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Abstract—Text classification is fundamental in Natural Lan-
guage Processing (NLP), and the advent of Large Language Mod-
els (LLMs) has revolutionized the field. This paper introduces an
adaptable and reliable text classification paradigm, which lever-
ages LLMs as the core component to address text classification
tasks. Our system simplifies the traditional text classification
workflows, reducing the need for extensive preprocessing and
domain-specific expertise to deliver adaptable and reliable text
classification results. We evaluated the performance of several
LLMs, machine learning algorithms, and neural network-based
architectures on four diverse datasets. Results demonstrate that
certain LLMs surpass traditional methods in sentiment analysis,
spam SMS detection, and multi-label classification. Furthermore,
it is shown that the system’s performance can be further
enhanced through few-shot or fine-tuning strategies, making
the fine-tuned model the top performer across all datasets.
Source code and datasets are available in this GitHub repository:
https://github.com/yeyimilk/llm-zero-shot-classifiers.

Index Terms—Large Language Models, Text Classification,
Natural Language Processing, Adaptive Learning, Fine-Tuning,
Chat GPT-4, Llama3.

I. INTRODUCTION

Text classification is a core task in natural language pro-
cessing (NLP), with applications ranging from sentiment
analysis to question answering [1]-[3]. Traditional machine
learning (ML) methods, such as logistic regression and Naive
Bayes [4], [5], have been widely employed. However, these
approaches often require extensive labeled datasets and are
limited in adapting to unseen data or emerging categories, thus
posing challenges in dynamic real-world environments.

The emergence of large language models (LLMs) based on
Transformer architectures, such as PaLM [6], LLaMA [7], and
GPT [8], has transformed the landscape of text classification.
Unlike traditional approaches, as shown in Figure 1, which
require complex, multi-step pipelines for data preprocessing
and feature extraction, LLMs leverage their extensive pre-
training to handle these tasks internally. In contrast to the more
labor-intensive traditional method, this shift reduces the need
for manual intervention and allows the models to generalize
more effectively across various domains. As illustrated in
Figure 2, the LLM-based approach condenses the workflow
into three main stages: data collection, feeding data directly
into the LLM, and receiving classification outputs.

Despite these advancements, deploying LLMs in real-world
text classification tasks still presents particular challenges. For
instance, LLMs must maintain high reliability across diverse
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and unpredictable environments, ensuring robustness even
when dealing with domain shifts or rare categories [9], [10].
Additionally, the responsibility of these models is increasingly
essential, as fairness, transparency, and ethical considerations
come to the forefront when implementing LLMs in decision-
making systems [11].

In response to these challenges, we propose a novel text
classification framework that harnesses the strengths of LLMs
while addressing critical aspects of adaptability. Our frame-
work, illustrated in Figure 3, integrates LLMs at the core of the
classification workflow, significantly simplifying the process.
It allows non-expert users to access high-performing classi-
fication systems with minimal effort, reducing the extensive
preprocessing and feature engineering traditionally required.

Our main contributions are as follows:

o This paper proposes a text classification system using
LLMs to replace traditional text classifiers. This system
simplifies the conventional text classification process,
lowering technical barriers and eliminating the need for
domain experts to perform complex preprocessing and
algorithm design. This approach is crucial for rapid
deployment and scalable applications, especially for small
businesses needing deep ML or DL expertise.

o We introduce a new performance evaluation metric, the
Uncertainty/Error Rate (U/E rate). This metric supple-
ments traditional accuracy and F1 scores, providing a
more comprehensive evaluation of a model’s performance
under unknown or uncertain conditions and emphasizing
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Fig. 3. Framework of our adaptable and reliable text classification system. The steps of the framework can be included as (1) collect data from the data
source to establish the domain database; (2) send domain-specific data to the pre-trained LLM model, like GPT-4, Llama-3 and so on; (3) using a few domain-
specific data to do fine-tuning or few-shot learning; (4) apply the fine-tuning or few-shot learning to the pre-trained LLM model; (5) (optional) utilize domain
knowledge to set up the prompts to elevate LLM performance; (6) apply prompts in the pre-trained model; (7) evaluate the whole system’s performance; (8)
non-expert users query tasks through user interface to the system; (Tasks may include classification, sentiment analysis, prediction, recommendation and so
on. In this paper, we take the multi-class classification and sentiment analysis as examples.) (9) LLM API interacts with User interface and the pre-trained

LLM model, advising on the user interface.

the LLMs’ reliability in real-world applications.

o We compare the performance of LLMs with traditional
ML and NN models across multiple datasets. After learn-
ing from a few samples or fine-tuning, the results show
that LLMs outperform in various text classification tasks.
This finding confirms the versatility and efficiency of
LLM:s.

II. BACKGROUND AND RELATED WORK
A. Traditional Text Classification Approaches

Text classification has evolved through various machine
learning (ML) methods, each with its strengths and limi-
tations. Early rule-based approaches, such as decision trees
like C4.5 [12], were simple but prone to overfitting and
lacked flexibility. Probability-based models, such as Multino-
mial Naive Bayes (MNB) [13] and Hidden Markov Models
[14], improved generalization, particularly in tasks like spam
detection and speech recognition. Geometry-based methods,
including support vector machine (SVM) [15], handled high-
dimensional data but struggled with large datasets. Finally,
statistical methods like K-nearest neighbors (KNN) [16] and
Logistic Regression (LG) [17] provided effective solutions
but required extensive preprocessing and often faltered with
nonlinear data.
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B. Deep Learning Approaches

Deep learning (DL) has become a key technology in
text classification, capable of handling complex language
features. Convolutional neural networks (CNNs) text classi-
fication models [18] capture local textual features through
convolutional layers. LSTM [19] and GRU [20], as optimized
versions of RNNs, are particularly effective in addressing
long-distance dependencies in text. [21] proposes an optical
character recognition and classification method for cigarette
laser code recognition, using a convolutional recurrent neu-
ral network to extract image features and utilizing BiL-
STM for text classification. Transformer models, like BERT
[22], achieve remarkable results in various NLP tasks by
utilizing self-attention mechanisms. Specifically, the BERT
model demonstrates powerful capabilities in text classification
tasks. [23] proposes the text recognition framework Nbias
for detecting and eliminating biases, including data, corpus
construction, model development, and evaluation layers. The
dataset is collected from various fields, and a transformer-
based token classification model is applied. [24] proposes a
semi-supervised generative adversarial learning method that
improves the model’s classification performance with limited
annotated data through generative adversarial networks. [25]
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introduces a hybrid model that combines BERT, LSTM, and
Decision Templates (DT) for IMDB and Drug Review classi-
fication. However, these methods typically require substantial
data for training, often necessitating extensive datasets to
achieve optimal performance. This reliance on large training
sets can pose challenges, especially when collecting or labeling
data is difficult or impractical.

C. LLM Approaches

LLMs represent a significant advancement in the field of text
classification, building on the DL foundations that have revolu-
tionized NLP. These models, which include notable examples
such as GPT [26], T5 [27], RWKYV [28], Mamba [29], Gemini
[30], PaLM [6], Llama [7], and Claude [31], leverage massive
amounts of data and extensive training regimes to understand
and generate human-like text. Their ability to capture nuanced
language patterns and context makes them highly effective for
text classification tasks across various domains.

Recent studies have begun to explore the practical applica-
tions of LLMs in specialized fields. For instance, [32] study
the application of LLMs in sociological text classification,
demonstrating their potential in social science research. [33]
examine the performance and cost trade-offs when employing
LLMs for text classification, focusing on financial intent
detection datasets. Another study by [34] investigates the
effect of fine-tuning LLMs on text classification tasks within
legal document review, highlighting how domain-specific ad-
justments can enhance model performance. Furthermore, the
research identified as [35] refines LLM performance on multi-
class imbalanced text classification tasks through oversampling
techniques, addressing one of the common challenges in ML.

Despite their strengths, there remains a gap in making
LLMs accessible to users without deep technical expertise.
Our system addresses this by leveraging pre-trained LLMs as
out-of-the-box classifiers that require minimal adaptation. This
system democratizes access to advanced NLP tools, offering
scalable solutions for diverse applications without the steep
learning curve typically associated with LLM deployment.

III. METHODOLOGY
A. Adaptable and Reliable System

Our proposed system integrates LLMs to refine the tra-
ditional text classification system, as illustrated in Figure 3
based on our previous work [36]. The framework of our
system presents a comprehensive strategy that capitalizes
on the strengths of LLMs while mitigating their traditional
limitations.

Initially, our system aggregates data from many sources,
either public or private. Unlike traditional ML/NN methods,
which often require extensive retraining or fine-tuning when
confronted with new data types, our LLM-based system can
effectively adapt to these varied inputs without additional
training. This versatility is one of the key strengths of our
approach.

Subsequently, the system harnesses domain-specific data
through zero-shot prompting or few-shot learning techniques
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or by fine-tuning a pre-trained LLM. This adaptive phase
meticulously tailors the LLM’s capabilities to suit the target
domain’s particular linguistic features and contextual sub-
tleties, thereby bolstering accuracy and relevance for classi-
fication tasks.

Furthermore, the involvement of domain knowledge is cru-
cial but optional. They configure the system by establishing
customized prompts that direct the LLM toward generating
pertinent and contextually aware responses. This human-in-
the-loop methodology guarantees that the system adheres to
specific domain requirements and can adeptly manage intricate
query scenarios.

Additionally, an LLM API serves as an intermediary be-
tween the model and user interface, enabling seamless real-
time interactions. Through this user-friendly interface, users
without expertise can effortlessly query the system for advice,
classification results, sentiment assessments, predictions, or
recommendations based on their input.

Lastly, our system incorporates an evaluation subsystem
dedicated to continuously monitoring LLM performance. It
scrutinizes accuracy and error rates while observing model
behavior over time. Such vigilance facilitates perpetual en-
hancements and updates via model versioning and caching
strategies.

By amalgamating these components, our system simplifies
and elevates text classification processes in terms of adapt-
ability and precision. It significantly diminishes reliance on
domain knowledge for complex preprocessing or algorithmic
design tasks—thereby democratizing access to cutting-edge
NLP technologies across various sectors such as e-commerce
and social media analytics.

B. Evaluation metrics

We utilized several key metrics to assess the performance of
LLMs as text classifiers. These metrics provide insights into
the accuracy, precision, recall, and stability of the LLMs in
handling classification tasks.

1) Accuracy: This metric measures the proportion of cor-
rect predictions made by the model out of all predictions. It
is calculated using the formula:

TP+TN
TP+TN+FP+FN

where T'P is the number of true positives, 7'N is the number
of true negatives, F'P is the number of false positives, F'N is
the number of false negatives.

2) FI Score: The F1 score is a harmonic mean of precision
and recall, providing a balance between them. It is particularly
useful when dealing with imbalanced classes.

ACC = ey

2TP
~ 2TP+FP+FN
3) U/E Rate: We propose a novel metric called Uncer-
tainty/Error Rate (U/E rate) to evaluate the stability and re-
liability of LLM outputs. This metric quantifies the frequency
at which an LLM either refuses to classify content or provides

F1 2
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an output deemed unrelated or beyond its capabilities. The U/E
rate is defined as:

U+ FE
N

where U is the number of uncertain outputs (e.g., refusals to
classify), E' is the number of erroneous outputs (e.g., unrelated
or hallucinated results), and N is the total number of test
samples.

The U/E rate complements traditional performance metrics
by highlighting instances where LLMs exhibit behavior diver-
gent from deterministic ML/NN models, such as refusing to
analyze content or producing hallucinated results.

By employing these evaluation metrics, we aim to provide
a multifaceted view of LLM performance that encompasses
traditional aspects like accuracy and F1 score and novel
considerations introduced by their unique operational charac-
teristics.

U/E =

3

IV. DATASET

Four datasets include varying lengths of text inputs (from
short tweets to longer reviews), domain-specific language us-
age (as seen in economic texts), diverse sentiment expressions
(ranging from public health concerns to consumer products),
and practical applications such as spam filtering, were em-
ployed to evaluate the LLMs’ adaptability and reliability in
handling text classification tasks.

A. COVID-19-related Tweets Dataset

TABLE 1
COVID-19-RELATED TWEETS DATASET STATISTICS

Negative ~ Neutral  Positive  Total
Train 15398 7712 18046 41156
Test 1633 619 1546 3798

The first dataset consists of tweets related to the COVID-19
pandemic, curated by [37]. As shown in Table I, it comprises
a total of 41,156 training instances and 3,798 test instances,
categorized into negative, neutral, and positive sentiments.

B. Economic Texts Dataset

TABLE 11
ECONOMIC TEXTS DATASET STATISTICS

Negative  Neutral 2 Positive  Total
Train 483 2302 1091 3876
Test 121 576 272 969

The second dataset includes economic texts compiled by
[38], designed for sentiment analysis within the financial
domain. The dataset contains 3,876 training samples and 969
test samples distributed across negative, neutral, and positive
classes, as detailed in Table II. This dataset includes 5 levels
of sentiment, which were merged into 3 levels in this study.
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TABLE III
E-COMMERCE TEXTS DATASET STATISTICS

Household Books C&A Electronics Total
Train 15449 9456 6936 8497 40338
Test 3863 2364 1734 2124 10085

C. E-commerce Texts Dataset

For multi-class classification tasks beyond binary or ternary
sentiment analysis, we utilize an e-commerce texts dataset
provided by [39]. The training set includes 40,338 instances,
while the test set contains 10,085 instances, as outlined in
Table III.

D. SMS Spam Collection Dataset

TABLE IV
SMS SPAM COLLECTION STATISTICS

Normal Spam  Total
Train 3859 598 4457
Test 966 149 1115

Lastly, we incorporate an SMS Spam Collection dataset
assembled by [40] to evaluate spam detection performance.
This binary classification task involves distinguishing between
normal messages and spam with a total of 4,457 training
messages and 1,115 test messages presented in Table IV.

V. EXPERIMENTAL RESULTS
A. Experiment Setup

Our experiment setup is designed to evaluate the perfor-
mance of various models across different categories, ensuring a
comprehensive analysis of the proposed methods. The models
are categorized as follows:

o Traditional ML Algorithms: This category includes

MNB, LG, RF, DT, and KNN.

o« NN Architectures: We utilize advanced deep neural
network models such as RNN, LSTM, and GRU.

o Zero-shot Learning (ZSL) Models: We explore zero-
shot learning capabilities using transformer-based mod-
els, including BART (facebook/bart-large-mnli) and De-
BERTa (microsoft/deberta-large-mnli).

o« LLMs: State-of-the-art LLMs including closed source
models: GPT-3.5(gpt-3.5-turbo-0125), GPT-4 (gpt-4-
1106-preview), Gemini-pro, and open source models:
Llama3-8B(Llama3-8B-Instruct), Qwen-Chat(7B and
14B), and Vicuna-v1.5(7B and 13B) were assessed.

To maintain consistency in evaluation, the input processing
was standardized for all traditional ML algorithms and NN
architectures. Each model receives the same processed text
derived from a uniform raw text processing pipeline applied
to training and testing datasets. This standardization ensures
that any observed variations in performance can be attributed
more directly to the intrinsic capabilities of each model rather
than disparities in input processing.
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Conversely, unprocessed raw text from the testing dataset
was used to fully leverage their natural language understand-
ing abilities for zero-shot learning models and LLMs. It is
important to note that this testing dataset remains consistent
across all model types to provide a fair comparison.

In addition to these measures, we implemented a sampling
strategy for dataset selection that respects the original label
distribution within both training and test sets:

o For datasets with more than 10,000 instances in their
training set, only 10,000 instances were selected while
preserving the original label distribution proportionally
through stratified sampling.

o Similarly, for test sets with more than 800 instances, only
800 instances were chosen based on their original label
distribution.

This approach ensures that smaller datasets are fully rep-
resented while larger ones are sampled appropriately without
introducing bias or altering their inherent class distributions.

Furthermore, when configuring prompts for LLMs within
the experiments, uniformity is ensured by keeping prompts
identical across different LLMs for the same dataset. When
dealing with different datasets, a consistent core structure is
maintained within prompts—only adjusting labels and dataset
names as necessary—to minimize variability due to prompt
differences.

B. Experimental Results

Table V, VI, VII and VIII present the experimental results
for all the models. Notably, when employing few-shot strate-
gies or fine-tuning, they are indicated by “(S)” and “(F),”
respectively.

Table V presents results for the COVID-19-related text
dataset. All models have relatively low performance except
the fine-tuned LLM model of Qwen-7B, which performed the
best in all metrics with 0.8388 in accuracy and 0.8433 F1
score and clearly provided all the answers.

Traditional algorithms show poor accuracy and F1 scores. In
contrast, NN-based models demonstrate superior performance,
with GRU leading in both ACC and F1 metrics. Among
LLMs, before fine-tuning, GPT-3.5 exhibits the highest ACC
and F1 scores, outperforming other LLMs, including GPT-
4, while the performance is below NN methods. However,
once the fine-tuning method was employed, the Qwen-7B(F)
outperformed all the other models, including GRU’s best
model. The best accuracy increased from 0.6913, performed
by GRU, to 0.8388, and the F1 score from 0.63332, performed
by RNN, to 0.8433.

Table VI presents results for the e-commerce product text
classification dataset. The GRU model shows the best perfor-
mance among all models except for fine-tuned LLMs with
an accuracy of 0.9387 and an F1 score of 0.9383, making
it the leading model in these categories before considering
fine-tuning. This illustrates the capability of GRU to handle
sequence and context effectively, which is crucial for product
text classification. Like Table V, traditional algorithms exhibit
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TABLE V
COVID-19-RELATED TWEETS SENTIMENT CLASSIFICATION

RESULTS
Model ACC(T) F1(1) U/E()
MNB 0.4037 0.3827 -
LR 0.3875 0.3131 -
RF 0.4462 0.3633 -
DT 0.4037 0.3416 -
KNN 0.3825 0.3481 -
GRU 0.6913 0.6324 -
LSTM 0.6687 0.6312 -
RNN 0.6600 0.6332 -
BART 0.5138 0.3638 -
DeBERTa 0.5375 0.3804 -
GPT-3.5 0.5550 0.5435 0.0000
GPT4 0.5100 0.5054 0.0000
Gemini-pro 0.5025 0.5105 0.0388
Llama-3-8B 0.5112 0.5149 0.0013
Qwen-7B 0.4913 0.4689 0.0025
Qwen-14B 0.4562 0.4569 0.0100
Vicuna-7B 0.3600 0.3403 0.0000
Vicuna-13B 0.5050 0.4951 0.0013

Gemini-pro(S)
Llama-3-8B(S)
Qwen-7B(S)
Qwen-14B(S)
Vicuna-7B(S)
Vicuna-13B(S)

0.4888 (-0.014)
0.5363 (+0.025)
0.3900 (-0.101)
0.4575 (+0.001)
0.3700 (+0.010)
0.5050 (+0.000)

0.4880 (-0.022)
0.5298 (+0.015)
0.3519/(-0.117)
0.4556 (-0.001)
0.3362 (-0.004)
0.4951 (+0.000)

0.0375 (-0.001)
0.0000 (-0.001)
0.0150 (+0.012)
0.0037 (-0.006)
0.0013 (+0.001)
0.0000 (-0.001)

Llama-3-8B(F)
Qwen-7B(F)

0.4675 (-0.044)
0.8388/ (+0.348)

0.4910 (-0.024)
0.8433 (+0.374)

0.1175 (+0.116)
0.0000 (+0.000)

S: with few shot strategy; F: with fine-tuned strategy

much lower accuracy and F1 scores than NN-based mod-
els. Among LLMs, GPT-based models also show impressive
results before fine-tuning, with GPT-3.5 achieving slightly
higher metrics than GPT-4. Applying fine-tuning techniques
to LLMs such as Qwen-7B can result in superior accuracy
of 0.9713 and F1 scores of 0.9713, making these models
particularly effective for specialized tasks such as e-commerce
product text classification.

Table VII presents results for the economic texts sentiment
classification dataset. The models show a broad performance
spectrum, with the best results observed in fine-tuned LLMs.
Traditional models continue to exhibit relatively low accuracy
and F1 scores. RF performs somewhat better within this
group but remains significantly lower than advanced models
with a 0.6375 accuracy and a 0.4048 F1 score. NN-based
models perform adequately, with GRU notably achieving an
accuracy of 0.6837 and an F1 score of 0.5494. However,
their performance is outstripped by more sophisticated models.
LLM models, like GPT-4 and Gemini-pro, show significant
improvements over traditional models, with GPT-4 reaching
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TABLE VI
E-COMMERCIAL PRODUCT TEXT CLASSIFICATION RESULTS

Model ACC(1) F1(1) U/E()
MNB 0.2562 0.2384 -
LR 0.3825 0.2873 -
RF 0.4875 0.3958 -
DT 0.4263 0.4165 -
KNN 0.3762 0.3414 -
GRU 0.9387 0.9383 -
LSTM 0.9363 0.9398 -
RNN 0.8975 0.9010 -
BART 0.7175 0.7246 -
DeBERTa 0.6025 0.6121 -
GPT-3.5 0.9125 0.9152 0.0063
GPT-4 0.9137 0.9221 0.0088
Gemini-pro 0.8775 0.8873 0.0100
Llama-3-8B 09113 09112 0.0000
Qwen-7B 0.5850 0.6584 0.1850
Qwen-14B 0.6575 0.6843 0.0800
Vicuna-7B 0.7100 0.7164 0.0050
Vicuna-13B 0.8363 0.8503 0.0138

Gemini-pro(S)
Llama-3-8B(S)
Qwen-7B(S)
Qwen-14B(S)
Vicuna-7B(S)
Vicuna-13B(S)

0.8862 (+0.009)
0.9062 (-0.005)
0.6737 (+0.089)
0.7887 (+0.131)
0.7925 (+0.083)
0.9075 (+0.071)

0.8963 (+0.009)
0.9065 (-0.005)
0.8226 (+0.164)
0.8548 (+0.170)
0.7899 (+0.074)
0.9153 (+0.065)

0.0100 (+0.000)
0.0000 (+0.000)
0.1812 (-0.004)
0.0775 (-0.003)
0.0000 (-0.005)
0.0088 (-0.005)

Llama-3-8B(F)
Qwen-7B(F)

0.9175 (+0.006)
0.9713 (+0.386)

0.9164 (+0.003)
0.9713(+0.313)

0.0000 (+0.000)
0.0000 (-0.185)

S: with few shot strategy; F: with fine-tuned strategy

an accuracy of 0.7638 and an F1 score of 0.7659, indicating
robust capabilities in processing complex economic texts. The
fine-tuned models Llama-3-8B(F) and Qwen-7B(F) exhibit
exceptional performance, with Qwen-7B(F) standing out for
its remarkable accuracy and F1 score improvements. It is the
only model that surpasses 80% accuracy and F1 score.

Table VIII details the SMS spam collection classification
results, showcasing a notable disparity in model effectiveness,
with fine-tuned LLMs and NN-based models outperforming
others by a wide margin. Once again, traditional models
underperform compared to NN and some LLM models, with
RF leading the traditional pack but not nearly matching the
performance of advanced models. NN-based models show
exceptionally high performance, with RNN achieving the
best results with an accuracy of 0.9725 and an F1 score
of 0.9366. For LLMs, while some models demonstrate their
high abilities in detecting spam SMS with accuracy high to
more than 90%, like GPT-4 and Qwen-14B, some models
failed in this task with accuracy lower than 0.5, like GPT-
3.5, Llama-3-8B, and Vicuna families which are far worse
than traditional ML methods or NN models. Notably, fine-
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TABLE VII
ECONOMIC TEXTS SENTIMENT CLASSIFICATION RESULTS

Model ACC(1) F1(1) U/EW)
MNB 0.2600 0.2570 -
LR 0.5962 0.3055 -
RF 0.6375 0.4048 -
DT 0.4813 0.3805 -
KNN 0.5325 0.3528 -
GRU 0.6837 0.5494 0.7938
LSTM 0.6950 0.5967 0.7786
RNN 0.6550 0.4298 0.7754
BART 0.4125 0.4152 -
DeBERTa 0.4025 0.4119 -
GPT-3.5 0.6175 0.6063 0.0000
GPT-4 0.7638 0.7659 0.0000
Gemini-pro 0.7488 0.7519 0.0013
Llama-3-8B 0.7675 0.7710 0.0013
Qwen-7B 0.7550 0.7585 0.0025
Qwen-14B 0.7850 0.7860 0.0050
Vicuna-7B 0.7425 0.7250 0.0000
Vicuna-13B 0.6750 0.6735 0.0013

Gemini-pro(S)
Llama-3-8B(S)
Qwen-7B(S)
Qwen-14B(S)
Vicuna-7B(S)
Vicuna-13B(S)

0.6925 (-0.056)
0.7550 (-0.012)
0.6837 (-0.071)
0.7738 (-0.011)
0.7738 (+0.031)
0.7575 (+0.082)

0.7217 (-0.030)
0.7585 (-0.013)
0.6900 (-0.069)
0.7748 (-0.011)
0.7607 (+0.036)
0.7616 (+0.088)

0.0400 (+0.039)
0.0013 (+0.000)
0.0288 (+0.026)
0.0063 (+0.001)
0.0000 (+0.000)
0.0013 (+0.000)

Llama-3-8B
Qwen-7B(F)

0.7913 (+0.024)
0.8400 (+0.085)

0.7796 (+0.009)
0.8302 (+0.074)

0.0000 (-0.001)
0.0000 (-0.003)

S: with few shot strategy; F: with fine-tuned strategy

tuning dramatically enhances the performance of models like
Llama-3-8B(F) and Qwen-7B(F), which achieved the highest
scores in both accuracy and F1 score with the values of 0.9938
and 0.9927, with the latter reaching near-perfect accuracy and
F1 scores, highlighting the transformative power of model
adaptation.

VI. DISCUSSION
A. Prompting strategy

The effectiveness of the few-shot strategy has been previ-
ously established; however, our investigation reveals that its
influence is not uniform across different models and datasets.

In the context of Table V, five out of six models showed
only marginal performance changes when employing this
strategy. However, Qwen-7B(S) significantly underperformed
with accuracy and F1 scores dropping by over 10%. This trend
was not mirrored in Table VI, where four models marginally
improved accuracy. Contrarily, Llama-3-8B(S) experienced a
slight decrease, whereas Qwen-14B(S) notably excelled with
an increase exceeding 13%. Table VII mostly saw marginal
decreases in four out of six models, with only two showing
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TABLE VIII
SMS SPAM COLLECTION CLASSIFICATION RESULTS

Model ACC(1) F1(1) U/E()
MNB 0.7488 0.6376 -
LR 0.8575 0.5419 -
RF 0.8962 0.7196 -
DT 0.8287 0.6559 -
KNN 0.8237 0.6241 -
GRU 0.9675 0.9257 -
LSTM 0.9675 0.9237 -
RNN 0.9725 0.9366 -
BART 0.7137 0.4943 -
DeBERTa 0.7025 0.5630 -
GPT-3.5 0.4988 0.5601 0.0000
GPT-4 0.9463 0.9495 0.0000
Gemini-pro 0.6500 0.7395 0.0575
Llama-3-8B 0.3937 0.4426 0.0025
Qwen-7B 0.7050 0.7527 0.0013
Qwen-14B 0.9137 0.9208 0.0000
Vicuna-7B 0.2762 0.2847 0.0000
Vicuna-13B 0.4550 0.5149 0.0000

Gemini-pro(S)
Llama-3-8B(S)
Qwen-7B(S)
Qwen-14B(S)
Vicuna-7B(S)
Vicuna-13B(S)

0.8163 (+0.166)
0.5825 (+0.189)
0.7525 (+0.047)
0.8525 (-0.061)
0.5675 (+0.291)
0.6412 (+0.186)

0.8759 (+0.136)
0.6482 (+0.206)
0.8124 (+0.060)
0.8730 (-0.048)
0.6310 (+0.346)
0.6976 (+0.183)

0.0488 (-0.009)
0.0088 (+0.006)
0.0362 (+0.035)
0.0025 (+0.003)
0.0013 (+0.001)
0.0000 (+0.000)

Llama-3-8B(F)
Qwen-7B(F)

0.9825/(+0.589)
0.9938 (+0.289)

0.9826/ (+0.540)
0.9937 (+0.241)

0.0000! (-0.003)
0.0000 (+0.000)

S: with few shot strategy; F: with fine-tuned strategy

minor improvements. These mixed results highlight that the
impact of few-shot learning is highly model and dataset-
dependent.

Table VIII, a different pattern emerged: while Qwen-7B(S)
and Qwen-14B(S) underwent marginal changes in accuracy
(4% increase and 6% decrease respectively), the other four
models achieved significant improvements, Vicuna-7B(S), no-
tably surged by over 25%. As for U/E metrics across datasets,
there were minor variations except for specific trends within
each dataset; COVID-19-related tweets fluctuated both ways,
e-commercial product texts predominantly decreased or re-
mained unchanged, while Spam SMS and economic texts
mostly saw increases. These observations underscore that
while few-shot strategies can be potent tools for model en-
hancement, their application requires careful consideration of
the interplay between model architectures and dataset nuances
to harness their potential fully.

B. Fine-tuning strategy

Our research involved fine-tuning two LLMs across four
datasets as presented in Table V, VI, VII, and VIII, with the re-
sults indicating a significant enhancement in text classification
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performance. Notably, the Llama-3-8B(F) model did not show
an improvement in the COVID-19-related tweets sentiment
dataset, as presented in Table V. However, this model’s ac-
curacy increased dramatically from 0.3937 to 0.9825 in spam
SMS detection, transitioning from one of the least effective
to one of the most proficient models, second only to Qwen-
7B(F).

The Qwen-7B(F) model exhibited remarkable improve-
ments across all datasets post-fine-tuning, with accuracy im-
proved ranging from 0.085 to 0.386, thereby establishing it as a
state-of-the-art model for these tasks. These findings highlight
the potential of fine-tuning as a pivotal strategy for optimizing
LLMs’ performance on specific text classification tasks.

More importantly, after fine-tuning, the U/E value cross
models and datasets are down to 0, except for the Llama-
3-8B(F) in tweet classification. This improvement in the
standardized output makes the result consistent and makes the
system more reliable.

Our results strongly advocate incorporating fine-tuning into
LLM deployment workflows to unlock their full potential in
specialized text classification scenarios.

C. Limitations

While LLMs demonstrated impressive proficiency in text
classification, our experiments also uncovered a range of
limitations when leverage LLMs as text classifiers.

o Inconsistent OQutput Formats: LLMs often produce
inconsistent output formats, which can disrupt the inte-
gration into systems requiring standardized results (e.g.,
JSON format). This inconsistency challenges downstream
applications that depend on structured data.

« Content Classification Restrictions: Some LLMs may
refuse to classify certain types of content due to sensitiv-
ity or processing limitations, restricting their application
scope in diverse or nuanced scenarios.

« Proprietary Model Constraints: Closed-source LLMs
can limit scalability due to API rate limits and potentially
prohibitive costs associated with high-volume usage, af-
fecting real-time performance and accessibility.

« Hardware Demands: Utilizing LLMs, particularly larger
models, requires significant CPU and GPU resources.
This can hinder scalability and deployment in environ-
ments with limited access to high-performance comput-
ing.

« Time-intensive Processing: LLMs typically have longer
inference times, impacting real-time or high-throughput
applications. This trade-off between accuracy and effi-
ciency is crucial for practitioners to consider.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study has demonstrated the potential of
LLMs as effective text classifiers, often surpassing traditional
ML and NN approaches. Strategic fine-tuning has proven to
be an influential method for enhancing LLMs’ domain-specific
performance.
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Our findings highlight the adaptability of LLMs in stream-
lining the text classification process by eliminating the need
for extensive data preprocessing. This adaptability is particu-
larly beneficial for small businesses looking for cost-effective
solutions to integrate intelligent text classification without
the requirement for deep ML or DL expertise. By democ-
ratizing access to advanced Al technology, LLMs empower
organizations with limited resources to leverage sophisticated
NLP tools. Businesses can efficiently process user feedback,
enhance spam detection mechanisms, and automate workflows
with minimal engineering effort, demonstrating the reliable
and high-performance standards of our approach.

For future work, we aim to focus on making the system
more reliable. Directions include but are not limited to employ-
ing a secondary LLM to process initial classification results,
which could reduce U/E rates.
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