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Abstract—Federated Learning (FL) is a learning paradigm
which constructs machine learning models using decentralized
datasets, with the goal of training a globally optimized model
while preserving data privacy. In practice, annotating training
data for FL is expensive and time-consuming. To solve this
problem, researchers proposed to integrate active Learning
(AL) strategy as Federated Active Learning (FAL) framework.
However, existing research on FAL has two main limitations:
(1) In the active learning part, more attention is paid to
the global model, while ignoring the local information; (2) In
the federated learning part, the popular Federated averaging
(FedAvg) method relies on the assumption that the corresponding
nodes in distributed neural networks share the same importance
when averaging. In this paper, in order to tackle the two limi-
tations, we propose a locality-customized GSA federated active
learning (LG-FAL) method. Specifically, (i) both local and global
information are taken into consideration to evaluate and select
informative data samples to annotate for active learning; (ii) we
integrate Gravitational Search Algorithm (GSA) to dynamically
average local network parameters into the global parameter, by
mimicking the principles of gravity and motion in the universe,
for effective federated learning. As a result, LG-FAL can select
a small subset of informative samples considering both local and
global information, and at the same time, provide an improved
trade-off between communication cost and learning accuracy.
Experimental results show that LG-FAL significantly outperforms
the current state-of-the-art baselines in terms of performance and
effectiveness.

Keywords—Federated active learning, active learning, param-
eter aggregation, gravitational search algorithm (GSA).

I. INTRODUCTION

Federated Learning (FL) represents a novel learning ap-

proach that constructs machine learning models using de-

centralized datasets distributed across numerous sites/devices.

The feasibility of Federated Learning (FL) as a decentralized

machine learning approach heavily relies on the proficiency

of local models in both training and inference tasks. These

local models’ effectiveness is contingent upon the availability

of meaningful and annotated data, which is essential for their

successful training [1]–[3]. However, obtaining such data in-

volves a laborious and time-consuming annotation process, ne-

cessitating manual analysis of the training samples. In the field

of machine learning, data annotation plays a pivotal role in

empowering models with the capacity to generalize effectively

and achieve high-performance levels. However, it presents two

significant challenges. First, it demands meticulous and time-

consuming analysis for each sample, rendering it a laborious

endeavor. Second, and perhaps more critically, the selection

of appropriate samples is not always guaranteed, resulting in

potential negative impacts on the overall performance of the

model [1], [4]–[6].

Recently, Active Learning (AL) has emerged as a machine

learning method that can effectively address data annotation

workloads [7], [8]. Its main strategy is to iteratively find the

most informative data points to annotate. The annotated data

are then used as part of the training data in the next iteration.

With more and more iterations, the machine learning model’s

performance can be more and more improved. This strategy

has been integrated into federated learning and generated

a new paradigm called Federated Active Learning (FAL)

[9]–[12]. The Federated Active Learning (FAL) framework

comprises multiple clients and a central server. Each client

maintains a labeled and an unlabeled dataset, which are not

shared, while the server holds a shared test dataset. FAL’s

objective is to iteratively train a globally optimized model

at the server by annotating high-value data samples at the

client level. In each iteration, clients first train local models,

share their parameters with the server, and receive an updated

global model. This model is then used to identify and label

the most informative samples, gradually enhancing the global

model’s performance over successive iterations as more data

is annotated.

However, current FAL has two significant weaknesses: (i)

In most FAL, local unlabelled samples are annotated by the

aggregated global model’s parameters, which totally ignores

the localization of the samples, furthermore, the importance of

local models for local sample annotation is completely ignored

[13]. (ii) Its global model parameter updating is limited to

one method, which is called Federated average (FedAvg)

[1], [10], [14], [15]. FedAvg relies on the assumption that

the corresponding nodes in local neural networks share the

same importance when averaging, while different local models

should have different average weights [2].

To tackle the first weakness, we propose a locality-

customized annotation strategy, which takes the local model

into consideration aside from the global model when annotat-

ing. There are two reasons to pay attention to the local model:
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(i) local models compose the global model; (ii) the annotated

data are directly used to train local models. Specifically, we

first predict all unlabeled data’s labels by the local model

and the global model separately. Then, we calculate the

uncertainty of the prediction by the metric of entropy. Each

data’s overall uncertainty is a combination of both the local

model’s prediction entropy and the global model’s prediction

entropy. Finally, we annotate the top K data with the highest

informativeness.

To tackle the second weakness, we propose a Gravita-

tional Search Algorithm (GSA) based FAL framework. Dif-

ferent from FedAvg, global model parameter aggregations are

achieved by GSA which draws inspiration from the law of

gravity and the interactions between celestial bodies. GSA al-

lows population diversity as well as global exploration, which

means FL clients can interact with each other based on their

masses (accuracy) and positions (local model parameters), at

the same time, GSA is capable of exploring the solution space

globally by allowing clients to move freely towards areas

of high fitness calculated based on their masses (accuracy).

Moreover, it is empowered with enhanced adaptability through

a set of parameters that control the interaction between clients.

Essentially, the GSA method can be viewed as a weighted

averaging strategy where the mass plays the role of weight.

To summarize, in this paper, we propose a locality-

customized GSA federated active learning (LG-FAL) method.

The main contributions of the proposed research are: (i) We

propose a new annotating strategy that considers both local and

global optimization. By doing so, the localization of samples

and models can be considered; (ii) We propose to update the

global model parameters with GSA, in which the model is

updated in a more interactive and adaptable way; (iii) We

design extensive experiments to validate the proposed methods

with different parameter settings and comparisons.

II. RELATED WORK

A. Federated Active Learning

A novel approach is designed to improve the classifica-

tion accuracy of waste and natural disaster images using

a combination of Active learning and Federated learning

techniques. The approach utilizes Active learning to select

the most informative and relevant data samples for labeling,

reducing the labeling workload. These labeled samples are

then utilized in a Federated learning setting, where multiple

devices collaborate to train a shared model without sharing

raw data centrally, which effectiveness has been demonstrated

in achieving higher classification accuracy compared to tradi-

tional federated learning approaches [1]. Chen, et al, designed

a novel Federated Evidential Active Learning (FEAL) method-

ology. which integrates Dirichlet-based evidential modeling

to address domain shifts in medical data across different

institutions, enhancing data annotation efficiency and model

reliability through calibrated uncertainty assessment and di-

versity relaxation strategies [16]. F-AL is proposed as a novel

annotation strategy to enhance Federated Learning (FL) by

leveraging active learning to address the challenge of limited

annotated data in FL scenarios. By incorporating active learn-

ing techniques, F-AL aims to intelligently select and query the

most informative data samples from each client’s local dataset,

reducing the annotation burden and improving the performance

of the global model. The paper presents the evaluation of

F-AL, highlighting its potential benefits in promoting more

effective and privacy-preserving FL implementations [10]. A

semi-supervised and personalized framework that combines

active learning and label propagation techniques is proposed.

In this method, leverages unlabelled data from individual

clients in the federated environment to enhance the activity

recognition process. Active learning is used to intelligently

select the most informative samples for labeling, reducing the

labeling effort while improving the model’s accuracy [17].

Federated Active Learning with a focus on inter-class diversity

is explored by introducing novel methodologies to improve the

performance of Active learning in a Federated learning setting.

By taking into account the diversity among different classes of

data, the authors propose innovative techniques that enhance

the selection of informative samples for labeling during the

active learning process. This approach is aimed at improving

the overall performance of the federated learning model while

reducing the labeling effort required from individual clients

[11]. A novel framework for enhancing intrusion detection in

Zero-Trust Security Models (ZSM) using federated learning

and semi-supervised active learning techniques is created,

which incorporates semi-supervised active learning to optimize

the model by selectively labeling the most informative data

samples, thus reducing the reliance on fully labeled data. The

paper highlights the effectiveness of this combined approach

in improving intrusion detection performance and addresses

challenges related to data privacy and isolation in ZSM en-

vironments [15]. Wu Xing, et al, propose a framework that

combines Federated Learning and Active Learning to improve

disease diagnosis accuracy while preserving data privacy in

a multi-center scenario. Federated Learning enables multiple

medical centers to collaborate and train a shared model without

sharing raw patient data. Active Learning is incorporated to

intelligently select the most informative and relevant data

samples from each center for labeling, reducing the need for

extensive labeled data. It is evaluated on a multi-center dataset,

showcasing its effectiveness in achieving higher diagnostic

accuracy compared to traditional methods [9].

B. Federated Learning Parameter Aggregation

With the growing emphasis on data privacy protection,

Federated Learning has emerged as a highly popular research

area. Numerous studies have introduced innovative approaches

concerning weight updates in Federated Learning. Building

upon the previous methodology, a novel approach called

Multi-Center Federated Learning, which seeks to enhance

personalization by clustering clients according to their data

distributions has been proposed. In this approach, the multi-

center aggregation mechanism involves combining local mod-

els from multiple centers to form a global model. Each center

trains its respective local model using data from clients within
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its cluster. The local models are subsequently aggregated

through information exchange between the centers, facilitating

the improvement of the global model [18]. The convergence

challenges of federated learning (FL) when using dynamically

reduced models across various devices are explored in which

the importance of a minimal coverage index is emphasized

and model reduction noise in achieving efficient and re-

liable federated learning outcomes [19].A new framework

called KAFAL introduces a novel federated learning approach

for non-IID data with constrained annotation budgets. The

framework’s first component, Knowledge-Specialized Active

Sampling (KSAS), actively selects samples using a modified

KL-Divergence to prioritize data that is informative for both

local and global models. The second component, Knowledge-

Compensatory Federated Update (KCFU), mitigates data het-

erogeneity by distilling knowledge from the global model

to clients, especially for underrepresented classes. Together,

KSAS and KCFU enable effective sample selection and fed-

erated updates, optimizing annotation usage and improving

model convergence in decentralized learning scenarios [20].

A novel approach called FairFed is presented, which ad-

dresses the issue of group fairness in Federated Learning (FL).

It aims to mitigate biases and disparities that might arise

during the learning process, promoting fair representation and

performance across various user groups. The experiments and

results presented in the paper demonstrate the effectiveness

of FairFed in achieving group fairness in federated learning

scenarios [21]. A new FL-empowered semi-supervised active

learning (FL-SSAL) framework was designed for security

orchestration in a Label-at-Client scenario. In this approach,

clients work with a mix of unlabeled and a small amount of

labeled data. The framework uses entropy-based active learn-

ing to identify the most informative samples for labeling and

applies a semi-supervised approach to make use of unlabeled

data. Experimental evaluations on a private, non-independent

and identically distributed (non-IID) dataset show that FL-

SSAL improves intrusion detection accuracy. Additionally,

it reduces communication overhead compared to baseline

models, even with limited labeled data [15]. An Auditable

Privacy-Preserving Federated Learning (AP2FL) model ad-

dresses Non-IID data by incorporating Active Personalized

Federated Learning (ActPerFL) and Batch Normalization (BN)

techniques, enabling effective user update consolidation and

data similarity identification. An auditing mechanism further

enhances AP2FL, revealing individual client contributions and

ensuring the global model adapts to diverse data types and

distributions [22].

III. PROPOSED APPROACH

Our proposed Locality-customized GSA Federated Active

Learning (LG-FAL) integrates Active Learning (AL) and the

Gravitational Search Algorithm (GSA) within a federated

learning framework. This combination targets an efficient

trade-off between communication costs and learning accuracy

by selecting highly informative subsets of local data.

A. Framework Overview

The locality-customized GSA Federated Active Learning

(LG-FAL) framework operates iteratively in two main phases,

as summarized in Fig. 1. Each client trains its model on

local annotated data, learning client-specific patterns. Clients

send their model parameters to the central server. The server

aggregates parameters using the Gravitational Search Algo-

rithm (GSA), weighting each client’s contribution based on its

model’s accuracy. The updated global model is sent back to

clients, incorporating insights from across the network. Each

client scores unlabeled samples using both the local and global

models, selecting the most informative samples for annotation.

This cycle repeats, iteratively refining both local and global

models for balanced learning between local specificity and

global generalization.

B. Locality-customized Annotation

Our approach introduces a dual-model annotation strategy

that utilizes both local and global models to assess the infor-

mativeness of unlabeled data samples:

a) Local Model Consideration: For each local client i,

model trained using its own local data is defined as Mi. Local

model Mi enables customization and adaptation to specific

local device characteristics and local data patterns to better

fit unique local data distributions, which is able to capture

different facets of the local data distribution and localization.

b) Global Model Integration: Global model MFL is the

central model that is shared and iteratively updated across

a network of decentralized Mi in FL. During the training

process, locally trained models Mi send back their parameter

updates to a central server, which aggregates these updates to

refine the global model MFL. By combining data informa-

tiveness from both Mi and MFL, we are able to capture the

data generalization while maintaining its localization at the

same time.

c) Local Active Learning: We introduce a locality-

customized annotation function AL. The AL strategy com-

bines the predictive uncertainties from both the local and

global models to score each unlabeled sample. For each local

client i, both local labeled dataset Di as well as newly-

annotated dataset Ai by AL will be set up for the training. We

design a score function S(x) to evaluate unlabeled samples.

The strategy is to annotate data samples with the highest score

in the unlabelled data as shown in (1), where z is the sampling

number and S(x) is the score function of x.

ALi = argmax
|Ai|=z,x∈Ui

S(x) (1)

To make sure that the score function is able to reflect the

localization and potential informativeness of local unlabelled

instances, we introduce the score function as shown in (2).

Global model MFL and local model Mi are allowed to pre-

dict the labeling possibilities of samples. The most informative

query is considered to be the instances about which they most

agree. The sample informativeness from both global model
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Client 1 Client N

1. Train local model M1 with annotated data
5. Annotate unlabelled data by M1 and MFL
6. Go to Step 1

Server

2. Send Mi
 parameters to server

3. Update global
model by GSA

4. Send MFL parameters
 to Mi

4. Send MFL parameters
 to Mi

1. Train local model MN with annotated data
5. Annotate unlabelled data by MN and MFL
6. Go to Step 1

Client i
1. Train local model Mi with annotated data
5. Annotate unlabelled data by Mi and MFL
6. Go to Step 1

Fig. 1: Framework of LG-FAL. Clients train local models and send them to the server. The server synthesizes the models and

gets a global model. The global model is sent to each client to help annotate local data.

MFL and local model Mi is integrated to find the average

score of a sample.

S(x) = w1∗Entr(Dis(x|Mi))+w2∗Entr(Dis(x|MFL)) (2)

where Dis(x|M) denotes the prediction distribution of x

under model M ; Entr(Dis(x|M)) denotes the entropy of the

distribution. w1 and w2 are weights between 0 and 1.

d) Annotation Process: Samples with the highest com-

bined uncertainty are selected for annotation. The higher the

entropy is, the more uncertain the sample under the model

will be. Thus, the active learning strategy prefers to annotate

samples with high uncertainty. AL adopts multiple rounds as

the FL goes on for sampling and gradually adds samples to

the labeled local dataset.

C. GSA-based Federated Learning

We integrate Gravitational Search Algorithm (GSA) with

federated learning to obtain a globally optimized model from

local models. Within GSA’s iterative framework, each local

model is viewed as one object with mass (importance), while

its parameter values are viewed as position coordinates. These

objects attract each other due to gravity, prompting their move-

ment towards heavier masses, which correspond to favorable

solutions [23]. Fig.2 shows the movement of the object.

Assume there are N clients participating FL, each of whose

local model has a D dimensional parameter vector denoted as

(3), where xd
i is the parameter of the ith agent in dimension

d.

Xi = (x1
i , ..., x

d
i , ..., x

D
i ) i = 1, ..., N (3)

a) Mass Calculation: The gravitational mass of each

object using the fitness values is calculated as in (4) and

(5). The gravitational mass is denoted as Mi(t) and fiti(t)
indicates the fitness value of the ith object at iteration t, which,

in our method, the client’s predictive accuracy on the test

dataset is used as the fitness value.

mi(t) =
fiti(t)− worst(t)

best(t)− worst(t)
(4)

M1

M3

M2

F21 F31

F1

a1

M1

Fig. 2: Demonstration of object movement with GSA. Object

M1 is attracted by M2 and M3, with gravity force F21 and

F31. The total force F1 results in acceleration a1 to update the

position of M1, which equals to update the parameter vector

X1.

Mi(t) =
mi(t)∑N

j=1
mj(t)

(5)

In addition, worst(t) and best(t) are the worst and best

fitness values obtained in the collection of objects at t which

are defined for maximization problem as in (6) and (7)

respectively.

worst(t) = min fitj(t) j ∈ {1, ..., N} (6)

best(t) = max fitj(t) j ∈ {1, ..., N} (7)

b) Gravitation Interaction: The total force that is applied

on the ith object from other objects is computed following the

gravity law in (8).

F d
i (t) =

∑

j∈Kbest,j ̸=i

randdjG(t)
Mj(t)×Mi(t)

Rij × ϵ
(xd

j (t)−xd
i (t))

(8)
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in which randd
j is a random number with uniform distribution

in the interval [0, 1]. ϵ denotes a small number close to 0,

Rij(t) denotes the Euclidean distance between clients i and

j, and Kbest is a set consisting of the first K objects with

the best fitness values (the largest masses).

K is set as N at the very beginning and reduces linearly

with time until it reaches to 1 in the end. The gravitational

constant at iteration t is denoted as G(t) which is initialized

at the first iteration by G0 and decreased by time according

to (9), where T is the total number of iterations.

G = G0 exp
−α t

T (9)

Then, the obtained force is used to calculate the acceleration

of the object using the law of motion as in (10).

adi (t) =
F d
i (t)

Mi(t)

=
∑

j∈Kbest,j ̸=i

randjG(t)
Mj(t)

Rij(t)× ϵ
(xd

j (t)− xd
i (t))

(10)

c) Parameter Update: The next movement for ith object

can be computed based on the change of its acceleration as in

(12) and this is the end of one GSA iteration.

vdi (t+ 1) = vdi (t) + adi (t), vdi (0) = 0 (11)

xd
i (t+ 1) = xd

i (t) + vdi (t+ 1) (12)

After a certain number of iterations, all parameter vectors

Xi are updated with other vectors’ information. In other

words, all Xi can be viewed as candidates of the aggregated

global model parameters. We test them on the test dataset,

and consider the parameter with the best performance as the

parameter of the global model MFL.

Training of a global GSA algorithm is performed in an

iterative fashion. It communicates with local ones iteratively

since the stopping criterion is reached. Each client initially

starts with a randomized model that is the exact same structure

as the central model. The pseudo-code of the LG-FALis shown

in Algorithm 1.

IV. EXPERIMENTS

A. Datasets

We use three benchmark datasets in the experiments. The

first one is the MNIST Dataset (Modified National Institute of

Standards and Technology database) [24], which consists of

a collection of handwritten digits. It contains 60,000 training

images and 10,000 testing images. Each image is a grayscale

image of size 28x28 pixels, representing a single digit (0-

9). The second dataset is called Fashion MNIST [25]. It is

a variation of the original MNIST dataset, but instead of

containing handwritten digits, it consists of images of various

types of clothing and fashion items. This dataset has 10

different categories, which include items like T-shirts, trousers,

pullovers, dresses, coats, sandals, shirts, sneakers, bags, and

Algorithm 1 Locality-customized GSA Federated Active

Learning (LG-FAL)

Input: Number of clients N , number of FAL iteration T , test dataset

T , initially labelled dataset {Di(0)}
N

i=1, number of annotated data

in each iteration z, initially unlabelled dataset {Ui(0)}
N

i=1

Output: Optimized global model MFL

for t = 1 to T do

for each client i, i = 1, ..., N do

Train local model Mi with annotated data

Send Mi parameters to the server

end for

At the server:

Calculate gravitational mass Mi(t) for each client

Calculate total force F
d

i (t) on each client

Calculate the acceleration a
d

i (t) of each client

Update local model parameters

Evaluate all updated local models with test dataset T , define

MFL as the best local model

Send MFL to each client

for each client i, i = 1, ..., N do

Annotate z unlabelled data Ai from Ui(t)

Update Di(t+ 1) = Di(t) +Ai

sUpdate Ui(t+ 1) = Ui(t)−Ai

end for

ankle boots with 60,000 training images and 10,000 testing

images and each image being a grayscale 28x28 pixel.

The last dataset in this study is the Diabetes Data Set, which

integrates information from two primary sources: automated

electronic recording devices and manual paper records. The

goal is to predict whether a patient has diabetes based on

these data inputs. The electronic devices provide precise event

timestamps using an internal clock, ensuring real-time accu-

racy. In contrast, the paper records capture events according

to broad periods defined by ’logical time’—such as breakfast,

lunch, dinner, and bedtime—without specific timestamps [26].

B. Baselines

To validate the performance of the proposed method, we

use deep neural networks as the training models and employ

three baselines for our comparisons.

The first baseline is called Federated Average (FedAvg)

Active Learning, FedAvg-FAL, which also shares the same

network structure with our proposed method. In FedAvg, each

client downloads the current model from a central server,

improves it by learning from its own local data, and then

aggregates the changes into a small centralized update. Equa-

tion 13 summarizes the global weight values w updating of

FedAvg in each training round t, in which i is the client index,

N means the total number of clients, D is the total number

of instances and Di is the local data examples for each client

[27].

wt+1 =
N∑

i=1

Di

i
w

i
t (13)
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The second baseline S-FAL annotates samples in a single

AL way while keeping the same GSA FL model parameter

update approach. In this setting, the local instance informa-

tiveness score is only computed based on the updated local

model MFL with local dataset Di as shown in (14).

S(x) = Entr(Dis(x|MFL)) (14)

The last baseline is based on FedDNA, which is a dynamic

node alignment federated learning algorithm to find the best

matching nodes between different sites via Minimum Spanning

Tree, and then aggregate weights of matching nodes for feder-

ated learning [2]. We combine FedDNA with active learning

to validate the effectiveness of our proposed method.

C. Experiment Settings

Our overall experiment setting is as follows. For each

dataset, our aim is to predict the corresponding target. Model

parameters will be passed to each clients at the very beginning

of training. Training data will be randomly split into 3 sites

and distributed to 3 clients, which is able to training the local

model using their own data. As for the AL part, by default,

w1 = w2 = 0.5. For each round, 32 unlabelled samples will

be annotated by different AL approaches and added to the

local dataset for training. For the FL part, weight values will

be aggregated based on different FL methods and then sent

back to the global models. Global models will pass the newly

calculated parameters to their local clients to start a new round

of training until the convergence.

In order to explore the effect of various GSA parameter

settings, we evaluated our proposed method using various

combinations of ³ and G0. Additionally, we conduct experi-

ments to explore the impact of w1 and w2 on our proposed

method.

D. Model Performance

Table I, Table II, and Table III show the model results for

the three datasets respectively. Due to page limitations, only

the best model performance results are presented in this paper.

For the MNIST dataset, it is evident that GSA-based FAL

methods outperform the FedAvg-based FAL approach. Across

all models, predictive accuracy improves consistently as more

samples are annotated by the active learning (AL) process,

regardless of the GSA parameter settings. However, minor

accuracy fluctuations occur when the number of annotated

samples exceeds 192, a trend observed across all methods.

When ³ = 30 and G0 = 10, LG-FAL achieves an accuracy of

0.848 with 320 annotated samples, outperforming FedAvg-AL.

The superiority of our proposed method, LG-FAL, becomes

more prominent under ³ = 30, G0 = 20 and ³ = 30, G0 = 50
settings, achieving accuracies of 0.854 and 0.857, respectively.

LG-FAL delivers the highest final predictive accuracy (0.858)

when ³ = 30 and G0 = 50.

For the Fashion MNIST dataset, the performance trends

are consistent with those observed in the MNIST dataset.

Both FedDNA-AL and LG-FAL demonstrate superior per-

formance compared to FedAvg-AL and S-FAL across all

parameter settings. Under ³ = 30 and G0 = 20, both S-

FAL and LG-FAL achieve comparable accuracies higher than

0.750. However, as G0 increases, LG-FAL’s advantage over

FedDNA-AL becomes more pronounced, especially as more

samples are annotated.

The Diabetes dataset results reveal similar trends. FedDNA-

AL generally performs around the expected accuracy of 0.72,

while LG-FAL consistently outperforms the other methods

across all parameter settings. For example, under ³ = 30
and G0 = 20, LG-FAL reaches an accuracy of 0.777,

surpassing both FedAvg-AL and S-FAL. LG-FAL achieves

the highest accuracy (0.778) when ³ = 30 and G0 = 50.

This demonstrates the scalability and robustness of LG-FAL

especially with a larger number of annotated samples.

Since LG-FAL and FedDNA-AL outperforms FedAvg-AL

S-FAL, we create a figure to further demonstrate model

comparison between LG-FAL and FedDNA-AL with the re-

sults from all the datasets. Regardless the parameter setting,

the average accuracy of two models for three datasets are

calculated. Fig. 3 report the performance of LG-FAL and

FedDNA-AL as the increasing of annotated samples. The y-

axis is the values of model accuracy and x-axis shows the

increase of annotated instances. As the number of labeled

samples gradually increases, the overall performance of the

two models also shows an upward trend. Overall, LG-FAL

always outperforms FedDNA-AL.

Fig. 3: Overall performance comparison between LG-FAL and

FedDNA-AL with the increase of annotated samples: y-axis

is the model averaged accuracy from all the three datasets; x-

axis is the gradually increased number of annotated samples.

The advantages of LG-FAL are able to be verified with the

previously shown results. With the confirmation that LG-FAL

is able to outperform our baselines, especially when ³ = 30,

and G0 = 50, we further conduct a series of experiments

with MNIST dataset aiming to figure out how the change of

proportion of Mi and MFL in (2) effects the performance

of LG-FAL. By default, the values of w1 and w2 are set as

0.5 and 0.5 respectively. Different combinations of w1 and w2

are designed in order to check how our proposed method will

react as follows: w1 = 0.2, w2 = 0.8; w1 = 0.4, w2 = 0.6; w1

= 0.5, w2 = 0.5; w1 = 0.6, w2 = 0.4; w1 = 0.8, w2 = 0.2.
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TABLE I: Model accuracy w.r.t different parameter settings for MNIST with gradually increasing annotated samples: FedAvg-

AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed method.

GSA Parameter setting Model 32 64 96 128 160 192 224 256 288 320

FedAvg-AL 0.755 0.768 0.835 0.794 0.826 0.804 0.806 0.823 0.814 0.78
α = 30, G0 = 10 S-FAL 0.767 0.783 0.814 0.792 0.807 0.812 0.828 0.835 0.829 0.814

FedDNA-AL 0.806 0.818 0.829 0.824 0.828 0.834 0.837 0.836 0.839 0.834
LG-FAL 0.817 0.821 0.826 0.830 0.834 0.838 0.842 0.845 0.846 0.848

FedAvg-AL 0.767 0.799 0.812 0.820 0.819 0.802 0.827 0.831 0.815 0.828
α = 30, G0 = 20 S-FAL 0.773 0.822 0.831 0.812 0.834 0.818 0.832 0.838 0.826 0.829

FedDNA-AL 0.782 0.808 0.815 0.826 0.831 0.827 0.834 0.836 0.841 0.839
LG-FAL 0.822 0.827 0.832 0.836 0.840 0.844 0.848 0.850 0.852 0.854

FedAvg-AL 0.748 0.786 0.808 0.798 0.813 0.812 0.803 0.819 0.813 0.817
α = 30, G0 = 50 S-FAL 0.759 0.814 0.823 0.815 0.819 0.822 0.826 0.824 0.829 0.830

FedDNA-AL 0.784 0.819 0.827 0.836 0.832 0.837 0.839 0.838 0.844 0.841
LG-FAL 0.832 0.837 0.842 0.846 0.849 0.852 0.854 0.856 0.858 0.857

TABLE II: Model accuracy w.r.t different parameter settings for Fashion MNIST with gradually increasing annotated samples:

FedAvg-AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed

method.

GSA Parameter setting Model 32 64 96 128 160 192 224 256 288 320

FedAvg-AL 0.659 0.670 0.674 0.689 0.691 0.695 0.678 0.707 0.698 0.696
α = 30, G0 = 10 S-FAL 0.679 0.700 0.715 0.710 0.720 0.709 0.708 0.721 0.717 0.730

FedDNA-AL 0.658 0.692 0.695 0.718 0.710 0.701 0.703 0.720 0.714 0.726
LG-FAL 0.725 0.733 0.739 0.744 0.748 0.751 0.752 0.760 0.762 0.764

FedAvg-AL 0.685 0.698 0.710 0.707 0.712 0.700 0.706 0.716 0.718 0.727
α = 30, G0 = 20 S-FAL 0.690 0.706 0.718 0.707 0.725 0.711 0.709 0.725 0.723 0.730

FedDNA-AL 0.702 0.710 0.724 0.735 0.739 0.740 0.742 0.746 0.749 0.755
LG-FAL 0.741 0.746 0.751 0.754 0.758 0.761 0.763 0.769 0.772 0.774

FedAvg-AL 0.443 0.552 0.600 0.594 0.616 0.615 0.612 0.631 0.634 0.642
α = 30, G0 = 50 S-FAL 0.701 0.709 0.713 0.726 0.730 0.721 0.723 0.734 0.732 0.736

FedDNA-AL 0.725 0.740 0.746 0.751 0.753 0.757 0.758 0.760 0.762 0.762
LG-FAL 0.732 0.748 0.755 0.756 0.755 0.759 0.763 0.769 0.772 0.774

TABLE III: Model accuracy w.r.t different parameter settings for Diabetes Data Set with gradually increasing annotated samples:

FedAvg-AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed

method.

GSA Parameter setting Model 32 64 96 128 160 192 224 256 288 320

FedAvg-AL 0.658 0.670 0.678 0.691 0.695 0.702 0.704 0.710 0.713 0.715
α = 30, G0 = 10 S-FAL 0.675 0.688 0.698 0.705 0.711 0.715 0.718 0.722 0.726 0.728

FedDNA-AL 0.705 0.715 0.721 0.727 0.732 0.735 0.739 0.742 0.745 0.748
LG-FAL 0.725 0.735 0.743 0.749 0.754 0.758 0.761 0.765 0.768 0.770

FedAvg-AL 0.670 0.685 0.694 0.702 0.708 0.712 0.717 0.721 0.725 0.727
α = 30, G0 = 20 S-FAL 0.688 0.702 0.710 0.717 0.722 0.726 0.729 0.733 0.736 0.738

FedDNA-AL 0.710 0.720 0.726 0.731 0.737 0.741 0.744 0.747 0.750 0.752
LG-FAL 0.735 0.745 0.751 0.757 0.761 0.765 0.768 0.772 0.775 0.777

FedAvg-AL 0.542 0.580 0.612 0.635 0.645 0.652 0.660 0.665 0.668 0.670
α = 30, G0 = 50 S-FAL 0.680 0.692 0.705 0.712 0.717 0.722 0.727 0.731 0.735 0.737

FedDNA-AL 0.718 0.725 0.731 0.736 0.741 0.744 0.748 0.751 0.754 0.756
LG-FAL 0.735 0.745 0.752 0.757 0.762 0.766 0.769 0.773 0.776 0.778

Fig. 4 reports the overall predict accuracy trend of LG-FAL

on MNIST dataset under different w1 and w2 settings. We

can clearly observe that when prefer the predictive uncertainty

from local model over global model, the performance of

LG-FAL drops especially when w1 = 0.8 and w2 = 0.2.

However, the gradual increase of model performance with the

increasing annotated samples can still be validated. LG-FAL

demonstrates the best predictive accuracy on MNIST dataset

when local model and global model are equally considered for

annotating the instances.

V. CONCLUSION

In this paper, we propose a locality-customized GSA Fed-

erated Active Learning (LG-FAL) method for federated active

learning. We argued that in most federated active learning

frameworks, local unlabeled samples are annotated by the

aggregated global model’s parameters, which totally ignores

the localization of the samples, leading to neglecting the

importance of local models for local sample annotation. In

addition, current federated active learning approaches usually

are limited to one method, Federated averaging (FedAvg) to

update global model parameter. Alternatively, we propose a

locality-customized GSA Federated Active Learning method,
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(a) LG-FAL performance on MNIST dataset

Fig. 4: Performance of LG-FAL with different w1 and w2 set-

tings on MNIST dataset and Fashion MNIST dataset with the

increase of annotated samples: y-axis is LG-FAL’s accuracy;

x-axis is the gradually increased number of annotated samples;

legends are w1 and w2 settings.

LG-FAL to tackle the aforementioned limitations. LG-FAL

combines locality-customized active learning and Gravitational

Search Algorithm (GSA) in a collaborative and effective way.

In locality-customized active learning, both the local model as

well as the global model are taken into consideration when an-

notating local samples, in which each data’s overall uncertainty

is a combination of both the local model’s prediction entropy

and the global model’s prediction entropy. In GSA federated

learning, global model parameter aggregations are achieved by

GSA which is empowered with higher adaptability with a set

of parameters to allow clients to move freely towards areas

of high fitness calculated based on their masses (accuracy).

Experiments and comparisons validate the performance of the

LG-FAL compared to other baselines. For future work, we

will perform a deeper analysis of the sensitivity of LG-FAL

to different parameter settings, such as the weights w1 and

w2 in the dual-model annotation strategy and investigate

the scalability of LG-FAL to large-scale federated learning

scenarios.
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