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Abstract—Federated Learning (FL) is a learning paradigm
which constructs machine learning models using decentralized
datasets, with the goal of training a globally optimized model
while preserving data privacy. In practice, annotating training
data for FL is expensive and time-consuming. To solve this
problem, researchers proposed to integrate active Learning
(AL) strategy as Federated Active Learning (FAL) framework.
However, existing research on FAL has two main limitations:
(1) In the active learning part, more attention is paid to
the global model, while ignoring the local information; (2) In
the federated learning part, the popular Federated averaging
(FedAvg) method relies on the assumption that the corresponding
nodes in distributed neural networks share the same importance
when averaging. In this paper, in order to tackle the two limi-
tations, we propose a locality-customized GSA federated active
learning (LG-FAL) method. Specifically, (i) both local and global
information are taken into consideration to evaluate and select
informative data samples to annotate for active learning; (ii) we
integrate Gravitational Search Algorithm (GSA) to dynamically
average local network parameters into the global parameter, by
mimicking the principles of gravity and motion in the universe,
for effective federated learning. As a result, LG-FAL can select
a small subset of informative samples considering both local and
global information, and at the same time, provide an improved
trade-off between communication cost and learning accuracy.
Experimental results show that LG-FAL significantly outperforms
the current state-of-the-art baselines in terms of performance and
effectiveness.

Keywords—Federated active learning, active learning, param-
eter aggregation, gravitational search algorithm (GSA).

I. INTRODUCTION

Federated Learning (FL) represents a novel learning ap-
proach that constructs machine learning models using de-
centralized datasets distributed across numerous sites/devices.
The feasibility of Federated Learning (FL) as a decentralized
machine learning approach heavily relies on the proficiency
of local models in both training and inference tasks. These
local models’ effectiveness is contingent upon the availability
of meaningful and annotated data, which is essential for their
successful training [1]-[3]. However, obtaining such data in-
volves a laborious and time-consuming annotation process, ne-
cessitating manual analysis of the training samples. In the field
of machine learning, data annotation plays a pivotal role in
empowering models with the capacity to generalize effectively
and achieve high-performance levels. However, it presents two
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significant challenges. First, it demands meticulous and time-
consuming analysis for each sample, rendering it a laborious
endeavor. Second, and perhaps more critically, the selection
of appropriate samples is not always guaranteed, resulting in
potential negative impacts on the overall performance of the
model [1], [4]-[6].

Recently, Active Learning (AL) has emerged as a machine
learning method that can effectively address data annotation
workloads [7], [8]. Its main strategy is to iteratively find the
most informative data points to annotate. The annotated data
are then used as part of the training data in the next iteration.
With more and more iterations, the machine learning model’s
performance can be more and more improved. This strategy
has been integrated into federated learning and generated
a new paradigm called Federated Active Learning (FAL)
[9]-[12]. The Federated Active Learning (FAL) framework
comprises multiple clients and a central server. Each client
maintains a labeled and an unlabeled dataset, which are not
shared, while the server holds a shared test dataset. FAL’s
objective is to iteratively train a globally optimized model
at the server by annotating high-value data samples at the
client level. In each iteration, clients first train local models,
share their parameters with the server, and receive an updated
global model. This model is then used to identify and label
the most informative samples, gradually enhancing the global
model’s performance over successive iterations as more data
is annotated.

However, current FAL has two significant weaknesses: (i)
In most FAL, local unlabelled samples are annotated by the
aggregated global model’s parameters, which totally ignores
the localization of the samples, furthermore, the importance of
local models for local sample annotation is completely ignored
[13]. (ii) Its global model parameter updating is limited to
one method, which is called Federated average (FedAvg)
[1], [10], [14], [15]. FedAvg relies on the assumption that
the corresponding nodes in local neural networks share the
same importance when averaging, while different local models
should have different average weights [2].

To tackle the first weakness, we propose a locality-
customized annotation strategy, which takes the local model
into consideration aside from the global model when annotat-
ing. There are two reasons to pay attention to the local model:
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(i) local models compose the global model; (ii) the annotated
data are directly used to train local models. Specifically, we
first predict all unlabeled data’s labels by the local model
and the global model separately. Then, we calculate the
uncertainty of the prediction by the metric of entropy. Each
data’s overall uncertainty is a combination of both the local
model’s prediction entropy and the global model’s prediction
entropy. Finally, we annotate the top K data with the highest
informativeness.

To tackle the second weakness, we propose a Gravita-
tional Search Algorithm (GSA) based FAL framework. Dif-
ferent from FedAvg, global model parameter aggregations are
achieved by GSA which draws inspiration from the law of
gravity and the interactions between celestial bodies. GSA al-
lows population diversity as well as global exploration, which
means FL clients can interact with each other based on their
masses (accuracy) and positions (local model parameters), at
the same time, GSA is capable of exploring the solution space
globally by allowing clients to move freely towards areas
of high fitness calculated based on their masses (accuracy).
Moreover, it is empowered with enhanced adaptability through
a set of parameters that control the interaction between clients.
Essentially, the GSA method can be viewed as a weighted
averaging strategy where the mass plays the role of weight.

To summarize, in this paper, we propose a locality-
customized GSA federated active learning (LG-FAL) method.
The main contributions of the proposed research are: (i) We
propose a new annotating strategy that considers both local and
global optimization. By doing so, the localization of samples
and models can be considered; (ii) We propose to update the
global model parameters with GSA, in which the model is
updated in a more interactive and adaptable way; (iii) We
design extensive experiments to validate the proposed methods
with different parameter settings and comparisons.

II. RELATED WORK
A. Federated Active Learning

A novel approach is designed to improve the classifica-
tion accuracy of waste and natural disaster images using
a combination of Active learning and Federated learning
techniques. The approach utilizes Active learning to select
the most informative and relevant data samples for labeling,
reducing the labeling workload. These labeled samples are
then utilized in a Federated learning setting, where multiple
devices collaborate to train a shared model without sharing
raw data centrally, which effectiveness has been demonstrated
in achieving higher classification accuracy compared to tradi-
tional federated learning approaches [1]. Chen, et al, designed
a novel Federated Evidential Active Learning (FEAL) method-
ology. which integrates Dirichlet-based evidential modeling
to address domain shifts in medical data across different
institutions, enhancing data annotation efficiency and model
reliability through calibrated uncertainty assessment and di-
versity relaxation strategies [16]. F-AL is proposed as a novel
annotation strategy to enhance Federated Learning (FL) by
leveraging active learning to address the challenge of limited
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annotated data in FL scenarios. By incorporating active learn-
ing techniques, F-AL aims to intelligently select and query the
most informative data samples from each client’s local dataset,
reducing the annotation burden and improving the performance
of the global model. The paper presents the evaluation of
F-AL, highlighting its potential benefits in promoting more
effective and privacy-preserving FL. implementations [10]. A
semi-supervised and personalized framework that combines
active learning and label propagation techniques is proposed.
In this method, leverages unlabelled data from individual
clients in the federated environment to enhance the activity
recognition process. Active learning is used to intelligently
select the most informative samples for labeling, reducing the
labeling effort while improving the model’s accuracy [17].
Federated Active Learning with a focus on inter-class diversity
is explored by introducing novel methodologies to improve the
performance of Active learning in a Federated learning setting.
By taking into account the diversity among different classes of
data, the authors propose innovative techniques that enhance
the selection of informative samples for labeling during the
active learning process. This approach is aimed at improving
the overall performance of the federated learning model while
reducing the labeling effort required from individual clients
[11]. A novel framework for enhancing intrusion detection in
Zero-Trust Security Models (ZSM) using federated learning
and semi-supervised active learning techniques is created,
which incorporates semi-supervised active learning to optimize
the model by selectively labeling the most informative data
samples, thus reducing the reliance on fully labeled data. The
paper highlights the effectiveness of this combined approach
in improving intrusion detection performance and addresses
challenges related to data privacy and isolation in ZSM en-
vironments [15]. Wu Xing, et al, propose a framework that
combines Federated Learning and Active Learning to improve
disease diagnosis accuracy while preserving data privacy in
a multi-center scenario. Federated Learning enables multiple
medical centers to collaborate and train a shared model without
sharing raw patient data. Active Learning is incorporated to
intelligently select the most informative and relevant data
samples from each center for labeling, reducing the need for
extensive labeled data. It is evaluated on a multi-center dataset,
showcasing its effectiveness in achieving higher diagnostic
accuracy compared to traditional methods [9].

B. Federated Learning Parameter Aggregation

With the growing emphasis on data privacy protection,
Federated Learning has emerged as a highly popular research
area. Numerous studies have introduced innovative approaches
concerning weight updates in Federated Learning. Building
upon the previous methodology, a novel approach called
Multi-Center Federated Learning, which seeks to enhance
personalization by clustering clients according to their data
distributions has been proposed. In this approach, the multi-
center aggregation mechanism involves combining local mod-
els from multiple centers to form a global model. Each center
trains its respective local model using data from clients within
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its cluster. The local models are subsequently aggregated
through information exchange between the centers, facilitating
the improvement of the global model [18]. The convergence
challenges of federated learning (FL) when using dynamically
reduced models across various devices are explored in which
the importance of a minimal coverage index is emphasized
and model reduction noise in achieving efficient and re-
liable federated learning outcomes [19].A new framework
called KAFAL introduces a novel federated learning approach
for non-IID data with constrained annotation budgets. The
framework’s first component, Knowledge-Specialized Active
Sampling (KSAS), actively selects samples using a modified
KL-Divergence to prioritize data that is informative for both
local and global models. The second component, Knowledge-
Compensatory Federated Update (KCFU), mitigates data het-
erogeneity by distilling knowledge from the global model
to clients, especially for underrepresented classes. Together,
KSAS and KCFU enable effective sample selection and fed-
erated updates, optimizing annotation usage and improving
model convergence in decentralized learning scenarios [20].

A novel approach called FairFed is presented, which ad-
dresses the issue of group fairness in Federated Learning (FL).
It aims to mitigate biases and disparities that might arise
during the learning process, promoting fair representation and
performance across various user groups. The experiments and
results presented in the paper demonstrate the effectiveness
of FairFed in achieving group fairness in federated learning
scenarios [21]. A new FL-empowered semi-supervised active
learning (FL-SSAL) framework was designed for security
orchestration in a Label-at-Client scenario. In this approach,
clients work with a mix of unlabeled and a small amount of
labeled data. The framework uses entropy-based active learn-
ing to identify the most informative samples for labeling and
applies a semi-supervised approach to make use of unlabeled
data. Experimental evaluations on a private, non-independent
and identically distributed (non-IID) dataset show that FL-
SSAL improves intrusion detection accuracy. Additionally,
it reduces communication overhead compared to baseline
models, even with limited labeled data [15]. An Auditable
Privacy-Preserving Federated Learning (AP2FL) model ad-
dresses Non-IID data by incorporating Active Personalized
Federated Learning (ActPerFL) and Batch Normalization (BN)
techniques, enabling effective user update consolidation and
data similarity identification. An auditing mechanism further
enhances AP2FL, revealing individual client contributions and
ensuring the global model adapts to diverse data types and
distributions [22].

III. PROPOSED APPROACH

Our proposed Locality-customized GSA Federated Active
Learning (LG-FAL) integrates Active Learning (AL) and the
Gravitational Search Algorithm (GSA) within a federated
learning framework. This combination targets an efficient
trade-off between communication costs and learning accuracy
by selecting highly informative subsets of local data.
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A. Framework Overview

The locality-customized GSA Federated Active Learning
(LG-FAL) framework operates iteratively in two main phases,
as summarized in Fig. 1. Each client trains its model on
local annotated data, learning client-specific patterns. Clients
send their model parameters to the central server. The server
aggregates parameters using the Gravitational Search Algo-
rithm (GSA), weighting each client’s contribution based on its
model’s accuracy. The updated global model is sent back to
clients, incorporating insights from across the network. Each
client scores unlabeled samples using both the local and global
models, selecting the most informative samples for annotation.
This cycle repeats, iteratively refining both local and global
models for balanced learning between local specificity and
global generalization.

B. Locality-customized Annotation

Our approach introduces a dual-model annotation strategy
that utilizes both local and global models to assess the infor-
mativeness of unlabeled data samples:

a) Local Model Consideration: For each local client 4,
model trained using its own local data is defined as M. Local
model M, enables customization and adaptation to specific
local device characteristics and local data patterns to better
fit unique local data distributions, which is able to capture
different facets of the local data distribution and localization.

b) Global Model Integration: Global model M gy, is the
central model that is shared and iteratively updated across
a network of decentralized M; in FL. During the training
process, locally trained models M; send back their parameter
updates to a central server, which aggregates these updates to
refine the global model Mpy,. By combining data informa-
tiveness from both M; and Mgy, we are able to capture the
data generalization while maintaining its localization at the
same time.

c) Local Active Learning: We introduce a locality-
customized annotation function AL. The AL strategy com-
bines the predictive uncertainties from both the local and
global models to score each unlabeled sample. For each local
client ¢, both local labeled dataset D; as well as newly-
annotated dataset A; by AL will be set up for the training. We
design a score function S(z) to evaluate unlabeled samples.
The strategy is to annotate data samples with the highest score
in the unlabelled data as shown in (1), where z is the sampling
number and S(z) is the score function of x.

AL; = argmax S(z)

|A;|=z,2€U;

()]

To make sure that the score function is able to reflect the
localization and potential informativeness of local unlabelled
instances, we introduce the score function as shown in (2).
Global model M gy, and local model M; are allowed to pre-
dict the labeling possibilities of samples. The most informative
query is considered to be the instances about which they most
agree. The sample informativeness from both global model
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Fig. 1: Framework of LG-FAL. Clients train local models and send them to the server. The server synthesizes the models and
gets a global model. The global model is sent to each client to help annotate local data.

My, and local model M; is integrated to find the average
score of a sample.

S(z) = wyxEntr(Dis(z|M;))+wa*Entr(Dis(x| Mpr)) (2)

where Dis(x|M) denotes the prediction distribution of x
under model M; Entr(Dis(xz|M)) denotes the entropy of the
distribution. w; and wy are weights between 0 and 1.

d) Annotation Process: Samples with the highest com-
bined uncertainty are selected for annotation. The higher the
entropy is, the more uncertain the sample under the model
will be. Thus, the active learning strategy prefers to annotate
samples with high uncertainty. AL adopts multiple rounds as
the FL goes on for sampling and gradually adds samples to
the labeled local dataset.

C. GSA-based Federated Learning

We integrate Gravitational Search Algorithm (GSA) with
federated learning to obtain a globally optimized model from
local models. Within GSA’s iterative framework, each local
model is viewed as one object with mass (importance), while
its parameter values are viewed as position coordinates. These
objects attract each other due to gravity, prompting their move-
ment towards heavier masses, which correspond to favorable
solutions [23]. Fig.2 shows the movement of the object.

Assume there are N clients participating FL, each of whose
local model has a D dimensional parameter vector denoted as
(3), where xf is the parameter of the ith agent in dimension
d.

X; = (z},...,22, .. xP) i=1,..,N 3)

) K2
a) Mass Calculation: The gravitational mass of each
object using the fitness values is calculated as in (4) and
(5). The gravitational mass is denoted as M;(t) and fit;(t)
indicates the fitness value of the ¢th object at iteration ¢, which,
in our method, the client’s predictive accuracy on the test

dataset is used as the fitness value.
fit; (t) — worst(t)
)= — 4
mi(t) best(t) — worst(t) @
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Fig. 2: Demonstration of object movement with GSA. Object
M is attracted by My and M3, with gravity force F5; and
F35;. The total force F} results in acceleration a; to update the
position of M, which equals to update the parameter vector
X.

m1(t)
Z;'V:I my(t)

In addition, worst(t) and best(t) are the worst and best
fitness values obtained in the collection of objects at ¢ which
are defined for maximization problem as in (6) and (7)
respectively.

M;(t) = )

worst(t) = min fit;(t) jed{l,..,N} (6)
best(t) = max fit;(t) jed{l,...,N} (7)

b) Gravitation Interaction: The total force that is applied
on the ith object from other objects is computed following the
gravity law in (8).

Fit)= > rand]G(t) R xc

JjEKbest,j#i

CHOREAD)
@)
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in which rand;-l is a random number with uniform distribution
in the interval [0, 1]. € denotes a small number close to O,
R;;(t) denotes the Euclidean distance between clients ¢ and
j, and Kbest is a set consisting of the first K objects with
the best fitness values (the largest masses).

K is set as N at the very beginning and reduces linearly
with time until it reaches to 1 in the end. The gravitational
constant at iteration ¢ is denoted as G(¢) which is initialized
at the first iteration by G and decreased by time according
to (9), where T is the total number of iterations.

(€))

Then, the obtained force is used to calculate the acceleration
of the object using the law of motion as in (10).

G = Goexp T

F{(t)
a?(t) = M; ()
= Z rand; G(?) Ri\{égti (xd(t) — 2 (1))

jEKbest,j#i
(10)

¢) Parameter Update: The next movement for ¢th object
can be computed based on the change of its acceleration as in
(12) and this is the end of one GSA iteration.

vt +1) =of(t) +af(t), v0)=0 (1D
23t 4+ 1) = z2(t) + vt + 1) (12)

After a certain number of iterations, all parameter vectors
X, are updated with other vectors’ information. In other
words, all X; can be viewed as candidates of the aggregated
global model parameters. We test them on the test dataset,
and consider the parameter with the best performance as the
parameter of the global model Mpy,.

Training of a global GSA algorithm is performed in an
iterative fashion. It communicates with local ones iteratively
since the stopping criterion is reached. Each client initially
starts with a randomized model that is the exact same structure
as the central model. The pseudo-code of the LG-FALis shown
in Algorithm 1.

IV. EXPERIMENTS
A. Datasets

We use three benchmark datasets in the experiments. The
first one is the MNIST Dataset (Modified National Institute of
Standards and Technology database) [24], which consists of
a collection of handwritten digits. It contains 60,000 training
images and 10,000 testing images. Each image is a grayscale
image of size 28x28 pixels, representing a single digit (0-
9). The second dataset is called Fashion MNIST [25]. It is
a variation of the original MNIST dataset, but instead of
containing handwritten digits, it consists of images of various
types of clothing and fashion items. This dataset has 10
different categories, which include items like T-shirts, trousers,
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and
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Algorithm 1 Locality-customized GSA Federated Active
Learning (LG-FAL)
Input: Number of clients NV, number of FAL iteration 7, test dataset

T, initially labelled dataset {D;(0)}:L;, number of annotated data

N
i=1

in each iteration z, initially unlabelled dataset {If;(0)
Output: Optimized global model MFy,
fort =1to T do
for each client 7, : = 1, ..., N do
Train local model M; with annotated data
Send M; parameters to the server
end for
At the server:
Calculate gravitational mass M;(¢) for each client
Calculate total force Fy(t) on each client
Calculate the acceleration af(t) of each client
Update local model parameters
Evaluate all updated local models with test dataset 7, define
M as the best local model
Send Mgy, to each client
for each client 7, = 1, ..., N do
Annotate z unlabelled data A; from U;(t)
Update D;(t + 1) = D;(t) + A
sUpdate U; (t + 1) = U;(t) — A;
end for

ankle boots with 60,000 training images and 10,000 testing
images and each image being a grayscale 28x28 pixel.

The last dataset in this study is the Diabetes Data Set, which
integrates information from two primary sources: automated
electronic recording devices and manual paper records. The
goal is to predict whether a patient has diabetes based on
these data inputs. The electronic devices provide precise event
timestamps using an internal clock, ensuring real-time accu-
racy. In contrast, the paper records capture events according
to broad periods defined by ’logical time’—such as breakfast,
lunch, dinner, and bedtime—without specific timestamps [26].

B. Baselines

To validate the performance of the proposed method, we
use deep neural networks as the training models and employ
three baselines for our comparisons.

The first baseline is called Federated Average (FedAvg)
Active Learning, FedAvg-FAL, which also shares the same
network structure with our proposed method. In FedAvg, each
client downloads the current model from a central server,
improves it by learning from its own local data, and then
aggregates the changes into a small centralized update. Equa-
tion 13 summarizes the global weight values w updating of
FedAvg in each training round ¢, in which ¢ is the client index,
N means the total number of clients, D is the total number
of instances and D; is the local data examples for each client
[27].

N
D;
Wil = Z TW;

i=1

13)
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The second baseline S-FAL annotates samples in a single
AL way while keeping the same GSA FL model parameter
update approach. In this setting, the local instance informa-
tiveness score is only computed based on the updated local
model Mgy, with local dataset D; as shown in (14).

S(xz) = Entr(Dis(z|Mrpr)) (14)

The last baseline is based on FedDNA, which is a dynamic
node alignment federated learning algorithm to find the best
matching nodes between different sites via Minimum Spanning
Tree, and then aggregate weights of matching nodes for feder-
ated learning [2]. We combine FedDNA with active learning
to validate the effectiveness of our proposed method.

C. Experiment Settings

Our overall experiment setting is as follows. For each
dataset, our aim is to predict the corresponding target. Model
parameters will be passed to each clients at the very beginning
of training. Training data will be randomly split into 3 sites
and distributed to 3 clients, which is able to training the local
model using their own data. As for the AL part, by default,
wy = we = 0.5. For each round, 32 unlabelled samples will
be annotated by different AL approaches and added to the
local dataset for training. For the FL part, weight values will
be aggregated based on different FL. methods and then sent
back to the global models. Global models will pass the newly
calculated parameters to their local clients to start a new round
of training until the convergence.

In order to explore the effect of various GSA parameter
settings, we evaluated our proposed method using various
combinations of a and Gy. Additionally, we conduct experi-
ments to explore the impact of w; and ws on our proposed
method.

D. Model Performance

Table I, Table II, and Table III show the model results for
the three datasets respectively. Due to page limitations, only
the best model performance results are presented in this paper.
For the MNIST dataset, it is evident that GSA-based FAL
methods outperform the FedAvg-based FAL approach. Across
all models, predictive accuracy improves consistently as more
samples are annotated by the active learning (AL) process,
regardless of the GSA parameter settings. However, minor
accuracy fluctuations occur when the number of annotated
samples exceeds 192, a trend observed across all methods.
When o = 30 and Gy = 10, LG-FAL achieves an accuracy of
0.848 with 320 annotated samples, outperforming FedAvg-AL.
The superiority of our proposed method, LG-FAL, becomes
more prominent under o = 30, Gy = 20 and o = 30, Gy = 50
settings, achieving accuracies of 0.854 and 0.857, respectively.
LG-FAL delivers the highest final predictive accuracy (0.858)
when o = 30 and Gy = 50.

For the Fashion MNIST dataset, the performance trends
are consistent with those observed in the MNIST dataset.
Both FedDNA-AL and LG-FAL demonstrate superior per-
formance compared to FedAvg-AL and S-FAL across all
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parameter settings. Under « 30 and Gy = 20, both S-
FAL and LG-FAL achieve comparable accuracies higher than
0.750. However, as Gy increases, LG-FAL’s advantage over
FedDNA-AL becomes more pronounced, especially as more
samples are annotated.

The Diabetes dataset results reveal similar trends. FedDNA-
AL generally performs around the expected accuracy of 0.72,
while LG-FAL consistently outperforms the other methods
across all parameter settings. For example, under a« = 30
and Gy = 20, LG-FAL reaches an accuracy of 0.777,
surpassing both FedAvg-AL and S-FAL. LG-FAL achieves
the highest accuracy (0.778) when o 30 and Gy = 50.
This demonstrates the scalability and robustness of LG-FAL
especially with a larger number of annotated samples.

Since LG-FAL and FedDNA-AL outperforms FedAvg-AL
S-FAL, we create a figure to further demonstrate model
comparison between LG-FAL and FedDNA-AL with the re-
sults from all the datasets. Regardless the parameter setting,
the average accuracy of two models for three datasets are
calculated. Fig. 3 report the performance of LG-FAL and
FedDNA-AL as the increasing of annotated samples. The y-
axis is the values of model accuracy and z-axis shows the
increase of annotated instances. As the number of labeled
samples gradually increases, the overall performance of the
two models also shows an upward trend. Overall, LG-FAL
always outperforms FedDNA-AL.

—o— FedDNA-AL
LG-FAL

128 160 192 224 256 288 320
Number of annotated samples

32 64 9‘6
Fig. 3: Overall performance comparison between LG-FAL and
FedDNA-AL with the increase of annotated samples: y-axis
is the model averaged accuracy from all the three datasets; x-

axis is the gradually increased number of annotated samples.

The advantages of LG-FAL are able to be verified with the
previously shown results. With the confirmation that LG-FAL
is able to outperform our baselines, especially when a = 30,
and Gy = 50, we further conduct a series of experiments
with MNIST dataset aiming to figure out how the change of
proportion of M; and Mg, in (2) effects the performance
of LG-FAL. By default, the values of w; and ws are set as
0.5 and 0.5 respectively. Different combinations of w; and ws
are designed in order to check how our proposed method will
react as follows: w; = 0.2, wy = 0.8; wy = 0.4, wy = 0.6; w;
=0.5, wy =0.5;, w; = 0.6, wy = 0.4; wy = 0.8, wy =0.2.
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TABLE I: Model accuracy w.rt different parameter settings for MNIST with gradually increasing annotated samples: FedAvg-
AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed method.

GSA Parameter setting | Model 32 64 96 128 160 192 224 256 288 320
FedAvg-AL 0.755 | 0.768 | 0.835 | 0.794 | 0.826 | 0.804 | 0.806 | 0.823 | 0.814 | 0.78
a=30,Gp =10 S-FAL 0.767 | 0.783 | 0.814 | 0.792 | 0.807 | 0.812 | 0.828 | 0.835 | 0.829 | 0.814
FedDNA-AL | 0.806 | 0.818 | 0.829 | 0.824 | 0.828 | 0.834 | 0.837 | 0.836 | 0.839 | 0.834
LG-FAL 0.817 | 0.821 | 0.826 | 0.830 | 0.834 | 0.838 | 0.842 | 0.845 | 0.846 | 0.848
FedAvg-AL 0.767 | 0.799 | 0.812 | 0.820 | 0.819 | 0.802 | 0.827 | 0.831 | 0.815 | 0.828
a=30,Go =20 S-FAL 0.773 | 0.822 | 0.831 | 0.812 | 0.834 | 0.818 | 0.832 | 0.838 | 0.826 | 0.829
FedDNA-AL | 0.782 | 0.808 | 0.815 | 0.826 | 0.831 | 0.827 | 0.834 | 0.836 | 0.841 | 0.839
LG-FAL 0.822 | 0.827 | 0.832 | 0.836 | 0.840 | 0.844 | 0.848 | 0.850 | 0.852 | 0.854
FedAvg-AL 0.748 | 0.786 | 0.808 | 0.798 | 0.813 | 0.812 | 0.803 | 0.819 | 0.813 | 0.817
a = 30,Go = 50 S-FAL 0.759 | 0.814 | 0.823 | 0.815 | 0.819 | 0.822 | 0.826 | 0.824 | 0.829 | 0.830
FedDNA-AL | 0.784 | 0.819 | 0.827 | 0.836 | 0.832 | 0.837 | 0.839 | 0.838 | 0.844 | 0.841
LG-FAL 0.832 | 0.837 | 0.842 | 0.846 | 0.849 | 0.852 | 0.854 | 0.856 | 0.858 | 0.857

TABLE II: Model accuracy w.r.t different parameter settings for Fashion MNIST with gradually increasing annotated samples:
FedAvg-AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed

method.

GSA Parameter setting | Model 32 64 96 128 160 192 224 256 288 320
FedAvg-AL 0.659 | 0.670 | 0.674 | 0.689 | 0.691 | 0.695 | 0.678 | 0.707 | 0.698 | 0.696

a=30,Gop =10 S-FAL 0.679 | 0.700 | 0.715 | 0.710 | 0.720 | 0.709 | 0.708 | 0.721 0.717 | 0.730
FedDNA-AL | 0.658 | 0.692 | 0.695 | 0.718 | 0.710 | 0.701 0.703 | 0.720 | 0.714 | 0.726
LG-FAL 0.725 | 0.733 | 0.739 | 0.744 | 0.748 | 0.751 | 0.752 | 0.760 | 0.762 | 0.764
FedAvg-AL 0.685 | 0.698 | 0.710 | 0.707 | 0.712 | 0.700 | 0.706 | 0.716 | 0.718 | 0.727

a=30,Gop =20 S-FAL 0.690 | 0.706 | 0.718 | 0.707 | 0.725 | 0.711 0.709 | 0.725 | 0.723 | 0.730
FedDNA-AL | 0.702 | 0.710 | 0.724 | 0.735 | 0.739 | 0.740 | 0.742 | 0.746 | 0.749 | 0.755
LG-FAL 0.741 | 0.746 | 0.751 | 0.754 | 0.758 | 0.761 | 0.763 | 0.769 | 0.772 | 0.774
FedAvg-AL 0.443 | 0.552 | 0.600 | 0.594 | 0.616 | 0.615 | 0.612 | 0.631 0.634 | 0.642

a = 30,Gop =50 S-FAL 0.701 0.709 | 0.713 | 0.726 | 0.730 | 0.721 0.723 | 0.734 | 0.732 | 0.736
FedDNA-AL | 0.725 | 0.740 | 0.746 | 0.751 0.753 | 0.757 | 0.758 | 0.760 | 0.762 | 0.762
LG-FAL 0.732 | 0.748 | 0.755 | 0.756 | 0.755 | 0.759 | 0.763 | 0.769 | 0.772 | 0.774

TABLE III: Model accuracy w.r.t different parameter settings for Diabetes Data Set with gradually increasing annotated samples:
FedAvg-AL is the first baseline, S-FAL is the second baseline, FedDNA-AL is the third baseline, LG-FAL is our proposed

method.

GSA Parameter setting | Model 32 64 96 128 160 192 224 256 288 320
FedAvg-AL 0.658 | 0.670 | 0.678 | 0.691 | 0.695 | 0.702 | 0.704 | 0.710 | 0.713 | 0.715

a=30,Go =10 S-FAL 0.675 | 0.688 | 0.698 | 0.705 | 0.711 | 0.715 | 0.718 | 0.722 | 0.726 | 0.728
FedDNA-AL | 0.705 | 0.715 | 0.721 | 0.727 | 0.732 | 0.735 | 0.739 | 0.742 | 0.745 | 0.748
LG-FAL 0.725 | 0.735 | 0.743 | 0.749 | 0.754 | 0.758 | 0.761 | 0.765 | 0.768 | 0.770
FedAvg-AL 0.670 | 0.685 | 0.694 | 0.702 | 0.708 | 0.712 | 0.717 | 0.721 | 0.725 | 0.727

a=30,Go =20 S-FAL 0.688 | 0.702 | 0.710 | 0.717 | 0.722 | 0.726 | 0.729 | 0.733 | 0.736 | 0.738
FedDNA-AL | 0.710 | 0.720 | 0.726 | 0.731 | 0.737 | 0.741 | 0.744 | 0.747 | 0.750 | 0.752
LG-FAL 0.735 | 0.745 | 0.751 | 0.757 | 0.761 | 0.765 | 0.768 | 0.772 | 0.775 | 0.777
FedAvg-AL 0.542 | 0.580 | 0.612 | 0.635 | 0.645 | 0.652 | 0.660 | 0.665 | 0.668 | 0.670

a = 30,Go = 50 S-FAL 0.680 | 0.692 | 0.705 | 0.712 | 0.717 | 0.722 | 0.727 | 0.731 | 0.735 | 0.737
FedDNA-AL | 0.718 | 0.725 | 0.731 | 0.736 | 0.741 | 0.744 | 0.748 | 0.751 | 0.754 | 0.756
LG-FAL 0.735 | 0.745 | 0.752 | 0.757 | 0.762 | 0.766 | 0.769 | 0.773 | 0.776 | 0.778

Fig. 4 reports the overall predict accuracy trend of LG-FAL
on MNIST dataset under different w; and wo settings. We
can clearly observe that when prefer the predictive uncertainty
from local model over global model, the performance of
LG-FAL drops especially when w; = 0.8 and wp = 0.2.
However, the gradual increase of model performance with the
increasing annotated samples can still be validated. LG-FAL
demonstrates the best predictive accuracy on MNIST dataset
when local model and global model are equally considered for
annotating the instances.
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V. CONCLUSION

In this paper, we propose a locality-customized GSA Fed-
erated Active Learning (LG-FAL) method for federated active
learning. We argued that in most federated active learning
frameworks, local unlabeled samples are annotated by the
aggregated global model’s parameters, which totally ignores
the localization of the samples, leading to neglecting the
importance of local models for local sample annotation. In
addition, current federated active learning approaches usually
are limited to one method, Federated averaging (FedAvg) to
update global model parameter. Alternatively, we propose a
locality-customized GSA Federated Active Learning method,
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Fig. 4: Performance of LG-FAL with different w; and wy set-
tings on MNIST dataset and Fashion MNIST dataset with the
increase of annotated samples: y-axis is LG-FAL’s accuracy;
z-axis is the gradually increased number of annotated samples;
legends are wy and wy settings.

LG-FAL to tackle the aforementioned limitations. LG-FAL
combines locality-customized active learning and Gravitational
Search Algorithm (GSA) in a collaborative and effective way.
In locality-customized active learning, both the local model as
well as the global model are taken into consideration when an-
notating local samples, in which each data’s overall uncertainty
is a combination of both the local model’s prediction entropy
and the global model’s prediction entropy. In GSA federated
learning, global model parameter aggregations are achieved by
GSA which is empowered with higher adaptability with a set
of parameters to allow clients to move freely towards areas
of high fitness calculated based on their masses (accuracy).
Experiments and comparisons validate the performance of the
LG-FAL compared to other baselines. For future work, we
will perform a deeper analysis of the sensitivity of LG-FAL
to different parameter settings, such as the weights w; and
wy in the dual-model annotation strategy and investigate
the scalability of LG-FAL to large-scale federated learning
scenarios.
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