1).

When the variables a1, . . . , aN satisfy (18), all terms in the sum are nonnegative.
Thus the sum may be bounded by the corresponding sum over all partitions (i.e. all
nonnegative signatures of any length). Denoting by Y the set of all partitions, and
noticing that sμ/(0,0) is exactly the usual Schur function sμ,

ZGeo ≤
∑

μ∈Y
c
μ1−μ2+μ3−···
2 sμ(a1, . . . , aN , c1)

= 1

1 − c1c2

N∏

i=1

(
1

1 − aic1

1

1 − aic2

) ∏

1≤i<j≤n

1

1 − aiaj

,

where in the last equality we have used a known summation identity, see [66, Chap
I.5, Ex. 7] which is valid as long as the product between any two variables has a
modulus in [0,1). Hence, as long as the conditions (18) and c1c2 < 1 are satisfied,
the sum ZGeo is finite, which concludes the proof.

Note that instead of explicitly relating to Schur polynomials, we could have proved
this result by induction on N and explicit computation (as we will do in proving
Proposition 3.12 for the log-gamma polymer). �

We will now prove that the first layer marginal distribution of our two-layer Gibbs
measures are stationary measures for the geometric LPP recurrence relation. To state
this precisely, we need to introduce a few pieces of notation. Recalling the decompo-
sition of λ = (λ1,λ2) define first layer marginal weights by

wtPGeo(λ1) :=
∑

λ2∈ZN+1

wtGPGeo(λ). (35)
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The translation invariance (22) of wtGPGeo(λ) implies that for any x ∈ Z, wtPGeo(λ1 +
x) = wtPGeo(λ1). When c1c2 < 1, by Proposition 2.15, for any fixed λ

(0)
1 we have

ZGeo =
∑

λ
(j)
1 ∈Z,1≤j≤N

wtPGeo(λ1) < ∞. (36)

Let us introduce variables that record the first layer configuration centered by λ
(0)
1

L1(j) := λ
(j)

1 − λ
(0)
1

for 1 ≤ j ≤ N and the shorthand notation L1 := (L1(1), . . . ,L1(N)). For L1 ∈ Z
N

define

PPGeo (L1) := 1

ZGeo
wtPGeo (λ1) . (37)

Due to translation invariance and finiteness of the normalizing constant (36), this
is a probability measure. We will show that this is the stationary measure for the
geometric LPP recurrence relation.

Now we need some notation for the corresponding Markov dynamics. Recall the
transition probability UP,Q

Geo (λ′
1|λ1) for λ1,λ

′
1 ∈ Z

N+1 defined in Lemma 2.14 which
encodes the dynamics of geometric LPP passage times from the path P to the path
Q. We define another transition probability encoding the dynamics of the centered
passage times L1. For any L1,L′

1 ∈ Z
N , define

UP,Q
Geo (L′

1|L1) :=
∑

x∈Z
UP,Q

Geo (x,L′
1 + x|0,L1). (38)

Owing to the translation invariance of the dynamics defined by UP,Q
Geo (λ′

1|λ1), this
gives the transition probability from L1 to L′

1. The following shows that the weights
wtPGeo from (35) and the probability measures PPGeo from (37) are stationary with
respect to UGeo and UGeo.

Theorem 2.16 For any λ′
1 ∈ Z

N+1,

∑

λ1∈ZN+1

UP,Q
Geo (λ′

1|λ1)wtPGeo(λ1) = wtQGeo

(
λ′

1

)
. (39)

Assume that c1c2 < 1, then for any L′
1 ∈ Z

N ,

∑

L1∈ZN

UP,Q
Geo (L′

1|L1)P
P
Geo (L1) = PQGeo

(
L′

1

)
. (40)

Proof The first statement (39) follows from summing (30) over the second layer λ2

in conjunction with the definition of UP,Q
Geo (λ′

1|λ1) as the marginal of UGP,GQ
Geo

(
λ′|λ)
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(Lemma 2.14). The second statement (40) follows from translation invariance and the
definition (37) of PPGeo (L1):

LHS(40) = 1

ZGeo

∑

L1

∑

x

UP,Q
Geo

(
x,L′

1 + x|0,L1
)

wtPGeo (0,L1)

= 1

ZGeo

∑

L1

∑

x

UP,Q
Geo

(
0,L′

1| − x,L1 − x
)

wtPGeo (−x,L1 − x)

= 1

ZGeo
wtQGeo

(
0,L′

1

) = RHS(40). �

2.6 Proof of Theorem 2.3

So far we have shown that provided c1c2 < 1, the stationary measure for the geo-
metric LPP recurrence relation can be realized as a marginal of the two-layer Gibbs
measures. In order to go beyond this restriction on c1c2 < 1 we will sum out the ‘zero-
mode’. Specifically, we will prove in Proposition 2.17 that, provided c1c2 < 1, for a
horizontal path P with edge labels b = (b1, . . . , bN), the probability measure PPGeo

(37) defined as a marginal of the two-layer Gibbs measure coincides with Pb,c1,c2
Geo

defined as a marginal of pair of reweighted inhomogeneous random walks (Defini-
tion 2.2). We then prove that the probability measure Pb,c1,c2

Geo is well-defined without
the constraint c1c2 < 1 and real analytic in these boundary parameters. Combining
this with Theorem 2.16 and the uniqueness of analytic continuation of real analytic
functions, we prove Theorem 2.3. Let us note that everything done below could be
adapted to general down-right paths as opposed to sticking to horizontal paths, as we
do now.

Proposition 2.17 (Summing out the zero-mode) Suppose P is a horizontal path
with labels b = (b1, . . . , bN). Then the probability measure PPGeo (37) coincides with

Pb,c1,c2
Geo (Definition 2.2) provided c1c2 < 1.

Proof We use the following set of variables: For all 1 ≤ j ≤ N let

� := λ
(0)
1 − λ

(0)
2 , L1(j) := λ

(j)

1 − λ
(0)
1 , L2(j) := λ

(j)

2 − λ
(0)
2

and write L1(0) = L2(0) = 0 and Li := (Li(1), . . . ,Li(N)) for i = 1,2. Recall that
L = (L1,L2). We define

xwt
b
Geo (�;L) := wtGPGeo (λ) ,

which is well-defined due to the translation invariance (22) of wtGPGeo (λ). When
c1c2 < 1,

PPGeo(L1) = wtPGeo(λ1)

ZGeo
=

∑
L2

∑
�
xwt

b
Geo (�;L)

∑
L
∑

�
xwt

b
Geo (�;L)

. (41)
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By Definition 2.5, we explicit evaluate weight xwt
b
Geo (�;L) as

xwt
b
Geo (�;L) =(c1c2)

�c
L1(N)−L2(N)
2

N∏

j=1

1L1(j−1)−L2(j)+�≥0

×
⎛

⎝1L1(N)≥···≥L1(0)=0

N∏

j=1

b
L1(j)−L1(j−1)
j

⎞

⎠

×
⎛

⎝1L2(N)≥···≥L2(0)=0

N∏

j=1

b
L2(j)−L2(j−1)
j

⎞

⎠

=1�≥max1≤j≤N (L2(j)−L1(j−1))(c1c2)
�c

L1(N)−L2(N)
2

×
N∏

j=1

(1 − bj )
−2

P
b,b
GeoRW (L) ,

(42)

where P
b,b
GeoRW from Definition 2.2 is the law of two independent inhomogeneous

geometric random walks.
When c1c2 < 1, we sum (42) over � ∈ Z (as goes into computing the right-hand

side of (41)) and obtain:

(1 − c1c2)

N∏

j=1

(1 − bj )
2

(
∑

�

xwt
b
Geo (�;L)

)

= V
c1,c2
Geo (L)P

b,b
GeoRW (L) , (43)

where we recall from (19) V
c1,c2
Geo (L) = (c1c2)

max1≤j≤N(L2(j)−L1(j−1))c
L1(N)−L2(N)
2 .

Combining this deduction with (41) we arrive at the matching of PPGeo with Pb,c1,c2
Geo

from (19). �

We now prove that the normalization constant ZGeo in the definition (19) of the
reweighted inhomogeneous geometric random walk measure Pb,c1,c2

Geo is finite only
assuming (18) (without the condition c1c2 < 1), as claimed in the statement of the
main Theorem 2.3.

Proposition 2.18 Recalling V
c1,c2
Geo (L) from (19) and assuming (18), E

b,b
GeoRW[

V
c1,c2
Geo (L)

]
is finite.

Proof Continuing with the notation from Proposition 2.17 and using (43), when
c1c2 < 1 we have

E
b,b
GeoRW

[
V

c1,c2
Geo (L)

] = (1 − c1c2)

N∏

j=1

(1 − bj )
2
∑

�,L

xwt
b
Geo (�;L) . (44)

Observe that
∑

�,L xwt
b
Geo (�;L) = ZGeo, which is finite by Proposition 2.15. Hence

(44) is finite.
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Now consider the case when c1c2 ≥ 1. Since we are working along a horizontal
path, we have that Li(N) ≥ · · · ≥ Li(0) = 0 for i = 1,2. Thus L2(j) − L1(j − 1) ≤
L2(N) for all j which implies

V
c1,c2
Geo (L) = (c1c2)

max1≤j≤N (L2(j)−L1(j−1))c
L1(N)−L2(N)
2

≤ (c1c2)
L2(N)c

L1(N)−L2(N)
2 = c

L1(N)
2 c

L2(N)
1 .

(Note that this inequality has used here the fact that c1c2 ≥ 1 implies (c1c2)
x ≤

(c1c2)
y for x ≤ y. This is why we separately addressed the c1c2 < 1 case.) There-

fore we have

E
b,b
GeoRW

[
V

c1,c2
Geo (L)

] ≤ E
b,b
GeoRW

[
c
L1(N)
2 c

L2(N)
1

]

=
N∏

j=1

E
b,b
GeoRW

[
c
L1(j)−L1(j−1)

2

] N∏

j=1

E
b,b
GeoRW

[
c
L2(j)−L2(j−1)

1

]
.

The expectations on the right-hand side are, however, finite since c1aj < 1 and
c2aj < 1 for 1 ≤ j ≤ N . �

We are now positioned to complete the proof of Theorem 2.3 using real analytic
continuation.

Proof of Theorem 2.3 We recall that UP,Q
Geo

(
L′

1|L1
)

(38) gives the transition proba-
bility from L1 to L′

1 for the geometric LPP recurrence (i.e., if started with initial
condition L1 along P , this is the probability that the recurrence produces L′

1 for the
last passage times along Q centered by the value on the left-boundary). Since we are
presently only going to consider horizontal paths, we introduce a slight overload of
our notation and write Ub,c1,c2

Geo := UP,τ1P
Geo , where P is a horizontal path with labels

b = (b1, . . . , bN). Of course our notation UP,τ1P
Geo hid the implicit dependence on the

edge and boundary parameters which we have now made more explicit in this special
horizontal case.

The stationarity we aim to prove in this theorem can be rewritten as: For any
L′

1 ∈ Z
N , we have

∑

L1∈ZN

Ub,c1,c2
Geo

(
L′

1|L1
)

Pb,c1,c2
Geo (L1) = Pτ1b,c1,c2

Geo (L′
1). (45)

When c1c2 < 1, taking Q = τ1P in Theorem 2.16 and using the matching from
Proposition 2.17, implies (45). To prove (45) holds without the constraint c1c2 < 1,
we prove that both sides (after multiplying by a common denominator) are real ana-
lytic functions, and then argue by the uniqueness of analytic continuation.
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Observe that (45) is equivalent with:

∑

L1

Ub,c1,c2
Geo

(
L′

1|L1
)
⎛

⎝
∑

L2

V
c1,c2
Geo (L)

P
b,b
GeoRW (L)

∏N
j=1(1 − bj )2

⎞

⎠

=
∑

L′
2

V
c1,c2
Geo (L′)

P
b,b
GeoRW

(
L′)

∏N
j=1(1 − bj )2

.

(46)

We fix all other parameters c2, a1, . . . , aN and variables L′
1, and regard c1 as the

only variable. Then we have currently shown that (46) holds on the interval 0 <

c1 < 1/max(c2, a1, . . . , aN). We want to prove that it holds on the larger interval
0 < c1 < 1/max(a1, . . . , aN).

We observe that since max1≤j≤N(L2(j) − L1(j − 1)) ≥ L2(1) ≥ 0, V
c1,c2
Geo (L)

(19) is a positive power of c1. Hence the parenthesis in the LHS of (46), as well as the
RHS of the same equation are both power series of c1 with nonnegative coefficients
that depend on L1 (and respectively L′

1). The kernel Ub,c1,c2
Geo on the left-hand side is

the result of composing N + 1 local Markov kernels UGeo ◦ UGeo ◦ · · · ◦ UGeo ◦ UGeo
(recall from Lemma 2.14) followed by summing over translations as in (38). Only
the left boundary kernel UGeo depends on c1 and the other kernels are constant with

respect to c1. The entries of UGeo are equal to (1 − a1c1) times a power of a1c1.
Therefore (46) is of the form (1 − a1c1)f (c1) = g(c1), where f and g are power
series with nonnegative coefficients. We know that (46) holds on the smaller interval
0 < c1 < 1/max(c2, a1, . . . , aN) and (by Proposition 2.18) that both sides are finite
on the larger interval 0 < c1 < 1/max(a1, . . . , aN). By the uniqueness of analytic
continuation of real analytic functions (see, e.g. [65, Corollary 1.2.6]), (46) holds on
the larger interval. Since (46) is equivalent to (45) we conclude the stationarity in
Theorem 2.3.

Finally we will prove the uniqueness of the stationary measure in the homoge-
neous b = a = (a, . . . , a) case. Observe that by virtue of the variational formula
(1) for LPP, any stationary measure along a horizontal path must be supported on
weakly increasing natural numbers. Consider initial conditions whereby G(0,0) = 0
and G(j,0) − G(j − 1,0) = xj for 1 ≤ j ≤ N with x1, . . . , xN ∈ Z≥0. By [12, The-
orem 5.5] it suffices to show that for any x′

1, . . . , x
′
N ∈ Z≥0, there is a strictly positive

probability that G(j + 1,1) − G(j,1) = x′
j for 1 ≤ j ≤ N . (This implies that the

Markov kernel Ua,c1,c2
Geo has a unique stationary measure.) It is easy to demonstrate

the strictly positive transition probability. Let r = 1 + ∑N
�=1 x�. There is a strictly

positive probability that the recursion results in updating G(1,1) = r and then se-
quentially G(j + 1,1) = G(j,1) + x′

j for 1 ≤ j ≤ N . Indeed, this is true because
G(1,1) ≥ G(1,0), G(j + 1,1) ≥ max(G(j,1),G(j + 1,0)) for 1 ≤ j ≤ N − 1 and
G(N + 1,1) ≥ G(N,1), hence this update has strictly positive probability. We con-
clude the proof of uniqueness. Ergodicity follows from the fact that unique (more
generally, extremal) invariant probability measures are ergodic, see for example [12,
Proposition 4.29]. �
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2.7 Matrix product ansatz

When c1c2 < 1, the probability measure PPGeo (L1) can be written as a matrix product.
Recall the definition of PPGeo (L1) in terms of the two-layer Gibbs measure in (37),

(35). In order to express wtGPGeo(λ) as a product of matrices, we define a change of

variables xi = |λ(i)
1 −λ

(i−1)
1 | (first layer increments) for 1 ≤ i ≤ N and ni = λ

(i)
1 −λ

(i)
2

(gaps between layers) for 0 ≤ i ≤ N .

Definition 2.19 Let us define, for each x ∈ Z≥0 and a ∈ (0,1), infinite matrices
M→

x [a],M↓
x [a] ∈R

Z≥0×Z≥0 with matrix elements given by, for n,n′ ∈ Z≥0,

M→
x [a](n,n′) = wtGeo

⎛

⎜
⎜⎜⎜⎜
⎝

λ′
1

λ′
2

λ1

λ2

a

a

⎞

⎟
⎟⎟⎟⎟
⎠

∣∣∣∣
∣∣∣∣∣∣∣ λ1 − λ2 = n

λ′
1 − λ′

2 = n′
λ′

1 − λ1 = x

= a2x+n−n′
1n′≥x1x+n−n′≥0,

(47)

M↓
x [a](n,n′) = wtGeo

⎛

⎜⎜⎜⎜⎜
⎝

λ1

λ2

a

a

λ′
1

λ′
2

⎞

⎟⎟⎟⎟⎟
⎠

∣
∣∣∣∣∣∣∣∣∣∣ λ1 − λ2 = n

λ′
1 − λ′

2 = n′
λ1 − λ′

1 = x

= a2x+n′−n1n≥x1x+n′−n≥0.

(48)

In particular, M↓
x [a] is the transpose of M→

x [a]. Let us also define vectors w,v ∈
R
Z≥0 with coefficients w(n) = (c1)

n and v(n) = (c2)
n for n ∈ Z≥0.

Thus, via the change of variables, for any path P with vertices (pi )0≤i≤N and edge
labels b, we have

wtGPGeo(λ) = w(n0)

(
N∏

i=1

Mpi−pi−1
xi

[bi](ni−1, ni)

)

v(nN),

where pi − pi−1 ∈ {→,↓}, since P is a down-right path. Thus, we have that

PPGeo (L1) = 1

ZGeo
wt

(
N∏

i=1

Mpi−pi−1
xi

[bi]
)

v, (49)

where matrices in the product are written from left to right and xi = |Li − Li−1|.
Such a matrix product expression is reminiscent of the matrix product ansatz, in-

troduced in [52]. This technique can indeed be adapted to geometric LPP.
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Proposition 2.20 Assume that a family of probability distributions PP on Z
N
≥0, in-

dexed by down-right paths P = (p0, . . . ,pN) with edge labels b, takes the form

PP (x1, . . . , xN) = 1

Z
wt

(
N∏

i=1

M
pi−pi−1
xi

[bi]
)

v, (50)

where M
→
xi

[bi], M
↓
xi

[bi] are matrices in R
Z≥0×Z≥0 , w, v are vectors in R

Z≥0 , and Z

is a finite constant chosen so that (50) is a well-defined probability measure on Z
N
≥0.

Then, the measure PP is stationary for the geometric LPP dynamics, in the sense of
(40), if the following commutation relations hold for all x, y ≥ 0:

M
→
x [a]M↓

y [b] = (ab)min{x,y}(1 − ab)
∑

z≥max{0,y−x}
M

↓
z [b]M→

x−y+z[a], (51a)

wtM
↓
x [a] = (ac1)

x(1 − ac1)
∑

z≥0

wtM
→
z [a], (51b)

M
→
x [a]v = (ac2)

x(1 − ac2)
∑

z≥0

M
↓
z [a]v. (51c)

Proof As in [86], which proves a similar result for the stochastic six-vertex model,
it suffices to ensure that (40) holds when PPGeo is replaced by PP (thought of as a
measure on L1 = (0, x1, x1 + x2, . . . , x1 + · · ·xN)) from above and when P 
→ Q is
one of the elementary moves from Definition 2.10. In other words, it suffices to check
that PP pushes forward to PQ under the action of local operators UGeo, UGeo, UGeo
from Lemma 2.14, where Q is the corresponding locally updated path. Under the
appropriate changes of variables, (51a) implies the invariance with respect to UGeo.
Indeed, if the local move transforms the point pi on the path P to a new point qi , the
increments xi = x and xi+1 = y may arise on Q only if the weight ωqi

= min{x, y}
(which arises with probability (bibi+1)

min{x,y}(1 − bibi+1)), while the increments on
P before the local move can be anything such that xi+1 −xi = x −y. Likewise, (51b)
implies invariance with respect to UGeo, and (51c) implies invariance with respect to

UGeo. �

It is not a priori clear how to find matrices and vectors satisfying (51a)–(51c). We
will see that our two layer Gibbs measures, which originate in a completely different
context (i.e. Gibbsian line ensemble and probability measures based on families of
symmetric functions), provide a representation for the quadratic algebra (51a)–(51c).

Proposition 2.21 The matrices M→
x [a], M↓

x [a] and vectors w, v (Definition 2.19)
satisfy the relations (51a)–(51c).

Proof The proof relies on the Littlewood and Cauchy identities for skew Schur func-
tions, as well as the truncated Toeplitz structure of the matrices M→

x [a], M↓
x [a]. Let
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us first observe that the Cauchy identity (25) and the Littlewood identity (27) may be
rewritten as

∑

z≥max{0,d}
M↓

z [a]M→
z−d [b] =

∑

z≥max{0,d}
M→

z−d [b]M↓
z [a], for all d ∈ Z, (52a)

∑

z≥0

wtM→
z [a] =

∑

z≥0

wtM↓
z [a], (52b)

∑

z≥0

M↓
z [a]v =

∑

z≥0

M→
z [a]v. (52c)

Equations (52a)–(52c) are not directly equivalent to (51a)–(51c), but equations
(51a)–(51c) are implied by equations (52a)–(52c) if the following extra relations are
satisfied:

M→
x [a]M↓

y [b] = (ab)min{x,y}(1 − ab)
∑

z≥max{0,y−x}
M→

z+x−y[a]M↓
z [b], (53a)

wtM↓
x [a] = (ac1)

x(1 − ac1)
∑

y≥0

wtM↓
y [a], (53b)

M→
x [a]v = (ac2)

x(1 − ac2)
∑

y≥0

M→
y [a]v. (53c)

Hence, it suffices to prove that the matrices M→
x [a], M↓

x [a] and vectors w, v satisfy
(53a)–(53c). Those relations could be verified explicitly by plugging the matrix el-
ements and computing. To avoid such computations, we may observe that truncated
Toeplitz matrices are products of Toeplitz matrices, so that one can write

M→
x [a] =

(+∞∑

k=0

akSk

)

axTx, M↓
x [a] = axSx

(+∞∑

k=0

akTk

)

, (54)

where S is the lower shift matrix (that is S(n,n′) = 1n=n′+1) and T is the upper shift
matrix (that is T(n,n′) = 1n′=n+1). Using (54), the relations (53b) and (53b) follow
immediately from the eigenrelations wS = c1w and Tv = c2v. To prove (53a), we
write

∑

z≥max{0,y−x}
M→

z+x−y[a]M↓
z [b] =

∑

k≥0,�≥0,z≥max{x,y}
ak+z−ybz−x+�SkTz−ySz−xT�,

= 1

1 − ab

∑

k≥0,�≥0

ak+(x−y)+b(y−x)++�

× SkT(x−y)+S(y−x)+T�,

= (ab)−min{x,y}

1 − ab

∑

k≥0,�≥0

ak+xby+�SkTxSyT�
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= (ab)−min{x,y}

1 − ab
M→

x [a]M↓
y [b],

where in the first line we have just used (54), in the second line we have used TkSk =
I, summed over z, and used the notation (x − y)+ = max{x − y,0}, and in the third
line we have used the more general relation TxSy = T(x−y)+S(y−x)+ . This proves
that (53a) holds, which concludes the proof of Proposition 2.21. �

3 Stationary measure for log-gamma polymer on a strip

The treatment here follows the same steps as that of geometric LPP from Sect. 2,
though at some points we encounter increased complexity (hence the reader is en-
couraged to first read Sect. 2). Namely, as state-spaces are now uncountable (prod-
ucts of R) we work with probability densities instead of probability mass functions;
and whereas the proof of Proposition 2.15 used Schur polynomials, we prove Propo-
sition 3.12 here via induction (a more general result using Whittaker functions may
be possible though is not pursued here). The biggest difference, however, comes in
the proof of the analytic continuation needed to release the condition u + v > 0 (or
c1c2 < 1 in the geometric case). In the geometric case, real analyticity of both sides of
(45) follows since both sides are power series in c1. The sums in (45) are replaced by
integrals in (82) and thus the dependence on u is not as simple. Now, in Sect. 3.6, we
utilize tools from complex analysis (i.e., Morera’s theorem) to show that both sides
of (82) are in fact holomorphic on a suitable open set.

3.1 Log-gamma polymer with inhomogeneous weights

We define the log-gamma polymer with inhomogeneous weights and then state the
main theorem of this section constructing its stationary measure on a horizontal path,
which generalizes Theorem 1.6 in the introduction.

Definition 3.1 (Inhomogeneous log-gamma polymer) Let α1, . . . , αN ∈ R and
u,v ∈ R be such that:

αi + αj > 0, αi + u > 0, αi + v > 0, ∀1 ≤ i, j ≤ N. (55)

We will always assume these conditions in this paper as they are necessary for
the inverse-gamma random variables below to be defined. We call the αi ‘bulk pa-
rameters’ and the u, v ‘boundary parameters’. Define αj+kN = αj for k ∈ Z and
1 ≤ j ≤ N . We define the inhomogeneous version of log-gamma polymer on a
strip by the same recurrence (6) and initial condition as the homogeneous model,
but now with 	n,m ∼ Gamma−1(αn + αm) in the bulk 0 ≤ m < n < m + N ,
	m,m ∼ Gamma−1(αm +u) on the left boundary and 	m+N,m ∼ Gamma−1(αm +v)

on the right boundary. We label each edge of the strip by a number, which will be
needed later to define Gibbs measures. In particular, we label the horizontal edge
(n − 1,m) → (n,m) by αn and the vertical edge (n,m − 1) → (n,m) by αm. See
Fig. 3 for an illustration in the geometric LPP setting. To transform to the log-gamma
setting, each ai should be replaced by αi , c1 by u and c2 by v.
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Next we introduce the inhomogeneous version of reweighted log-gamma random
walk generalizing Definition 1.5. We then introduce the main theorem of this sec-
tion that this reweighted random walk is stationary under inhomogeneous log-gamma
polymer, which generalizes Theorem 1.6.

Definition 3.2 (Reweighted inhomogeneous log-gamma random walks) Assume
that (αi)1≤i≤N ∈ R

N
>0 and u,v ∈ R satisfy (55). Suppose P is a horizontal path with

labels on edges β = (β1, . . . , βN) from left to right (β must be a cyclic shift of α =
(α1, . . . , αN)). Consider two independent random walks L1 = (

L1(j)
)

1≤j≤N
∈ R

N

and L2 = (
L2(j)

)
1≤j≤N

∈ R
N starting from L1(0) = L2(0) = 0 with independent

increments distributed for 1 ≤ j ≤ N as

L1(j) − L1(j − 1) ∼ log(Gamma−1(βj )), and

L2(j) − L2(j − 1) ∼ log(Gamma−1(βj )).

We use shorthand L = (L1,L2) and denote by P
β,β
LGRW (L) the associated probabil-

ity density (here and below, always against Lebesgue measure), and by E
β,β
LGRW the

expectation with respect to this probability measure. We define a new probability
density P

β,u,v

LG by reweighting the density P
β,β
LGRW as

P
β,u,v

LG (L) := V
u,v
LG (L)P

β,β
LGRW (L)

Zβ,u,v

LG

where

V
u,v
LG (L) :=

⎛

⎝
N∑

j=1

eL2(j)−L1(j−1)

⎞

⎠

−(u+v)

e−v(L1(N)−L2(N)),

(56)

and the normalizing constant Zβ,u,v

LG := E
β,β
LGRW

[
V

u,v
LG (L)

]
will be proved to be fi-

nite in Proposition 3.15. Let Pβ,u,v

LG (L1) denote the marginal density of L1 for the

probability density P
β,u,v

LG (L) where L = (L1,L2).

The following is the main theorem in this section.

Theorem 3.3 Assume that (αi)1≤i≤N ∈ R
N
>0 and u,v ∈ R satisfy (55). Suppose

β = (β1, . . . , βN) are labels on some horizontal path P , and τ1β = (β2, . . . , βN ,β1)

are labels on the translated path τ1P . Consider the inhomogeneous log-gamma poly-
mer model from Definition 3.1 starting from an initial condition along P given by
(h(pj ))0≤j≤N where (h(pj )−h(p0))1≤j≤N is distributed according to the probabil-

ity measure with density Pβ,u,v

LG with respect to Lebesgue measure on R
N . Then the

density of (h(τ1pj ) − h(τ1p0))1≤j≤N coincides with Pτ1β,u,v

LG . For the homogeneous
(i.e. α = (α, . . . , α)) case, the probability measure with density Pα,u,v

LG is the (unique)
ergodic stationary measure on the horizontal path P for the log-gamma polymer
recurrence relation (see Definition 1.4).
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The proof of this theorem is given in Sect. 3.5. In Sect. 3.2 we construct the two-
layer Gibbs measures indexed by down-right paths. We will construct in Sect. 3.3 a
Markov dynamics under which the two-layer Gibbs measures are stationary. Under
u + v > 0, in Sect. 3.4 we will turn the two-layer Gibbs measures into probability
measures which are stationary under the log-gamma polymer recurrence relation. To
obtain stationarity outside u + v > 0, in Sect. 3.5 we argue by the uniqueness of
analytic continuation of real analytic functions. Let us also note here that though this
theorem is formulated along only horizontal paths, it is possible to formulate and
prove such a result along any down-right path in a similar manner.

3.2 Two-layer Gibbs measure

We will use the same two-layer graph GP associated to a down-right path P as in
Definition 2.4. A two-layer configuration λ = (λ

(0)
1 , . . . , λ

(N)
1 , λ

(0)
2 , . . . , λ

(N)
2 ) now is

an assignment of λ
(j)
i ∈ R (R in place of Z) to each vertex p(j)

i of GP , for i = 1,2
and j = 0, . . . ,N .

Definition 3.4 (Two-layer log-gamma Gibbs measure) For x, y ∈ R, the weights of
solid, dashed and arced edges are

wtLG

⎛

⎜⎜
⎝

x

y

u

⎞

⎟⎟
⎠ = e−u(x−y), wtLG

⎛

⎜⎜
⎝

x

y

v

⎞

⎟⎟
⎠ = e−v(x−y), (57a)

wtLG

⎛

⎜
⎝

y

x
α

⎞

⎟
⎠ = wtLG

⎛

⎜
⎝

y

x
α

⎞

⎟
⎠ = e−α(x−y)−e−(x−y)

, (57b)

wtLG

⎛

⎜
⎝

y

x
⎞

⎟
⎠ = wtLG

⎛

⎜
⎝

y

x
⎞

⎟
⎠ = e−e−(x−y)

. (57c)

Notice that the weights in (57b) are precisely of the form of the density of the log-
gamma distribution (4). This explains why log-gamma random walks will naturally
arise in this context. We define the weight wtGPLG (λ) of a two-layer configuration λ
associated to a two-layer graph GP to be the product of the above weights over all
labelled solid edges, dotted edges and arcs in GP . We will also write wtLG to denote
the weight of a configuration drawn on a sub-graph of GP , in a similar manner as
(21). Like (22), wtGPLG (λ) is always positive and translation invariant, in the sense
that, for all x ∈ R,

wtGPLG (λ) = wtGPLG (λ + x). (58)

We will view the weight wtGPLG (λ) as a measure on {λ ∈R
2N+2}. Due to the trans-

lation invariance (58), wtGPLG must have infinite mass. However, as we will see in
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Proposition 3.12, the measure of λ with fixed λ
(0)
1 (or any other fixed coordinate λ

(j)
i )

is finite under the assumption u + v > 0. This will be key in turning these Gibbs
measures into probability measures.

We now prove a Cauchy and a Littlewood type identity for the log-gamma weights.

Lemma 3.5 (Cauchy type identity) For any α,β ∈ C with �(α + β) > 0 and any
λ1, λ2,μ1,μ2 ∈ R

∫

R2
wtLG

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

β

β

α

α

κ1

κ2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

dκ1dκ2 =
∫

R2
wtLG

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

π2

π1

α

α

β

β

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

dπ1dπ2, (59)

with both integrals finite.

Proof This identity can be explicitly written as (finiteness is easily seen from this too)

∫

R2
dπ1dπ2e

−α(π1+π2−μ1−μ2)−β(π1+π2−λ1−λ2)−e−(π1−λ1)−e−(λ1−π2)−e−(π2−λ2)−e−(π1−μ1)−e−(μ1−π2)−e−(π2−μ2)

=
∫

R2
dκ1dκ2e

−α(λ1+λ2−κ1−κ2)−β(μ1+μ2−κ1−κ2)−e−(λ1−κ1)−e−(κ1−λ2)−e−(λ2−κ2)−e−(μ1−κ1)−e−(κ1−μ2)−e−(μ2−κ2)

,

which follows from change of variables π1 = −κ2 + log
(
eλ1 + eμ1

) − log
(
e−λ2

+ e−μ2
)

and π2 = −κ1 + log
(
eλ2 + eμ2

) − log
(
e−λ1 + e−μ1

)
. �

Lemma 3.6 (Littlewood type identity) For any u,α ∈ C with �(u + α) > 0 and any
κ1, κ2 ∈ R

∫

R2
wtLG

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

λ2

λ1

α

α

u

⎞

⎟⎟⎟⎟⎟⎟
⎠

dλ1dλ2 =
∫

R2
wtLG

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

π2

π1
α

α

u

⎞

⎟⎟⎟⎟⎟⎟
⎠

dπ1dπ2, (60)

with both integrals finite.

Proof This identity can be explicitly written as (finiteness is easily seen from this too)

∫

R2
dπ1dπ2e

−α(π1+π2−κ1−κ2)−u(π1−π2)−e−(π1−κ1)−e−(κ1−π2)−e−(π2−κ2)

=
∫

R2
dλ1dλ2e

−α(κ1+κ2−λ1−λ2)−u(λ1−λ2)−e−(κ1−λ1)−e−(λ1−κ2)−e−(κ2−λ2)

, (61)

which follows from change of variables π1 = −λ2 + κ1 + κ2 and π2 = −λ1 + κ1 +
κ2. �
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Remark 3.7 Identities (59) and (60) can be generalized as in Propositions 2.6 and 2.7
to integral identities involving multiple layers (general n ∈ Z≥1 for (59) and n ∈ 2Z≥1
for (60)), and α, β can be replaced by sets of variables. The weights in (59) and
(60) can be written in terms of Baxter Q operators from [58] which may be thought
as skew version of the gln(R)-Whittaker functions. Actually, the skew Cauchy type
identity is [58, Theorem 2.3 (2.24)], up to a change of variables. Given that such
skew Cauchy and skew Littlewood identities hold for skew Schur functions as well
as skew Whittaker functions, it is likely that similar identities hold as well for skew
q-Whittaker functions.

3.3 Local Markov kernels

As in the geometric LPP case in Sect. 2.4, in this section we define a two-layer local
Markov dynamics on the strip that preserves the two-layer Gibbs measure in Sect. 3.2.
Recall two-layer graph local moves (Definition 2.10) and the two-layer geometric
Markov dynamics (Definition 2.11).

Definition 3.8 (Two-layer log-gamma Markov dynamics) A two-layer log-gamma
Markov dynamic on the strip is defined as a collection of transition probabilities

densities {UGP,GP̃
LG } on the state space R2N+2 associated to each pair (P, P̃) of down-

right paths connected by a single local move, i.e. P 
→ P̃ . Here UGP,GP̃
LG

(̃
λ|λ) is the

probability density of transitioning from configuration λ ∈ R
2N+2 for the two-layer

graph GP to the configuration λ̃ ∈ R
2N+2 for the two-layer graph GP̃ . We require

that these transition probability densities are local in that they only depend on the
coordinates in λ associated to vertices proximate to the local move; and they act on
the identity on all coordinates except for the update/updated vertices. Specifically, if
the updated vertex from P to P̃ is a bulk vertex pj then

UGP,GP̃
LG

(̃
λ|λ) =

∏

i �=j

δ̃λ(i)=λ(i) · ULG(̃λ(j)|λ(j−1), λ(j), λ(j+1);α,β)

where ULG(π |λ,κ,μ;α,β) is a probability density in π ∈ R
2 given λ,κ,μ ∈ R

2,
and where α, β are the bulk parameters labeling the edges (pj−1,pj ) and (pj ,pj+1)

respectively. Notice the presence of Dirac delta functions above in the description

of UGP,GP̃
LG

(̃
λ|λ). This implies that the only variable that changes is λ(j) and thus

it was a bit of an abuse of notation to call this a probability density. However,
ULG(π |λ,κ,μ;α,β) is a bona-fida probability density in π . If the update vertex from
P to P̃ is a boundary vertex (say p0, the left-boundary) then

UGP,GP̃
LG

(̃
λ|λ) =

∏

i �=0

δ̃λ(i)=λ(i) · ULG(̃λ(0)|λ(0), λ(1);u,α)

where ULG(π |λ,κ;u,α) is a probability distribution in π ∈ R
2 given λ,κ ∈ R

2, and
where u is the boundary parameter labeling the left-boundary arc, and α is the bulk
parameters labeling the edge (p0,p1). Similarly, if the update vertex was on the right
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boundary UGP,GP̃
LG

(̃
λ|λ) is defined via UGeo(π |κ,μ;α,v) for the associated bulk and

(right) boundary parameters α and v. Our notation here for the local transition prob-

abilities emphasizes their bulk or boundary nature via the superscript which is har-

vested from (28).

In order that UGP,GP̃
LG preserves the two-layer log-gamma Gibbs measures it

will be sufficient that the local transition probabilities ULG, ULG and ULG preserve
the local weights. Specifically we will assume that for all π,λ, κ,μ ∈ R

2 and all

α,β,u, v > 0 such that α + β,α + u,α + v > 0,

∫

R2
ULG(π |λ,μ,κ;α,β)wtLG

⎛

⎜⎜⎜⎜⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

β

β

α

α

κ1

κ2

⎞

⎟⎟⎟⎟⎟⎟⎟
⎠

dκ1dκ2

(62a)

= wtLG

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

μ1

μ2

λ1

λ2

π2

π1

α

α

β

β

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

,

∫

R2
ULG(π |κ,λ;u,α)wtLG

⎛

⎜⎜⎜⎜⎜
⎜
⎝

κ2

κ1

λ2

λ1

α

α

u

⎞

⎟⎟⎟⎟⎟
⎟
⎠

dλ1dλ2

(62b)

= wtLG

⎛

⎜⎜
⎜⎜⎜⎜
⎝

κ2

κ1

π2

π1
α

α

u

⎞

⎟⎟
⎟⎟⎟⎟
⎠

,

∫

R2
ULG(π |κ,μ;α,v)wtLG

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

μ2

μ1

α

α

v

⎞

⎟⎟⎟⎟⎟⎟
⎠

dμ1dμ2

(62c)
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= wtLG

⎛

⎜⎜⎜⎜⎜⎜
⎝

κ2

κ1

π2

π1

α

α

v

⎞

⎟⎟⎟⎟⎟⎟
⎠

.

These equations do not uniquely specify the transition probabilities. Definition 3.10
exhibits one solution.

As in the geometric case, this defines a transition probability density UGP,GQ
LG

(
λ′|

λ
)
, for any pair of down-right paths with Q above GP and where λ ∈ R

2N+2 is a
configuration on GP and λ′ ∈ R

2N+2 on GQ.

Corollary 3.9 We have the following properties:

(1) For all λ′ ∈R
2N+2, we have
∫

R2N+2
UGP,GQ

LG

(
λ′|λ)wtGPLG (λ)dλ = wtGQLG

(
λ′) . (63)

(2) For all x ∈ R, we have

UGP,GQ
LG

(
λ′|λ) = UGP,GQ

LG

(
λ′ + x|λ + x

)
. (64)

Proof This is proved exactly as with Corollary 2.12 in geometric case. �

As in Definition 3.10 we define push-block solutions to the local transition proba-
bility density identities.

Definition 3.10 (Log-gamma push-block dynamics) For the bulk, there is a unique
solution ULG(π |λ,κ,μ;α,β) to (62a) which does not depend on κ . Denoting this

by ULG(π |λ,μ;α,β) observe that it is given by the weight on the right-hand side of

(62a) divided by the sum of weights on the left-hand side (without the ULG factor).
Explicitly plugging in the weights, this can be written as

ULG (π |λ,μ;α,β) =
e−α(π1+π2−μ1−μ2)−β(π1+π2−λ1−λ2)−e−(π1−λ1)−e−(λ1−π2)−e−(π2−λ2)−e−(π1−μ1)−e−(μ1−π2)−e−(π2−μ2)

∫
R2 e−α(λ1+λ2−κ1−κ2)−β(μ1+μ2−κ1−κ2)−e−(λ1−κ1)−e−(κ1−λ2)−e−(λ2−κ2)−e−(μ1−κ1)−e−(κ1−μ2)−e−(μ2−κ2)

dκ1dκ2
.

(65)

Due to the Cauchy type identity (Lemma 3.5) this is a transition probability density.
Similarly, for the left boundary, the unique solution to (62b) which does not depend
on λ is given explicitly by

ULG(π |κ;u,α)

= e−α(π1+π2−κ1−κ2)−u(π1−π2)−e−(π1−κ1)−e−(κ1−π2)−e−(π2−κ2)

∫
R2 e−α(κ1+κ2−λ1−λ2)−u(λ1−λ2)−e−(κ1−λ1)−e−(λ1−κ2)−e−(κ2−λ2)

dλ1dλ2
.

(66)
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Owing to the Littlewood type identity (Lemma 3.6), this is a transition probability
density. Likewise, at the right boundary the unique solution to (62c) which does not
depend on μ is given explicitly by

ULG(π |κ;α,v)

= e−α(π1+π2−κ1−κ2)−v(π1−π2)−e−(π1−κ1)−e−(κ1−π2)−e−(π2−κ2)

∫
R2 e−α(κ1+κ2−μ1−μ2)−v(μ1−μ2)−e−(κ1−μ1)−e−(μ1−κ2)−e−(κ2−μ2)

dμ1,dμ2
.

(67)

3.4 First layer marginal

We first show that the marginal distribution on the first layer of the two-layer log-
gamma push-block Markov dynamics correspond to the recurrence relation defining
the log-gamma polymer partition function. For a configuration λ on a two-layer graph
we will use the shorthand λi := (λ

(0)
i , . . . ,λ

(N)
i ) for i = 1,2 so that λ = (λ1,λ2). Un-

der the additional restriction that u + v > 0, we will then take the marginal measure
of the two-layer Gibbs measure wtGPLG on the first layer λ1 and multiply it by a fi-
nite normalization constant to define a probability measure PPLG. We then prove the
stationarity of PPLG under the log-gamma polymer recurrence relation.

Lemma 3.11 (First layer dynamics match the log-gamma polymer recurrence re-
lation) The log-gamma push-block Markov dynamics (Definition 3.10) restricted to
the configuration on the upper layer of the two-layer graphs are marginally Markov
and agree with the dynamics imposed by the log-gamma polymer recurrence rela-
tion (Definition 3.1 and (6)). In particular, this means that the law of π1 under
ULG(π |λ,μ;α,β) only depends on λ, μ through λ1, μ1 and that law has density

ULG(π1|λ1,μ1;α,β) given explicitly by

ULG(π1|λ1,μ1;α,β) = Z(λ1,μ1;α,β)−1e
−(α+β)π1− eλ1 +eμ1

eπ1

for some normalization Z(λ1,μ1;α,β) > 0. This implies that for an independent
	 ∼ Gamma−1(α + β),

eπ1 = 	(eλ1 + eμ1).

Similarly, on the left and right boundaries, the law of π under ULG(π |κ;u,α) and

ULG(π |κ;α,v) depend on κ only through κ1. The density of those laws, which we

write as ULG(π1|κ1;u,α) and ULG(π1|κ1;α,v) respectively, are given explicitly by

ULG(π1|κ1;u,α) = Z(κ1;u,α)−1e
−(α+u)π1− eκ1

eπ1

ULG(π1|κ1;α,v) = Z(κ1;v,α)−1e
−(β+v)π1− eκ1

eπ1

for some normalization Z(κ1;u,α),Z(κ1;v,α) > 0. This (respectively) implies that
for an independent 	 ∼ Gamma−1(α + u) and 	 ∼ Gamma−1(β + v),

eπ1 = 	eκ1 and eπ1 = 	eκ1
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Thus, the law of λ′
1 under UGP,GQ

LG

(
λ′|λ) only depends on λ1 and hence is written

as UP,Q
LG

(
λ′

1|λ1
)
. These transition probability densities define Markov dynamics on

the first layer of the two-layer graph that coincide with the recurrence relation for the
log-gamma polymer free energy (the free energy h is log of the partition function z in
(6)). In particular, if we initialize that recurrence with h(pj ) = λ

(j)

1 , 0 ≤ j ≤ N on P
(i.e. z(pj ) = eλ

(j)
1 ) then the probability density that h(qj ) = λ

′ (j)

1 , 0 ≤ j ≤ N on Q is

precisely UP,Q
Geo

(
λ′

1|λ1
)
.

Proof We only prove this statement for bulk kernel ULG and left boundary kernel

ULG, since the case of right boundary kernel ULG follows from renaming the variables

in ULG.
By the Cauchy type identity (Lemma 3.5), the bulk local kernel (65) can be written

as:

ULG (π |λ,μ;α,β)

= e−(α+β)π1−e−(π1−λ1)−e−(π1−μ1)

∫
R

e−(α+β)π1−e−(π1−λ1)−e−(π1−μ1)
dπ1

× e−(α+β)π2−e−(λ1−π2)−e−(π2−λ2)−e−(μ1−π2)−e−(π2−μ2)

∫
R

e−(α+β)π2−e−(λ1−π2)−e−(π2−λ2)−e−(μ1−π2)−e−(π2−μ2)
dπ2

.

Integrate over π2, we arrive at the claimed property and formula
∫

R

ULG (π |λ,μ;α,β)dπ2 = Z(λ1,μ1;α,β)−1e−(α+β)π1−e−(π1−λ1)−e−(π1−μ1)

= ULG(π1|λ1,μ1;α,β).

By the Littlewood type identity (Lemma 3.6), the left boundary local kernel (66) can
similarly be written as:

ULG (π |κ;u,α) = e(−α−u)π1−e−(π1−κ1)

∫
R

e(−α−u)π1−e−(π1−κ1)
dπ1

e(−α+u)π2−e−(κ1−π2)−e−(π2−κ2)

∫
R

e(−α+u)π2−e−(κ1−π2)−e−(π2−κ2)
dπ2

.

Integrate over π2, we arrive at the claimed property and formula
∫

R

ULG (π |κ;u,α)dπ2 = Z(κ1;u,α)−1e(−α−u)π1−e−(π1−κ1) = ULG(π1|κ1;u,α).

The claimed law of λ′
1 under UGP,GQ

LG

(
λ′|λ) and relation to the polymer recurrence

follows immediately. �

We now show that fixing the value of λ at some vertex in the two-layer graph
results in a finite partition function and hence the marginal law given that conditioning
can be normalized to be a probability measure.
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Proposition 3.12 Assume (55) and the additional condition u+v > 0. For any down-
right path P let

ZLG =
∫

R2N+1
wtGPLG (λ)

∏

i=1,2, j=0,...,N
(i,j) �=(1,0)

dλ
(j)
i ,

where λ
(0)
1 is fixed and the integral is over the set of all λ

(j)
i ∈ R for i = 1,2 and

j = 0, . . . ,N with (i, j) �= (1,0). Then, ZLG is finite and does not depend on the
choice of P or λ

(0)
1 .

Proof The fact that ZLG does not depend on the choice of P or λ
(0)
1 follows from

the same argument as in the geometric LPP case (Proposition 2.15), with the only
difference that we now use the log-gamma versions of the Cauchy and Littlewood
identities (Lemmas 3.5 and 3.6). Hence we only need to prove that ZLG is finite for
the horizontal path Ph. The proof in Proposition 2.15 bounded the partition function
by summations involving Schur polynomials. While in this case it may be possible
to do something similar with Whittaker functions in place of Schur polynomials, we
instead present an inductive proof in N of this finiteness.

N = 1 base case claim: When u + v > 0, v + α > 0 and u + α > 0, we have

∫

R3
wtLG

⎛

⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λ
(1)
2

λ
(1)
1

λ
(0)
2

λ
(0)
1

α

α

u

v

⎞

⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

d
(
λ

(1)
1 − λ

(0)
1

)

× d
(
λ

(0)
2 − λ

(0)
1

)
d
(
λ

(1)
2 − λ

(0)
1

)
< ∞.

(68)

A change of variables λ
(1)
1 − λ

(1)
2 = x, λ

(1)
1 − λ

(0)
1 = s, λ

(1)
2 − λ

(0)
2 = t rewrites the

LHS above as

∫

R3
e−αs−e−s

e−αt−e−t

e−e−(x−s)

e−u(x−s+t)e−vxdsdtdx

= �(u + v)�(α + v)�(u + α) < ∞,

where the evaluation of the integral uses Fubini. This proves the base case claim.
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Inductive claim: For any u + α > 0 and ε > 0 we can find 0 ≤ δ < ε and C > 0
such that for γ = min(α,u) − δ

∫

R2
wtLG

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜
⎝

λ
(1)
2

λ
(1)
1

λ
(0)
2

λ
(0)
1

α

α

u

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟
⎠

dλ
(0)
1 dλ

(0)
2

≤ Ce−γ (λ
(1)
1 −λ

(1)
2 ) = C wtLG

⎛

⎜⎜⎜⎜
⎜⎜⎜
⎝

λ
(1)
2

λ
(1)
1

γ

⎞

⎟⎟⎟⎟
⎟⎟⎟
⎠

.

(69)

Suppose the above claim holds. Then the partition function ZLG is bounded above by
a constant times the partition function with N replaced by N − 1 and the boundary
parameter u replaced by γ . If we choose ε > 0 to be the minimum of sums of any
two parameters in u,v,α1, . . . , αN , then in the partition function after the reduction,
the sum of any two distinct parameters is still positive. Repeating this reduction until
the N = 1 case and then using the above calculated bound in the case proves the
proposition.

To prove (69) we let λ
(1)
1 −λ

(1)
2 = x and make the change of variables λ

(1)
1 −λ

(0)
1 =

s, λ
(1)
2 − λ

(0)
2 = t in the integral in the left-hand side of (69). That desired inequality

is rewritten (after multiplying eux ) as

∫

R2
e(u−α)s−e−s−es−x

e−(u+α)t−e−t

dsdt ≤ Ce(u−γ )x . (70)

We prove (70) in two cases. When α > u, by dropping es−x > 0 in the exponent we
have

LHS (70) <

∫

R2
e(u−α)s−e−s

e−(u+α)t−e−t

dsdt = �(α − u)�(α + u).

Observe that the right-hand side is a constant with respect to x and thus if we take
δ = 0 (so that u − γ = 0) and C = �(α − u)�(α + u), we have �(α − u)�(α + u) ≤
Ce(u−γ )x as desired to show (70). The second case to show (70) is when α ≤ u in
which case we chose any 0 < δ < ε. Rearranging (70), we need to prove that

∫

R2
e(u−α)s−e−s−es−x−(u−α+δ)xe−(u+α)t−e−t

dsdt ≤ C.
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The integral in t is constant in x so we only need to prove that there is some C > 0
such that for any x ∈ R,

∫

R

e(u−α)s−e−s−es−x−(u−α+δ)xds ≤ C.

The function es−x + (u − α + δ)x goes to infinity at both x = −∞ and x = ∞.
We taking derivatives shows that this function attains its global minimum at x =
s − ln(u − α + δ). Thus,
∫

R

e(u−α)s−e−s−es−x−(u−α+δ)xds ≤
∫

R

e(u−α)s−e−s−(u−α+δ)−(u−α+δ)(s−ln(u−α+δ))ds

which is easily seen to be a finite constant in x (in fact e−(u−α+δ)+(u−α+δ) ln(u−α+δ) ×
�(δ)). This completes the proof of (70), and hence the inductive claim and thus the
proposition. �

We will now prove that the first layer marginal distribution of our two-layer Gibbs
measures are stationary measures for the log-gamma polymer recurrence relation.
To state this precisely, we need to introduce a few pieces of notation. Recalling the
decomposition of λ = (λ1,λ2) define first layer marginal weights by

wtPLG(λ1) :=
∫

RN+1
wtGPLG (λ)dλ2. (71)

The translation invariance (58) of wtGPGeo(λ) implies that for any x ∈ R, wtPLG(λ1 +
x) = wtPLG(λ1). When u + v > 0, by Proposition 3.12, for any fixed λ

(0)
1 we have

ZLG =
∫

RN

wtPLG(λ1)

N∏

j=1

dλ
(j)

1 < ∞. (72)

Let us introduce variables that record the first layer configuration centered by λ
(0)
1

for 1 ≤ j ≤ N and the shorthand notation L1 := (L1(1), . . . ,L1(N)). For L1 ∈ R
N

define

PPLG (L1) := 1

ZLG
wtPLG (λ1) . (73)

Due to translation invariance and finiteness of the normalizing constant (72), this is a
probability density.

Now we need some notation for the corresponding Markov dynamics. Recall the
transition probability density UP,Q

LG (λ′
1|λ1) for λ1,λ

′
1 ∈ R

N+1 defined in Lemma 3.11
which encodes the dynamics of the log-gamma polymer free energy from the path P
to the path Q. We define another transition probability density encoding the dynamics
of the centered free energies L1. For any L1,L′

1 ∈R
N ,

UP,Q
LG

(
L′

1|L1
) :=

∫

R

UP,Q
LG

(
x,L′

1 + x|0,L1
)

dx. (74)
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Owing to the translation invariance of the dynamics defined by UP,Q
LG (λ′

1|λ1), this
gives the transition probability density from L1 to L′

1. The following shows that the
weights wtPLG from (71) and the probability density PPLG from (73) are stationary with
respect to ULG and ULG.

Theorem 3.13 For any λ′
1 ∈R

N+1,

∫

RN+1
UP,Q

LG

(
λ′

1|λ1
)

wtPLG(λ1)dλ1 = wtQLG

(
λ′

1

)
. (75)

Assume that u + v > 0, then for any L′
1 ∈R

N ,

∫

RN

UP,Q
LG

(
L′

1|L1
)

PPLG (L1)dL1 = PQLG

(
L′

1

)
. (76)

Proof The first statement (75) follows from integrating (63) over the second layer λ2

in conjunction with the definition of UP,Q
LG (λ′

1|λ1) as the marginal of UGP,GQ
LG

(
λ′|λ)

(Lemma 3.11). The second statement (76) follows from translation invariance and the
definition (73) of PPLG (L1):

LHS(76) = 1

ZLG

∫

RN

dL1

∫

R

dxUP,Q
LG

(
x,L′

1 + x|0,L1
)

wtPLG (0,L1)

= 1

ZLG

∫

RN

dL1

∫

R

dxUP,Q
LG

(
0,L′

1| − x,L1 − x
)

wtPLG (−x,L1 − x)

= 1

ZLG
wtQLG

(
0,L′

1

) = RHS(76). �

3.5 Proof of Theorem 3.3

So far we have shown that provided u + v > 0, the stationary measure for the log-
gamma polymer free energy recurrence relation can be realized as a marginal of the
two-layer Gibbs measures. In order to go beyond this restriction on u+v > 0 we will
integrate out the ‘zero-mode’. Specifically, we will prove in Proposition 3.14 that,
provided u + v > 0, for a horizontal path P with edge labels b = (b1, . . . , bN), the
probability density PPLG (73) defined as a marginal of the two-layer Gibbs measure

coincides with Pb,c1,c2
LG defined as a marginal of pair of reweighted inhomogeneous

random walks (Definition 3.2). We then prove that the probability measure Pb,c1,c2
LG

is well-defined without the constraint u + v > 0 and real analytic in these boundary
parameters. Combining this with Theorem 3.13 and the uniqueness of analytic con-
tinuation of real analytic functions, we prove Theorem 3.3. This proof follows the
same approach as used to prove Theorem 2.3 in Sect. 2.6 with the exception that the
proof of real analyticity in the boundary parameter will be trickier here since the tran-
sition probabilities no longer depend as power-series on that parameter. This is due
to the fact that the state-space in the log-gamma setting is R, not Z. We will use tools
from complex analysis to demonstrate the desired real analyticity.
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Proposition 3.14 (Integrating out the zero-mode) Suppose P is a horizontal path
with labels β = (β1, . . . , βN). Then the probability density PPLG coincides with Pβ,u,v

LG
(Definition 3.2) provided u + v > 0.

Proof We use the following set of variables: For all 1 ≤ j ≤ N let

� := λ
(0)
1 − λ

(0)
2 , L1(j) := λ

(j)

1 − λ
(0)
1 , L2(j) := λ

(j)

2 − λ
(0)
2 .

and write L1(0) = L2(0) = 0 and Li := (Li(1), . . . ,Li(N)) for i = 1,2. Recall L =
(L1,L2). We define:

xwt
β
LG (�;L) := wtGPLG (λ) ,

which is well-defined due to the translation invariance (58) of wtGPLG (λ). When u +
v > 0,

P
P
LG(L1) = wtPLG(λ1)

ZLG
=

∫
RN dL2

∫
R

d�xwt
β
LG (�;L)

∫
R2N dL

∫
R

d�xwt
β
LG (�;L)

. (77)

By Definition 3.4, we explicit evaluate this weight as

xwt
β
LG (�;L) =e−(u+v)�

N∏

j=1

e−e−(�+L1(j−1)−L2(j))

e−v(L1(N)−L2(N))

×
⎛

⎝
N∏

j=1

e−βj (L1(j)−L1(j−1))−e−(L1(j)−L1(j−1))

⎞

⎠

×
⎛

⎝
N∏

j=1

e−βj (L2(j)−L2(j−1))−e−(L2(j)−L2(j−1))

⎞

⎠

=e−(u+v)�

N∏

j=1

e−e−(�+L1(j−1)−L2(j))

e−v(L1(N)−L2(N))�(βj )
2
P

β,β
LGRW(L).

(78)

where Pβ,β
LGRW from Definition 3.2 is the law of two independent inhomogeneous log-

gamma random walks.
When u + v > 0, we integrate (78) over � ∈R and obtain

�(u + v)−1
N∏

j=1

�(βj )
−2

∫

R

xwt
β
LG (�;L)d� = V

u,v
LG (L)P

β,β
LGRW(L), (79)

where we recall from (56) that

V
u,v
LG (L) =

⎛

⎝
N∑

j=1

eL2(j)−L1(j−1)

⎞

⎠

−(u+v)

e−v(L1(N)−L2(N)),
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and where have used the identity that for S > 0,
∫

R

e−(u+v)�−e−�Sd� = �(u + v)S−u−v.

By (77) and (79) we conclude the proof. �

We now prove that the normalization constant ZLG in the definition (56) of the
reweighted inhomogeneous log-gamma random walk measure Pb,c1,c2

LG is finite only
assuming (55) (without the condition u + v > 0), as claimed in the statement of the
main Theorem 3.3.

Proposition 3.15 Recalling V
u,v
LG (L) from (56) and assuming (55), E

β,β
LGRW[

V
c1,c2
LG (L)

]
is finite.

Proof Continuing with the notation from Proposition 3.14 and using (79), when u +
v > 0, we have

E
β,β
LGRW

[
V

u,v
LG (L)

] = �(u + v)−1
N∏

j=1

�(βj )
−2

∫

R2N

dL
∫

R

d�xwt
β
LG (�;L) . (80)

We observe that the integrals equal ZLG, which is finite by Proposition 3.12. Hence
(80) is finite.

Now we consider the case when u + v ≤ 0. (Note that the argument here differs
from that in the proof of Proposition 2.18). First observe that

E
β,β
LGRW

[
V

u,v
LG (L)

] =
N∏

j=1

�(βj )
−2�(βj + u)�(βj + v)E

β+v,β+u

LGRW

×
⎡

⎢
⎣

⎛

⎝
N∑

j=1

e−(L2(N)−L2(j))−L1(j−1)

⎞

⎠

−(u+v)
⎤

⎥
⎦ .

We will prove that the expectation in the right is finite. Using multiple times the
inequality (x + y)a ≤ max(1,2a−1)(xa + ya) for any x, y > 0 and a ≥ 0 we find that
there exists a constant CN,u+v > 0 such that

⎛

⎝
N∑

j=1

e−(L2(N)−L2(j))−L1(j−1)

⎞

⎠

−(u+v)

≤ CN,u+v

N∑

j=1

(
e−(L2(N)−L2(j))−L1(j−1)

)−(u+v)

= CN,u+v

N∑

j=1

j−1∏

�=1

(
e−(L1(�)−L1(�−1))

)−(u+v)
N∏

�=j+1

(
e−(L2(�)−L2(�−1))

)−(u+v)

.

(81)
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Recall that under the measure P
β+v,β+u

LGRW (L), for 1 ≤ j ≤ N ,

e−(L1(j)−L1(j−1)) ∼ Gamma(βj + v), e−(L2(j)−L2(j−1)) ∼ Gamma(βj + u).

Thus, by (81), Eβ+v,β+u

LGRW

[(∑N
j=1 e−(L2(N)−L2(j))−L1(j−1)

)−(u+v)
]

can be bounded

above by a sum of product of positive moments of independent Gamma random vari-
ables with parameters αj + u and αj + v. Such random variables have finite positive

moments of all orders, thus Eβ,β
LGRW

[
V

u,v
LG (L)

]
is finite. �

We are now positioned to complete the proof of Theorem 3.3 using real analytic
continuation. As noted above, the proof of real analyticity in the boundary parame-
ters is considerably trickier here since the measures in question are not power series
anymore in those parameter. We state the desired real analyticity as Proposition 3.16
in the proof of Theorem 3.3 and then devote Sect. 3.6 to proving it via a combination
of complex analytic tools and explicit estimates on transition densities that figure into
our Markov dynamics.

Proof of Theorem 3.3 We recall that UP,Q
LG

(
L′

1|L1
)

(74) gives the transition probabil-
ity density from L1 to L′

1 for the log-gamma free energy recurrence (i.e., if started
with initial condition L1 along P , this is the probability that the recurrence produces
L′

1 for the last passage times along Q centered by the value on the left-boundary).
Since we are presently only going to consider horizontal paths, we introduce a slight
overload of our notation and write Uβ,u,v

LG := UP,τ1P
LG , where P is a horizontal path

with labels β = (β1, . . . , βN). Of course our notation UP,τ1P
LG hid the implicit depen-

dence on the edge and boundary parameters which we have now made more explicit
in this special horizontal case.

The stationarity we aim to prove in this theorem can be rewritten as: For any
L′

1 ∈R
N , we have

∫

RN

Uβ,u,v

LG

(
L′

1|L1
)

Pβ,u,v

LG (L1)dL1 = Pτ1β,u,v

LG

(
L′

1

)
. (82)

When u + v > 0, taking Q = τ1P in Theorem 3.13 and using the matching from
Proposition 3.14, implies (82). To prove (82) holds without assuming u + v > 0, we
prove (let min(β) = min(β1, . . . , βN) = min(α1, . . . , αN)):

Proposition 3.16 Both sides of (82) are real analytic functions of u for u ∈
(−min(β),∞).

This proposition will be proved in Sect. 3.6. Since we know that the equality (82)
holds on the smaller interval u ∈ (−min(v,α1, . . . , αN),∞), by the uniqueness of
analytic continuation of real analytic functions (see, e.g. [65, Corollary 1.2.6]) it fol-
lows from Proposition 3.16 that the equality in (82) extended to the larger interval
u ∈ (−min(β),∞). This proves the stationarity in Theorem 3.3 for all u, v that sat-
isfy (55).
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Finally to prove the uniqueness of the stationary measure in the homogeneous
β = (α, . . . , α) case, observe that as a function of L1 and L′

1 in R
N , Uβ,u,v

LG

(
L′

1|L1
)

is strictly positive. This can be seen directly from the strict positivity of the log-
gamma density and the fact that Uβ,u,v

LG

(
L′

1|L1
)

encodes the transition probability
density for the log-gamma recursion. This strict positivity implies that the Markov
chain is irreducible. Thus by [12, Theorem 5.5] the stationary measure is unique and
the Markov chain is ergodic. �

3.6 Proof of Proposition 3.16

In the proof we will use increment variables Xi(j) := Li(j) − Li(j − 1) for i = 1,2
and 1 ≤ j ≤ N , and the shorthand Xi := (Xi(1), . . . ,Xi(N)) for i = 1,2. We also
write X := (X1,X2). The Jacobian determinant of the change of variables between
X1 and L1 equals 1, hence

P
β,u,v

LG (X1) := Pβ,u,v

LG (L1) , and U
β,u,v

LG (X′
1|X1) := Uβ,u,v

LG

(
L′

1|L1
)

(83)

define probability densities and transition probability densities in these new variables
and (82) becomes

∫

RN

U
β,u,v

LG

(
X′

1|X1
)
P

β,u,v

LG (X1)dX1 = P
τ1β,u,v

LG

(
X′

1

)
. (84)

To prove Proposition 3.16 it therefore suffices to show real analyticity in u ∈
(−min(β),∞) of both sides of (84). We actually prove a stronger result which re-
quires a bit of notation.

Definition 3.17 For an open disk U ⊂ C and m ∈ Z≥1, a measurable function U ×
R

m � (u,x) 
→ gu(x) ∈ C (we use the notation x = (x1, . . . , xm) here and below) is
in Xm(U) if:

(1) There exists C, r > 0 such that, for all (u,x) ∈ U ×R
m,

|gu(x)| ≤ C exp

(

−r

m∑

i=1

|xi |
)

.

(2) For any fixed x ∈R
m, u 
→ gu(x) is holomorphic on U .

Proposition 3.18 For any u0 ∈ (−min(β),∞), there exists an open disk U ⊂ C con-
taining u0 such that U ×R

N � (u,X1) 
→ P
β,u,v

LG (X1) is in XN(U).

For transition probability densities U (x′|x) and Ũ (x′|x) with x,x′ ∈ R
N , we

define their action on C-valued measurable functions φ(x), x ∈ R
N and their com-

position as

(U φ)(x′) :=
∫

RN

U (x′|x)φ(x)dx, and

Ũ ◦ U (x′′|x) :=
∫

RN

Ũ (x′′|x′)U (x′|x)dx′.
(85)
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One can observe that
(
Ũ ◦ U

)
φ = Ũ (U φ). In particular, if φ is a real-valued prob-

ability density function, then U φ is also a probability density function.

Proposition 3.19 Assume U ⊂ C is an open disk such that there is an ε > 0 so that
U ⊂ {z ∈C : �z > ε − min(β)}. Then the action of the transition probability density
U

β,u,v

LG preserves XN(U). In other words, if the function U ×R
N � (u,x) 
→ gu(x)

is in XN(U) then U ×R
N � (u,x) 
→ (U

β,u,v

LG gu)(x) is in XN(U) as well.

These two propositions will be proved respectively in Sect. 3.6.1 and Sect. 3.6.2.

Proof of Proposition 3.16 For each fixed u0 ∈ (−min(β),∞), by Proposition 3.18
we can choose an open disk U ⊂ C containing u0 such that functions U × R

N �
(u,X1) 
→ P

β,u,v

LG (X1) and U × R
N � (u,X′

1) 
→ P
τ1β,u,v

LG

(
X′

1

)
both belong to

XN(U). By Proposition 3.19, after possibly shrinking the disk U to have minimal
real part strictly exceeding −min(β), we have that the function U ×R

N � (u,X′
1) 
→(

U
β,u,v

LG P
β,u,v

LG

)(
X′

1

)
is also in XN(U). In particular this implies that both sides of

(84) are holomorphic on u ∈ U for any fixed X′
1. Since u0 can be chosen through the

whole interval (−min(β),∞), it follows from this conclusion that both sides of (84)
are real analytic functions of u on this interval when the variables β , v and X′

1 are
fixed. �

In preparation for the proofs of Propositions 3.18 and 3.19 we record here a result
that will be used to prove that integrals of certain types of holomorphic functions
remain holomorphic.

Lemma 3.20 Suppose U ⊂ C is an open disk, m ∈ Z≥1 and that gu(x) is a function of
(u,x) ∈ U ×R

m such that for any fixed x ∈ R
m, u 
→ gu(x) is holomorphic in U . If∫

RN supu∈U |gu(x)|dx < ∞ (denoting dx = dx1 . . .dxN ) then h(u) := ∫
RN gu(x)dx

is holomorphic in U as well.

Proof By assumption s(x) := supu∈U |gu(x)| is an integrable function of x ∈ R
m.

Suppose {uk}∞k=1 is a sequence of points in U converging to u. Then since u 
→ gu(x)

is holomorphic in U (and in particular, continuous), we have that limk→∞ guk
(x) =

gu(x) for any fixed x ∈ R
m, and moreover |guk

(x)| ≤ s(x) for all k. By the dom-
inated convergence theorem, limk→∞

∫
Rm guk

(x)dx = ∫
Rm gu(x)dx =: h(u). Since

the sequence {uk}∞k=1 is arbitrary, we have proved that h(u) is continuous in U . For
any triangular contour γ contained in U , denoting its length by |γ |, we have

∫

γ

∫

Rm

|gu(x)|dxdu ≤ |γ |
∫

Rm

sup
u∈U

|gu(x)|dx < ∞.

By Fubini’s theorem and the Cauchy integral theorem, we have
∫

γ

h(u)du =
∫

γ

∫

Rm

gu(x)dxdu =
∫

Rm

∫

γ

gu(x)dudx =
∫

Rm

0 = 0.

By Morera’s theorem (Theorem 5.1 in Chap. 2 of [81]), h(u) is a holomorphic func-
tion on U . �
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3.6.1 Proof of Proposition 3.18

Using (83), the formula in (56) for Pβ,u,v

LG (L1) is rewritten as

P
β,u,v

LG (X1) =
∫
RN Hβ,u,v(X)dX2∫
R2N Hβ,u,v(X)dX

(86)

where

Hβ,u,v(X) :=
⎛

⎝
N∑

j=1

e
−∑N

i=j+1 X2(i)−∑j−1
i=1 X1(i)

⎞

⎠

−(u+v)

×
N∏

j=1

fβj +v (X1(j)) fβj +u (X2(j)) , fθ (x) := e−θx−e−x

.

We will repeatedly use the following bound on fθ .

Lemma 3.21 For any θ > 0, let Cθ = max
(
1, e2θ ln(2θ)−2θ

)
. Then fθ (x) ≤ Cθe

−θ |x|
for all x ∈R.

Proof of Lemma 3.21 Observe that Cθ ≥ exp
(
maxy≥0(2θy − ey)

)
. For x ≥ 0,

fθ (x) = e−θx−e−x
< e−θx ≤ Cθe

−θ |x|. For x < 0, Cθ ≥ e2θ |x|−e|x|
and hence fθ (x) =

eθ |x|−e|x| ≤ Cθe
−θ |x|. �

To control the ratio of integrals in (86) we first prove a bound on the norm of
Hβ,u,v (X).

Lemma 3.22 For any u0 ∈ (−min(β),∞), there exists an open disk U ⊂ C contain-
ing u0, and C, r > 0 such that

∣∣∣Hβ,u,v (X)

∣∣∣ ≤ C exp

(
− r

( N∑

j=1

|X1(j)| +
N∑

j=1

|X2(j)|
))

. (87)

Proof Observe that, when u can take complex values we have (where �u is the real
part of u)

|Hβ,u,v(X)| =
( N∑

j=1

e
−∑N

i=j+1 X2(i)−∑j−1
i=1 X1(i)

)−�u−v

×
N∏

j=1

fβj +v (X1(j))

N∏

j=1

fβj +�u (X2(j)) .

(88)
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(1) When �u + v ≤ 0, using (x + y)a ≤ max(1,2a−1)(xa + ya) for any x, y, a > 0
to expand the first term in (88) (cf. (81)), we obtain

∣∣∣Hβ,u,v (X)

∣∣∣ ≤ C

N∑

�=1

�−1∏

j=1

fβj +v−(�u+v) (X1(j))

N∏

j=�

fβj +v (X1(j))

×
�∏

j=1

fβj +�u (X2(j))

N∏

j=�+1

fβj +�u−(�u+v) (X2(j)) .

(2) When �u + v > 0 and �u ≤ 0.

∣∣∣Hβ,u,v (X)

∣∣
∣ ≤

(
e−∑N−1

i=1 X1(i)
)−(�u+v)

N∏

j=1

fβj +v (X1(j))

N∏

j=1

fβj +�u (X2(j))

=fβN+v (X1(N))

N−1∏

j=1

fβj −�u (X1(j))

N∏

j=1

fβj +�u (X2(j)) .

(3) When �u + v > 0 and v ≤ 0.

∣∣∣Hβ,u,v (X)

∣∣∣ ≤
(
e−∑N

i=2 X2(i)
)−(�u+v)

N∏

j=1

fβj +v (X1(j))

N∏

j=1

fβj +�u (X2(j))

=fβ1+�u (X2(1))

N∏

j=1

fβj +v (X1(j))

N∏

j=2

fβj −v (X2(j)) .

(4) When �u > 0 and v > 0. We use

⎛

⎝
N∑

j=1

e
−∑N

i=j+1 X2(i)−∑j−1
i=1 X1(i)

⎞

⎠

−�u−v

≤
(
e
∑N−1

i=1 X1(i)
)v (

e
∑N

i=2 X2(i)
)�u

.

Hence
∣∣∣Hβ,u,v (X)

∣∣
∣

≤ fβN+v (X1(N))fβ1+�u (X2(1))

N−1∏

j=1

fβj (X1(j))

N∏

j=2

fβj (X2(j)) .

In each of the above four cases we can then use Lemma 3.21 to arrive at the claimed
bound (87). In particular, the condition that u0 ∈ (−min(β),∞) is necessary here
to ensure that we can find an open disk U containing u0 such that for all u ∈ U ,
βj + �u > 0 (as is necessary to apply Lemma 3.21 (recall θ there must be strictly
positive). �
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Proof of Proposition 3.18 Recall the formula (86) for P
β,u,v

LG (X1). The function u 
→
Hβ,u,v(X) is holomorphic in all of C for any fixed choice of β , v and X ∈ R

2N

(the only place u comes in is through the boundary weight which is an expo-
nential in u). The denominator in (86) is an integral of this holomorphic function
over X ∈ R

2N . Lemma 3.22 in conjunction with Lemma 3.20 imply that for any
u0 ∈ (−min(β),∞), there exists an open disk u0 ∈ U ⊂ C on which the denomi-
nator is holomorphic as a function of u. Moreover, when u ∈ U is real, the denom-
inator is strictly positive (it is an integral of strictly positive weights), thus we can
ensure that the open disk U was chosen small enough so that the modulus of the
denominator is bounded away from 0. This means that if we can show that the nu-
merator in (86) satisfies Property (1) and (2) in Definition 3.17, then it will follow
that U × R

N � (u,X1) 
→ P
β,u,v

LG (X1) is in XN(U) as desired. This is because the
inverse of the denominator is holomorphic in U (seeing the denominator is bounded
from 0 and holomorphic itself). Considering now the numerator in (86), Property (1)
in Definition 3.17 follows from integrating the bound (87) in Lemma 3.22 over X2.
Analyticity (2) in u ∈ U for any fixed X1 follows from Lemma 3.22 and Lemma
3.20. �

3.6.2 Proof of Proposition 3.19

We will omit the superscript and subscript in the transition probability density U
β,u,v

LG

and write U := U
β,u,v

LG . By the definition of log-gamma polymer, we can decompose
U as

U = U ◦ U (N − 1) ◦ · · · ◦ U (1) ◦ U , (89)

(recall (85)) where U is the left boundary local move with parameter u + β1,
U (j) is the bulk local move with parameter β1 + βj+1, 1 ≤ j ≤ N − 1, and U is
the right boundary local move with parameter v + β1.

The left boundary transition density U replaces X1(1) by an independent
− log Gamma−1(u + β1) random variable and leaving other factors unchanged. In
terms of its action on functions (recall (85)),

(
U φ

)(
x′

1, x2, . . . , xN

) = 1

�(u + β1)
fu+β1(−x′

1)

∫

R

φ(x1, . . . , xN)dx1. (90)

Similarly, the right boundary transition density U replaces X1(N) by an inde-
pendent log Gamma−1(v +β1) random variable and leaving other factors unchanged.
In terms of its action on functions,

(
U φ

)(
x1, x2, . . . , x

′
N

) = 1

�(v + β1)
fv+β1

(
x′
N

)∫

R

φ(x1, . . . , xN)dxN . (91)

For 1 ≤ j ≤ N − 1, the bulk transition density U (j) only acts on X1(j) and
X1(j + 1) and leaves other factors unchanged. By the recurrence relation we have
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that eL′
1(j) = 	

(
eL1(j−1) + eL1(j+1)

)
where 	 ∼ Gamma−1(β1 + βj+1). Hence

eX′
1(j) = 	

(
1 + eX1(j)+X1(j+1)

)
, or in other words

X′
1(j) = log	 + log

(
1 + eX1(j)+X1(j+1)

)
. (92)

Since L′(j − 1) = L(j − 1) and L′(j + 1) = L(j + 1), we also have

X′
1(j + 1) = X1(j) + X1(j + 1) − X′

1(j). (93)

The transformation (X1(j),X1(j + 1)) 
→ (
X′

1(j),X′
1(j + 1)

)
by (92) and (93) can

be written in two steps:

(X1(j),X1(j + 1)) 
→ (
X′′

1(j),X′′
1(j + 1)

) 
→ (
X′

1(j),X′
1(j + 1)

)
,

where the two steps are given by

(
X′′

1(j),X′′
1(j + 1)

) = (
X1(j) + X1(j + 1), log	

)
,

(
X′

1(j),X′
1(j + 1)

)

=
(
X′′

1(j + 1) + log
(
1 + eX′′

1 (j)
)
,X′′

1(j) − X′′
1(j + 1) − log

(
1 + eX′′

1 (j)
))

.

Thus U (j) is the composition of two transition operators U (j) = U 2(j) ◦
U 1(j). The first acts as

(
U 1(j)φ

)(
x1, . . . , x

′′
j , x′′

j+1, . . . , xN

)

= 1

�(β1 + βj+1)
fβ1+βj+1

(
x′′
j+1

)∫

R

φ
(
x1, . . . , x

′′
j − y, y, . . . , xN

)
dy.

(94)

The second operator U 2(j) acts by applying a coordinate change whereby

x′
j = x′′

j+1 + log
(

1 + e
x′′
j

)
, x′

j+1 = x′′
j − x′′

j+1 − log
(

1 + e
x′′
j

)
.

The inverse of this change of coordinates is given by

x′′
j = x′

j + x′
j+1, x′′

j+1 = x′
j − log

(
1 + e

x′
j +x′

j+1

)
,

and the Jacobian det
[

∂x′′
k

∂x′
l

]

k,l∈{j,j+1}
= −1. Therefore U 2(j) acts on functions ψ as

(
U 2(j)ψ

)(
x1, . . . , x

′
j , x

′
j+1, . . . , xN

)

= ψ
(
x1, . . . , x

′′
j , x′′

j+1, . . . , xN

) ∣∣∣∣det
[

∂x′′
k

∂x′
l

]

k,l∈{j,j+1}

∣∣∣∣

= ψ
(
x1, . . . , x

′
j + x′

j+1, x
′
j − log

(
1 + e

x′
j +x′

j+1

)
, . . . , xN

)
.

(95)
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Therefore, using (95) and then (94) we find that U (j)φ acts on functions φ by

(
U (j)φ

)(
x1, . . . , x

′
j , x

′
j+1, . . . , xN

)

=
(
U 2(j)

(
U 1(j)φ

))(
x1, . . . , x

′
j , x

′
j+1, . . . , xN

)

=
(
U 1(j)φ

)(
x1, . . . , x

′
j + x′

j+1, x
′
j − log

(
1 + e

x′
j +x′

j+1

)
, . . . , xN

)

= 1

�(β1 + βj+1)
fβ1+βj+1

(
x′
j − log

(
1 + e

x′
j +x′

j+1

))

×
∫

R

φ
(
x1, . . . , x

′
j + x′

j+1 − y, y, . . . , xN

)
dy.

(96)

We observe from formulas (90), (91) and (96) that the actions of transition prob-
ability densities U , U (j) and U on a probability density function φ can be
factorized as a sequence of basic operations starting from φ, involving integration,
change of variables, and multiplication with the basic function fθ . The next two lem-
mas prove that these operators preserve the function spaces Xm(U) from Definition
3.17.

Lemma 3.23 We have the following properties of the function spaces Xm(U) from
Definition 3.17. As a convention we will simply say that a function gu(x) is in Xm(U)

and likewise when we take some integrals, we will treat the result as a function of u

and the remaining variables.

(1) If gu(x1, . . . , xm) is in Xm(U), then
∫
R

gu(x1, . . . , xm)dx1 is in Xm−1(U).
(2) If gu(x1, . . . , xm) is in Xm(U) then

∫
R

gu(x2 − y, y, x3, . . . , xm)dy is in
Xm−1(U).

(3) If gu(x2, . . . , xm) is in Xm−1(U) and ru(x1) is in X1(U) then ru(x1)gu(x2, . . . ,

xm) is in Xm(U).
(4) Recall fθ (x) := e−θx−e−x

. Assume that U is an open disk such that there are
c ∈ C and ε > 0 satisfying U ⊂ {z ∈ C : �z > ε − c}. Assume �γ > 0. Then

1
�(u+c)

fu+c(−x) and 1
�(γ )

fγ (x) on R are in X1(U).

Proof We first verify Property (1) from Definition 3.17 in the four cases of the lemma.
For Case (1) of the lemma, this follows by integrating the bound from Property (1)
for gu over x1 ∈ R. Case (2) follows by observing that the convolution of e−r|x| with
itself (for r > 0) is bounded below by Ce− r

2 |x| for some C > 0. Case (3) follows
by multiplying the bounds from Property (1) for gu and ru. Case (4) follows from
Lemma 3.21 in view of |fθ (x)| = f�θ (x). Now we verify Property (2) from Defini-
tion 3.17 in the four cases of the lemma. Cases (1) and (2) follow from integrating the
bound in Property (1) for supu∈U |gu| and using Lemma 3.20. Case (3) follows from
multiplication of holomorphic functions being holomorphic. Case (4) follows from
the holomorphicity of Gamma functions. �
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Lemma 3.24 If gu(x) is in Xm(U) and θ > 0, then

pu(x) := fθ

(
x1 − log

(
1 + ex1+x2

))∫

R

gu(x1 + x2 − y, y, x3, . . . , xm)dy

is in class Xm(U).

Proof Holomorphicity of pu(x) (Property (2) from Definition 3.17) follows from
Case (2) in Lemma 3.23. Now we verify Property (1) from Definition 3.17. Again,
by Case (2) in Lemma 3.23 we have

∣∣∣∣

∫

R

gu(x1 + x2 − y, y, x3, . . . , xm)dy

∣∣∣∣ ≤ Ce
−r

(
|x1+x2|+∑m

j=3 |xj |
)

for some C, r > 0. Property (1) for pu will follow if for any θ, r > 0 there exists
C,δ > 0 such that

fθ

(
x − log

(
1 + ex+y

))
e−r|x+y| ≤ Ce−δ(|x|+|y|)

for any x, y ∈ R. Thus, to conclude this proof we demonstrate this claim. Choose
0 < s < min(θ, r). Then

fθ

(
x − log(1 + ex+y)

)
e−r|x+y| = e−θx(1 + ex+y)θ e−e−x

e−ey

e−r|x+y|

≤ e−θx(1 + ex+y)θ e−e−x

e−ey

e−s|x+y|.

If x + y ≥ 0, then ex+y > 1 and 1 + ex+y ≤ 2ex+y . Thus,

e−θx(1 + ex+y)θ e−e−x

e−ey

e−s|x+y| ≤ 2θ e−θxeθ(x+y)e−e−x

e−ey

e−s(x+y)

≤ 2θ e−sx−e−x

e(θ−s)y−ey = 2θfs(x)fθ−s(−y).

If x + y < 0, then ex+y ∈ (0,1) and 1 + ex+y ≤ 2. Thus,

e−θx(1 + ex+y)θ e−e−x

e−ey

e−s|x+y| ≤ 2θ e−θxe−e−x

e−ey

es(x+y)

= 2θ e−(θ−s)x−e−x

esy−ey = 2θfθ−s(x)fs(−y).

Setting δ = min(θ − s, s) > 0 and using Lemma 3.21 in both cases we conclude the
proof of the claim. �

Proof of Proposition 3.19 By the decomposition (89), we only need to prove that the
actions of U , U (j) and U preserve the function space XN(U). Note that
XN(U) is invariant under permuting coordinates in x, hence the results of Lem-
mas 3.23 and 3.24 can be applied to other coordinates than the first ones. Thus, in
light of (90) and (91), U and U preserve XN(U) due to Cases (1), (4) and (3)
in Lemma 3.23. In light of (96), U (j), 1 ≤ j ≤ N − 1, preserve XN(U) due to
Lemma 3.24. �
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3.7 Operator product ansatz

As in Sect. 2.7, the probability density PPLG (L1) can be written as a matrix product,
or more precisely a product of operators. We will use a change of variables similar
as in Sect. 2.7: for 1 ≤ i ≤ N let κi = |λ(i)

1 − λ
(i−1)
1 | when pi − pi−1 =→, κi =

|λ(i−1)
1 − λ

(i)
1 | when pi − pi−1 =↓, and for 0 ≤ 1 ≤ N let ri = λ

(i)
1 − λ

(i)
2 . For each

κ ∈ R and α > 0, we define integral operators O→
κ [α] and O↓

κ [α], acting on C(R),
with kernels given by, for r, r ′ ∈ R,

O→
κ [α](r, r ′) = wtLG

⎛

⎜⎜⎜⎜⎜
⎝

λ′
1

λ′
2

λ1

λ2

α

α

⎞

⎟⎟⎟⎟⎟
⎠

∣∣∣∣∣∣∣∣∣∣∣ λ1 − λ2 = r

λ′
1 − λ′

2 = r ′
λ′

1 − λ1 = κ

= e−α(r+2κ−r ′)−e−κ−e−(r′−κ)−e−(r+κ−r′)
,

and

O↓
κ [α](r, r ′) = wtLG

⎛

⎜⎜⎜
⎜⎜
⎝

λ1

λ2

α

α

λ′
1

λ′
2

⎞

⎟⎟⎟
⎟⎟
⎠

∣∣∣∣∣∣
∣∣∣∣∣ λ1 − λ2 = r

λ′
1 − λ′

2 = r ′
λ1 − λ′

1 = κ

= O→
κ [α](r ′, r).

We also define functions w(r) = e−ur and v(r) = e−vr . This allows to write, for any
path P with vertices (pi )0≤i≤N and edge labels β ,

wtGPLG (λ) = w(r0)

(
N∏

i=1

Opi−pi−1
κi

[βi](ri−1, ri)

)

v(rN).

Thus, PPLG may be written in operator product form as

PPLG (L1) = 1

ZLG

〈

w,

(
N∏

i=1

Opi−pi−1
κi

[βi]
)

v

〉

, (97)

where κi = ± (Li − Li−1) according to the direction of pi − pi−1. Proposition 3.12
ensures that the R.H.S. of (97) is well defined as long as u + v > 0.

As in Sect. 2.7, such an operator product is stationary if the operators Oκ satisfy
some relations.
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Proposition 3.25 Assume that a family of probability densities PP on R
N , indexed by

down right-paths P = (p0, . . . ,pN) with edge labels β , takes the form

PP (κ1, . . . , κN) = 1

Z

〈

w,

(
N∏

i=1

O
pi−pi−1
xi

[βi]
)

v

〉

, (98)

where w, v are elements of some inner product space and O
→
κ [βi], O

↓
κi

[βi] are op-

erators acting on that space. Then, the density PP is stationary for the log-gamma
dynamics, in the sense of (76), if the following commutation relations hold for all
κ, γ ∈R (recall that fθ (x) := e−θx−e−x

):

O
→
κ [α]O↓

γ [β] = fα+β(− log(e−κ + e−γ ))

∫

R

dzO
↓
z+γ−κ [β]O→

z [α], (99a)

wtO
↓
κ [α] = fα+u(κ)

∫

R

dzwtO
→
z [α], (99b)

O
→
κ [α]v = fα+v(κ)

∫

R

dzO
↓
z [α]v. (99c)

Proof As in the proof of Proposition 2.20 it suffices to check that PP pushes forward
to PQ under the action of local operators ULG, ULG, ULG from Lemma 3.11, where
Q is the corresponding updated path. Under the appropriate changes of variables,
(99a) implies the invariance with respect to ULG. Indeed, if the local move transforms
the point pi on the path P to a new point qi , the increments κi = κ and κi+1 = γ

may arise on Q only if the weight ωqi
= 1/(e−κ + e−γ ) (which arises with density

fβi+βi+1(− log(e−κ + e−γ ))), while the increments on P before the local move can
be anything such that κi+1 − κi = x − y. Likewise, (99b) implies invariance with
respect to ULG, and (99c) implies invariance with respect to ULG. �

Again, as in Sect. 2.7, it can be checked that the operators Oκ defined above pro-
vide a representation of the quadratic algebra defined by the relations (99a)–(99c).

4 Stationary measure of the open Kardar-Parisi-Zhang equation

4.1 The open KPZ equation

The open Kardar-Parisi-Zhang (KPZ) equation (KPZu,v) on an interval (Sect. 1.4) is
rigorously defined using the following Hopf-Cole solution.

Definition 4.1 (Hopf-Cole solution to the open-KPZ equation [49]) Let C(E,F ) de-
note the space of continuous functions from E to F , equipped with the uniform topol-
ogy. Fix u,v ∈ R. A stochastic process h(t, x) ∈ C(R≥0 × [0,L],R) is a solution to
(KPZu,v) with initial condition h(0, x) = h0(x) if h(t, x) = logZ(t, x) where Z(t, x)
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is the solution of the multiplicative noise stochastic heat equation

⎧
⎪⎪⎨

⎪⎪⎩

∂tZ(t, x) = 1
2∂xxZ(t, x) + Z(t, x)ξ(t, x),

∂xZ(t, x)

∣∣
∣
x=0

= μZ(t,0),

∂xh(t, x)

∣∣∣
x=L

= νZ(t,0),

(SHEu,v)

with μ = u− 1/2, ν = −(v − 1/2) and initial condition Z(0, x) = eh0(x). A stochas-
tic process Z(t, x) ∈ C(R≥0 × [0,L],R>0) is a solution to (SHEu,v) if for all t > 0
and x ∈ [0,L], it is measurable with respect to the filtration of the space-time white
noise ξ generated up to and including time t and if it satisfies

Z(t, x) =
∫ L

0
pμ,ν(0, y; t, x)Z(0, y)dy

+
∫ t

0

∫ L

0
pμ,ν(s, y; t, x)Z(s, y)ξ(ds,dy),

(100)

where the last integral is a stochastic integral in time in the Itô sense, and
pμ,ν(s, y; t, x) is the heat kernel on [0,L] with Robin type boundary condition, that
is the unique solution to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂tpμ,ν(s, y; t, x) = 1
2∂xxpμ,ν(s, y; t, x),

∂xpμ,ν(s, y; t, x)

∣∣∣
x=0

= μpμ,ν(s, y; t,0) for all s < t, y ∈ [0,L],
∂xpμ,ν(s, y; t, x)

∣∣
∣
x=L

= νpμ,ν(s, y; t,L) for all s < t, y ∈ [0,L],
limt→s pμ,ν(s, y; t, x) = δ(x − y) in the weak sense on L

2([0,L]).

(101)

[49, Proposition 2.7], [73, Proposition 4.2] show that (SHEu,v) admits a unique
solution (subject to a finite second moment condition) that is almost surely positive
so that its logarithm is finite.

4.2 From discrete to continuous polymers

As discussed in Sect. 1.4, under intermediate disorder scaling the partition function
of discrete directed polymer models converge to solutions of the stochastic heat equa-
tion. This was demonstrated for full-space polymers in [2]. This was extended to the
half-space setting in [5, 74, 85]. Based on these works it is clear how to formulate the
convergence of the partition function of the log-gamma polymer model on a strip to
a solution of (SHEu,v).

Let z(n,m) be the log-gamma polymer partition function defined in (5) with some
initial condition z0 on the horizontal path Ph. We fix L > 0 and scale the width of the
strip and the bulk parameter as well as defined the rescaled free energy in terms of a
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parameter ε > 0 going to zero as

α = 1

2
+ ε−1, N = ε−1L,

h(ε)(t, x) := log

(
ε−ε−2t+ε−1x · z

(
ε−2t

2
+ ε−1x,

ε−1t

2

)) (102)

This defines h(ε)(t, x) for t and x so that ε−2t/2 ∈ Z≥0 and ε−1x ∈ �0, ε−1L�, and
we extend h(ε) to all (t, x) ∈ R≥0 by linear interpolation. We have used scalings
very similar with those used in [5, Theorem 4.1], except that ε is denoted n−1/2

there. We assume that the rescaled initial condition h
(ε)
0 (x) := log

(
ε−ε−1xz0(ε

−1x)
)

satisfies supx∈[0,L] E
[
e2h

(ε)
0 (x)

]
< ∞ uniformly in ε, and that h

(ε)
0 weakly converges

as ε → 0 to some continuous process h0 in the space C([0,L],R). Then we expect
the following.

Conjecture 4.2 (Space-time process convergence to open KPZ) For all t > 0, u,v ∈
R, as ε → 0,

h(ε)(t, x) ⇒ h(t, x) (103)

in the space C([0,L],R), where h(t, x) is the solution to (KPZu,v) with initial con-
dition h0.

The proof of this conjecture should follow from the general framework of [2] in
full-space and its extensions [5, 74, 85] in half-space (see the discussion in Sect. 1.4
in the introduction). The general approach is to rewrite the partition function in terms
of a discrete chaos series and then show convergence to the continuum chaos series
that defines the solution to (SHEu,v). The discrete chaos series involves discrete heat
kernels for random walks subject to boundary conditions on the strip. That conver-
gence requires more than just the (fairly classical) point-wise convergence of kernels
to their continuum Brownian limits. Rather, it requires temporal and spatial regularity
estimates uniform in N . Such sharp estimates should be accessible via discrete time
modifications of the continuous time random walk estimates in [49, 73]. Since these
techniques are rather technically involved and orthogonal to the integrable focus of
this paper, we will leave the proof of Conjecture 4.2 to subsequent work.

We will see in Proposition 4.5 that the stationary measure Pα,u,v
LG of the log-gamma

free energy on a strip defined in terms of reweighted log-gamma random walks (Def-
inition 1.5) converges under intermediate disorder scaling to its continuous analogue
defined in terms of reweighted Brownian motions (Definition 1.7). We first record an
alternative expression of Pα,u,v

LG that will be useful in the proof of Proposition 4.5.

Lemma 4.3 When α − v > 0, we have:

P
α,u,v
LG (L)

= �(α − v)N�(α + v)N

Zα,u,v
LG �(α)2N

⎛

⎝
N∑

j=1

eL2(j)−L1(j−1)

⎞

⎠

−(u+v)

P
α+v,α−v
LGRW (L).

(104)
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Proof By comparing (7) with (104), one only need to prove that

e−v(L1(N)−L2(N))
P

α,α
LGRW (L) = �(α − v)N�(α + v)N

�(α)2N
P

α+v,α−v
LGRW (L) ,

which follows immediately from the definition (57b) of the log-gamma random walk
densities. �

Remark 4.4 When α − v > 0 and α − u > 0, we may write:

P
α,u,v
LG (L)

= �(α − v)N�(α − u)N

Zα,u,v
LG �(α)2N

⎛

⎝
N∑

j=1

eL2(j)+L1(N)−L1(j−1)

⎞

⎠

−(u+v)

P
α−u,α−v
LGRW (L).

which implies that

Zα,u,v
LG = �(α − v)N�(α − u)N

�(α)2N
E

α−u,α−v
LGRW

⎡

⎣

⎛

⎝
N∑

j=1

j∏

i=1

w2,i

N∏

i=j

w1,i

⎞

⎠

−u−v⎤

⎦ , (105)

where the w1,i are independent Gamma−1(α − u) random variables and the w2,i are
independent Gamma−1(α − v) random variables. Thus, the sum in (105) can be seen
as the partition function of a (full-space) log-gamma polymer model on a subset of
the Z

2 lattice of size N × 2.

Proposition 4.5 (Stationary measure convergence to open KPZ) For i ∈ {1,2} de-
fined

B
(ε)
i (x) = −ε−1x log(ε) + Li(ε

−1x). (106)

and let α and N be scaled as in (102). For any u,v ∈ R, the law of (B
(ε)
1 ,B

(ε)
2 ), when

(L1,L2) is distributed as Pα,u,v
LG (L1,L2) (Definition 1.5), converges as ε → 0 to the

law of (B1,B2) under Pu,v
KPZ (Definition 1.7).

Proof For a random variable w ∼ Gamma−1(α + v), if α = 1
2 + ε−1, we have the

asymptotics

E
[
log(w)

] = −�(α + v) = log(ε) − εv + O
(
ε2

)
,

Var
[
log(w)

] = �1(α + v) = ε − vε2 + O
(
ε3

)
,

(107)

where �(z) = ∂z log�(z) and �1(z) = ∂z�(z) are the digamma and trigamma func-
tions. We will use the alternative expression of Pα,u,v

LG given by Lemma 4.3. Recall

the scalings (102) and (106). Donsker’s theorem implies that the law of (B
(ε)
1 ,B

(ε)
2 ),
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when (L1,L2) is distributed as P
α+v,α−v
LGRW (L) (i.e., log-gamma random walks), con-

verges as ε → 0 to the law of (B1,B2) under P−v,v
BM (i.e., two independent Brownian

motions on [0,L] with drifts −v and v respectively). This implies the weak conver-
gence

⎛

⎝ε

ε−1L∑

j=1

eB
(ε)
2 (εj)−B

(ε)
1 (ε(j−1))

⎞

⎠

−u−v

===⇒
ε→0

(∫ L

0
dse−(B1(s)−B2(s))

)−u−v

. (108)

Recall that the normalization constant Zα,u,v in (104) can be written as

Zα,u,v�(α + u)N

�(α − v)N
= E

α+v,α−v
LGRW

⎡

⎣

⎛

⎝ε

ε−1L∑

j=1

eB
(ε)
2 (εj)−B

(ε)
1 (ε(j−1))

⎞

⎠

−u−v⎤

⎦ . (109)

We claim that the family of random variables in the left-hand-side of (108) is uni-
formly integrable, so that it converges in expectation, and we deduce that Zα,u,v

converges as ε → 0 to

Zu,v
KPZ = E

−v,v
BM

[(∫ L

0
dse−(B1(s)−B2(s))

)−u−v
]

,

where E−v,v
BM is the expectation associated to the probability measure P−v,v

BM from Def-
inition 1.7. More generally, we obtain that for any bounded and continuous function
F : C([0,L],R)2 →R,

E
α+v,α−v
LGRW

⎡

⎣F
(
B

(ε)
1 ,B

(ε)
2

)
⎛

⎝ε

ε−1L∑

j=1

eB
(ε)
2 (εj)−B

(ε)
1 (ε(j−1))

⎞

⎠

−u−v⎤

⎦

−−→
ε→0

E
−v,v
BM

[

F (B1,B2)

(∫ L

0
dse−(B1(s)−B2(s))

)−u−v
]

. (110)

Combining (109) and (110) implies that Pα,u,v
LG weakly converges to P

u,v
KPZ.

Therefore, to conclude the proof, it remains to justify the uniform integrability
claimed above. When u + v < 0, it suffices to show that for some k > max{−(u +
v),1}, the expectation

Cα,u,v := E
α+v,α−v
LGRW

⎡

⎢
⎣

⎛

⎝
ε−1L∑

j=1

eL2(j)−L1(j−1)

⎞

⎠

k
⎤

⎥
⎦

is uniformly bounded as ε → 0. By the convexity of x 
→ xk for k > 1, Jensen’s
inequality implies that

Cα,u,v ≤ E
α+v,α−v
LGRW

⎡

⎣(
L
ε

)k−1
ε−1L∑

j=1

(
eL2(j)−L1(j−1)

)k

⎤

⎦
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= (
L
ε

)k−1
ε−1L∑

j=1

(
�(α + v + k)

�(α + v)

)j−1(
�(α − v − k)

�(α − v)

)j

.

The equality above used the expression in terms of gamma function ratios for mo-
ments of gamma and inverse gamma random variables, along with the fact that
eL2(j) is a product of j independent inverse Gamma variables with parameter α − v,
while e−L1(j−1) is a product of j − 1 independent Gamma variables with parameter
α + v. It is now straight-forward (writing ratios of gamma functions as rational func-
tions) to verify that each summand is bounded above by C′

L,v,kε
k for some constant

C′
L,v,k > 0, so that Cα,u,v is uniformly bounded (and tending to zero) as ε → 0. When

u + v > 0, we may use the convexity of the function x 
→ x−k and the argument is
very similar. This concludes the proof. �

4.3 Proof of Theorem 1.8 modulo Conjecture 4.2

Let z(n,m) be the log-gamma polymer partition function defined in (5) on a strip

of size N = ε−1L, with initial condition z0 = eh
(ε)
0 on the horizontal path Ph. As-

sume that h
(ε)
0 follows the same law as L1 under the measure P

α,u,v
LG from Definition

1.5, where we recall α = 1
2 + ε−1. Along the path Ph shifted by (ε−2t/2, ε−2t/2),

we know from Theorem 1.6 that the law of
(
z(ε−2t/2 + i, ε−2t/2)/z(ε−2t/2, ε−2

t/2)
)

0≤i≤N
is the same as (z0(i))0≤i≤N . Using the weak convergences from Propo-

sition 4.5 and Conjecure 4.2, this implies that if h0 is distributed as B1 under Pu,v
KPZ,

then for any t > 0, the law of h(t, x) − h(t,0) is also that of B1 under Pu,v
KPZ. This

concludes the proof.
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