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ABSTRACT By leveraging spatial diversity, MultiUser MIMO (MU-MIMO) can serve multiple users
over shared time-frequency Resource Blocks (RBs) and substantially improve spectral efficiency. However,
performances of wideband MU-MIMO systems are severely limited by both frequency-selective channels
and Co-Channel Interference (CCI) among users. To reach the full potential of MU-MIMO, users should
be scheduled at RBs with decent channel gains and minimal CClIs. Since such scheduling problem is
NP-hard and the transmission time interval of modern wireless systems is ultra-short, it is critical to
design efficient algorithms that can make satisfactory sub-optimal user scheduling decisions in real-time.
Nonetheless, existing works either rely on heuristics or may not readily be applied to wideband system.
To tackle these challenges, we propose a novel Unsupervised Learning-Aided Wideband Scheduling
(ULAWS) framework. Specifically, ULAWS first utilizes Multi-Dimensional Scaling (MDS) based graph
embedding and clustering to obtain intrinsic user groups with low CCI among co-channel users. Based
on clustering results, we adopt Gale-Sharpley algorithm to find a stable matching between users and RBs.
Next, a graph-based post-processing procedure stacked with three efficient steps is applied as refinement.
Simulation results demonstrate performance gain over benchmark methods in terms of sum rate, fairness
and outage rate, under various system parameters and scenarios.

INDEX TERMS Multiuser MIMO (MU-MIMO), co-channel interference (CCI), graph embedding, user

grouping, wideband user scheduling.

I. INTRODUCTION
ULTIPLE-INPUT-MULTIPLE-OUTPUT  (MIMO)
technologies, which serve multiple users with a

large number of antennas, have served as an effective

solution to meet the increasing demand for emerging high-
data-rate applications in both WiFi and cellular wireless
systems [1]. By exploiting spatial diversity gain through
multiple antennas, MIMO improves system capacity and

Spectral Efficiency (SE) [2]. Based on MIMO, MultiUser

MIMO (MU-MIMO) enables an Access Point (AP) or base

station (BS) to simultaneously serve multiple users on the

same time-frequency Resource Block (RB) [3] and hence
can further improve system performance.

However, Co-Channel Interference (CCI) among users
scheduled to the same Resource-Sharing Group (RSG)
becomes a major obstacle to reaching the promised

performance of MU-MIMO systems. Specifically, the
efficacy of MU-MIMO depends on the level of CCI among
the multiple RSGs, each occupying an RB. Because high
spatial channel correlation among co-channel users [4]
implies strong CCI, the capacity of MU-MIMO systems
can be significantly improved by scheduling users with low
mutual correlation to the same RSG. Therefore, MU-MIMO
performance critically relies on user scheduling [4] and
resource allocation [5].

To reduce CCI among users, MU-MIMO user scheduling
algorithms should group users into RSGs across accessible
RBs such that within each RSG, users enjoy low channel
correlation [6]. However, the number of possible RSGs in
such combinatorial problems increases exponentially with
the number of users, thereby making exhaustive search and
evaluation prohibitively costly even for a moderate number
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of users [7]. In addition, due to channel variation and the
ultra-short Transmission Time Interval (TTI) in current and
future generation wireless systems [1], it is vital to design
efficient algorithms that find and form RSGs with low CCI
in real-time.

To mitigate the computation complexity for obtaining such
RSGs, previous works have used channel correlation among
users in a greedy [8], [9], [10], [11] or heuristic [12], [13]
manner, where users are scheduled one by one to existing
RSGs according to pre-defined criteria. However, these
and other existing heuristic methods tend to favor locally
optimum solutions. To overcome such shortcomings, several
studies examined two-step unsupervised learning approaches
to extract common features of user channel correlations [14],
[15], [16], [17], [18]. These strategies first cluster users
with similar channels and then separate users in the same
cluster into different RSGs based on the insight that it
is easier to cluster users with similar channels than to
cluster users with dissimilar channels, (e.g., users with low
channel correlation). Although these unsupervised strategies
do not directly minimize CCI among users within each RSG,
they lead to good performance for MU-MIMO systems by
preventing high CCI users from being scheduled to the same
RSG.

Nonetheless, to our best knowledge, no unsuper-
vised learning-based scheduling algorithms have considered
broader scheduling problems involving wideband (or multi-
channel) systems. In fact, it is highly challenging to extend
most existing works to wideband systems, such as the
multi-subcarrier (multi-subband) physical layers of 5G-NR
cellular networks or WiFi6/WiFi7, where channels can be
frequency-selective due to multi-path effects. Namely, not
only channel gains of users but also pair-wise channel
correlations among users are different in each subband,
which further exacerbates the design complexity of user
scheduling algorithms. Therefore, it remains an open but
critical problem on how to improve the sum rate and
SE of wideband MU-MIMO systems by forming RSGs
in consideration of both users’ channel gain and channel
correlation across a swath of subbands.

Motivated by the aforementioned challenges, our previous
work [19] aims to (1) form RSGs by clustering users with
dissimilar channels into the same RSG such that group
users enjoy low CCI, and (2) form RSGs in a wideband
(i.e., frequency-selective multi-channel) system by consid-
ering users’ channel correlation over each subband. These
considerations lead to an effective scheduling algorithm
named SC-MS [19]. Specifically, SC-MS achieves (1) by
applying spectral clustering and post-processing on the
channel dissimilarity graph of users and achieves (2) with a
heuristic procedure.

Yet, several shortcomings remain in SC-MS. First, it
relies on heuristics to form RSGs in different subbands
without a global optimization perspective. Second, SC-
MS forms RSGs merely based on channel dissimilarity
among users (i.e., focusing on CCI) without considering
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the effect of channel gain on the sum rate. Third, spectral
clustering could incorrectly cluster users with high channel
correlation into the same group due to imperfect graph
embedding in Euclidean space, thereby lowering the sum
rate.

In this paper, we improve three mentioned drawbacks
of SC-MS and propose an Unsupervised Learning Aided
Wideband Scheduling (ULAWS) algorithm that aims to
schedule users and allocate RBs based on user channel
characteristics such that the sum rate of MU-MIMO systems
is maximized. Specifically, our main contributions are as
follows:

I) To the best of our knowledge, this work is the first
to propose a unifying and feasible user scheduling solution
for wideband MU-MIMO systems with frequency-selective
channel gains and channel correlations.

2) To address the first two shortcomings of SC-MS,
we formulate the scheduling of users to RBs as a many-
to-one matching game where each RB may host multiple
MU-MIMO users whereas user preference over an RB
is defined as its SINR estimated based on its channel
gain and CCI from other users. In this way, we jointly
consider users’ global channel characteristics, including
channel gain and CCI, across different subbands in our
scheduling mechanism instead of relying on the heuristic as
in [19].

3) We developed an unsupervised learning framework
to estimate user CCI over each RB. Specifically, we first
capture user channel correlation in each subband with a graph
structure. We then perform graph embedding and clustering
to determine intrinsic user groups in the constructed graphs to
keep channel correlation among users in the same group low.
We treat users within the same intrinsic group as potential
co-channel users to estimate their CCI, which is then used
to estimate their SINR.

4) Since users are matched with RBs based on estimated
SINR instead of actual SINR, our matching result may still
fall victim to local optimum and should be treated as a pre-
liminary scheduling decision. To mitigate performance loss,
we propose a graph-based post-processing procedure stacked
with three efficient steps, including finding cliques, node
reassignment and iterative refinement, to further improve the
sum rate.

5) To tackle the third drawback of SC-MS, we
improve graph embedding quality by formulating it as
a Multidimensional Scaling (MDS) problem aiming to
preserve the exact structure of graphs in Euclidean space. To
overcome MDS’s weakness in embedding dense and random
graphs in our problem, we design a universal transformation
function that maps arbitrary graphs’ weights to a negatively
skewed target distribution.

Il. RELATED WORKS
In this section, we review existing works on user scheduling
problems in MU-MIMO systems.
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A. CHANNEL CORRELATION BASED
GREEDY/HEURISTIC

As the performance of MU-MIMO is limited by CCI among
users, pair-wise channel correlation is utilized greedily [8],
[91, [10], [11] or heuristically [12], [13] to mitigate CCI.

For example, the authors of [8] designed a scheduling
algorithm that first separates users into different RSGs
when their channel correlation is greater than a predefined
threshold and then iteratively assigns remaining users to
RSGs with the minimum sum of channel correlation with
existing users. In [10], they iteratively select a user with the
highest SNR and assign it to the RSG that has the minimum
of the maximum channel correlation with existing users. A
similar approach is adopted in [9] yet they instead adopt
increased throughput as the metric.

On the other hand, the authors of [12] modeled
interference levels between users as edge weights in a graph
and adopted a heuristic procedure that sequentially assign
users to existing RSGs with the minimum increased sum of
graph weights. In [13], they create a RSG by selecting and
removing users (nodes) that belong to the maximum clique
from the channel dissimilarity graph. The process is repeated
until the graph becomes empty, creating a varying number
of RSGs.

Although these approaches can efficiently reduce CCI by
utilizing users’ channel correlation, they in general tend to
favor local optimum.

B. MANY-TO-ONE MATCHING WITH EXTERNALITY

In [21], [22], [23], user scheduling problems are formulated
as many-to-one or many-to-many matching games. Since
CCI exists among users in the same RSGs, an ideal algorithm
should decide not only which RB the users are matched
with, but also which users are matched in the same RB,
and thus externality exists. Hence, previous works often
design two-step algorithms to address such matching games.
The first step creates an initial matching between users and
RBs randomly [22], [23] or based on the users’ preference
list [21] that does not consider the effect of CCI from
other users. Then, the second step iteratively searches for a
blocking pair and swaps the matching of the corresponding
user pair. The algorithm terminates when there exists no
swap-blocking pair in the matching.

However, it may take numerous iterations for these
methods to converge when the initial matching step is
not well designed. For instance, the worst-case complexity
of [21] is O(—-mfsﬂ) where ®¢ and @y denote the sum
utilities of the initial matching and the final matching, and
A is the minimum increase of each swap operation [21].

C. UNSUPERVISED LEARNING-AIDED USER
SCHEDULING

Instead of assigning users to RBs based on greedy criteria or
swapping the blocking user pairs in the matching, the authors
of [14], [16], [17], [18] proposed two-step strategies to group
users into RSGs based on their channel correlations using
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unsupervised clustering. For instance, the first step in [17]
clusters users with highly correlated channels (i.e., users
with high CCI) with K-means. The second step iteratively
selects a RSG and schedules the user with the maximum
rate increment and does not belong to any clusters that
users of the selected RSG belong to. Similarly, the authors
of [16] adopt Grassmannian K-means [16] to better cluster
users with similar channels before iteratively assigning users
from the same cluster to different RSGs with a rule-based
approach to obtain the final scheduling decision. In this way,
users with high CCI can be separated into different RSGs.

However, the path to extend these methods to a practical
wideband scheduling problem is unclear. First, the number
of generated RSGs would vary depending on the number of
users with highly correlated channels while in practice we
usually have a fixed number of RBs to accommodate users.
Secondly, they focus only on channel correlation among
users in the narrowband system while in wideband systems
we have multiple subbands/channels with distinct channel
characteristics.

A comparison of related work is listed in Table 1. We
classify them according to the methodology used, whether
they can schedule users to a given set of RBs, whether
they jointly consider the effect of channel gain and channel
correlation in their approach, and whether their approach
can be extended to wideband/multi-channel systems. We
observe that the limitation of matching-based methods is
that they did not fully utilize problem-specific information
including users’ channel gain and channel correlation in their
mechanism. On the other hand, existing clustering learning-
based methods can not be readily applied to MU-MIMO
systems with a fixed number of RBs and multiple frequency-
selective channels.

Notations: Throughout this paper, we use lowercase bold
letters for vectors, uppercase bold letters for matrices,
calligraphic capital letters to denote sets and graphs, and
non-bold font for scalars and functions. We use (-)T, U and
()" to denote transpose, conjugate and conjugate transpose,
respectively. We follow general conventions and summarize
some special notations used in this paper in Table 2.

lll. SYSTEM MODEL AND PROBLEM FORMULATION

A. MU-MIMO SYSTEM AND SUM RATE

Without loss of generality, we consider a single-cell OFDMA
communication system where a BS (e.g., gNB) equipped
with L antennas serves U single-antenna users. MU-MIMO
in downlink transmission can accommodate multiple users in
the same time-frequency RB! by leveraging spatial diversity
brought by MIMO. Specifically, the operational spectrum is
divided into F equal subbands. Across a schedule duration
of T timeslots, there are F'T RBs in total. We further denote
RB(f,f) as the RB indexed by subband f and timeslot f,

LA time-frequency RB comprises one timeslot and one subband. Note
that our RB is broadly defined as a resource unit occupied by users in an
RSG and does not have to exactly match the PRB in 3GPP LTE or 5G.
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TABLE 1. Literature review.

Ref # Methodology Fixed RBs | Joint CH gain & CCI | Multi-channels | Year
[20] Meta heuristic (GA) Yes No Yes 2018
[21] Swap-matching Yes No Yes 2017
[22] Swap-matching Yes No Yes 2017
[23] Swap-matching Yes No Yes 2019
[8] Greedy (sum of CCI) No No No 2016
[10] Greedy (throughput) Yes No Yes 2019
[9] Greedy (CH gain, min-max CCI) | Yes Yes Yes 2017
[11] Greedy (threshold) No No No 2023
[12] Graph heuristic (sum of weights) | Yes Yes Yes 2018
[13] Graph heuristic (max clique) No No No 2023
[15] Clustering (K-means) + greedy Yes No No 2018
[16] Clustering (K-means) + greedy No No No 2023
17 Clustering (K-means) + greedy No No No 2019
[18] Clustering (K-means) + greedy No No No 2019
[19] Clustering + graph heuristic Yes No Yes 2023
ULAWS | Clustering + matching Yes Yes Yes 2023
+ graph heuristic

Note:
TABLE 2. List of main notations.
Notation Definition
H X 3D CSI array / 3D scheduling decision array
h{ CSI vector of user ¢ at subband f
:1:;?c * Indicator denoting if user 1 is scheduled to RB (f,t)
B, F, T The set of resource blocks, subbands and timeslots
U, F,T,L | Number of users, subbands, timeslots and antennas
q{'t SINR experienced by user i on RB(f,t)
,.o[h.;.f , hjf ) | CSI correlation between h{ and hf at subband f
RIT RIP| Achievable/effective data rate of user i at RB(f, t)
zf Embedding vector of user ¢ at subband f
d{, ; Euclidean distance between z{ and z;.r
w{ j / w{, ’; Weight among users 4 and j in CSI correlation graph
of subband f. / Weight among users 4 and j in CSI
dissimilarity graph of RB (f,t)
Ef: Degree matrix in the CSI dissimilarity graph at RB(f, t)
T Estimated CCI that user ¢ may experience in RB(f, t)
TYS(f,t) | The preference of a user i over RB (f, )
TP () The preference of a RB (f,t) over user ¢
7 Matching function between users and RBs
W Weights' transformation function for graph embedding

Vfe F={l,...,F}and Ve T = {l,...,T}. The set of
RBs is presented as B = {(f,D)|f € F,t e T}.
We let H = {h{s},;g‘f € CUXLXF denote the channel state

information (CSI) 3D-array. Each element h‘:  €C Vie
U=1{1,...,U},vee L={1,...,L), Vf € F denotes the
CSI between single antenna user i and BS’s antenna £ on
subband f. Without limiting user CSI to any channel model,
here we consider a general case for which CSIs are random

and independent among users, subbands and BS antennas.
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CH = Channel, CCI = Co-Channel Interference, GA = Genetic Algorithm,

We further assume quasi-static block fading channels over
the T transmission timeslots, below channel coherence time.

Without loss of generality, we assume that the BS has
acquired user CSI knowledge from measurement report or
based channel reciprocity in TDD systems. Therefore, the BS
is responsible for scheduling users as groups over available
RBs for every transmission period (i.e., T timeslots). To
represent the scheduling between users (in groups) and RBs,
we introduce an indicator 3D-array X = {xf‘r}; e CHRFRT
where xfr is defined as

xf’r N 1, if user i is scheduled at RB(f, f) o
= 0, Otherwise.

Next, we let s; be user i’s data symbol and p; be the
transmission power allocated to user i. The downlink signal
received by user i scheduled in RB(f, ) can be derived by:

i () e ()" 3 o or @

co-channel interference

desired signal

where hf = [h{l, e, hf‘L]T e CL is the CSI vector of user
i at subband f, w; ~ CN (0, 02) represents the complex i.i.d.
Additive White Gaussian Noise (AWGN), o2 is the variance
of AWGN (i.e., the noise power), and v{ e CL is the unitary
beamforming precoder used by the BS for user i at subband
f. which can be selected as the Zero-Forcing (ZF) [24],
weighted Minimum Mean Squared Error (MMSE) [25] or
Maximum Ratio Transmitter (MRT) [26].
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Based on the above formulation, Signal-to-Interference-
plus-Noise Ratio (SINR) experienced by user i on RB(f, 1) is

PO s O
l o2+ Zjeu\j#ixj‘r B[] - ‘(h{)ﬂvf )

Without loss of generality and for simplicity, we apply the
MRT precoders such that

Note that [|ft{ | is user i’s channel gain at subband f. After
applying (4) into (3), the SINR can be reformulated as

St E[|pisi[*]
o2ill 2 + Ty jui®y” - Ellpisit?] - o2 (1], 1))

3)

|:t|

vf_ Viel,felF. 4)

-,

» 3)

where the spatial CSI correlation coefficient between h{ and
hf is defined by the magnitude of correlation coefficient

;(,,r)ﬂ,,f“

Clearly, the CCI experienced by user i increases with the sum
of squares of CSI correlations between user i and other users
in the same RSG scaled by the expected value of transmitted
symbol energy. Since we are interested in exploiting channel
correlations of users in user scheduling problems and desire
simple solutions, we let the BS normalize transmit power
per user such that }E[|p,-s,-|2] = ]E[|pj3j{2] =1,Vi,jel.

Consequently, given total bandwidth 8, the achievable data
rate of user i scheduled at RB(f, r) can be obtained as

RfI log2(1 —|—y’r )

(hf hf) VijeUfeF. (6

1?7y

)

B. MU-MIMO USER GROUPING AND SCHEDULING

We consider a practical system where each user can use
a distinct Modulation Coding Scheme (MCS) for transmis-
sion [28]. A higher MCS index corresponds to a higher data
rate at sufficiently high SINR [3]. The mapping between
MCS index, minimum required SINR and spectral efficiency
is depicted in Table 3 [27]. In this paper, we assume that BS
assigns the highest achievable MCS index to users based on
their SINR in the scheduled RB, which can be formulated
as

cf = argmax ¢(c;)

VC‘:'|¢(CE}5)’,-{ e

(8)

where c’: is the MCS index assigned to user { and ¢(c;)
denotes the mapping function that returns the minimum
requisite SINR value for a selected MCS index c;.
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TABLE 3. Table listing the mapping between MCS Index, the minimum required SINR
and speciral efficlency [27].

MCS index | SINR (dB) | Modulation | Code rate | SE (b/s/Hz)
1 -7.58 QPSK 0.076 0.1523
2 -5.78 QPSK 0.120 0.2344
3 -3.76 QPSK 0.190 0.3770
4 -1.77 QPSK 0300 0.6016
5 0.17 QPSK 0.440 0.8770
6 2,07 QPSK 0.590 1.1758
7 3.99 16QAM 0370 14766
8 5.83 16QAM 0.480 19141
9 7.91 16QAM 0.600 2.4063
10 9.76 64QAM 0450 2.7305
11 11.64 64QAM 0.550 3.3223
12 13.65 64QAM 0.650 3.9023
13 15.58 64QAM 0.750 45234
14 17.48 64QAM 0.850 5.1152
15 19.46 64QAM 0.930 5.5547
Ty, SR by
2 ™ L e
Ty e Ty
..__. ; e [ Scheduling decision f
: Fgﬁ“!‘u ‘ subband 2| RSG3 | BSG 2
i U b !} -
RSG; aﬂ ((( ))) subband 1] RSG1 |RB(1,2) :

slot 1 shot 2

RSG 2

FT RBs

il users L antennas (F subbands & T time slots)

FIGURE 1. Hustration of the system model and objective. Note that user grouping Is
decided based on users’ CSls rather than geographical locations.

Practically, each user i has a minimum rate requirement
R}“i“. We use the step function u(.) to define its effective
data rate as

R = %c(c:-“) -u(%-c(c}") —RE“‘") ©)
which means that the effective rate of a user is 0 unless its
minimum rate is satisfied. Note that g(c;’) is the SE when
using MCS of index c;.

Finally, as shown in Fig. 1, our goal in this work is to
design user grouping and scheduling algorithms that allocate
a given set of RBs to U users to maximize the effective sum
rate. This constrained optimization problem is formulated
as:

max 30D s
feFteT ied
Cl:d’ € (0,1}, Vif.t,

€2z 30y =1, W,

feFteT

Eh: Yoo <L Wi
ield

s. L

(10)
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where, among the three constraints {C1, C2, C3}, constraint
C2 requires each user to be assigned to exactly one RB and
constraint C3 states the maximum number of users scheduled
in an RB may not exceed the number of antennas to ensure
sufficient diversity within each RSG.

Note that (10) is a nonlinear integer programming problem
and is NP-hard [29]. Therefore, the present challenge is
to develop a low-complexity and effective algorithm that
is relatively scalable for different system parameters such
as total number of users, number of antennas, and channel
realizations, to name a few.

IV. PROPOSED FRAMEWORK: ULAWS

A. BASIC APPROACH AND ASSUMPTIONS

As shown in (5), user SINR depends on both channel
gain and CCI from users scheduled in the same RSG. To
maximize the system’s sum rate, users should be scheduled
at RBs with sufficient channel gain and acceptably low
cumulative CCI. However, finding such a scheduling decision
is challenging, especially for the wideband scenario. Across
a sufficiently wide bandwidth, each user CSI tends to vary
from subband to subband. Thus, not only channel gains
but also pair-wise CSI correlations of users are different
over the many subbands. Even for dozens or hundreds of
subbands, the user scheduling problem includes numerous
possible scheduling options and local sum rate maxima for
the problem of (10). To the best of our knowledge, there
exists no known method that can jointly consider users’
channel gain and CSI correlation of users across a wideband
to optimize MU-MIMO scheduling decisions.

To solve the difficult MU-MIMO problem (10), we
formulate the association between users and RBs as a many-
fo-one matching game where each RB can be matched with
multiple users in an MU-MIMO user group. The matching
game aims to associate users with RBs based on estimated
user SINR. Users corresponding to the same RB belong to
the same RSG in MU-MIMO. Ideally, we can take a global
view of the problem since the matching process considers
the estimated SINR of all RSG users when assigning and
scheduling users to RBs.

It should be noted that in such matching game requires
both user channel gains and CCIs on each RB to estimate
SINR. Based on available user CSls, user channel gains are
known at the BS. However, CCIs depend on the selection of
co-channel users and can not be determined a priori. In other
words, user scheduling and assignment depend on user CClIs
whereas user CCIs depend on user assignment. To overcome
this circular problem, we propose to estimate the CCI a user
may experience on each RB before the scheduling decision.
We can then use the estimated CCI in the matching game.

It is not straightforward to accurately estimate CCI owing
to numerous possible combinations of co-channel users. To
achieve a good estimation, we restrict our options to allow
a user to be scheduled to RBs only if the CSI correlation
between this user and every other user scheduled to the same
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RB is relatively low in comparison with that between the
user and users allocated with other RBs.

We refer to groups of users whose pairwise CSI correlation
is relatively low as intrinsic groups because they can provide
insights into the intrinsic structure of users’ CSI correlation.
This restriction implies that if a user is scheduled to subband
f, its co-channel users must be from the intrinsic group it
belongs to in subband f. Thus, instead of treating all users
as potential co-channel users, this restrictive solution only
considers users within the same intrinsic group to estimate
a user’s CCI if it is scheduled to that RB.

We now outline our basic approaches:

« To determine intrinsic groups for each subband, we
treat the problem as a graph clustering problem.
Unsupervised learning techniques based on graph
embedding and clustering can efficiently solve the
clustering problem.

« From the clustering outcomes, the estimated SINR can
be obtained according to intrinsic groups.

« We then utilize the Gale-Sharpley algorithm [30] to find
the stable matching between users and RBs.

« Graph-based post-processing refinement.

Notice that, since the matching game solution depends on
estimated CSI and SINR, one cannot guarantee actual user
SINRs at the assigned RB is as high as expected. We should
treat the first matching result as a preliminary scheduling
decision and regard users matched with the same RB only
as a Preliminary RSG (P-RSG). Thereafter, a graph-based
post-processing procedure involving three efficient steps is
designed to refine the sum rate performance. Note that it is
possible for some users without any RB assignment when
the number of users exceeds the quota of every RB. In such
cases, the unmatched users should be reassigned to RBs
in the post-processing phase without exceeding constraints
{C1, C2, C3}.

Applying the above steps, the overall procedure of our
proposed “ULAWS” algorithm is illustrated in Fig. 2. The
details of each step will be discussed in the following
subsections.

B. CONSTRUCTION OF CSI CORRELATION GRAPH

The proposed ULAWS first determines intrinsic groups in
each subband such that CSI correlation among users within
the same group is relatively low. We start by modeling the
pairwise CSI correlations between users in subband f with
an undirected weighted graph g;i'“ = (U, W;i’“), where U
is set of nodes representing users and W™ —= {w{-r jlivieu
denotes the set of weighted edges describing CSI correlation
of users. Here we define the weight of the edge connecting
nodes (users) i and j as

o= (o)

where ¥ is a monotonically increasing transformation
function that maps the value of CSI correlation between user
i and user j to an appropriate weight value. A higher weight
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Graph Construction  [EEEES Embedding ﬁ Clustering [===53 Matching prm—] Clique Finding =3 Reassign nodes & Refinement
— —ly —l . . .
oty &y o oy A ey o 1
® 2 P-RSGS at subband f=1 \ _/',-'III - schedule to RE (1.1)-RE(1.3)
5 § subbiand =1 G Subband <12, A
g X 5 A}
5 7, 5T smacor Iow * 4| kemenns £ X
% segch S, T f Jemgihe, C— T S
B i L i o
35 e P-R3Gs at sibband f=2 = schedule to RF (2,1)-RE(2.3)
=5 Subband =1 Z;
S—r C—
i P-fiSGy st subband f=3 = schedule to A8 (3,1)~RE(3.3)
Subband F=3 Z,
FIGURE 2. Nustration of a sample run of our proposed ULAWS with U = 40,L = 8,F = 3,T = 3. For the sake of exposition, all graphs are depicted using definition (22) and
embeddings are visuallzed in 2D Euclidean space using Principal Comp Is (PCA).

value implies a higher CSI correlation. We will provide the
design of ¢ in a later subsection.

Based on definition (11), we construct CSI correlation
graphs for every subband Gjﬁi"‘,Vf € F and independently
find intrinsic groups in each graph. Note that finding intrinsic
groups in a graph g;*m is equivalent to clustering g;i'" into
multiple subgraphs such that the weight among nodes in
each subgraph is relatively low. Next, we discuss our graph
clustering approach.

C. INTRINSIC USER GROUPING VIA GRAPH
CLUSTERING

We note that clustering or partitioning on graphs is itself an
NP-hard problem [31], [32]. Therefore, we first embed the
graph into Euclidean space and apply K-means clustering
next. In this way, cluster centers in K-means can act as
anchor points to evaluate the relative distance of multiple
nodes at the same time in Euclidean space. Although the
acquired clusters are not necessarily optimal, this step can
reduce the complexity from exponential to polynomial when
compared to directly performing clustering on graphs.

1) Embedding: Given Q;i’“ in subband f, let K be
the dimension of the target embedding space. We aim to
find a matrix Zr = {z;}ic4 € RU*K| whose i—th row
z’.r = [zf zfz,...,zf ] is the coordinate of user i in
K dlmensmnal Euclidean space, such that the Euclidean
distance between user pairs approximates the corresponding
weight value in g;im. ie.,

Vield,jeld (12)

We use Dy = {df }ijeu to denote the distance matrix.

We treat this as a metric MDS problem [33]. MDS and its
extensions aim to learn embeddings of the original data in
Euclidean spaces with a different dimension while preserving
its local and global structure [34]. Since it only requires
pairwise similarities as input, it is a suitable tool for our
tasks.

The metric MDS can be solved by the SMACOF algo-
rithm [35]. Given weights of g;i“‘, the embedding matrix Zy
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can be obtained by minimizing the stress function defined

@-TIEE) ) o
= 23((4) + () -24d)

<« +Te(zf nz) — 2 Te( 2] (04(2))) %)

where Tr(B) denotes the trace of matrix B, « is a constant

determined by weights of G™, and Oy = {Q{J}*J e Gl
is a matrix whose elements are defined by
“'J.l:' if i :’é z
- ifis#j
g = 4E9) (14)

0 otherwise,

is the auxiliary matrix and 1 = U -1 — 117, The intuition
of (13) is that when the squared difference between the
weight of two adjacent nodes and the distance of two nodes
in the Euclidean space is minimized, the embedding can
preserve the graph structure accurately.

We can see from (13) that the last two terms of the right-
hand side set the upper bound for the stress function and
depend on Z;. By setting the gradient of ¢ with respect to
Zs to zero, we can obtain:

3z (Zf)
2Z;

= 2MZs — 2(Qs(Zr))Zr = 0 (15)
which imply the optimal Z; that minimizes T given matrix
O must satify the condition Zf = U_]Qfo. This result
is used in the iterative process of the SMACOF algorithm,
whose overall procedure is summarized in Alg. 1.

Alg. 1 starts by randomly initializing the embedding
matrix Z2. In each iteration n > 0, we compute the distance
matrix D¢ based on current embedding Z7. Next, matrix Q%
can be obtained using D; Finally, we update the embedding
matrix Z¢ by using the following rule

' =u-'grzy (16)
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Algorithm 1: SMACOF Embedding Algorithm

Input: CSI correlation graph of subband f, g;*'"', target
embedding dimension K
Output: Embedding matrix Z; € RU*K
Randomly initialize Z)
while not converge do
n < iteration index
Compute distance matrix D} based on Zf
Compute matrix Qf based on D
Update Z¢ based on Qf using (16)
end

b o T B

Algorithm 2: K-means Clustering Algorithm
Input: Embedding matrix Z¢ for subband f
Output: Cluster centers { ,}L], indicators &

1: Randomly initialize cluster centers { ,}3;1
2. while not converge do

3 L r_argmlnre’}"uzf ﬂf" Vieid ceT
0, Otherwme
f Eieu :I"i
4: W, = 7— VieT
¢ E[Eu 1,4

5. end

known as the Guttman Transform [35]. We repeat this
procedure until convergence. Here, we view SMACOF as
converged either when it reaches maximum allowed iteration
or when the following condition is satisfied

Zﬁ+] Y

i 23 (17)

where A is a preset small constant.

2) Clustering: We next cluster the embedding result Z; to
identify T intrinsic groups, corresponding to T transmission
timeslots, by using K-means. K-means aims to cluster data
points into a specified number of clusters, represented by
their centroid, such that the sum of variations within clusters
is minimized [15]. This is given by

min 33 4| -

ield teT
R | :5{,e{0,1}, Vi, j,
ezs Yy =1, W

teT

(18)

where é}{f = 1 if user i is assigned to cluster f and 5{, =0

otherwise. Recall that [[{ € RX is the center of cluster .

We summarize our use of K-means as Alg. 2. We start with
a set of randomly initialized cluster centers. In each iteration,
we assign every user i to the cluster 1 whose center is the
nearest. After that, we update cluster centers by averaging
the coordinates of cluster users.
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With a proper embedding for which (12) holds, pairwise
Euclidean distance between two users can define their weight
value wf jin g;"m, which monotonically increases with the
magnitude of their CSI correlation coefficient. Thus, when
objective (18) is minimized, the obtained clusters have the
property that the CSI correlation between user pairs in the
same cluster is relatively low. Hence, they can be viewed
as intrinsic groups. We should note that these clusters are
merely based on CSI correlation in a single subband without
considering users’ channel gain and CSI correlations in other
subbands. Yet, they can provide insights into the intrinsic
structure of CSI correlation in each subband that are helpful
when estimating CCL

We repeat the clustering process to find intrinsic groups
over all subbands. We assume the #-th cluster in subband f
represents the intrinsic group of RB (f, f). Thereafter, based
on the assumption that only users belonging to the same
intrinsic group can be potential co-channel users, we estimate
the CCI that a user may experience in RB(f,f) according

to:
=L S o ()

JE“J#:

(19)

where -g- implies the average number of users being
associated with a RB by assuming uniform user association.

D. MANY-TO-ONE MATCHING BETWEEN USERS AND
RBS

In the literature, matching algorithms have been discussed
and implemented to address user grouping problems for wire-
less networks and showed superior performance [36], [15].
Inspired by prior works, we formulate the wideband schedul-
ing problem as a many-to-one matching game aiming to
associate users with RBs based on users’ estimated SINR
obtained with estimated CCI.

Specifically, we consider the set of users U, and the
set of RBs B, as two disjoint sets of selfish and rational
players to be matched with each other [37]. Each player
has its own preference list which ranks the players in its
opposing set from the most to the least favorite based on
their preference [28]. The preference of a user i € I over a
RB (f.1) € B is defined by user i’s estimated SINR if being
associated with RB (f, f), which can be computed according
to:

A
Tt 0 = (o Il + 1) (20)

On the other hand, the preference of an RB (f, f) for user
i is defined by the Euclidean distance between user i’s
embedding at subband f and the f-th cluster center:

w320~}

This means that RBs favor users close to their respective
cluster centers. Also, we define the relation operator > such
that i >,y j if and only if YP() > Y7 (j), which means
that RB (f, r) prefers user i over user j.

(21)
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Algorithm 3: Gale-Shapley Matching Algorithm

Input: Y5(f,0, YREG), Vi U, V(f, 1) € B
Output: Feasible matching function n
Initialize B; < B,ViclU,n(e) — @, YVecUUB

1:
2. while not converge do
3: fori=1toi=U do
x if 7(i) =9 and B; # @ then
5. e :argmixTius(f, 3]
- . (f.neb;
6 B; < Bi\ {(*. 1)
7 if |n(f*.t*)| < ms + then
8 n(f*, 1*) < n(f*, ") U {i}
0 n@) < {(*, )}
10: else
1 j* = argmin Tﬁﬁ* G*)
jen(f*.t*)
12: if > then
13 (¥, %) < n(f*. 1)\ {*} U (i)
14: 'I(f) = [(f*! f*)}
15: nG*) <« 0
16: end
17: end
18: end
19: end
20: end

If user i is associated with RB (f, ), we say user i and
RB (f, f) are matched with each other and form a matching
pair. The goal of our considered matching game is to find
a matching function 7 that map from U/ U B to 24YB such
that Vi € U and V(f,1) € B, the following conditions are
satisfied

1) n(i) €BU® and [n() | € {0, 1}
2) n(f.» <24 and |n(f, 1| < my,
3) (f,Henld < ien(,1

Condition 1) allows each user to either be matched with
one RB from B or remain unmatched. Condition 2) allows
each RB (f,f) to match with at most my; users from U,
where my, is the quota of RB (f, f). Condition 3) denotes
reciprocity, i.e., user i is matched with RB (f, 7) if and only
if RB (f, 1) is matched with user i.

A matching function 7 is stable if and only if there is
no blocking pair (i, (f, f)) with i & n(f,t) and (f, ) ¢ n(d)
such that (f,f) >; n(i) and i >y n(f,1), which means
that user ¢ and RB (f, f) prefer each other to the matching
partner they obtain. The efficient Gale-Sharpley algorithm
[30], or deferred acceptance algorithm [15], is a well-known
method for solving the optimal stable matching [38] problem.
We adopt Gale-Sharpley to address our matching game as
summarized in Alg. 3.

Since the matching result is obtained from the estimated
CCI instead of the actual CCI, we treat the matching
result as a preliminary grouping decision and design the
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corresponding post-processing procedure to improve the
performance in the next subsection.

E. GRAPH-BASED POST PROCESSING AND
REFINEMENT

To narrow the performance gap between the preliminary
scheduling decision obtained by Alg. 3 and the optimum
solution, we design a post-processing procedure consisting
of three efficient steps:

1) Clique Detection: The first step follows the idea of our
previous work [19]. For every P-RSG n(f,1), V(f,.H) € B
obtained by Alg. 3, we define an undirected weighted
graph g;{f; = (n(f, 1), Wﬁ'f) to capture the structure of CSI
dissimilarity among users in P-RSG (f,?), where n(f,1)

denote the set of users in P-RSG (f,#) and f';‘ =

{w’:“;}; Jen(f.ny 18 the set of weighted edges. Unlike previously
defined CSI correlatim? graphs. gy, V}f € F using Eq. (11),
here we define the weight by introducing a small threshold
€ as follows

i -

Note that wf; # 0 implies the CSIs of users i and j are
dissimilar (i.e., low correlation) in subband f and hence they
pose low mutual CCI when scheduled on the same RB,
whereas ,-‘-t = 0 implies the opposite. Although several
candidate functions can be used to define the weight value,
we adopt these threshold-based weights for simplicity. We
then define a diagonal degree matrix Ef*f = {e{";},- 5
RI7G-OXInGO1 for graph GE such that

() (i) <

0 otherwise,

(22)

gt leeu,k?e;' Wf; ifi=j 23)
2 0 otherwise.

The goal of this step is to uncover the maximal clique
(defined below) hidden in the CSI dissimilarity graph gff .
The motivation is that P-RSGs obtained by Alg. 3 could
still contain user pairs that exhibit high correlation while
ideally, the CSI correlation of any user pair in RSGs should
be kept low and thus their CSI dissimilarity graph is a clique
according to Eq. (22). By ensuring that gﬁ*’; is a clique,
every user in G will indeed enjoy low CCI in cochannel
MIMO access.

Definition 1: An undirected weighted graph is a cligue
if it is complete, or fully connected. That is, a graph G,
|G| > 1, is a clique if all its edge weights w;; £ 0,Vi,j € G
with i # j.

Ironically, finding the maximal clique in a graph is also
a NP-hard problem [39]. Existing works, e.g., [13], often
rely on exact algorithms such as MaxCliqueDyn to find the
maximum clique in CSI dissimilarity graphs. However, it
has exponential complexity in the worst case. Fortunately,
we find the following heuristic solution to be quite effective.
We first compute the degree matrices using (23). Next, we
iteratively remove the node of the lowest degree until the
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remaining nodes (i.e., remaining users in P-RSG (f, t)) form
a clique. This is because low-degree nodes are less likely to
form a clique than other nodes. We use a buffer set A to
store all nodes removed from the graph gﬁif. We repeat the
process until all CSI dissimilarity graphs gﬁff L Y(f,1) e B
become cliques.

2) Node Reassignment: To ensure every user can be
allocated one RB, in the second step we reassign the nodes
we removed in the previous step into P-RSGs aiming to
minimize their CCI to existing users. Note that it is possible
that some users may remain unmatched after executing
Alg. 3, depending on the quota of RBs. In that case, we
would add these users to the buffer set .4 and reassign them
as well.

We sequentially remove an user i from the buffer A and
add it to P-RSG (f*, r*), which has the minimum sum of

squared CSI correlations between user i and users in gﬁ'ﬂ*

plus normalized noise in subband f, i.e.,
.7 o’ Z 2
,1") = argmin ——= + p ( : ))
{f?f)eB hf 2 1

I

JjeGfs
which suggests that this P-RSG has maximum SINR for
user i. We repeat this process until A is empty.

3) Iterative Refinement: The final step aims to iteratively
refine the preliminary scheduling decision (P-RSGs) in
terms of sum rate until convergence. In each iteration, we
sequentially chose a user i from U/ and evaluate the sum-
rate improvement if it switches to another P-RSG (f, 1),
Y(f,1) € B by comparing the effective sum rate of users
in both P-RSG (f, ) and P-RSG #(i) (i.e., the RB user i

currently associate with), which can be calculated by
efore =n(i) ~f1
Rﬁm.m = ) R+ ) R;f
Jjen(n(i) jen(f.n
after _ B Bt
o= 2 B9+ Y B @
Jen(nn\ii) Jen(f.nuli

We then switch it to the P-RSG with the best sum-rate
improvement. In other words,
*y after __ pbefore
(7. 1) = argmax RyGS' ) — RyGGr
(f.neB

as long as its sum-rate improvement is positive. We repeat
this process until no single user can find a better P-
RSG to switch, or until a maximum number of allowed
iterations.

Alg. 4 summarizes the three post-processing steps above
and the overall ULAWS algorithm is presented in Alg. 5.

V. WEIGHT TRANSFORMATION FOR GRAPH
EMBEDDING

This section presents the design of our weight transformation
function ¥ used in (11). Without loss of generality, we
consider CSI correlations between users as ii.d. random
variables, with distributions determined by system settings
such as channel model and number of antennas. Thus,

VOLUME 5, 2024

Algorithm 4: Graph-Based Post-Processing

Input: CSI matrix H = {h{,r g}?éi‘;F, matching result »

Output: Scheduling decision X = {.1‘1-r ‘r}if‘}il‘tzl

Initialize A = {iln(i) = B}, X' <0, Vi,f,1

1:
2 for f=1tof=F do
3% fort=1tot=T do
4 gﬁ’f < CSI dissimilarity graph of users in #-th
cluster of subband f
5: while G is not a clique do
6 Remove node i* = arg mine;; from gﬁ"f
iegﬁ‘f
8 A <~ AU {i}
& end
o A< 1,viegh
10: end
11: end
12: while A # @ do
13: Randomly remove a user i from A
. o o :
14: (f 1 'r*) - a(rfgt)nelllgn ” ;_”2 + Z_.FEQ_F’T p (h{’ h{)
15: x?x'r’ «— 1

16: end
17: while not converge do
18: fori=1toi=U do

1 (1) = argmax RET ) — RO
ENeD before

. it R oy > ﬁqii)-(f*-r‘) then

21: £ e gl e

22: n(@) < {(F*, M)}

23: end

24: end

25: end

Algorithm 5: Unsupervised Learning Aided and
Matching-Based Wideband Scheduling, (ULAWS)

Input: CSI matrix H = {i, ,}/"1f_, .,
Output: Scheduling decision X = {ﬁ"}iﬁ;lpn
forf=1tof=Fdo
g;"m <— CSI correlation graph of subband f
Zs < embedding of Gf'™ obtained by Alg. 1
§ clustering users into T clusters by Alg. 2
end
Compute Y5(f, ), TRE(D), Vi € U, (f. 1) € B by (20)
21
n < preliminary scheduling decision by Alg. 3
8: Perform Post-processing and refinement using Alg. 4

oY kA e fa

by

G%5 ¥f € F defined in (11) are random and dense graphs
whose weights are non-zero and given by CSI correlations
among users.
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(a) Classic MDS (w] , = p? |, ¥i, j )

(b) MDS with weight transformation v

FIGURE 3. Scatter plot of embeddings In different schemes. Here we set U = 100
and L = 8. Each dot denotes one of (¥) palrs of users.

In practice, it is challenging to embed such graphs into
Euclidean space on a large scale while accurately preserving
their local structures. For example, Fig. 3 (a) shows the
embedding result of a CSI correlation graph Q}i’“, if we
apply classic MDS [33] without any weight transformation
(i.e., S P i,hf) in (11)). We can see that the distance
among users’ embeddings substantially deviates from their
weight value in g;*m since classic MDS fails to find a feasible
solution that satisfies (12) in the given Euclidean space. In
fact, the stress value (13) would remain high in such cases
when the embedding algorithm terminates.

The weight definition of a graph can severely alter the
result of graph embedding [40]. To further improve the
quality of graph embedding, we introduce a systematic trans-
formation method that finds a weight distribution suitable for
embedding using MDS. Through extensive experiments, we
found SMACOF is especially adept at embedding random
graphs with a negatively skewed weight distribution (i.e.,
most weights fall in high-value regions while only a few
weights have low values). Embeddings of such graphs tend
to uniformly spread on the surface of a hyperball when
SMACOF is converged. In this way, we can better utilize the
limited Euclidean space and can more accurately preserve
the graph structure. Therefore, our transformation function v
aims to map weights of arbitrary graphs into an “artificially-
created” distribution that is negatively skewed.

Without loss of generality, we create our target distribution
by uniformly sampling the function f(x) = e* — ¢**, where
« is a scaling factor, U? times in region [0,1]. This gives us
the distribution @ such that:

12 _
&= Ie;e [O,E,E,...,l]‘l—e_“ﬁ"] 25)

Our transformation function i : {pz(h{ ,hf)}\,r,- jeu — ©

apply the exact histogram matching [41] to map the given
set of squared CSI correlation {,02(!:1r ,lt",-r )vijey into target
distribution ©. Specifically, we first sort p2(K., i), Vi,j
in ascending order before assigning weights wf o Vi, j with
elements from © that match the index of their CSI

correlations. Because © is independently generated from
the CSI correlation set, it is invariant to different system

2250

parameters, implying our transform function can be applied
to arbitrary graphs.

To illustrate the improvement of embedding quality
brought by our designed transformation method, we first
evaluate the average distortion between a graph Q}“s and its

embedding Zy, using definition [42]:
1 |Wf\; - ‘1{;|
R s

icld jeld ij

(26)

On the other hand, since the ultimate goal of embedding
is to find intrinsic groups in which mutual CSI correlation
among users is relatively low, the absolute distortion does not
matter in our problem. Thus, we also adopt the correlation
coefficient between W;i’” and Dy as a metric to measure the
embedding quality. This can be given by:

Yieu (W{J N ‘V) (“{J o af)
\/Z:‘GU(M{;' = W)z\/zfeu(“{f = af)z

which measures the correlation between the original graph
structure and the structure in the embedding space. Here
w and & represent the average weight of edges in
g;fm and average distance between embeddings with given
Zs. Fig. 3 (b) shows that our transformation function
significantly improves the embedding compared with the
classic MDS, in terms of average distortion and coefficient
correlation.

(27)

VI. COMPLEXITY AND CONVERGENCE ANALYSIS
In this section, we analyze the complexity of the proposed
ULAWS in terms of the key system parameters.

We start from Alg. 1. For lines 4-5, it requires complexity
of O(KU?) to compute the distance matrix D? and auxiliary
matrix @f. The matrix multiplication involved in updating Z¢
using (16) in line 6 has a complexity of O(KU?). Thus, given
the maximum iteration count Ny, the overall complexity for
embedding a graph using Alg. 1 is of order O(N1KU?).

In each iteration of Alg. 2, we need complexity of O(KT)
to find the cluster center closet to user i’s embedding and thus
it requires O(KTU) complexity to update the cluster indicator
of all users in line 3. Also, it requires a complexity of
O(KTU) to update all cluster centers in line 4. Hence, given
the maximum iteration count N, the overall complexity to
cluster embeddings using Alg. 2 is of the order O(N,KTU).

In each iteration of Alg. 3, we only need O(1) in line 5
for users to propose to their most preferable RB since users’
preferences over RBs are computed beforehand. Also, it costs
O(U) to compare the proposing user and the least preferable
user currently matched with a RB when the number of users
matched with it exceeds the quota. Namely, in the worst case,
we need to run FTU iterations for users to propose every
possible RB until Alg. 3 terminates. Therefore, a complexity
of O(FTU?) is required to find a stable matching between
users and RBs using Alg. 3.
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TABLE 4. Time complexity of each algorithm used In ULAWS.

Algorithm Embedding (Alg. 1) | Clustering (Alg. 2)

Matching (Alg. 3)

Post-processing (Alg. 4) | Overall (Alg. 5)

Complexity | O(KU?) O(KTU?)

O(KTU?)

O(FTU?) O(FU(T + K))

1— smacor

Correlation coefficient
= a a
= o ™

=3
¥

0.0

i i ! - ; 4 i | i I

o 5 50 75 100 125 150 175 200
Iberation index

FIGURE 4. convergence of SMACOF (Alg. 1). Runtime: 0.028sec.

Alg. 4 checks the degree of all nodes in g;{i: to determine
if it is a clique. This step requires complexity of oWw?.
Also, removing the node and updating the graph has a
complexity of OQ(U). Thus, lines 5-8 need complexity of
O(U?) and the total cost for the first step of post-processing
(lines 2-11) is O(FTU?). In line 14, it needs O(FTU)
to evaluate the normalized noise plus CCI for all RBs.
Consequently, allocating remaining users in .4 for the second
step (lines 12-16) would cost O(FTU?). Finally, line 19 has
a complexity of O(FTU?) to find the optimal RB (f, f) for a
user i to switch to in terms of sum-rate improvement. As a
result, given the maximum iteration count N3, the complexity
of the third step (line 17-25) is O(N3FT UZ). Combining
all of the steps, the overall complexity for post-processing
using Alg. 4 is O(N3FTU?).

The complexity of Alg. 5 is analyzed as follows. First,
the complexity of computing a CSI correlation pair is O(L).
Thus, it requires O(LU?) to construct the CSI correlation
graph for a subband in line 2. Note that we reserve the value
of the computed CSI correlations for later procedures so as
to reduce unnecessary complexity. Now let us assume the
maximum iteration counts used in both Alg. 1, Alg. 2 and
Alg. 4 are set to be less than the number of users, i.e., N; <
U,i = 1,2,3. We further assume that the user number is
greater than the number of antennas, subbands and timeslots,
ie., U= L, F,T. Based on the complexity analysis above,
it requires complexity O(F(LU? + N1KU? + N>KTU)) =
O(FKU3) for line 1-5. Then, line 6 has a complexity
of (’)(FTUZ), which is the same as line 7 (ie., Alg. 3).
Combining lines 1-8, the overall complexity of ULAWS is
of order O(F(KU? + TU? + TU?)) = O(FU(T + K)). The
above complexity analysis is summarized in Table 4.

Next, we illustrate the convergence of steps used in
ULAWS (ie., Alg. 1, Alg. 2, Alg. 4) in Fig. 4, Fig. 5 and
Fig. 6 respectively. To generate results in these figures, we
executed ULAWS once for a problem instance with U = 200
users, . = 8 antennas, F = 8 subbands, T = 6 timeslot
and K = 200 embedding dimension. Moreover, we adopt
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FIGURE 5. convergence of K-means (Alg. 2). Runtime: 0.008sec.

Iteration index

FIGURE 6. Cconvergence of Post-processing (Alg. 4). Runtime: 0.081sec.

the correlation coefficient, the cost function of Eq. (18)
normalized by U and K and sum-rate, as the convergence
metric for Alg. 1, Alg. 2, Alg. 4, respectively, according to
their design objectives. Note that the execution of Alg. 3
is not included here since it is a deterministic algorithm.
We observe the growing performance improvement of both
Alg. 1 and Alg. 4. The reason is that in each iteration
we minimize the upper bound of stress function Eq.(13) in
Alg. 1, and we switch a user to another RB if and only if
the sum-rate difference is positive in the iterative refinement
step of Alg. 4.

In summary, it takes ULAWS 0.138 seconds to solve this
problem instance. The matching (0.013 seconds) and clus-
tering (0.008 seconds) steps have the lowest runtime while
embedding (0.028 seconds) and post-processing (0.081 sec-
onds) steps are the complexity bottleneck of ULAWS,
an observation corroborated by Table 4. Furthermore, we
observe that the algorithms under consideration converge
within 200 iterations, which verifies our guideline that the
practical maximum iteration count of Alg. 1, Alg. 2, Alg. 4,
can be set below the number of users.

VIl. NUMERICAL EXPERIMENTS

In this section, we provide performance evaluation for the
proposed wideband user grouping and scheduling algorithms
via numerical simulations.
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TABLE 5. Time complexity (worst case) and tion r d) of comparison algorithms.
Algorithm | Complexity 50 users | 100 users | 200 users | 300 users | 600 users | 900 users | 1200 users
ULAWS O(FU3(T + K)) | 00174 0.0506 0.1379 0.2709 1.006 2.196 3.537
SC-MS O(FU®) 0.0061 0.0185 0.0878 0.1565 0.876 1.941 3.385
CARAD o) 0.0379 0.1266 0.2638 0.6578 1.877 3.658 6.482
HNG O(FTU3) 0.0007 0.0034 0.0074 0.0168 0.066 0.147 0.258
MADOC O(FTU?) 0.0005 0.0010 0.0031 0.0067 0.044 0.088 0.160
HRS O(FTU?) 0.0003 0.0007 0.0026 0.0052 0.025 0.050 0.095

A. SIMULATION SETTINGS

Unless otherwise stated, we consider one BS equipped with
L = 8 antennas serving U = 600 users. Users are uniformly
distributed within a circular region centered at a BS with
a radius of 50 m. Users are served with radio resources
consisting of F' = 30 subbands and T = 5 timeslots, leading
to a sum of 150 RBs. The CSI 3D-array H € CUXI*F jg
generated randomly, considering both path-loss, shadowing
effect, and Rayleigh fading, with elements independent from
each other. Note that since the cumulative time of considered
timeslots is shorter than channel coherence time, channels
can be viewed as quasi-static. The noise power is set to
be 02 = 0.01 and bandwidth B = 5 MHz. Users’ rate
requirement is set as their achievable data rate in the subband
with the lowest SNR. We use a correlation threshold € =
0.07 in the proposed ULAWS. The target distribution used
for weights transformation in ULAWS adopts a scaling factor
of ¢ =4.5.

B. BENCHMARKS

We compare our proposed ULAWS with the following
approaches applicable to wideband MU-MIMO scheduling
problems with fixed RBs.

1) Spectral Clustering-aided Multi-band Scheduling (SC-
MS) [19].

2) MADOC [9]: This method initialized every RB with
an user with the highest SNR in the corresponding subband.
In later iterations, it picks the user i with the highest SNR
in all possible subbands and then assigns the user to the
RB (f*,r*) in the selected subband f* such that t* =

i aux ot 1.
arg min, .7 max;clf X; Pl L Ao )

3) CARAD [21]: This scheme first matches users with
RB based on their preference lists through the Gale-
Shapley algorithm [30]. Next, it iteratively searches for
swap-blocking user pairs and swaps their matching until
there is no swap-blocking user exist or the maximum allowed
iterations T, = U is reached.

4) Heuristic algorithm (HRS) [12]: This algorithm starts
with FT empty RBs. In each iteration, HRS sequentially
adds an user i to RB (f*, t*) such that the CCI between user
i and existing users in RB (f*, t*) is the minimum among
FT RBs. Thus, HRS has a lower bound of (1 — 1/k) times
the optimal value for a general MAX k-CUT problem [43],
where k is the number of clusters to assign.

5) Hungarian algorithm (HNG) modified from [44]: This
matching algorithm initializes with FT empty RBs. In each
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iteration, HNG constructs a cost matrix C = {c¢; (r.n}i,r.) €
RUXFD where ci sy, Vi € U,Y(f,1) € B is the CCI
between user i and existing users in RB (f, ). Based on C,
Hungarian algorithm optimally assigns FT users to RBs,
to minimize the sum matching cost. The process repeats
until all U users are assigned to an RB, taking [%1
iterations.

6) Round Robin (RR): 1t iteratively assigns an user from
the user set, one at a time, to a RB in sequential order until
the user set is empty. Complexity: O(U).

The complexity and execution runtime of these com-
parison algorithms are summarized in Table 5. We can
observe that all compared schemes have polynomial worst-
case time complexity. As illustrated in Table 5, the
proposed ULAWS and SC-MS [19] have a similar com-
plexity. Scheduling scheme based on swap-matching, i.e.,
CARAD [21], has the highest complexity while heuris-
tic schemes, i.e., MADOC [9] and HRS [12], have the
lowest complexity. In our runtime results, all algorithms
are implemented with Python 3.6.8 and are executed on
a Windows 10 laptop with Intel i7-9750H CPU and
16GB RAM. Although runtime in real systems depends
on various factors such as the optimization of codes, the
hardware used, and the choice of programming language and
operation system, our result can provide insights into the
scalability and relative complexity of different scheduling
methods.

C. PERFORMANCE METRICS

The sum rate of users (i.e., throughput of the system) is
widely used in the literature [45], [46] to evaluate the
performance of scheduling policies. In this work, we consider
two types of sum rate 1) achievable sum rate according to
Eq. (7) and 2) effective sum rate using the definition of
Eg. (9).

Note, however, that a scheduling policy aiming to
maximize the sum rate may not always be reasonable
in terms of system design. For example, due to the
nature of the SINR function, very often the sum rate
will be higher if we allocate an RB to one user with
a decent channel condition rather than to multiple users
with moderate channel conditions. This poses a fairness
issue. Hence, in addition to the sum rate, we also adopt
Jain’s fairness index [47] as our metrics. The Jain fair-
ness of data rates between users allocated to RB(f,r) is
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(Zseu-‘{'t) ;eu(f‘erf)

when Jy; = 1, the data rates of every user in the RSG are
exactly the same.

Other than fairness, we also would like to see how
reasonable a scheduling decision is. To this end, we consider
SINR loss to measure the ratio of noise plus CCI that users
would experience given the scheduling decision and the noise
they would experience if they were scheduled to the RB
with the best channel gain without co-channel users. Such
SNR loss can be measured by:

th" + X p 2(1;" hf)

o)

According to (29), 0 dB loss corresponds to the ideal case
when all users are scheduled to their most preferred subband
with fully orthogonal co-channel users and zero CCL

e[0,1].

Jro = (28)

dB (29)

1
7 > 10log
ield

D. PERFORMANCES UNDER DIFFERENT SYSTEM
SCENARIOS

Based on numerical tests, we now present the performance of
scheduling algorithms in three different scenarios described
below.

1) Case 1 (Achievable Rate for Equal and Unit CSI Gain):
We let CSI amplitudes be the same for every user in every
subband while the phase of CSIs remains random. In this
way, users’ sum rate will only be affected by CCI from co-
channel users according to (5). This case helps to show how
well different algorithms can form RSGs in each subband
such that CSI correlations among users in the same group
are low. It also represents the scenario where channel gain
variation across different subbands is trivial.

2) Case 2 (Achievable Rate for Heterogeneous CSI Gains):
We consider frequency-selective CSIs such that users’ sum
rate will be affected by both channel gain and CCI from co-
channel users. This case can represent the scenarios where
user channel gains and phases vary in different subbands.

3) Case 3 (Effective Rate for Heterogeneous Gains): Here
channels are frequency-selective. However, in contrast to
the previous two cases, we adopt the effective rate as the
metric to eliminate rates contributed by users whose rate
requirements are not met. Note that we apply the same rule
to define the effective SINR loss (i.e., the effective SINR
loss of an user is O if its requirement is not met).

Fig. 7 illustrates the resulting sum rate of all schemes in
three considered scenarios. We can see that the proposed
ULAWS has the highest sum rate in all cases. This implies
that, in RSGs formed by ULAWS, users have acceptable CCI
and are scheduled at their preferred subband. In contrast,
MADOC and RR perform relatively worse in Case 3 since
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FIGURE 7. Users’ sum rate of all schemes In three considered scenarios.
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FIGURE 8. Average SINR loss of all schemes in three considered scenarios.

they fail to find a solution to separate users with strong CCI
in MIMO groups, leading to some failures to satisfy the rate
requirement of certain users and the loss of overall effective
rate. We also observe that the performance of SC-MS in
Case 2 is not as good as in the two other cases by comparison
since SC-MS only considers user CSI correlations regardless
of their channel gain. As expected, SC-MS performs the
best in the Case I among the three scenarios. In contrast,
CARAD and MADOC perform relatively better in Case 2
than Case I. This is because their scheduling mechanisms
favor users with good channel gain while such practice is not
helpful in the Case I, where channel gains of all subbands
are assumed equal.

Fig. 8 compares the SINR loss in various scenarios.
ULAWS shows the lowest SINR loss in all cases, because
it forms RSGs for which noise plus CCI experienced by
users does not deviate much from the lowest possible noise
they experience. Generally, all the tested schemes exhibit
high SINR loss in Case 2 due to the effect of channel gain
variation in different subbands, whereas all CSI gains are
equal in Case 1. In Case 3 only the SINR loss of satisfactory
users is counted. As expected, We find that the SINR loss
of SC-MS is relatively high in Case 2. Thus, even if user
CCI in the same RSG obtained by SC-MS is low in Case 2,
noises severely degrade SINR loss when users are assigned
to less favorable subbands.

Fig. 9 shows distributions of the Jain index of all schemes
in all scenarios. The proposed ULAWS achieves the highest
average Jain index in all test cases. This confirms that
ULAWS can achieve a high sum rate while preserving
users’ fairness. Both CARAD HNG, HRS and MADOC
have similar performance in Jain index. Additionally, we
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FIGURE 10. Users’ sum rate for different numbers of users in different schemes.

can see that because a user’s data rate is 0 in Case 3 if
its requirement is not met, the variation of data rate among
users in the same RSG tends to be large, generating a much
smaller Jain index in all schemes. Although SC-MS has the
second-highest sum rate, as shown in Fig. 7, it has the lowest
Jain index in Case 3. This means that its high sum rate is
mostly contributed by users scheduled on the subband with
decent channel gain, whereas data rate of users scheduled on
unfavorable subbands is greatly degraded, creating a large
variation of data rate in RSGs.

E. TESTING SYSTEM PARAMETERS
The main system parameters that affect the performance of
scheduling algorithms are examined as follows.

1) User Number: We first test the performance of all
schemes by increasing the user number while fixing the
number of RBs. We can see from Fig. 10 that system’s
sum rate generally increases with the user number. CARAD,
HNG, and HRS have similar performance in all cases.
However, their sum rates start to decrease after U = 900.
Such behavior is related to the nature of the sum rate and
the constraints of each scheme. As long as the CCI remains
low among users in each RSG, we can increase the sum rate
by adding more users. However, for a given number of RBs
(i.e., RSGs), when the number of users exceeds a certain
level (e.g., U = 900), RSGs become over-populated such
that both CARAD, HNG and HRS can not find a scheduling
decision to separate users with high CSI correlation and
CClI in different RBs within their design rules. As a result,
user sum rate decreases due to the increased CCI within the
RSGs.
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On the other hand, both ULAWS, SC-MS, MADOC and
RR show no decline in sum rates for U < 1500 users, albeit
for different reasons. Since RR forms RSGs randomly, users
suffer from severe CCI in all cases, even for very small
numbers of users. Hence, its achieved sum rate does not
show an elbow point as for HRS and HNG and CARAD.
The is also the case for MADOC. In contrast, the sum rates
of both ULAWS and SC-MS increase well beyond U = 900
because users in RSGs they formed do not suffer severe
CCIL. Compared with CARAD, HNG and HRS, ULAWS
and SC-MS achieve a better overall balance by leveraging
the combination of graph clustering and post-processing
although their methodologies are not the same. Hence, they
can still generate scheduling decisions to separate users with
high CCI even for large user numbers, e.g., U > 900,
whereas CARAD, HNG and HRS fail to do so. This result
illustrates that ULAWS is more scalable for a larger number
of users and more robust. That being said, sum rate will
eventually decline when a sufficiently high number of users
leads to severe CCL

2) Noise Level Effect: Fig. 11 shows the resulting sum
rates at different noise power levels under Additive White
Gaussian Noise (AWGN). Generally, users’ sum rate drops
with increasing noise power. However, the performance of
MADOC did not change much with the noise level. This
implies the performance bottleneck of MADOC is CCI
among users instead of noise power. In contrast, ULAWS is
effective in adapting to different noise powers and performs
relatively well in low-noise scenarios. On the other hand, the
performance of SC-MS is relatively low in the highly noisy
regime, but its performance improves when additive noise
diminishes. This is because the CCI effect is more dominant
when noise is low but SC-MS only aims to form RSGs with
low CCI regardless of their channel gain.

3) Rate Requirement: Fig. 12 illustrates the effect of rate
requirement on outage rate (i.e., ratio of users whose rate
requirements are not met). This metric is highly correlated
to the effective sum rate. The x-axis indicates the level
of rate requirement compared to the original settings (e.g.,
1.5 means 50% more). We observe that the outage rate
grows with the rate requirement. Moreover, our ULAWS
achieves a lower outage rate under high-rate requirements.
As corroborated by Fig. 8, since the SINR losses of users
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FIGURE 13. Users’ sum rate for different numbers of antennas.

in RSGs obtained by ULAWS is low, it is more likely to
satisfy users’ rate requirement than CARAD, HRS and HNG,
especially when the rate requirement is high.

However, when the rate requirement is low, ULAWS
satisfies fewer user than either CARAD, HNG or HRS. This
can be explained as follow. ULAWS’s matching step and its
clique-finding process aim to find sets of users suitable to
be scheduled together at their preferred subband to mitigate
their SINR loss. However, the outcome does not necessarily
lead to the highest user satisfaction ratio for the low-rate
requirement scenario. Since ULAWS does not specifically
consider users’ rate requirements, a user may be assigned
to a less favorable subband to avoid causing high CCI at its
favorite subband, thereby failing to meet its rate requirement.
On the other hand, both HRS and HNG treat users equally
to minimize the sum effect of noise and CCI experienced
by all users in a greedy manner. Without considering the
trade-off when selecting co-channel users, this can work well
against low rate requirement but fails to satisfy most users
under high rate requirement due to the greedy nature of the
solution.

4) Antenna Number: We observe from Fig. 13 that gener-
ally, users’ sum rate increases with the number of antennas.
This is because increasing antenna numbers can reduce CSI
correlation among users, thereby leading to lower CCIs and
higher data rate. However, this rate improvement gradually
saturates as the number of antennas grows asymptotically
large. We conclude that ULAWS performs well in both
scenarios with higher and lower antenna numbers. Note that
in contrast to Fig. 10, the sum rate of MADOC indeed
increases with antenna number. This verified our view that
the performance bottleneck of MADOC is CCI among
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users. On the other hand, we observe the sum rate of SC-
MS saturates after L > 32. This implies the performance
bottleneck of SC-MS lies in the noise level instead of user
CCI because SC-MC creates RSGs based on users’ channel
correlation without considering their SNR.

Vill. CONCLUSION

To explore and utilize the promised performance gain of
MU-MIMO in wideband wireless systems, users should
be scheduled on RB by jointly considering their chan-
nel characteristics across multiple subbands. To address
this challenging NP-hard problem, we develop a novel
Unsupervised Learning Aided Wideband Scheduling algo-
rithm (ULAWS). Specifically, we first consider the
scheduling between users and RBs as a matching game aimed
at forming Preliminary Resource Sharing Groups (P-RSGs)
based on users’ estimated SINR as a way to provide a broader
perspective of the problem. We suggest to apply SMACOF
for graph embedding and to utilize the classic K-means
clustering algorithm to find intrinsic groups based on CSI
correlation among users. We then use the obtained intrinsic
groups to estimate user CCI in the matching process. We
find a stable matching of the formulated game (i.e., P-RSGs)
using the Gale-Sharpley algorithm. Finally, a universal
weight transformation function enhances the quality of
graph embedding for arbitrary graphs. Our numerical results
show that the proposed ULAWS method for MU-MIMO
user scheduling and resource allocation outperforms other
benchmark schemes in terms of sum rate, fairness and outage
rate, under different system parameters and scenarios.

REFERENCES

[1] J. G. Andrews et al., “What will 5G be?” IEEE J. Sel. Areas Commun.,
vol. 32, no. 6, pp. 1065-1082, Jun. 2014.

[2] E. Larsson, E Tufvesson, O. Edfors, and T. Marzetta, “Massive MIMO
for next generation wireless systems,” JEEE Commun. Mag., vol. 52,
no. 2, pp. 185-195, Feb. 2014.

[3] Y. Chen, Y. Wu, Y. T. Hou, and W. Lou, “mCore: Achieving sub-
millisecond scheduling for 5G MU-MIMO systems,” in Proc. IEEE
40th Conf. Comput. Commun., 2021, pp. 1-10.

[4] E. Castafieda, A. Silva, A. Gameiro, and M. Kountouris, “An
overview on resource allocation techniques for multi-user MIMO
systems,” JEEE Commun. Surveys Tuts., vol. 19, no. 1, pp. 239-284,
Ist Quart., 2017.

[5] C. Singhal and S. De, Resource Allocation in Next-Generation
Broadband Wireless Access Networks. Hershey, PA, USA: IGI Global,
2017.

[6] A. Goldsmith, S. Jafar, N. Jindal, and S. Vishwanath, “Capacity limits
of MIMO channels,” IEEE J. Sel. Areas Commun., vol. 21, no. 5,
pp. 684-702, Jun. 2003.

[7] J. Dai and S. Wang, “Clustering-based spectrum sharing strategy for
cognitive radio networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 1,
pp. 228-237, Jan. 2017.

[8] M. Alkhaled, E. Alsusa, and W. Pramudito, “Adaptive user grouping
algorithm for the downlink massive MIMO systems,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), pp. 1-6, 2016.

[9] K.-U. Storek and A. Knopp., “Fair user grouping for multibeam
satellites with MU-MIMO precoding,” in Proc. IEEE Global Commun.
Conf., 2017, pp. 1-7.

[10] X. Yang, S. Zhang. B. Gao, and J. Cao, “A low complexity joint
user grouping and resource allocation algorithm in massive MIMO
systems,” in Proc. IEEE 19th Int. Conf. Commun. Technol. (ICCT),
2019, pp. 914-919.



HSU AND DING: UNSUPERVISED LEARNING FOR RESOURCE ALLOCATION AND USER SCHEDULING

(1

[12]

[13]

(14

[15]

[16]

(7

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

2256

0. Saatlou and S. D. Blostein, “User selection for MU-MIMO based
on channel estimation and spatial orthogonality,” in Proc. IEEE 34th
Annu. Int. Symp. Pers., Indoor Mobile Radio Commun. (PIMRC),
2023, pp. 1-6.

L. Liang, S. Xie, G. Y. Li, Z. Ding, and X. Yu, “Graph-based resource
sharing in vehicular communication,” IEEE Trans. Wireless Commun.,
vol. 17, no. 7, pp. 4579-4592, Jul. 2018.

B. Ahmad, D. G. Riviello, A. Guidotti, and A. Vanelli-Coralli, “Graph-
based user scheduling algorithms for LEO-MIMO non-terrestrial
networks,” in Proc. Joint Eur. Conf. Netw. Commun. 6G Summit, 2023,
pp. 270-275.

Y. Xu, G. Yue, and S. Mao, “User grouping for massive MIMO in
FDD systems: New design methods and analysis,” IEEE Access, vol. 2,
pp. 947-959, 2014

J. Cui, Z. Ding, P. Fan, and N. Al-Dhahir. “Unsupervised
machine learning-based user clustering in millimeter-wave-NOMA
systems,” [EEE Trans. Wireless Commun., vol. 17, no. 11,
pp. 7425-7440, Nov. 2018.

C. Feres and Z. Ding, “An unsupervised learning paradigm for user
scheduling in large scale multi-antenna systems,” IEEE Trans. Wireless
Commun., vol. 22, no. 5, pp. 2932-2945, May 2023.

Z. Cheng. J. Yang, Z. Wei, and H. Yang, “User clustering and
scheduling in UAV systems exploiting channel correlation,” in Proc.
IEEE 30th Annu. Int. Symp. Pers., Indoor Mobile Radio Commun.
(PIMRC), 2019, pp. 1-6.

R.-F. Trifan, R. Lerbour, G. Donnard, and Y. L. Helloco,
“K-means MU-MIMO user clustering for optimized precoding
performance.” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
2019, pp. 1-5.

C.-H. Hsu, C. Feres, and Z. Ding, “Spectral clustering aided user
grouping and scheduling in wideband MU-MIMO systems,” in Proc.
IEEE Int. Conf. Commun., 2023, pp. 4292-4297.

B. Makki, T. Svensson, and M.-S. Alouini, “Throughput analysis
of large-but-finite MIMO networks using schedulers,” in Proc. IEEE
Wireless Commun. Netw. Conf. (WCNC), 2018, pp. 1-6.

1. Zhao, Y. Lin, K. K. Chai, M. Elkashlan, and Y. Chen, “Matching
with peer effects for context-aware resource allocation in D2D
communications,” [EEE Commun. Lett., vol. 21, no. 4, pp. 837-840,
Apr. 2017.

B. Huang, C. Zhang, X. Bai, I. Li, M. Sun, and W. Kong, “Energy-
efficient resource allocation for machine-type communications in
smart grid based on a matching with externalities approach,” IEEE
Access, vol. 7, pp. 104354-104364, 2019.

Y. Meng, Z. Zhang, Y. Huang, and P. Zhang, “Resource allocation
for energy harvesting-aided device-to-device communications: A
matching game approach,” IEEE Access, vol. 7, pp. 175594-175605,
2019.

N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045-5060, Nov. 2006.

E. Bjornson and E. Jorswieck, *“Optimal resource allocation in
coordinated multi-cell system,” Found. Trends Commun. Inf. Theory,
vol. 9, nos. 2-3, pp. 113-381, 2013.

T. K. Y. Lo, “Maximum ratio transmission,” IEEE Trans. Commun.,
vol. 47, no. 10, pp. 1458-1461, Oct. 1999.

R. Hou, K. Huang, and K.-S. Lui, “An overlapping coalition
formation game based multicast scheme in Backhaul-limited small
cell networks,” JIEEE Trans. Broadcast., vol. 66, no. 3, pp. 647-655,
Sep. 2020.

X. Ye and L. Fu, “Joint MCS adaptation and RB allocation in
cellular networks based on deep reinforcement learning with stable
matching,” IEEE Trans. Mobile Comput., vol. 23, no. 1, pp. 549-565,
Jan. 2024.

[29]

[30]

[31]

[32]

[33]

341

[35]

[36]

[371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

Z. Yang, L. Cai, and W.-S. Lu, “Practical scheduling algorithms for
concurrent transmissions in rate-adaptive wireless networks,” in Proc.
IEEE 29th Conf. Comput. Commun. (INFOCOM), 2010, pp. 120-128.
A. E. Roth and M. A. O. Sotomayor, Two-Sided Matching: A
Study in Game-Theoretic Modeling and Analysis (Econometric Society
Monographs). Cambridge, U.K.: Cambridge Univ., 1990.

H. Jia, S. Ding, and X. Xu, “The latest research progress on spectral
clustering,” Neural Comput. Appl., vol. 24, pp. 1477-1486, Jun. 2014.
J. Shi and J. Malik, “Normalized cuts and image segmentation,” JEEE
Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888-905,
Aug. 2000.

W. 8. Torgerson, “Multidimensional scaling of
ity,” Psychometrika, vol. 30, no. 4, pp. 379-393, 1965.
D. Chen, B. Fan, C. Oliver, and K. Borgwardt, “Unsupervised
manifold alignment with joint multidimensional scaling,” in Proc.
11th Int. Conf. Learn. Represent., pp. 1-24, 2023. [Online]. Available:
https://openreview.net/forum?id=1UpjsrKItz4

J. de Leeuw and P. Mair, “Multidimensional scaling using majoriza-
tion: SMACOF in R.” J. Statist. Softw., vol. 31, no. 3, pp. 1-30, 2009.
X. Shi, D. Wu, C. Yue, C. Wan, and X. Guan, “Resource allocation
for covert communication in D2D content sharing: A matching game
approach,” IEEE Access, vol. 7, pp. 72835-72849, 2019.

B. Di, S. Bayat, L. Song, and Y. Li, “Radio resource allocation
for downlink non-orthogonal multiple access (NOMA) networks
using matching theory,” in Proc. IEEE Global Commun. Conf.
(GLOBECOM), 2015, pp. 1-6.

D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” Amer. Math. Mon., vol. 69, no. 1, pp. 9-15, 1962. [Online].
Available: http://www.jstor.org/stable/2312726

Q. Wu and J.-K. Hao, “A review on algorithms for maximum clique
problems,” Eur. J. Oper. Res., vol. 242, no. 3, pp. 693-709, 2015.

I. Gallagher, A. Jones, A. Bertiger, C. E. Priebe, and
P. Rubin-Delanchy, “Spectral embedding of weighted graphs,™ J.
Amer. Statist. Assoc., pp. 1-10, Jul. 2023. [Online]. Available:
https://doi.org/10.1080/01621459.2023.2225239

J. P. Rolland, V. Vo, B. Bloss, and C. K. Abbey, “Fast algo-
rithms for histogram matching: Application to texture synthesis,” J.
Electron. Imag., vol. 9, no. 1, pp. 39-45, 2000. [Online]. Available:
https://doi.org/10.1117/1.482725

F. Sala, C. De Sa, A. Gu, and C. Re, “Representation
tradeoffs for hyperbolic embeddings,” in Proc. 35th Int. Conf.
Mach. Learn., vol. 80, 2018, pp. 4460-4469. [Online]. Available:
https://proceedings.mir.press/v80/salal 8a.html

R. Y. Chang, Z. Tao, J. Zhang, and C. C. J. Kuo, “Multicell
OFDMA downlink resource allocation using a graphic frame-
work,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 34943507,
Sep. 2009.

A. A. Khan, R. S. Adve, and W. Yu, “Optimizing downlink resource
allocation in multiuser MIMO networks via fractional programming
and the hungarian algorithm,” IEEE Trans. Wireless Commun., vol. 19,
no. 8, pp. 5162-5175, Aug. 2020.

R. Tian, Y. Liang, X. Tan, and T. Li, “Overlapping user grouping
in IoT oriented massive MIMO systems,” [EEE Access, vol. 5,
pp. 14177-14186, 2017.

A. C. Cirik, K. Rikkinen, and M. Latva-aho, *“Joint subcarrier
and power allocation for sum-rate maximization in OFDMA full-
duplex systems,” in Proc. IEEE 81st Veh. Technol. Conf., 2015,
pp. 1-5.

R. Jain, D. Chiu, and W. R. Hawe, “A quafntitative measure
of fairness and discrimination for resource allocation in shared
computer systems,” Eastern Res Lab, DEC Res., Hudson, MA, USA,
Rep. TR-301, 1984.

similar-

VOLUME 5, 2024



