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Abstract—Named Entity Recognition (NER), which locates and
recognizes phrases (i.e., entities) carrying specific meaning, such
as locations, organization names, efc., is an important information
extraction step for domains such as the processing of biomedical
or Electronic Health Records (EHRs). To date, many methods
exist for NER, and neural language models have emerged as the
most sought-after tool due to their superb performance compared
to other alternatives, such as rule-based approaches. Neverthe-
less, the rich set of tools and algorithms also raises concerns
for both researchers and practitioners: how algorithms vary in
their performance and what the general practices are in selecting
proper NER algorithms for EHR processing. In this paper, we
conduct an empirical study to understand the performance of
different types of neural language models for EHR named entity
recognition. Our main goal is to infer the performance of each
model type with respect to the sample volumes and distributions
with a special emphasis on context-dependent and low-frequency
entities that pose a significant challenge, even for state-of-the-art
models. Five types of models, LSTM, BiLSTM, Basic BiLSTM-
CRF, Enhanced BiLSTM-CRF, and BERT, are studied in our
experiments by using the N2C2 dataset (unstructured notes from
the research patient data registry) as the test-bed. We vary the
sample volumes and distributions and comparatively study the
model performance. Our study draws important findings for
researchers to decide the most suitable NER tools for EHRs.

Index Terms—Named entity recognition, neural language mod-
els, electronic health records, information extraction

[. INTRODUCTION

Named Entity Recognition (NER) [1], [2] is one of the
core tasks in Natural Language Processing (NLP) that involves
extracting and classifying distinct words or phrases from text,
called “entities” [3]. These entities can represent predefined
categories such as locations, organizations, dates, or other
categories referring to a particular domain [4]. In the medical
field, NER is essential for extracting meaningful information
from vast unstructured datasets like clinical EHRs [5]. For
example, NER can be used to identify drug names, diseases,
symptoms, and diagnoses [6], which helps summarize key
details in patient reports. This information can streamline
various healthcare operations, including medication dispensing
systems and patient tracking for follow-up appointments, and
enhance the overall efficiency of the healthcare system through
the revolutionary capability of clinical NLP [7].

There are several approaches to NER. Traditional rule-
based methods [8] have been outperformed by more ad-
vanced supervised learning algorithms. In supervised NER,
common methods include Hidden Markov Models (HMM)
[9], Conditional Random Fields (CRF), and neural network-
based models like Bi-directional Long Short-Term Memory
(BiLSTM) [10]. These models are particularly effective at
capturing sequential dependencies in text, which is crucial
for handling complex medical contexts. Another widely used
approach involves pre-trained neural language models, such
as Bidirectional Encoder Representations from Transformers
(BERT) [11], [12]. BERT models, when specifically fine-tuned
for biomedical text, have shown strong performance in task
like Medical Named Entity Recognition (MedNER) [13].

Despite the progress in NER methodologies, several chal-
lenges persist. One of the major issues in learning-based
approaches is the quality and distribution of the training data
[14]. Imbalanced datasets [15], where certain entity types
are underrepresented, can introduce biases in the model’s
predictions. Additionally, noisy or inconsistent labeling in the
data can degrade model performance [16]. In MedNER, the
complexity of certain categories such as drugs, procedures,
and adverse events makes it more challenging for models to
accurately learn and identify these entities.

In this study, we explore and develop NER for EHRs,
focusing on drugs and their related entities. We use the 2018
N2C2 shared task dataset [17] as our benchmark. The N2C2
dataset has been frequently used as a baseline in many studies
due to its rich annotations and comprehensive coverage of
clinical concepts. Studies such as [18] and [19] have relied on
it to evaluate and improve models for tasks like medication
and ADE extraction, highlighting its importance as a reliable
resource for benchmarking NER models in clinical settings.
An example of named entities from medical notes is shown
in Fig. 1. However, while this dataset provides a strong
foundation, relying solely on it may limit the generalizability
of our findings to other datasets or real-world clinical settings.

We compare the performance of five neural models:
LSTM (baseline), BiLSTM, Basic BiLSTM-CRF, Enhanced
BiLSTM-CRF, and BERT, across different sample volumes
and distributions. We aim to evaluate their strengths and weak-
nesses in recognizing medical entities, offering a comparative
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Sample Medical Note with Entities

The patient presented with chronic back pain, rated 6 out
of 10. [Pain control Reason| a5 advised. The physician
prescribed Acetaminophen Drug | | 500 mg Strength | .
taken orally Route every 8 hours Frequency. Additionally, a
Lidocaine patch Drug .« recommended for | topical Route
application  ©nce daily Frequency
Dilaudid Drug | 2 mg Dosage

4 hours Frequency

For breakthrough pain,
may be administered every

as needed. The physician emphasized
the importance of monitoring for adverse effects, particularly
hypotension ADE | . 4 liver toxicity ADE |

\

Fig. 1: Example of named entities from medical notes. Text
highlighted denotes identified named entities. Entities are
color-coded with each color denoting entities of the same type.
For each entity, the texts in normal format are the actual named
entity, and the bold-faced text denotes the type of the entity.

baseline for model performance. This analysis lays the ground-
work for future research involving more diverse datasets and
helps guide researchers and practitioners in selecting effective
NER models for EHR processing.

II. RELATED WORK
A. Generic Named Entity Recognition

In generic named entity recognition, the evolution of NER
techniques spans from rule-based methods to advanced ma-
chine learning and deep learning models [20]. Initially, Rule-
Based Approaches were prevalent, utilizing extensive dictio-
naries and simple heuristics but struggled with the complexity
and variability of terms, especially in non-standardized data
like social media or informal texts. Transitioning from these,
Machine Learning-Based Approaches such as HMM and CRF
began to show promise by capturing more contextual informa-
tion and handling sequential data effectively [21].

The advent of Deep Learning-Based Approaches marked a
significant shift towards models like BiILSTM, which excel at
understanding long-range dependencies within text, crucial for
accurate entity recognition across diverse datasets, including
large-scale internet-sourced data. This subsection naturally
leads to discussing Pre-Trained Language Models, such as
BERT integrated with BiLSTM and CRF, which leverages
deep contextualized embeddings to further enhance NER per-
formance, showing substantial improvements in robust datasets
and achieving high accuracy in complex entity scenarios [22].

B. Domain Specific Named Entity Recognition

Domain-specific NER methods leverage specialized knowl-
edge to enhance the underlying NER modules, with Rule-
Based Approaches serving as an early foundational strategy.
Though simple, these methods are powerful when enriched
with domain-specific dictionaries and rule sets tailored to
specialized fields such as biomedicine. By focusing on pre-
cise terminologies, such as protein entities, and augmenting
dictionaries with POS tagging [23], these systems improve

recognition accuracy within highly technical texts, particularly
in specialized domains like biomedical literature.

Machine Learning-Based Approaches, such as CRF [24],
have been employed to refine the entity identification process
by considering both local features and the broader contextual
relationships within the text. This capability makes CRF
models particularly effective in domains where understanding
context is essential, such as in biomedical datasets, where the
relationships between terms and entities are crucial to accurate
recognition [25].

Deep Learning-Based Approaches, particularly BiLSTM,
have demonstrated significant potential in analyzing complex
datasets by leveraging their ability to capture sequential depen-
dencies. When adapted for domain-specific tasks, such as med-
ical NER, these models benefit from the integration of domain-
specific embeddings, leading to notable improvements in per-
formance metrics [26]. One notable example is a BiLSTM-
CRF hybrid model, enhanced with Word2Vec embeddings
specifically trained on medical data, developed for a medical
virtual assistant system [27]. This advanced setup effectively
differentiates between medical and non-medical terminology
in real-time consultations, showcasing the model’s ability to
manage specialized vocabulary in dynamic environments.

Another significant advancement in medical NER involves
enhancing BiLSTM-CRF models with character-level word
vectors and pre-trained embeddings [28]. By leveraging these
features, the model can extract detailed patient data, including
symptoms, test results, and treatments, demonstrating an abil-
ity to manage complex medical information effectively. This
refinement in the model’s architecture allows for a more gran-
ular understanding of medical texts, enhancing its precision in
identifying entities across various medical datasets. Moreover,
fine-tuning approaches have proven effective, where models
trained from scratch with CRF layers can perform comparably
to pre-trained models, such as BERT, highlighting the flexibil-
ity and adaptability of these frameworks for domain-specific
tasks [29].

Finally, Pre-Trained Language Model-Based approaches
have revolutionized domain-specific NER tasks. [30] Models
such as BioBERT, pre-trained on vast amounts of biomedical
literature, exhibit a deep understanding of domain-specific
nuances, allowing them to excel in tasks like medical NER,
where recognizing complex interrelationships between medical
terms is crucial. These models consistently outperform tradi-
tional machine learning and deep learning methods, demon-
strating their adaptability and superior performance in special-
ized fields.

III. METHODOLOGY
A. Overall Framework

The overall framework diagram, illustrated in Figure 2,
presents our approach used to assess and compare the ef-
fectiveness of five distinct NER models. Starting with the
initial dataset and moving through stages of preprocessing
and sampling to prepare the training data. Then, the data
feeds into several model architectures—LSTM, BiLSTM, two
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Fig. 2: Overall framework diagram for comparative study
between different NER models
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versions of BiLSTM-CRF, and BERT. These models are
assessed through an NER performance evaluation, followed
by a comparative analysis to identify the most effective model
for classifying medical terms.

B. Dataset

The N2C2 2018 dataset consists of clinical notes and
annotations for drug-related information. This dataset was
specifically designed for the N2C2 shared task on medication
and ADE extraction, making it a widely used benchmark in
medical NER research. The dataset contains 303 training files
and 202 test files, annotated with nine entity labels: Drug,
Strength, Form, Frequency, Route, Dosage, Reason, Duration,
and ADE (Adverse Drug Event), as shown in Table I.

Table II shows the token frequencies for each label, high-
lighting significant class imbalances in the dataset. There is a
high volume of tokens for the Drug and Frequency entities,
whereas ADE and Duration are much less frequent.

TABLE I: Named Entity Master

Entity Description Example Data

Drug The product name of the medicine | Aspirin, Tylenol Elixir,
or a chemical substance name. oxazepam, Lorazepam,

metoprolol succinate

Frequency

The rate at which a drug should be
taken in a specific period of time.

DAILY, every eight (8)
hours, Q24H, every day

Strength

The amount of chemical of a drug
in a given Dosage.

15 mg, 2mg/mL, 200 mg,
10 units/ml, 4200 units.

Form

The Form in which a drug is used.

Pill, Solution, tablet(s),
amps, Capsule.

Dosage

The volume of drugs the patient
should take.

One (1), several units, 1,
10mL, 100 units/ml.

Reason

The reason for the administration
of drugs.

CAD, volume overload,
agitation, wheeze, aspira-
tion/pneumonia

Route

The way in which a drug is given
into a body or the location of ab-
sorption of a drug into the body.

Gtt, Injection, by mouth,
PO, Inhalation.

ADE

The development of adverse or un-
favorable effects due to drug in-
take.

Cardiomyopathy, diarrhea,
intoxication, morbilliform
drug rash

Duration

The length of period of time a drug
should be taken.

for at least 1 year, 14 day,
for 10 days, two week, 8
day.

TABLE 1II: Token statistics of the n2c2 dataset

Entity Train Tokens Test Tokens Total Tokens Percentage
Drug 19,241 12,507 31,748 24.48%
Frequency 15,092 9,616 24,708 19.05%
Strength 12,096 7,629 19,725 15.21%
Form 9,070 6,044 15,114 11.65%
Dosage 7,445 4,783 12,228 9.43%
Reason 6,786 4,556 11,342 8.75%
Route 5,775 3,752 9,527 7.35%
ADE 1,704 1,081 2,785 2.15%
Duration 1,545 973 2,518 1.94%
Total 78,754 50,941 129,695 100.00%

C. Experiment Settings

To prepare the data for training, we initially standardized
all text in lowercase to ensure uniformity across the dataset.
We then tokenized the text using the Sci-Spacy tokenizer,
specifically optimized for biomedical text, which is crucial
for capturing the domain-specific nuances of the medical
language. During the preprocessing step, each tokenized word
was transformed into a dense vector using pre-trained word
embeddings. These embeddings are vital because they provide
a rich representation of the semantic meaning of each word,
which is essential for accurate recognition of entities in the
medical domain. We inputted these embeddings into various
NER models, including LSTM, BiLSTM, Basic BiLSTM-
CRF, Enhanced BiLSTM-CRF, and BERT, each fine-tuned to
classify entities effectively from their representations.

In our study, we explored the effectiveness of these five dif-
ferent models using training subsets of the dataset containing
10, 25, 100, 200, and 303 data files. This evaluation served
two purposes: first, to compare the performance across the five
models, and second, to assess how varying amounts of training
data influence the performance of each model.

D. LSTM (model 1)

The long short-term memory LSTM model Figure 3 is
designed to process sequence data for NER tasks. The model
architecture begins with an input layer that feeds text data
into an embedding layer, transforming words into dense vector
embeddings that encapsulate semantic information. This em-
bedding output is then processed by an LSTM layer designed
to capture temporal dependencies in the data. Following the
LSTM layer, a dropout of 0.5 is applied to mitigate overfitting
by randomly omitting features during training. The sequence
output from the dropout layer is passed through a time-
distributed dense layer with softmax activation, assigning
probabilities to each class for each time step and facilitating
the final entity classification.

E. BiLSTM (model 2)

The BiLSTM model Figure 4 uses a deep learning frame-
work to enhance the processing of sequential text data for
the recognition of named entities. The model begins with an
input layer that feeds data into an embedding layer, converting
tokens into dense vector representations. Following embed-
ding, the data are processed through two consecutive BILSTM
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Fig. 4: The architecture of the BiLSTM (model 2)

layers. Each BiLSTM layer is followed by a dropout layer,
first with a dropout rate of 0.5 and then 0.3. The output of the
BiLSTM layers is then passed through time-distributed dense
layers. The first dense layer applies a ReL.U activation function
and L2 regularization to enhance generalization, followed by
another dropout layer with a rate of 0.1. The final layer is
another time-distributed dense layer that employs a softmax
activation to classify each token into entity categories.

F. BiLSTM-CRFs (Basic model 3, Enhanced model 4)

The BiLSTM-CRF models are designed to enhance NER
task by integrating BiLSTM layers with a CRF layer. These
models leverage the sequence processing capabilities of BiL-
STM layers and the advanced sequence labeling provided by
the CRF layer, which uses transition and emission scores to
model dependencies between consecutive labels in a sequence.
The Basic BILSTM-CRF Model Figure 5 consists of an em-
bedding layer followed by a single BiLSTM layer and a CRF
layer. This configuration suits scenarios where simpler model
architectures are sufficient to achieve good performance. In
contrast, the Enhanced BiLSTM-CRF Model Figure 6 builds
on this by including an additional BILSTM layer and placing
dropout layers between them for improved regularization and
robustness. This setup is intended for more complex NER tasks
that benefit from a deeper learning architecture.

G. BERT (model 5)

The BERT model, based on the Transformer architecture,
utilizes encoder layers, as illustrated in Figure 7. The model
begins processing with two special tokens, [CLS] at the start
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Fig. 6: The architecture of Enhanced BiLSTM-CRF (model 4)

and [SEP] at the end of the input, to handle whole sentences si-
multaneously through parallel processing. Each encoder layer
comprises feedforward networks and multiple attention heads
that work together to generate contextualized embeddings from
the input text. These embeddings pass sequentially through
each encoder layer, with each layer refining the embeddings by
capturing different linguistic aspects, such as word meanings
and their relationships within the sentence. After progressing
through all the encoder layers, the final embeddings can be
used by a classifier to accurately label each word in its
respective category. This process allows BERT to understand
and represent the context of each word within the sentence
effectively.

IV. RESULTS
A. Baseline Results

The LSTM (model 1) serves as our baseline method, pro-
viding a fundamental point of comparison for more advanced
architectures evaluated in this study. This model utilizes a sim-
pler approach to processing textual data, where it transforms
input text into semantic embeddings, processes them through
an LSTM layer to capture temporal relationships, and then
classifies each token based on the learned context.

The performance of this baseline model is presented in the
classification report shown in Table III. These metrics serve
as initial benchmarks for comparing more sophisticated model
architectures (Models 2-5). The results show that ADE has
the lowest F1 score of 0.55, likely due to its low number
of instances. However, despite Drug being the most frequent
entity, it does not achieve the highest score. Instead, Frequency
reaches the highest F1 score of 0.99.

Additionally, the performance of the LSTM baseline model
across different training file sizes for each entity is illustrated
in Figure 8. As expected with a highly imbalanced dataset, the
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[SEP]
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performance on rare entities, such as ADE and Duration, is
significantly poor when using smaller subsets of data. While
performance improves as more training data is utilized, the
low-frequency entities are not predicted at all until training
with at least 100 files, and only show slight improvement
with additional data. Even with the full 303 training files, the
model still struggles to adequately capture these low-frequency
entities.

B. Proposed Model Results

In this section, we compare the performance of the different
models evaluated in the study: LSTM (baseline), BiLSTM,
Basic BiILSTM-CRF, Enhanced BiLSTM-CREF, and BERT. For
each model, the F1 scores across the nine entity types—Drug,
Form, Strength, Frequency, Route, Dosage, Reason, ADE and
Duration—are plotted for training subsets containing 10, 25,
100, 200, and 303 files. These charts provide insight into how
well each model performs across entity types as the amount
of training data increases.

1) BIiLSTM (model 2)

Figure 9 shows the performance of the BiLSTM model.
There is a significant improvement in the performance of low-
instance classes, such as ADE and Duration. ADE starts with
an F1 score of 0.02 and jumps to 0.3 as the training dataset
increases from 10 to 25 files, continuing to improve with more
data. Similarly, Duration starts at 0.01 and jumps to 0.64,
showing consistent progress. In contrast, more frequent entities

TABLE III: Classification Report for Baseline Model
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Label Precision  Recall  Fl-score
ADE 0.57 0.53 0.55
Dosage 0.93 0.94 0.94
Drug 0.97 0.95 0.96
Duration 0.94 0.79 0.86
Form 0.98 0.97 0.97
Frequency 1.00 0.98 0.99
Reason 0.88 0.73 0.80
Route 0.98 0.96 0.97
Strength 0.80 0.98 0.88
accuracy 0.93
macro avg 0.89 0.87 0.88
weighted avg 0.94 0.93 0.93
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Fig. 9: The F1-Score of the BILSTM model (Model 2) with
respect to different training set size

like Frequency and Strength show only slight improvement
across the different dataset sizes.

2) Basic BiLSTM-CRF (model 3)

Figure 10 shows the performance of the model. With the
addition of CRF layers, the model is better able to capture
the data, as seen in the improved scores for lower-frequency
classes, even with as few as 10 files. However, the improve-
ment becomes less significant after training with 100 files,
showing only marginal gains with more data.

3) Enhanced BiLSTM-CRF (model 4)

With an additional BiLSTM layer, the performance of the
Enhanced BiLSTM-CRF model is shown in Figure 11. The
overall trends are similar, with slight improvements in some
labels and slight declines in others between 10 and 200 files.
These changes do not appear to be related to the frequency
of the labels. However, when trained on the full dataset, the

Authorized licensed use limited to: Florida Atlantic University. Downloaded on April 01,2025 at 19:01:43 UTC from IEEE Xplore. Restrictions apply.



A
0.8 1
o 0.6
s}
Q
i
=04 |
0.2 ¢ —A— DRUG —O— FORM STRENGTH
FREQUENCY ROUTE —@— DOSAGE
—s— REASON —j— ADE —f— DURATION
/ ] | : > Files
10 25 100 200 303

Fig. 10: The F1-Score of the basic BiLSTM-CRF model
(Model 3) with respect to different training set size

1 .
et
0.8
2 0.6
Q
i
=04
0.2 ¢ —A— DRUG —O— FORM STRENGTH
FREQUENCY ROUTE —@— DOSAGE
—— REASON —ji— ADE —f— DURATION
; ; ; ; > Files
10 25 100 200 303

Fig. 11: The F1-Score of the enhanced BiLSTM-CRF model
(Model 4) with respect to different training set size

model achieves higher scores across all entities compared
to model 3, which shares the same structure but has fewer
BiLSTM layers.

4) BERT (model 5)

Figure 12 shows the performance of the pre-trained BERT
model. Most entities, except ADE and Frequency, achieve very
high scores from the beginning, even when trained with only
10 files. There is no significant improvement as the dataset
size increases to 303 files. The Frequency entity improves
from 0.93 to 0.99, while ADE entity shows more noticeable
improvement, starting at 0.28 and reaching 0.6 with the full
training data.

C. Model Performance Comparison

Figure 13 shows the overall accuracy for each model across
different training dataset sizes. Model 5 consistently achieved
the best performance, reaching an accuracy of 0.95 when
trained with the full dataset, followed by Model 4 and Model
3, both reaching 0.95 as well. The baseline model (Model
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Fig. 12: The F1-Score of the BERT (Model 5) with respect to
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Fig. 13: Accuracy comparison of all models with respect to
the size of the training data

1) initially had the lowest performance but improved as the
dataset size increased, ultimately outperforming Model 2 with
a final accuracy of 0.93, compared to 0.91 for Model 2.

It is worth noting that both Model 3 and Model 4 were
designed to address class imbalance and showed promising
results in improving performance. However, their effectiveness
in dealing with this issue was not quite similar, suggesting
that the additional BiLSTM layer in Model 4 did not result
in significant improvements over the single-layer BiLSTM
architecture of Model 3 for this particular task.

In our analysis of the imbalanced class, we selected several
entities to display in Figure 14, which shows the F1-scores
when trained on the entire dataset. The most frequent entity,
“Drug”, and the less frequent entities, “Reason,” “ADE”, and,
“Duration” were specifically highlighted (“Drug” is the most
frequent entity, “Reason” is the 6" most frequent entity, and
“ADE” and “Duration” are the top-2 least frequent entities).
These low-frequency entities present significant challenges
for accurate prediction, as noted in the existing literature.
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For the high-frequency entity, “Drug,” all models performed
exceptionally well, with Fl-scores reaching as high as 0.99.
Nevertheless, for the low-frequency entities, such as ADE,
all models’ performance deteriorate significantly. Meanwhile,
the performance for low-frequency entities improved slightly
compared to the baseline model but still posed challenges.
Interestingly, despite of relatively low frequency, the en-
tity “Reason” and “Duration” both achieved good F1-scores
among the minority entities. We believe that this might
be attributed to their unique patterns which make entity
recognition relatively easier to recognize them. For example,
“Duration” entities are frequently associated with a numeric
number followed by a date type, such as year, day, week, etc..
Meanwhile, “Reason” entities also frequently associate with
medical symptoms, making them relatively easier to recognize.
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Fig. 14: Comparison of model performance across different
categories. “Drug” is the top most frequent entity, “Reason”
is the middle frequent entity, “ADE” and ‘“Duration” are the
top two least frequent entities, respectively

V. CONCLUSIONS

This project aimed to explore and compare the performance
of various NER models on EHRs, focusing on the impact of
dataset size on model performance. Four models were devel-
oped, along with one pre-trained model. Overall, the BiLSTM,
BiLSTM-CRFs, and BERT models outperformed the baseline
LSTM model, with BERT achieving the highest accuracy. This
result is attributed to BERT’s extensive pre-training on large
corpora, enabling it to capture complex language patterns and
domain-specific nuances more effectively.

While BERT showed only marginal improvements with
additional task-specific data, the other models exhibited sig-
nificant performance gains as the amount of training data
increased. However, class imbalance remained challenging for
all models. High-frequency entities, such as “Drug” consis-
tently yielded better results than low-frequency entities like
“ADE”. The integration of CRF layers in the BILSTM models
improved the ability to capture contextual relationships, partic-
ularly for minority classes, although the difference in perfor-
mance between the single-layer and multi-layer BiLSTM-CRF
models was minimal.
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Future research could focus on addressing the class imbal-
ance issue more effectively. Approaches like class weighting
and data eesampling could potentially enhance the perfor-
mance of models on low-frequency entities. Additionally, ex-
perimenting with domain-specific models, such as BioBERT,
could provide valuable insights into how pre-trained models
adapt to the unique challenges of EHR data.
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