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Abstract—Text classification is fundamental in Natural Lan-
guage Processing (NLP), and the advent of Large Language Mod-
els (LLMs) has revolutionized the field. This paper introduces an
adaptable and reliable text classification paradigm, which lever-
ages LLMs as the core component to address text classification
tasks. Our system simplifies the traditional text classification
workflows, reducing the need for extensive preprocessing and
domain-specific expertise to deliver adaptable and reliable text
classification results. We evaluated the performance of several
LLMs, machine learning algorithms, and neural network-based
architectures on four diverse datasets. Results demonstrate that
certain LLMs surpass traditional methods in sentiment analysis,
spam SMS detection, and multi-label classification. Furthermore,
it is shown that the system’s performance can be further
enhanced through few-shot or fine-tuning strategies, making
the fine-tuned model the top performer across all datasets.
Source code and datasets are available in this GitHub repository:
https://github.com/yeyimilk/llm-zero-shot-classifiers.

Index Terms—Large Language Models, Text Classification,
Natural Language Processing, Adaptive Learning, Fine-Tuning,
Chat GPT-4, Llama3.

I. INTRODUCTION

Text classification is a core task in natural language pro-

cessing (NLP), with applications ranging from sentiment

analysis to question answering [1]–[3]. Traditional machine

learning (ML) methods, such as logistic regression and Naive

Bayes [4], [5], have been widely employed. However, these

approaches often require extensive labeled datasets and are

limited in adapting to unseen data or emerging categories, thus

posing challenges in dynamic real-world environments.

The emergence of large language models (LLMs) based on

Transformer architectures, such as PaLM [6], LLaMA [7], and

GPT [8], has transformed the landscape of text classification.

Unlike traditional approaches, as shown in Figure 1, which

require complex, multi-step pipelines for data preprocessing

and feature extraction, LLMs leverage their extensive pre-

training to handle these tasks internally. In contrast to the more

labor-intensive traditional method, this shift reduces the need

for manual intervention and allows the models to generalize

more effectively across various domains. As illustrated in

Figure 2, the LLM-based approach condenses the workflow

into three main stages: data collection, feeding data directly

into the LLM, and receiving classification outputs.

Despite these advancements, deploying LLMs in real-world

text classification tasks still presents particular challenges. For

instance, LLMs must maintain high reliability across diverse

Fig. 1. Traditional text classification flow

Fig. 2. LLMs’ zero-shot text classification simple flow

and unpredictable environments, ensuring robustness even

when dealing with domain shifts or rare categories [9], [10].

Additionally, the responsibility of these models is increasingly

essential, as fairness, transparency, and ethical considerations

come to the forefront when implementing LLMs in decision-

making systems [11].

In response to these challenges, we propose a novel text

classification framework that harnesses the strengths of LLMs

while addressing critical aspects of adaptability. Our frame-

work, illustrated in Figure 3, integrates LLMs at the core of the

classification workflow, significantly simplifying the process.

It allows non-expert users to access high-performing classi-

fication systems with minimal effort, reducing the extensive

preprocessing and feature engineering traditionally required.

Our main contributions are as follows:

• This paper proposes a text classification system using

LLMs to replace traditional text classifiers. This system

simplifies the conventional text classification process,

lowering technical barriers and eliminating the need for

domain experts to perform complex preprocessing and

algorithm design. This approach is crucial for rapid

deployment and scalable applications, especially for small

businesses needing deep ML or DL expertise.

• We introduce a new performance evaluation metric, the

Uncertainty/Error Rate (U/E rate). This metric supple-

ments traditional accuracy and F1 scores, providing a

more comprehensive evaluation of a model’s performance

under unknown or uncertain conditions and emphasizing
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Fig. 3. Framework of our adaptable and reliable text classification system. The steps of the framework can be included as (1) collect data from the data
source to establish the domain database; (2) send domain-specific data to the pre-trained LLM model, like GPT-4, Llama-3 and so on; (3) using a few domain-
specific data to do fine-tuning or few-shot learning; (4) apply the fine-tuning or few-shot learning to the pre-trained LLM model; (5) (optional) utilize domain
knowledge to set up the prompts to elevate LLM performance; (6) apply prompts in the pre-trained model; (7) evaluate the whole system’s performance; (8)
non-expert users query tasks through user interface to the system; (Tasks may include classification, sentiment analysis, prediction, recommendation and so
on. In this paper, we take the multi-class classification and sentiment analysis as examples.) (9) LLM API interacts with User interface and the pre-trained
LLM model, advising on the user interface.

the LLMs’ reliability in real-world applications.

• We compare the performance of LLMs with traditional

ML and NN models across multiple datasets. After learn-

ing from a few samples or fine-tuning, the results show

that LLMs outperform in various text classification tasks.

This finding confirms the versatility and efficiency of

LLMs.

II. BACKGROUND AND RELATED WORK

A. Traditional Text Classification Approaches

Text classification has evolved through various machine

learning (ML) methods, each with its strengths and limi-

tations. Early rule-based approaches, such as decision trees

like C4.5 [12], were simple but prone to overfitting and

lacked flexibility. Probability-based models, such as Multino-

mial Naive Bayes (MNB) [13] and Hidden Markov Models

[14], improved generalization, particularly in tasks like spam

detection and speech recognition. Geometry-based methods,

including support vector machine (SVM) [15], handled high-

dimensional data but struggled with large datasets. Finally,

statistical methods like K-nearest neighbors (KNN) [16] and

Logistic Regression (LG) [17] provided effective solutions

but required extensive preprocessing and often faltered with

nonlinear data.

B. Deep Learning Approaches

Deep learning (DL) has become a key technology in

text classification, capable of handling complex language

features. Convolutional neural networks (CNNs) text classi-

fication models [18] capture local textual features through

convolutional layers. LSTM [19] and GRU [20], as optimized

versions of RNNs, are particularly effective in addressing

long-distance dependencies in text. [21] proposes an optical

character recognition and classification method for cigarette

laser code recognition, using a convolutional recurrent neu-

ral network to extract image features and utilizing BiL-

STM for text classification. Transformer models, like BERT

[22], achieve remarkable results in various NLP tasks by

utilizing self-attention mechanisms. Specifically, the BERT

model demonstrates powerful capabilities in text classification

tasks. [23] proposes the text recognition framework Nbias

for detecting and eliminating biases, including data, corpus

construction, model development, and evaluation layers. The

dataset is collected from various fields, and a transformer-

based token classification model is applied. [24] proposes a

semi-supervised generative adversarial learning method that

improves the model’s classification performance with limited

annotated data through generative adversarial networks. [25]
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introduces a hybrid model that combines BERT, LSTM, and

Decision Templates (DT) for IMDB and Drug Review classi-

fication. However, these methods typically require substantial

data for training, often necessitating extensive datasets to

achieve optimal performance. This reliance on large training

sets can pose challenges, especially when collecting or labeling

data is difficult or impractical.

C. LLM Approaches

LLMs represent a significant advancement in the field of text

classification, building on the DL foundations that have revolu-

tionized NLP. These models, which include notable examples

such as GPT [26], T5 [27], RWKV [28], Mamba [29], Gemini

[30], PaLM [6], Llama [7], and Claude [31], leverage massive

amounts of data and extensive training regimes to understand

and generate human-like text. Their ability to capture nuanced

language patterns and context makes them highly effective for

text classification tasks across various domains.

Recent studies have begun to explore the practical applica-

tions of LLMs in specialized fields. For instance, [32] study

the application of LLMs in sociological text classification,

demonstrating their potential in social science research. [33]

examine the performance and cost trade-offs when employing

LLMs for text classification, focusing on financial intent

detection datasets. Another study by [34] investigates the

effect of fine-tuning LLMs on text classification tasks within

legal document review, highlighting how domain-specific ad-

justments can enhance model performance. Furthermore, the

research identified as [35] refines LLM performance on multi-

class imbalanced text classification tasks through oversampling

techniques, addressing one of the common challenges in ML.

Despite their strengths, there remains a gap in making

LLMs accessible to users without deep technical expertise.

Our system addresses this by leveraging pre-trained LLMs as

out-of-the-box classifiers that require minimal adaptation. This

system democratizes access to advanced NLP tools, offering

scalable solutions for diverse applications without the steep

learning curve typically associated with LLM deployment.

III. METHODOLOGY

A. Adaptable and Reliable System

Our proposed system integrates LLMs to refine the tra-

ditional text classification system, as illustrated in Figure 3

based on our previous work [36]. The framework of our

system presents a comprehensive strategy that capitalizes

on the strengths of LLMs while mitigating their traditional

limitations.

Initially, our system aggregates data from many sources,

either public or private. Unlike traditional ML/NN methods,

which often require extensive retraining or fine-tuning when

confronted with new data types, our LLM-based system can

effectively adapt to these varied inputs without additional

training. This versatility is one of the key strengths of our

approach.

Subsequently, the system harnesses domain-specific data

through zero-shot prompting or few-shot learning techniques

or by fine-tuning a pre-trained LLM. This adaptive phase

meticulously tailors the LLM’s capabilities to suit the target

domain’s particular linguistic features and contextual sub-

tleties, thereby bolstering accuracy and relevance for classi-

fication tasks.

Furthermore, the involvement of domain knowledge is cru-

cial but optional. They configure the system by establishing

customized prompts that direct the LLM toward generating

pertinent and contextually aware responses. This human-in-

the-loop methodology guarantees that the system adheres to

specific domain requirements and can adeptly manage intricate

query scenarios.

Additionally, an LLM API serves as an intermediary be-

tween the model and user interface, enabling seamless real-

time interactions. Through this user-friendly interface, users

without expertise can effortlessly query the system for advice,

classification results, sentiment assessments, predictions, or

recommendations based on their input.

Lastly, our system incorporates an evaluation subsystem

dedicated to continuously monitoring LLM performance. It

scrutinizes accuracy and error rates while observing model

behavior over time. Such vigilance facilitates perpetual en-

hancements and updates via model versioning and caching

strategies.

By amalgamating these components, our system simplifies

and elevates text classification processes in terms of adapt-

ability and precision. It significantly diminishes reliance on

domain knowledge for complex preprocessing or algorithmic

design tasks—thereby democratizing access to cutting-edge

NLP technologies across various sectors such as e-commerce

and social media analytics.

B. Evaluation metrics

We utilized several key metrics to assess the performance of

LLMs as text classifiers. These metrics provide insights into

the accuracy, precision, recall, and stability of the LLMs in

handling classification tasks.

1) Accuracy: This metric measures the proportion of cor-

rect predictions made by the model out of all predictions. It

is calculated using the formula:

ACC =
TP + TN

TP + TN + FP + FN
(1)

where TP is the number of true positives, TN is the number

of true negatives, FP is the number of false positives, FN is

the number of false negatives.

2) F1 Score: The F1 score is a harmonic mean of precision

and recall, providing a balance between them. It is particularly

useful when dealing with imbalanced classes.

F1 =
2TP

2TP + FP + FN
(2)

3) U/E Rate: We propose a novel metric called Uncer-

tainty/Error Rate (U/E rate) to evaluate the stability and re-

liability of LLM outputs. This metric quantifies the frequency

at which an LLM either refuses to classify content or provides
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an output deemed unrelated or beyond its capabilities. The U/E

rate is defined as:

U/E =
U + E

N
(3)

where U is the number of uncertain outputs (e.g., refusals to

classify), E is the number of erroneous outputs (e.g., unrelated

or hallucinated results), and N is the total number of test

samples.

The U/E rate complements traditional performance metrics

by highlighting instances where LLMs exhibit behavior diver-

gent from deterministic ML/NN models, such as refusing to

analyze content or producing hallucinated results.

By employing these evaluation metrics, we aim to provide

a multifaceted view of LLM performance that encompasses

traditional aspects like accuracy and F1 score and novel

considerations introduced by their unique operational charac-

teristics.

IV. DATASET

Four datasets include varying lengths of text inputs (from

short tweets to longer reviews), domain-specific language us-

age (as seen in economic texts), diverse sentiment expressions

(ranging from public health concerns to consumer products),

and practical applications such as spam filtering, were em-

ployed to evaluate the LLMs’ adaptability and reliability in

handling text classification tasks.

A. COVID-19-related Tweets Dataset

TABLE I
COVID-19-RELATED TWEETS DATASET STATISTICS

Negative Neutral Positive Total

Train 15398 7712 18046 41156

Test 1633 619 1546 3798

The first dataset consists of tweets related to the COVID-19

pandemic, curated by [37]. As shown in Table I, it comprises

a total of 41,156 training instances and 3,798 test instances,

categorized into negative, neutral, and positive sentiments.

B. Economic Texts Dataset

TABLE II
ECONOMIC TEXTS DATASET STATISTICS

Negative Neutral 2 Positive Total

Train 483 2302 1091 3876

Test 121 576 272 969

The second dataset includes economic texts compiled by

[38], designed for sentiment analysis within the financial

domain. The dataset contains 3,876 training samples and 969

test samples distributed across negative, neutral, and positive

classes, as detailed in Table II. This dataset includes 5 levels

of sentiment, which were merged into 3 levels in this study.

TABLE III
E-COMMERCE TEXTS DATASET STATISTICS

Household Books C&A Electronics Total

Train 15449 9456 6936 8497 40338

Test 3863 2364 1734 2124 10085

C. E-commerce Texts Dataset

For multi-class classification tasks beyond binary or ternary

sentiment analysis, we utilize an e-commerce texts dataset

provided by [39]. The training set includes 40,338 instances,

while the test set contains 10,085 instances, as outlined in

Table III.

D. SMS Spam Collection Dataset

TABLE IV
SMS SPAM COLLECTION STATISTICS

Normal Spam Total

Train 3859 598 4457

Test 966 149 1115

Lastly, we incorporate an SMS Spam Collection dataset

assembled by [40] to evaluate spam detection performance.

This binary classification task involves distinguishing between

normal messages and spam with a total of 4,457 training

messages and 1,115 test messages presented in Table IV.

V. EXPERIMENTAL RESULTS

A. Experiment Setup

Our experiment setup is designed to evaluate the perfor-

mance of various models across different categories, ensuring a

comprehensive analysis of the proposed methods. The models

are categorized as follows:

• Traditional ML Algorithms: This category includes

MNB, LG, RF, DT, and KNN.

• NN Architectures: We utilize advanced deep neural

network models such as RNN, LSTM, and GRU.

• Zero-shot Learning (ZSL) Models: We explore zero-

shot learning capabilities using transformer-based mod-

els, including BART (facebook/bart-large-mnli) and De-

BERTa (microsoft/deberta-large-mnli).

• LLMs: State-of-the-art LLMs including closed source

models: GPT-3.5(gpt-3.5-turbo-0125), GPT-4 (gpt-4-

1106-preview), Gemini-pro, and open source models:

Llama3-8B(Llama3-8B-Instruct), Qwen-Chat(7B and

14B), and Vicuna-v1.5(7B and 13B) were assessed.

To maintain consistency in evaluation, the input processing

was standardized for all traditional ML algorithms and NN

architectures. Each model receives the same processed text

derived from a uniform raw text processing pipeline applied

to training and testing datasets. This standardization ensures

that any observed variations in performance can be attributed

more directly to the intrinsic capabilities of each model rather

than disparities in input processing.
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Conversely, unprocessed raw text from the testing dataset

was used to fully leverage their natural language understand-

ing abilities for zero-shot learning models and LLMs. It is

important to note that this testing dataset remains consistent

across all model types to provide a fair comparison.

In addition to these measures, we implemented a sampling

strategy for dataset selection that respects the original label

distribution within both training and test sets:

• For datasets with more than 10,000 instances in their

training set, only 10,000 instances were selected while

preserving the original label distribution proportionally

through stratified sampling.

• Similarly, for test sets with more than 800 instances, only

800 instances were chosen based on their original label

distribution.

This approach ensures that smaller datasets are fully rep-

resented while larger ones are sampled appropriately without

introducing bias or altering their inherent class distributions.

Furthermore, when configuring prompts for LLMs within

the experiments, uniformity is ensured by keeping prompts

identical across different LLMs for the same dataset. When

dealing with different datasets, a consistent core structure is

maintained within prompts—only adjusting labels and dataset

names as necessary—to minimize variability due to prompt

differences.

B. Experimental Results

Table V, VI, VII and VIII present the experimental results

for all the models. Notably, when employing few-shot strate-

gies or fine-tuning, they are indicated by “(S)” and “(F),”

respectively.

Table V presents results for the COVID-19-related text

dataset. All models have relatively low performance except

the fine-tuned LLM model of Qwen-7B, which performed the

best in all metrics with 0.8388 in accuracy and 0.8433 F1

score and clearly provided all the answers.

Traditional algorithms show poor accuracy and F1 scores. In

contrast, NN-based models demonstrate superior performance,

with GRU leading in both ACC and F1 metrics. Among

LLMs, before fine-tuning, GPT-3.5 exhibits the highest ACC

and F1 scores, outperforming other LLMs, including GPT-

4, while the performance is below NN methods. However,

once the fine-tuning method was employed, the Qwen-7B(F)

outperformed all the other models, including GRU’s best

model. The best accuracy increased from 0.6913, performed

by GRU, to 0.8388, and the F1 score from 0.63332, performed

by RNN, to 0.8433.

Table VI presents results for the e-commerce product text

classification dataset. The GRU model shows the best perfor-

mance among all models except for fine-tuned LLMs with

an accuracy of 0.9387 and an F1 score of 0.9383, making

it the leading model in these categories before considering

fine-tuning. This illustrates the capability of GRU to handle

sequence and context effectively, which is crucial for product

text classification. Like Table V, traditional algorithms exhibit

TABLE V
COVID-19-RELATED TWEETS SENTIMENT CLASSIFICATION

RESULTS

Model ACC(↑) F1(↑) U/E(↓)

MNB 0.4037 0.3827 -

LR 0.3875 0.3131 -

RF 0.4462 0.3633 -

DT 0.4037 0.3416 -

KNN 0.3825 0.3481 -

GRU 0.6913 0.6324 -

LSTM 0.6687 0.6312 -

RNN 0.6600 0.6332 -

BART 0.5138 0.3638 -

DeBERTa 0.5375 0.3804 -

GPT-3.5 0.5550 0.5435 0.0000

GPT-4 0.5100 0.5054 0.0000

Gemini-pro 0.5025 0.5105 0.0388

Llama-3-8B 0.5112 0.5149 0.0013

Qwen-7B 0.4913 0.4689 0.0025

Qwen-14B 0.4562 0.4569 0.0100

Vicuna-7B 0.3600 0.3403 0.0000

Vicuna-13B 0.5050 0.4951 0.0013

Gemini-pro(S) 0.4888 (-0.014) 0.4880 (-0.022) 0.0375 (-0.001)

Llama-3-8B(S) 0.5363 (+0.025) 0.5298 (+0.015) 0.0000 (-0.001)

Qwen-7B(S) 0.3900 (-0.101) 0.3519 (-0.117) 0.0150 (+0.012)

Qwen-14B(S) 0.4575 (+0.001) 0.4556 (-0.001) 0.0037 (-0.006)

Vicuna-7B(S) 0.3700 (+0.010) 0.3362 (-0.004) 0.0013 (+0.001)

Vicuna-13B(S) 0.5050 (+0.000) 0.4951 (+0.000) 0.0000 (-0.001)

Llama-3-8B(F) 0.4675 (-0.044) 0.4910 (-0.024) 0.1175 (+0.116)

Qwen-7B(F) 0.8388 (+0.348) 0.8433 (+0.374) 0.0000 (+0.000)

S: with few shot strategy; F: with fine-tuned strategy

much lower accuracy and F1 scores than NN-based mod-

els. Among LLMs, GPT-based models also show impressive

results before fine-tuning, with GPT-3.5 achieving slightly

higher metrics than GPT-4. Applying fine-tuning techniques

to LLMs such as Qwen-7B can result in superior accuracy

of 0.9713 and F1 scores of 0.9713, making these models

particularly effective for specialized tasks such as e-commerce

product text classification.

Table VII presents results for the economic texts sentiment

classification dataset. The models show a broad performance

spectrum, with the best results observed in fine-tuned LLMs.

Traditional models continue to exhibit relatively low accuracy

and F1 scores. RF performs somewhat better within this

group but remains significantly lower than advanced models

with a 0.6375 accuracy and a 0.4048 F1 score. NN-based

models perform adequately, with GRU notably achieving an

accuracy of 0.6837 and an F1 score of 0.5494. However,

their performance is outstripped by more sophisticated models.

LLM models, like GPT-4 and Gemini-pro, show significant

improvements over traditional models, with GPT-4 reaching
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TABLE VI
E-COMMERCIAL PRODUCT TEXT CLASSIFICATION RESULTS

Model ACC(↑) F1(↑) U/E(↓)

MNB 0.2562 0.2384 -

LR 0.3825 0.2873 -

RF 0.4875 0.3958 -

DT 0.4263 0.4165 -

KNN 0.3762 0.3414 -

GRU 0.9387 0.9383 -

LSTM 0.9363 0.9398 -

RNN 0.8975 0.9010 -

BART 0.7175 0.7246 -

DeBERTa 0.6025 0.6121 -

GPT-3.5 0.9125 0.9152 0.0063

GPT-4 0.9137 0.9221 0.0088

Gemini-pro 0.8775 0.8873 0.0100

Llama-3-8B 0.9113 0.9112 0.0000

Qwen-7B 0.5850 0.6584 0.1850

Qwen-14B 0.6575 0.6843 0.0800

Vicuna-7B 0.7100 0.7164 0.0050

Vicuna-13B 0.8363 0.8503 0.0138

Gemini-pro(S) 0.8862 (+0.009) 0.8963 (+0.009) 0.0100 (+0.000)

Llama-3-8B(S) 0.9062 (-0.005) 0.9065 (-0.005) 0.0000 (+0.000)

Qwen-7B(S) 0.6737 (+0.089) 0.8226 (+0.164) 0.1812 (-0.004)

Qwen-14B(S) 0.7887 (+0.131) 0.8548 (+0.170) 0.0775 (-0.003)

Vicuna-7B(S) 0.7925 (+0.083) 0.7899 (+0.074) 0.0000 (-0.005)

Vicuna-13B(S) 0.9075 (+0.071) 0.9153 (+0.065) 0.0088 (-0.005)

Llama-3-8B(F) 0.9175 (+0.006) 0.9164 (+0.003) 0.0000 (+0.000)

Qwen-7B(F) 0.9713 (+0.386) 0.9713 (+0.313) 0.0000 (-0.185)

S: with few shot strategy; F: with fine-tuned strategy

an accuracy of 0.7638 and an F1 score of 0.7659, indicating

robust capabilities in processing complex economic texts. The

fine-tuned models Llama-3-8B(F) and Qwen-7B(F) exhibit

exceptional performance, with Qwen-7B(F) standing out for

its remarkable accuracy and F1 score improvements. It is the

only model that surpasses 80% accuracy and F1 score.

Table VIII details the SMS spam collection classification

results, showcasing a notable disparity in model effectiveness,

with fine-tuned LLMs and NN-based models outperforming

others by a wide margin. Once again, traditional models

underperform compared to NN and some LLM models, with

RF leading the traditional pack but not nearly matching the

performance of advanced models. NN-based models show

exceptionally high performance, with RNN achieving the

best results with an accuracy of 0.9725 and an F1 score

of 0.9366. For LLMs, while some models demonstrate their

high abilities in detecting spam SMS with accuracy high to

more than 90%, like GPT-4 and Qwen-14B, some models

failed in this task with accuracy lower than 0.5, like GPT-

3.5, Llama-3-8B, and Vicuna families which are far worse

than traditional ML methods or NN models. Notably, fine-

TABLE VII
ECONOMIC TEXTS SENTIMENT CLASSIFICATION RESULTS

Model ACC(↑) F1(↑) U/E(↓)

MNB 0.2600 0.2570 -

LR 0.5962 0.3055 -

RF 0.6375 0.4048 -

DT 0.4813 0.3805 -

KNN 0.5325 0.3528 -

GRU 0.6837 0.5494 0.7938

LSTM 0.6950 0.5967 0.7786

RNN 0.6550 0.4298 0.7754

BART 0.4125 0.4152 -

DeBERTa 0.4025 0.4119 -

GPT-3.5 0.6175 0.6063 0.0000

GPT-4 0.7638 0.7659 0.0000

Gemini-pro 0.7488 0.7519 0.0013

Llama-3-8B 0.7675 0.7710 0.0013

Qwen-7B 0.7550 0.7585 0.0025

Qwen-14B 0.7850 0.7860 0.0050

Vicuna-7B 0.7425 0.7250 0.0000

Vicuna-13B 0.6750 0.6735 0.0013

Gemini-pro(S) 0.6925 (-0.056) 0.7217 (-0.030) 0.0400 (+0.039)

Llama-3-8B(S) 0.7550 (-0.012) 0.7585 (-0.013) 0.0013 (+0.000)

Qwen-7B(S) 0.6837 (-0.071) 0.6900 (-0.069) 0.0288 (+0.026)

Qwen-14B(S) 0.7738 (-0.011) 0.7748 (-0.011) 0.0063 (+0.001)

Vicuna-7B(S) 0.7738 (+0.031) 0.7607 (+0.036) 0.0000 (+0.000)

Vicuna-13B(S) 0.7575 (+0.082) 0.7616 (+0.088) 0.0013 (+0.000)

Llama-3-8B 0.7913 (+0.024) 0.7796 (+0.009) 0.0000 (-0.001)

Qwen-7B(F) 0.8400 (+0.085) 0.8302 (+0.074) 0.0000 (-0.003)

S: with few shot strategy; F: with fine-tuned strategy

tuning dramatically enhances the performance of models like

Llama-3-8B(F) and Qwen-7B(F), which achieved the highest

scores in both accuracy and F1 score with the values of 0.9938

and 0.9927, with the latter reaching near-perfect accuracy and

F1 scores, highlighting the transformative power of model

adaptation.

VI. DISCUSSION

A. Prompting strategy

The effectiveness of the few-shot strategy has been previ-

ously established; however, our investigation reveals that its

influence is not uniform across different models and datasets.

In the context of Table V, five out of six models showed

only marginal performance changes when employing this

strategy. However, Qwen-7B(S) significantly underperformed

with accuracy and F1 scores dropping by over 10%. This trend

was not mirrored in Table VI, where four models marginally

improved accuracy. Contrarily, Llama-3-8B(S) experienced a

slight decrease, whereas Qwen-14B(S) notably excelled with

an increase exceeding 13%. Table VII mostly saw marginal

decreases in four out of six models, with only two showing
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TABLE VIII
SMS SPAM COLLECTION CLASSIFICATION RESULTS

Model ACC(↑) F1(↑) U/E(↓)

MNB 0.7488 0.6376 -

LR 0.8575 0.5419 -

RF 0.8962 0.7196 -

DT 0.8287 0.6559 -

KNN 0.8237 0.6241 -

GRU 0.9675 0.9257 -

LSTM 0.9675 0.9237 -

RNN 0.9725 0.9366 -

BART 0.7137 0.4943 -

DeBERTa 0.7025 0.5630 -

GPT-3.5 0.4988 0.5601 0.0000

GPT-4 0.9463 0.9495 0.0000

Gemini-pro 0.6500 0.7395 0.0575

Llama-3-8B 0.3937 0.4426 0.0025

Qwen-7B 0.7050 0.7527 0.0013

Qwen-14B 0.9137 0.9208 0.0000

Vicuna-7B 0.2762 0.2847 0.0000

Vicuna-13B 0.4550 0.5149 0.0000

Gemini-pro(S) 0.8163 (+0.166) 0.8759 (+0.136) 0.0488 (-0.009)

Llama-3-8B(S) 0.5825 (+0.189) 0.6482 (+0.206) 0.0088 (+0.006)

Qwen-7B(S) 0.7525 (+0.047) 0.8124 (+0.060) 0.0362 (+0.035)

Qwen-14B(S) 0.8525 (-0.061) 0.8730 (-0.048) 0.0025 (+0.003)

Vicuna-7B(S) 0.5675 (+0.291) 0.6310 (+0.346) 0.0013 (+0.001)

Vicuna-13B(S) 0.6412 (+0.186) 0.6976 (+0.183) 0.0000 (+0.000)

Llama-3-8B(F) 0.9825 (+0.589) 0.9826 (+0.540) 0.0000 (-0.003)

Qwen-7B(F) 0.9938 (+0.289) 0.9937 (+0.241) 0.0000 (+0.000)

S: with few shot strategy; F: with fine-tuned strategy

minor improvements. These mixed results highlight that the

impact of few-shot learning is highly model and dataset-

dependent.

Table VIII, a different pattern emerged: while Qwen-7B(S)

and Qwen-14B(S) underwent marginal changes in accuracy

(4% increase and 6% decrease respectively), the other four

models achieved significant improvements, Vicuna-7B(S), no-

tably surged by over 25%. As for U/E metrics across datasets,

there were minor variations except for specific trends within

each dataset; COVID-19-related tweets fluctuated both ways,

e-commercial product texts predominantly decreased or re-

mained unchanged, while Spam SMS and economic texts

mostly saw increases. These observations underscore that

while few-shot strategies can be potent tools for model en-

hancement, their application requires careful consideration of

the interplay between model architectures and dataset nuances

to harness their potential fully.

B. Fine-tuning strategy

Our research involved fine-tuning two LLMs across four

datasets as presented in Table V, VI, VII, and VIII, with the re-

sults indicating a significant enhancement in text classification

performance. Notably, the Llama-3-8B(F) model did not show

an improvement in the COVID-19-related tweets sentiment

dataset, as presented in Table V. However, this model’s ac-

curacy increased dramatically from 0.3937 to 0.9825 in spam

SMS detection, transitioning from one of the least effective

to one of the most proficient models, second only to Qwen-

7B(F).

The Qwen-7B(F) model exhibited remarkable improve-

ments across all datasets post-fine-tuning, with accuracy im-

proved ranging from 0.085 to 0.386, thereby establishing it as a

state-of-the-art model for these tasks. These findings highlight

the potential of fine-tuning as a pivotal strategy for optimizing

LLMs’ performance on specific text classification tasks.

More importantly, after fine-tuning, the U/E value cross

models and datasets are down to 0, except for the Llama-

3-8B(F) in tweet classification. This improvement in the

standardized output makes the result consistent and makes the

system more reliable.

Our results strongly advocate incorporating fine-tuning into

LLM deployment workflows to unlock their full potential in

specialized text classification scenarios.

C. Limitations

While LLMs demonstrated impressive proficiency in text

classification, our experiments also uncovered a range of

limitations when leverage LLMs as text classifiers.

• Inconsistent Output Formats: LLMs often produce

inconsistent output formats, which can disrupt the inte-

gration into systems requiring standardized results (e.g.,

JSON format). This inconsistency challenges downstream

applications that depend on structured data.

• Content Classification Restrictions: Some LLMs may

refuse to classify certain types of content due to sensitiv-

ity or processing limitations, restricting their application

scope in diverse or nuanced scenarios.

• Proprietary Model Constraints: Closed-source LLMs

can limit scalability due to API rate limits and potentially

prohibitive costs associated with high-volume usage, af-

fecting real-time performance and accessibility.

• Hardware Demands: Utilizing LLMs, particularly larger

models, requires significant CPU and GPU resources.

This can hinder scalability and deployment in environ-

ments with limited access to high-performance comput-

ing.

• Time-intensive Processing: LLMs typically have longer

inference times, impacting real-time or high-throughput

applications. This trade-off between accuracy and effi-

ciency is crucial for practitioners to consider.

VII. CONCLUSION AND FUTURE WORK

In conclusion, our study has demonstrated the potential of

LLMs as effective text classifiers, often surpassing traditional

ML and NN approaches. Strategic fine-tuning has proven to

be an influential method for enhancing LLMs’ domain-specific

performance.
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Our findings highlight the adaptability of LLMs in stream-

lining the text classification process by eliminating the need

for extensive data preprocessing. This adaptability is particu-

larly beneficial for small businesses looking for cost-effective

solutions to integrate intelligent text classification without

the requirement for deep ML or DL expertise. By democ-

ratizing access to advanced AI technology, LLMs empower

organizations with limited resources to leverage sophisticated

NLP tools. Businesses can efficiently process user feedback,

enhance spam detection mechanisms, and automate workflows

with minimal engineering effort, demonstrating the reliable

and high-performance standards of our approach.

For future work, we aim to focus on making the system

more reliable. Directions include but are not limited to employ-

ing a secondary LLM to process initial classification results,

which could reduce U/E rates.
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