N)
)
Check for
updates

Intent and Extent: Computer Science Concepts and Practices
in Integrated Computing

LAUREN E. MARGULIEUX, YIN-CHAN LIAO, and ERIN ANDERSON, Georgia State
University, Atlanta, GA, USA

MIRANDA C. PARKER, San Diego State University, San Diego, CA, USA

BRENDAN D. CALANDRA, Georgia State University, Atlanta, GA, USA

Integrated computing curricula combine learning objectives in computing with those in another discipline,
like literacy, math, or science, to give all students experience with computing, typically before they must
decide whether to take standalone CS courses. One goal of integrated computing curricula is to provide an
accessible path to an introductory computing course by introducing computing concepts and practices in
required courses. This study analyzed integrated computing curricula to determine which CS practices and
concepts are taught, how extensively the curricula are taught, and, by extension, how they might prepare
students for later computing courses. The authors conducted a content analysis to examine primary and lower
secondary (i.e., K-8) curricula that are taught in non-CS classrooms, have explicit CS learning objectives (i.e.,
CS+X), and that took 5+ hours to complete. Lesson plans, descriptions, and resources were scored based on
frameworks developed from the K-12 CS Framework, including programming concepts, non-programming CS
concepts, and CS practices. The results found that curricula most extensively taught introductory concepts
and practices, such as sequences, and rarely taught more advanced content, such as conditionals. Students
who engage with most of these curricula would have no experience working with fundamental concepts, like
variables, operators, data collection or storage, or abstraction in the context of a program. While this focus
might be appropriate for integrated curricula, it has implications for the prior knowledge that students should
be expected to have when starting standalone computing courses.

CCS Concepts: » Social and professional topics — K-12 education; Computing literacy; Computational
thinking;

Additional Key Words and Phrases: Integrated computing, computational thinking, CS+X, content analysis,
curricula analysis, K-12 computer science education, primary school computer science education

ACM Reference format:

Lauren E. Margulieux, Yin-Chan Liao, Erin Anderson, Miranda C. Parker, and Brendan D. Calandra. 2024.
Intent and Extent: Computer Science Concepts and Practices in Integrated Computing. ACM Trans. Comput.
Educ. 24, 3, Article 35 (August 2024), 23 pages.

https://doi.org/10.1145/3664825

For the data created from this analysis, please find the complete dataset at https://doi.org/10.5061/dryad.j6q573nnt

This work was supported by the National Science Foundation under grant #1941642.

Authors’ Contact Information: Lauren E. Margulieux (Corresponding author), Georgia State University, Atlanta, GA, USA;
e-mail: Imargulieux@gsu.edu; Yin-Chan Liao, Georgia State University, Atlanta, GA, USA; e-mail: yliao3@gsu.edu; Erin
Anderson, Georgia State University, Atlanta, GA, USA; e-mail: eanderson20@gsu.edu; Miranda C. Parker, San Diego State
University, San Diego, CA, USA; e-mail: mcparker@sdsu.edu; Brendan D. Calandra, Georgia State University, Atlanta, GA,
USA; e-mail: bcalandra@gsu.edu.

(@Nolel
This work is licensed under a Creative Commons Attribution-NonCommercial International 4.0 License.

© 2024 Copyright held by the owner/author(s).
ACM 1946-6226/2024/8-ART35
https://doi.org/10.1145/3664825

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

https://orcid.org/0000-0002-8800-2398
https://orcid.org/0000-0001-8854-7809
https://orcid.org/0009-0003-1699-7474
https://orcid.org/0000-0003-0066-2664
https://orcid.org/0000-0001-9216-9353
https://doi.org/10.1145/3664825
https://doi.org/10.5061/dryad.j6q573nnt
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.1145/3664825
lacson
Sticky Note
A corrigendum has been issued for this paper. Please see https://dl.acm.org/doi/10.1145/3664825#supplementary-materials

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3664825&domain=pdf&date_stamp=2024-08-19

35:2 L. E. Margulieux et al.

1 Introduction

Integrated computing applies computer science (CS) knowledge and skills, such as computational
thinking and programming, in non-CS classrooms [29, 31, 46]. For example, students might create
visualizations of fractions through programming as they learn about fractions in math [41]. A
major motivation behind integrated computing is to increase access to computing education (e.g.,
[40, 46]). By integrating computing experiences into the school day, students no longer need to
rely on informal experiences, like summer camps, after-school programs, or family and friends, for
low-stakes introductions to CS. Equal access to these out-of-school resources is often examined
as a barrier to equal participation in computing (e.g., [17, 28]). In addition, prior experience with
programming is arguably the best predictor of performance in introductory CS classrooms [10, 36].
Integrated computing serves to give all students prior experience with programming to support
their early learning of computing concepts.

Integrating computing into non-CS formal education, especially in primary and secondary (i.e.,
K-12) education, serves multiple goals. One potential goal is to make computing tools and solutions
accessible to teachers and students in non-CS classrooms to improve instruction and learning in
other disciplines [20, 30, 46]. Another potential goal is to give all students experience with computing,
especially early exposure in primary/elementary school, so that they can develop computational
literacy and make informed decisions about whether to pursue standalone CS classwork [29, 31]. To
complement a previous analysis that analyzed how integrated activities served the first goal [20],
the current analysis focused on the second goal by exploring how integrated computing teaches
CS. The study examined integrated computing curricula to determine how they teach CS concepts
and practices, as defined in the K-12 CS Framework, in primary and lower secondary (i.e., K-8)
classrooms.

It is important to acknowledge that these are not the only two potential goals of integrated
computing. Another goal is introducing basic computing ideas to new audiences to provide a
new medium for discovery or self-expression. Yet another is to develop a CS identity in young
learners and enthusiasm for future CS learning, inside or outside of standalone CS classrooms.
Thus, the goals of the curricula analyzed in this study might not align with the goal of this study-to
explore how integrated computing curricula teach CS. Still, these curricula are often treated as CS
instruction by administrators, policymakers, and teachers of future standalone CS courses. This
categorization persists despite the need for these curricula to primarily serve non-CS learning as
part of instruction in other disciplines, which are often tied to standardized testing, like language
arts and math. Thus, the point of this study is not to criticize the goals or products of curricula
designers but instead to examine how well the curricula serve a major goal that others place
on them.

2 Related Work
2.1 Expanding CS Education and Integrated CS

The past decade has seen fast growth in demand for CS education. The discipline has transformed
from the “dismal state” that researchers found it in the 2010s to a significant increase in students
taking CS courses, numerous teacher certification programs, and districts and states making CS
a graduation requirement ([16], p. 146). Much of this comes from an increased understanding of
the importance of CS in K-12 education. Vogel and colleagues [44] compiled 161 arguments for
CS education in K-12 schooling, including those arguing that CS education equips “individuals
with the specific skills needed to secure a job in the growing technology sector,” promotes “social
justice impacts and the dismantling of social hierarchies,” and underlies “every industry and
discipline” (p. 611). The researchers rooted these 161 arguments within seven core impact areas,

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:3

which became the basis for the CS Vision Framework that motivates many current K-12 CS education
initiatives [38, 44].

As the relevance of CS education has expanded, the prevalence of CS education has expanded
throughout K-12 education [13]. Teaching CS to young students has particularly grown due to
advances in the field, such as the development of block-based coding languages [4], evidence of
children’s cognitive development showing that students as young as four can understand computing
concepts [8], and an awareness of the universality of computational thinking [47] and computational
literacies [4, 16]. Broadening participation in computing also spurred primary grade initiatives,
such as addressing the gender gap before it widens in middle school [42] or helping students
develop an interest in CS before they start picking after-school activities and electives in lower
secondary/middle school [6]. In fact, some researchers and educators believe that introducing CS
in secondary school is too late to provide equitable access, which could affect students’ choice of
future CS careers [24]. To incorporate CS education into primary education and help all students
engage with it, many schools choose to integrate CS education into existing, non-CS core classes,
like language arts, math, or science [41, 46].

In countries that begin CS education in primary school, Oda and colleagues [25] found three
broad approaches to CS education: (a) standalone CS courses, (b) integrated CS embedded within
multiple subjects, or (c) integrated CS as an independent module with a cross-curricular approach.
Many barriers prevent implementing standalone CS education in primary school (e.g., lack of
curricular time, educator expertise, and inability to enact 1-1 computing), and integrated CS has
been used to mitigate these barriers [15, 39]. Integrated CS in primary and lower secondary (i.e., K-8)
education has been found to promote students’ computational literacy in all classrooms without
adding “one more thing” for teachers, who already have a packed teaching schedule [19].

To not be “one more thing,” integrated computing must replace existing instruction and activities.
Thus, as a part of instruction in non-CS classrooms, integrated CS activities often must serve
non-CS learning objectives first, affecting the CS concepts and practices that are appropriate and
the extent to which they are taught [14]. This prioritization is especially true for core classes tied to
standardized testing, such as language arts and math, which often face pressure from administrators
and policymakers to improve outcomes. Still, integrated CS is also commonly treated as CS education
by the same administrators and policymakers and potentially by future CS teachers who might
expect to build upon prior knowledge developed through these activities. For this reason, it is
important to examine how integrated computing curricula teach CS concepts and practices, given
that they are likely to be adopted only when they primarily serve non-CS learning objectives.

2.2 K-12 CS Framework

With numerous rationales driving CS education’s expansion, educators, administrators, and policy-
makers have grappled with the goals of CS education for young learners. As Parker and DeLyser
[27] noted, researchers and stakeholders have actively sought to identify the essential CS knowledge
and skills students should acquire and the CS practices that should be integrated into K-12 CS
pathways. In response to these needs, the K-12 CS Framework was developed to fill the gap and
provide guidance for states, districts, schools, and industry in the development of standards and
curricula ([27]). The K-12 CS framework promotes an understanding of CS in which all students can
explore complex issues in CS to solve problems while developing personally and socially relevant
computational artifacts [7]. The K-12 CS Framework’s core CS concepts, i.e., “what students should
know,” and CS practices, i.e., “what students should do,” are organized by four grade bands: grades
K-2/ages 5-7, grades 3—-5/ages 8-10, grades 6-8/ages 11-13, and grades 9-12/ages 14-18. These
concepts and practices are designed to let students meaningfully engage with CS in ways that grow
more sophisticated over time ([7], p. 3).

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:4 L. E. Margulieux et al.

The Concepts and Practices of the K-12 Computer Science Framework

Core Concepts Core Practices

1. Computing Systems . Fostering an Inclusive Computing Culture
2. Networks and the Internet . Collaborating Around Computing
3. Data and Analysis . Recognizing and Defining Computational Problems
4. Algorithms and Programming . Developing and Using Abstractions
5. Impacts of Computing . Creating Computational Artifacts
. Testing and Refining Computational Artifacts
. Communicating About Computing

Fig. 1. K-12 CS framework concepts and practices [7]. Reprinted under creative commons license CC BY-NC-
SA 4.0, no changes made.

2.2.1 Development and Goals of the Framework. The development of the K-12 CS Framework
was a community-led effort, spearheaded by a diverse team of 27 writers and 25 advisors of varying
genders, types of experience, and ethnicities and from a variety of states, school districts, companies,
and nonprofits (albeit primarily in the United States) [7]. This comprehensive development process
spanned one year, from October 2015-2016, and included advisor workshops, writing workshops,
stakeholder convenings, and public review sessions. This project overlapped with the CS Teacher
Association’s (CSTA) K-12 CS Standards revisions in 2015-2016, and some advisors and writers
simultaneously served on both independent projects to align them [7]). Various content documents
inspired the development of the K-12 CS Framework, such as the National Research Council’s
K-12 Framework for Science, the Common Core Mathematics and English Standards, and National
standards from countries, such as the United Kingdom, Germany, Poland, New Zealand, and Israel
[27]. Furthermore, this work builds upon A Model Curriculum for K-12 CS Standards and the
CSTA K-12 CS Standards [7]. The team’s rigorous development process resulted in the delineation
of five core concepts and seven core practices (See Figure 1), each designed to be infused in a
classroom environment where “practice and project-based learning reinforce conceptual knowledge”
[27], p. 454).

In regards to implementing the K-12 CS Framework’s concepts and practices with young learners,
the framework’s developers ensure that this is not only possible but necessary because it “builds
foundational knowledge and understandings: which help children engage with CS in their later
years” ([7], p. 184). The K-12 CS Framework was developed with an understanding that core ideas
of socio-emotional learning, pattern recognition, problem-solving, representation, and sequencing
are already found within early education in math, science, and literacy and that these ideas are also
foundational to CS. For example, the idea of representation, in which humans represent concepts
with symbols is found in both literacy and CS (and emphasized in the K-12 CS Framework’s practices
4,5, and 7 [7]). Given these features of the K-12 CS Framework, we felt it was an appropriate
framework upon which to base our exploration of how CS is taught in integrated CS curricula.

2.3 The State of Integrated Computing in K-8 Schools

2.3.1 Integrated CS Curricula. Although the K-12 CS Framework suggests that integrated com-
puting might be particularly compelling in primary schools, it is still a relatively new approach. Rich
et al. [35] surveyed international trends in coding in K-8 schools and found that computing/coding

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:5

was twice as likely to be taught in a standalone CS course than integrated. When CS education was
integrated, it was most commonly integrated with math followed by science, language arts, engi-
neering, and social science [35]. However, integrated CS is growing and increasingly recommended
in primary schools. When Guo and Ottenbreit-Leftwich [11] surveyed CS standards across the
United States, where most existing CS standards started in Kindergarten, they found some states
recommended CS integration with other disciplines. They also highlighted the benefits of such a
recommendation, including taking advantage of the similarity of CS content with other disciplines
and capitalizing on the possibility of developing innovative CS curricula [11]. Franklin et al. [9]
provided some practical recommendations from their experience implementing an integrated CS
curriculum for 4th—-6th graders/ages 9-11, such as using the integrated curricula to reinforce, but
not depend on, other content knowledge. Furthermore, project-based approaches to CS integration
in a variety of academic subjects were shown to successfully improve students’ autonomy, learning,
collaboration, and social engagement [5, 26]. While the application of CS skills can take many
interdisciplinary forms, our current work focuses on how these integrated curricula teach CS
concepts and practices.

2.3.2 CS Concepts and Practices in K-8 Curricula. Our understanding of what constitutes com-
putational literacy and, thus, should be taught in integrated CS is still evolving, but the K-12 CS
Framework seems to represent CS education policy well. Guo and Ottenbreit-Leftwich [11] found
all five of the K-12 CS Framework concepts within the wording of US states’ CS standards. As
Oda and colleagues [25] surveyed international trends in K-12 CS education using the K-12 CS
Framework, they found that most countries’ primary curricula had students begin by engaging
with the framework’s concepts of algorithms and program development, the impact of computing,
and the practice of developing of computational artifacts. For older students, common learning
objectives also included concepts like networks and the Internet and practices like recognizing
problems, developing abstractions, and testing and refining computational artifacts. Oda et al. also
recommended future practitioners integrate concepts from existing subjects with CS, especially to
help students develop their computational thinking as it is at “the heart of the CS practices,” explicit
in the K-12 CS Framework’s practices 3-6 and complemented by the other practices ([7], p. 67).

Given that the K-12 CS Framework’s concepts and practices align with initiatives and policies
to teach CS education in primary/elementary and lower secondary/middle schools, the current
analysis uses this framework to examine how CS is taught in integrated CS curricula for those
students. Particularly, the analysis examined which concepts and practices are taught and to what
extent. It builds upon a previous study that examined which programming concepts were taught in
integrated CS activities (rather than full curricula) and concluded that the most commonly used
programming concepts did not align well with those emphasized in introductory programming
courses [20]. Besides the length of CS instruction (i.e., activities vs. curricula), the other main
difference between studies was which field’s learning objectives were primary. The former study
included only integrated activities with non-CS disciplinary learning objectives while the current
study included only integrated curricula with CS learning objectives. Because the former study
focused on non-CS learning, the types of programming concepts used might have been appropriate,
but the authors did note that “this finding does have implications for students who are entering
introductory programming courses and how experience with integrated computing activities is
treated as prior knowledge,” ([20], p. 198). As noted above, prior experience with programming is
one of the best predictors of future performance in introductory computing classrooms [10, 36].
If students do not get adequate exposure in early grades, they may not be prepared for future CS
coursework. With this in mind, the current study explicitly explores the CS learning objectives

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:6 L. E. Margulieux et al.

and instruction in integrated CS curricula to examine how they teach students CS concepts and
practices and prepare students for future learning in CS.
Our research questions were:

—Which CS concepts and practices are introduced in computing curricula that are integrated
into other disciplines?
—How extensively are CS concepts and practices taught in integrated computing curricula?

3 Method

To examine the CS concepts and practices taught in integrated CS curricula and the depth at which
they were taught, the researchers conducted a content analysis of curricula that met our inclusion
criteria (see Section 3.1). We based our scoring of curricula on the K-12 CS Framework [7] with
some modifications to capture concepts at a finer-grain or to better represent the data available
(see Section 3.3). Tradeofs in research design decisions are discussed throughout this section, and
limitations and areas for future work are examined in the Discussion section.

3.1 Search and Inclusion Criteria

While the current analysis used many of the same tools as a systematic literature review to find cur-
ricula, it is not a systematic review. Unlike in literature reviews, there are no databases of integrated
computing curricula to search systematically. Instead, we searched the literature for evidence-based
curricula. We first searched the ACM Digital Library for articles with “(integration OR integrated)
AND (computing OR ‘computer science’ OR CS) AND curriculum” to find curricula that had been
studied. We repeated the search with Google Scholar in journals that include “(computing OR ‘CS’
OR computers) AND (education OR research)” in their title, such as Computer Science Education,
Computers & Education, and Journal of Educational Computing Research. Last, we examined each
entry in CSforAll’s curriculum directory for curricula that matched our inclusion criteria.

We used four inclusion criteria to select curricula for analysis. The first two criteria are necessi-
tated by the research questions. To answer the first research question, about which CS concepts and
practices are introduced in integrated computing curricula, our first criterion was that curricula
must include learning objectives related to programming concepts, non-programming CS concepts,
or CS practices. These CS concepts and practices were based on the K-12 CS Framework [7], and
many of the curricula included explicit connections to the K-12 CS Framework or to the CS Teacher
Association’s CS standards, which are based on the framework. More information about how
the framework was used in the analysis can be found in the Framework Development section
(Section 3.3).

To answer the second research question, about the extent of instruction about CS concepts and
practices taught in integrated computing, our second criterion was that curricula must include at
least five hours of instruction. This criterion was necessary to explore how CS instruction develops
and evolves over several hours of instruction. It also serves to complement the previous analysis,
which analyzed all activities regardless of length and ranged from less than an hour to multiple
days [20].

Fortunately, many integrated computing curricula fit these criteria. To make the scope of work
reasonable, we added two additional inclusion criteria: curricula must be free to access and curricula
must be for primary and lower secondary school (i.e., grades K-8 in the United States). Because
our goal was to examine how these curricula teach concepts that are foundational to standalone
CS courses, which often start in upper secondary (i.e., high) school, these inclusion criteria made
the scope of the project manageable while best serving the goals of the analysis and ensuring
accessibility. For both criteria, we erred on the side of inclusion. For example, we included free

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:7

Table 1. List of Included Curricula

Curriculum Creator | Curriculum Age Range | Programming
language
MIT Media Lab MIT AI Ethics Education Curriculum 10-13 years | None
Elementary Computing | ECforALL Curriculum—Act 1 8-9 years Scratch
for All (ECforALL) ECforALL Curriculum—Act 2 9-10 years | Scratch
youcubed.org Data Science Lessons Any None
Coding as Another Language 4-5 years KIBO
(CAL)—KIBO (Pre-Kindergarten)
CAL—KIBO (Kindergarten) 5-6 years KIBO
E:ZI;Ch Research CAL—KIBO (Grade 1) 6-7 years KIBO
CAL—KIBO (Grade 2) 7-8 years KIBO
CAL—Scratch Jr. (Kindergarten) 5-6 years Scratch Jr.
CAL—Scratch Jr. (Grade 1) 6-7 years Scratch Jr.
CAL—Scratch Jr. (Grade 2) 7-8 years Scratch Jr.
Everyday Computing Action Fractions (Grade 3) 8- 9 years Scratch
Action Fractions (Grade 4) 9-10 years | Scratch
CS + Fables 8-9 years Scratch
CS + Data 8-9 years Scratch
CS+ Elementary CS + Earth 9-10 years | Scratch
CS + Community 9-10 years | Scratch
CS First—Storytelling 8-12 years | Scratch
CS First—Friends 8-12 years | Scratch
Google CS First CS First—Music and Sound 8-12 years | Scratch
CS First—Fashion and Design 8-12 years | Scratch
CS First—Art 8-12 years | Scratch
K-2 CS Curriculum—Red 5-7 years Bee Bot, Scratch Jr
CSinSF.org K-2 CS Curriculum—Orange 5-7 years Bee Bot, Scratch Jr
K-2 CS Curriculum—Yellow 5-7 years Bee Bot, Scratch Jr
Bootstrap—Algebra 12-15 years | Pyret
Bootstrap BootstraE—tha Science 12-18 z/ears Pzret

MIT, Massachusetts Institute of Technology.

curricula that used robotics, such as Bee Bots or KIBO, because schools might receive grants or
gifts to purchase robots. In addition, courses that are typically taught in upper secondary school
were included if they are commonly taught earlier in an accelerated track, such as Algebra.

The final dataset included 27 curricula from 9 different curricula creators (see Table 1). Within
these curricula, there were 519 lessons with over 600 hours of content. Some follow-up curricula
to those listed below, such as Scratch encore or CSinSF’s green and blue curricula, were excluded
from the analysis because they focus exclusively on CS learning objectives and, thus, were not
considered integrated computing. Other common integrated curricula, such as Project Growing Up
Thinking Scientifically or University College London’s Scratch math, were excluded based on our
first criteria for not including CS learning objectives.

3.2 Unit of Analysis and Scorers

These 27 curricula were all organized as a compilation of lessons. Lessons were designed to be
used during one class period, typically 30 minutes to an hour in length. Lessons were typically
discrete, except that final projects would often stretch over multiple lessons. Lessons included
multiple activities, such as reviewing previous concepts, introducing new concepts, or completing

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:8 L. E. Margulieux et al.

tasks. For this analysis, the unit of analysis was the lesson. This level of analysis allowed us to
address our research questions and describe how concepts were taught and revisited over curricula.
Further, each lesson typically included a lesson plan describing learning objectives and activities,
instructional artifacts like presentations or worksheet activities, and computational artifacts like
starter projects or sample projects. These materials provided rich and redundant information about
the concepts being taught. Information about which practices were taught was often less explicit,
which accounts for the lower interrater reliability discussed in Section 3.3.

The five scorers in this analysis were the five authors of this article. Four of the five scorers were
professors who have studied CS education for at least nine years each. Their Ph.D.s are in the areas
of CS, curriculum and instruction, instructional design, and instructional technology. The other
scorer was a doctoral student studying CS education in an instructional technology Ph.D. program.

3.3 Framework Development and Scoring Training and Procedure

This section describes the process used to develop the frameworks used for scoring and the procedure
used to train scorers and score the data. Details of the final frameworks can be found in the next
section. The authors based the initial frameworks of codes on the K-12 CS Framework to analyze
curricula for programming concepts (e.g., variables, loops, and conditionals), non-programming CS
concepts (e.g., computing systems, data and analysis, and impacts of computing), and CS practices
(e.g., fostering an inclusive computing culture, collaborating around computing).

All five authors applied these three frameworks to scoring the initial 10% of data (58 hours of
lessons), working independently. The group then discussed the limitations of the frameworks based
on the data, including features of the curricula that the frameworks did not capture, captured
poorly, or captured redundantly. For example, after this discussion, the modularity concept was
removed from the programming concepts framework because decomposition tasks were not often
explicitly stated in the lessons (i.e., captured poorly), and when they were, they would be captured
by the decomposition CS practice (i.e., captured redundantly).

After refining the frameworks based on this discussion, the scorers applied the revised frameworks
to the same initial 10% of the data, working independently. From this point, the authors worked
in pairs so that two people specialized in using the same framework. As a result, across all of the
curricula, two authors applied the programming concepts framework, two authors applied the
non-programming concepts framework, and two authors applied the CS practices framework (i.e.,
one author scored both non-programming concepts and CS practices).

From this second round of scoring, the pairs discussed any further refinements needed to the
frameworks and began to compare interrater reliability to refine the scoring technique. In this stage,
the scorers of the programming concepts recognized the need to implement additional notation to
capture how programming concepts were being used within programming activities. They added
notation based on the Use-Modify-Create model of learning programming to differentiate between
when learners were using programs given to them, modifying programs, or creating their own [18].
These notations allowed the team to better address the second research question about the extent
of instruction, and a full explanation of the notations used is in the next section.

After refining the frameworks and scoring techniques based on the second round of discussion,
the frameworks had reached their final versions. The pairs then applied the final frameworks to 20%
of the data (116 hours of lessons) with two scorers rating the same data using the same framework.
Their scores were then compared to calculate interrater reliability.

—Programming concepts: Actual agreement = 98%; Cohen’s Kappa = 0.92
—CS practices: Actual agreement = 80%; Cohen’s Kappa = 0.68
—Non-programming concepts: Actual agreement = 97%; Cohen’s Kappa = 0.79

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 359

Cohen’s Kappa was used to evaluate interrater reliability because it is appropriate for nominal
scoring techniques. It compares the actual agreement to the probability of agreement by chance,
so both the actual agreement and Kappa values are provided. A Cohen’s Kappa of 0.61-0.8 is
considered high agreement, and above 0.81 is considered near perfect agreement [23]. Given all
teams had at least high agreement, the remaining scoring was divided among authors and completed
independently.

3.3.1 Programming Concepts Analysis Framework. The programming concepts framework started
from the Algorithms and Programming section of the K-12 CS Framework. However, the team
found the categories too high-level (i.e., algorithms, variables, control, modularity, and program
development) to sufficiently address the research questions, so these categories were expanded
into more detailed concepts based on the framework developed by Margulieux et al. [20]. For
example, within the variables category, concepts for data types, initializing and calling variables,
and using lists are differentiated. After the initial framework revision, the modularity and program
development categories were excluded from the programming concepts framework. The modularity
decision is already explained in the previous section (Section 3.3). Program development was
excluded because the stages of program development were not often explicitly stated in the lessons,
and the lessons typically involved all three levels of development-designing, implementing, and
reviewing/debugging. Thus, the scorers would have had to infer the stages of program develop-
ment in the lesson, reducing objectivity, and the lack of discrimination among lessons made this
information unuseful. The final framework included concepts related to data input, data output,
variables and lists, loops, events, conditionals, operators, functions, and multimedia components
(see Table 2). While a detailed definition and example of each concept are too expansive to reprint
here, they can be found along with justifications for their inclusion in Margulieux et al. [20].

Each lesson could receive different notations for how the concepts in the framework were used.
These notations are mutually exclusive, and the most advanced interaction present was applied.

—Nothing (least advanced)—students do not use the concept, or they use a program that has
the concept in the background but do not interact with it.

—Use—students are given code that they run to understand how it works or answer questions
about it, but they do not modify it.

—Modify—students are given code and asked to change something about it, such as changing
the order of code or modifying the parameters.

—Create—students create a new algorithm, which might involve dragging new blocks into the
workspace, writing new code, or repurposing existing code to create a new algorithm.

—Unguided (most advanced)—an advanced version of create in which students are given speci-
fications for the concepts to include in a program but not how to implement them, such as
the program must include three sprites.

3.3.2 CS Practices Analysis Framework. The analysis framework for CS practices was based on
the K-12 CS Framework [7]. The analysis framework includes seven core practices of CS as seen in
Figure 1. Each core practice comprises three to four practice statements that outline the computing
competencies students should possess by the end of Grade 12. Unlike the CS concepts, which are
divided into subconcepts and statements by grade bands, the CS practices are written in a narrative
format that emphasizes the progression of students’ development of the CS practices.

The team used the seven core practices of CS and their practice statements as codes and sub-codes
in the coding scheme. To align with the scope of the curriculum analysis (up to Grade 8/age 13), the
knowledge and skills in the progression statements at the early or middle stages of the progression
were more emphasized than the entire progression statements for up to Grade 12/age 18. For

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:10 L. E. Margulieux et al.

Table 2. Frequency of Programming Concepts Taught in Integrated Lessons and Type of Instruction

Category Concept Use Modify Create Unguided Total (of 346)
Input String 4 2 3 0 9 (3%)
Input Input Variable) 0 3 0 7 (2%)
Output String 20 6 42 14 82 (24%)
Output Output Variable 1 9 0 14 (4%)
Output Combo 1 1 0 0 2 (<1%)
Data Types 1 0 42 0 43 (12%)
5:;;;?6 (: Initialize/Call Variable 11 5 21 1 38 (11%)
List 0 0 2 0 2 (<1%)
For Loop 28 13 38 12 91 (26%)
Loops While Loop 2 0 2 9 (3%)
Loop Index Variable 0 1 1 0 2 (<1%)
Events Event 30 2 56 20 108 (31%)
Conditionals If-Then Conditional 7 5 20 6 38 (11%)
If-Else Conditional 3 3 7 0 13 (4%)
Arithmetic Operator 2 2 13 1 18 (5%)
Operators Relational Operator 10 3 16 1 30 (9%)
Boolean Operator 1 1 3 0 5(1%)
Functions Define/Call Function 16 3 43 2 64 (18%)
Function Parameter 4 16 46 16 82 (24%)

Movement 170 (49%)
Multimedia Properties 133 (38%)

Sprite/Object 234 (68%)

The most common category and concepts are highlighted in dark green, while common, but less frequent, concepts are
highlighted in a light green.

example, in Practice 4: Developing and Using Abstraction, the team included the first practice
statement, “Extract common features from a set of interrelated processes or complex phenomena,”
as the description for Practice 4 in the coding sheet, which states that “Students at all grade levels
should be able to recognize patterns. Young learners should be able to learn to identify and describe
repeated sequences in data or code through analogy to visual patterns or physical sequences of
objects. As they progress, students should identify patterns as opportunities for abstraction, such
as recognizing repeated patterns of code that could be more efficiently implemented as a loop.”
However, the last part of the progress statement, “Eventually, students should extract common
features from more complex phenomena or processes...When working with data, students should
be able to identify important aspects and find patterns in related datasets, such as crop output,
fertilization methods, and climate conditions,” was not included in the coding scheme. A similar
process was applied to identifying the descriptions of other practice statements in the coding
scheme.

3.3.3 Non-Programming Concept Analysis Framework. The non-programming CS concepts com-
prise the remaining K-12 CS Framework’s core concepts: Computing Systems, Networks and the
Internet, Data and Analysis, and Impacts of Computing. The team adopted the K-12 CS Framework’s
subconcepts and concept statements to guide our analysis. Each subconcept is organized into three
levels: by Grade 2 (age 7), by Grade 5 (age 10), and by Grade 8 (age 13), which the research team
refers to as introductory, intermediate, and advanced levels.

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:11

During the initial coding phase, the scorers faced inconsistencies in scoring concepts and subcon-
cepts. Primarily, these inconsistencies stemmed from whether lessons explicitly taught concepts
given in their descriptions. To overcome this, the research team decided on scoring based on the
learning objectives and goals for the lesson instead of relying solely on the topics and keywords
in the lesson description. For example, the scorers would code the devices concept when a lesson
introduces different components of a KIBO robot and how it follows instructions to perform actions.
However, the scorers would not code the devices concept when a lesson uses a KIBO robot in a
storytelling project, as the primary focus is on the application of KIBO rather than the concept of a
device.

4 Results

For the data created from this analysis, please find the complete dataset at https://doi.org/10.5061/
dryad.j6q573nnt

4.1 Programming Concepts Taught in Curricula

4.1.1 Frequency of Programming Concepts in Instruction. Each lesson was scored for which
programming concepts were included and at which level they were taught (i.e., use, modify, create,
unguided, see Table 2). For all curricula, we treated final projects that spanned multiple lessons
as one lesson because the programming instruction and activities were not unique in each lesson.
Thus, counting them independently would have resulted in overcounting concepts. Final projects
are not collapsed for the other frameworks because each lesson provided unique instruction. After
collapsing final project lessons, 519 lessons yielded 453 unique lessons, and 346 of them included
programming activities.

The programming concepts used in these curricula primarily focused on multimedia components
(i.e., sprites or other multimedia objects (68% of lessons with programming), their movement (49%),
and their properties (38%)). Other common, but less frequent, concepts were events (31%), outputs
(28%; especially string-only outputs—24%), and for loops (26%). The frequency of these concepts is
most likely due to the overwhelming use of Scratch in these curricula. These lessons in Scratch
foregrounded multimedia components to visualize non-CS concepts or processes. Further, the other
common concepts primarily served to interact with the multimedia components (e.g., tap a sprite
to trigger an event, communicate through a sprite using an output, or repeat a sprite’s actions with
a loop). Thus, the programming paradigm seemed to influence the concepts used.

Similarly, functions (18%) and function parameters (24%) were also common, though primarily
in curricula that used Pyret, a functional programming language. 42 of 64 function uses are from
Bootstrap curricula, and 42 of 81 function parameters are from Bootstrap curricula. The other uses
of function parameters were primarily modifying them (16 of the remaining 39 cases). Across all
curricula, the majority of functions used in student programs called a function that was defined
by the curricula designers. These functions tended to allow students to complete complex tasks,
such as create complicated visualizations. Functions that students defined on their own were much
simpler, such as calculating a value based on given parameters.

Programming concepts that were used less commonly came from the input, data and variables,
conditionals, and operators categories. Only 5% of lessons included an input from a user (i.e., data
entered while the program was running). 11% of lessons used a variable, and less than 1% used a
list. In Bootstrap curricula, data types were addressed frequently, but they were not addressed in
other curricula. Some form of conditional was used in 15% of lessons as was some form of operator.
A comparison of these frequencies with the previous analysis of integrated computing activities
[20] is examined in the discussion.

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

https://doi.org/10.5061/dryad.j6q573nnt
https://doi.org/10.5061/dryad.j6q573nnt

35:12 L. E. Margulieux et al.

4.1.2 Extent of Programming Concepts in Instruction. For our second research question, we
explored how the concepts included in these curricula were taught with the Use-Modify-Create
framework [18] and an additional Unguided category. These codes were mutually exclusive, so each
lesson was scored for only the least scaffolded way that concepts were used to avoid overcounting
concepts (i.e., Use < Modify < Create < Unguided). Table 2 shows the number of lessons teaching
each concept across these categories.

Create was by far the most common way to engage with the concepts. For almost every concept,
Create was the most popular category. Use was also common, especially when using sprites in
existing Scratch programs or using advanced code segments created by the curriculum developers,
such as using a pre-defined function. Surprisingly, Modify was not common as an endpoint for
lessons, except in function parameters. However, given that codes were mutually exclusive, Modify
was more common in the lessons than the data represents because within a lesson, students might
start by using or modifying a program and be creating by the end. In this scenario, the lessons
would be scored as Create. Curricula that followed the Title, Instructions, Purpose, and Play and
Sprites, Events, Explore approach [37] typically advanced through the Use-Modify-Create cycle
within a single lesson. From the CS practices data in the following section, modifying a program
was part of about a third of the lessons.

Based on different curricula features or creators, the curricula followed a few different patterns
for how concepts were taught. Curricula that used programmable robots or Scratch Jr (i.e., Coding
as Another Language (CAL) and CSinSF) were limited in the concepts that they could use-
multimedia components, loops, events, and string output primarily. These curricula contributed to
these concepts being the most common concepts. They tended to emphasize more unguided use of
concepts, perhaps due to the constrained problem-solving space afforded by these programming
paradigms.

Another type of curriculum asked students to create programs, using scaffolded instruction, with
the consistently same concepts across the curricula (i.e., ECforAll, Bootstrap, and CS First). For
example, Scratch-based curricula consistently asked students to create programs using multimedia
components, and Bootstrap curricula consistently asked students to create programs by calling
functions across all lessons. Other concepts were applied a few times and usually within a unit
or set of lessons. For example, a unit might ask students to create programs using conditionals or
operators, but then the next unit would not continue to apply these concepts. When these curricula
had final projects, they did not typically require the application of concepts beyond those that were
well represented across the curriculum.

The last category of curricula applied a variety of concepts and applied them more consistently
across lessons (i.e., Action Fractions and the CS+ curricula). In this category, the level of engagement
was typically Use or Modify, and it less often included Create or Unguided use of the concepts.
This approach resulted in students using more complex programs but not necessarily in creating
them. The tradeoffs of these different strategies and other viable strategies are examined in the
discussion section.

4.2 CS Practices Taught in Curricula

4.2.1 Frequency of CS Practices in Integrated Lessons. To examine which CS practices were
integrated into the 27 curricula, we scored the 519 lessons using the seven core practices and
practice statements for each. Based on the distribution, we categorized the frequency of each
practice statement as frequent (> 50%), common (25-50%), infrequent (10-24%), and rare (< 10%;
see Table 3). While the majority of practice statements were either infrequently (26.5%) or rarely
(43%) found throughout the lessons, some were frequently or commonly found.

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:13

Table 3. Frequency of CS Practices Taught in Integrated Lessons

Core Practice Practice Statement Count %
Practice 1.

Fostering an Inclusive
Computing Culture

1. Include the unique perspectives of others and reflect on

one’s own perspectives when designing and developing
computational products.

2. Address the needs of diverse end users during the design
process to produce artifacts with broad accessibility and

usability.
3. Employ self- and peer-advocacy to address bias in inter- 4 0.8
actions, product design, and development methods.
Practice 2. 1. Cultivate working relationships with individuals possess- 321
Collaborating Around ing diverse perspectives, skills, and personalities.
Computing 2. Create team norms, expectations, and equitable work- 53
loads to increase efficiency and effectiveness.
3. Solicit and incorporate feedback from, and provide con- 50 9.6
structive feedback to, team members and other stakeholders
4. Evaluate and select technological tools that can be used 89 17.1

to collaborate on a project.

Practice 3.
Recognizing and
Defining 2. Decompose complex real-world problems into manage- 75 14.5
Computational able subproblems that could integrate existing solutions or
Problems procedures.
3. Evaluate whether it is appropriate and feasible to solve a 6 1.2
problem computationally.
Practice 4.
Develop e and Using 2. Evaluate existing technological functionalities and incor- 18 3.5
Abstractions . .
porate them into new designs.
3. Create modules and develop points of interaction that 21 4.0
can apply to multiple situations and reduce complexity.
4. Model phenomena and processes and simulate systems 13 2.5
to understand and evaluate potential outcomes.
Practice 5. 1. Plan the development of a computational artifact using 102 19.7
Creating an iterative process that includes reflection on and modifi-
Computational cation of the plan, taking into account key features, time
Artifacts and resource constraints, and user expectations.
Practice 6. 1. Systematically test computational artifacts by considering
Testing and Refining all scenarios and using test cases.
Computational 2. Identify and fix errors using a systematic process 57 11.0
Artifacts 3. Evaluate and refine a computational artifact multiple 11 2.1
times to enhance its performance, reliability, usability, and
accessibility.

(Continued)

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:14 L. E. Margulieux et al.

Table 3. Continued

Core Practice Practice Statement Count %
Practice 7. 1. Select, organize, and interpret large data sets from multi- 35 6.7
Communicating About ple sources to support a claim.

Computing

2. Describe, justify, and document computational processes

and solutions using appropriate terminology consistent

with the intended audience and purpose.

3. Articulate ideas responsibly by observing intellectual 10 1.9
property rights and giving appropriate attribution

Dark green indicates frequent (>50%) usage, green indicates common (25-50%) usage, and light green indicates infrequent
(10-24%) usage.

Frequently found practice statements in the curricula were including the unique perspectives of
others (93%), cultivating working relationships (62%), and describing, justifying, and documenting
computational processes and solutions (52%). All of these involve a student sharing their perspective,
reflecting on their computing learning experiences, and/or justifying their designs and decisions in
the context of peer interactions and communications. In particular, most lessons across the curricula
encourage students to include the unique perspectives of others when reflecting on learning and
design.

Commonly found practice statements that appeared in CS curricula were modifying an exist-
ing artifact (31%), creating a computational artifact (30%), identifying complex, interdisciplinary,
real-world problems (30%), and extracting common features from a set of interrelated processes
or complex phenomena (29%). Many of the modify and create practice statements were found in
programming activities in Scratch, especially when students worked from a pre-designed starter
project that they modified and built upon. Many instances of the practice statement identifying
complex, interdisciplinary, real-world problems that can be solved computationally involved com-
paring actions in students’ everyday lives to a programming activity, such as comparing events in
a Scratch program to their alarm clock (i.e., CS First—Art) or comparing KIBO’s sound and light
sensors to their ears and eyes (i.e., CAL KIBO—2nd Grade). Sometimes, this practice asked students
to compare the activity to real jobs, like comparing the steps in a computational activity to the
steps engineers take to iterate a prototype (CAL KIBO—Pre-K), animators take to create movies (CS
First—Art), or authors take to write a story (CSinSF K-2—Red). Last, the extracting common features
practice statement was seen in many activities asking students to notice how certain programming
concepts were used, such as having students notice how conditionals or loops were used in projects.

Some infrequent practices found in the curricula were planning the development of a compu-
tational artifact (20%), evaluating and selecting technological tools (17%), decomposing complex
real-world problems (15%), identifying and fixing errors (11%), creating team norms, expectations,
and equitable workloads (10%), systematically testing computational artifacts (10%), and soliciting
and incorporating feedback (10%). These practices align with higher-level program design skills
and elements of project management. Given the complexity of most of the programs developed
in these curricula (i.e., either completed within a single lesson or as an individual final project),
implementing these practices in the curricula would likely not be a good tradeoff of effort and time.
In the cases that students were designing programs, students used a planning guide to brainstorm
their thoughts before creating or modifying a Scratch program, usually before a final project (i.e.,
CS+Community). Similarly, practices for fixing and testing programs were emphasized in a few of
the lessons per curriculum.

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:15

The K-12 CS Framework’s creators infused evaluative practices within five of the practice
statements. However, many of the rarely found practices centered around evaluative practices,
such as evaluating the appropriateness of solving processes computationally (1.2%), evaluating
existing technological functionalities (3.5%), evaluating simulated processes’ outcomes (2.5%), and
evaluating and refining a computational artifact (2.1%). Again, this finding is likely a reflection of
the complexity of programs created in the lessons. The following practice statements were also
rarely found in the integrated curricula: selecting, organizing, and interpreting large datasets (6.7%),
creating modules and developing points of interaction (4.0%), addressing the needs of diverse end
users (2.3%), articulating ideas responsibly (1.9%), and employing self- and peer-advocacy (0.8%).
The rare practice statements of selecting, organizing, and interpreting large datasets and creating
modules and developing points of interaction were mainly found in the data science curricula. In
general, though, these practices were also not well-aligned with the typical integrated computing
paradigms in these curricula.

4.2.2 Extent of CS Practices in Integrated Lessons. All integrated K-8 CS curricula addressed
CS practices, but the extent varied. Some curricula addressed all seven core practices across the
CS lessons (i.e., CS First—Storytelling/Music and Sound/, Bootstrap—Algebra, K-2 CS curriculum,
action fractions, CAL—KIBO and Scratch, Massachusetts Institute of Technology’s (MIT) Al
Ethics, Youcubed—Data Science), while others integrated more targeted practices.

Within frequently integrated CS core practices (i.e., Practices 1, 4, and 7), only one of the practice
statements was addressed repeatedly. As with Practice 4, about developing and using abstraction,
many lessons included activities in which students practiced extracting common features of complex
processes and phenomena with real-world examples (4.1). Yet there were minimal instances of other
aspects of abstraction skills, such as evaluating existing technological functionalities (4.2), creating
modules and developing points of interaction (4.3), and modeling phenomena and processes and
simulating systems (4.4). Following this pattern, most of the practices, except Practice 5, had some
practice statements included more extensively than others.

This finding suggests more advanced applications of these practices are not being reached in
integrated lessons. Because these lessons are taught in non-CS classrooms, this finding is not
necessarily problematic. Yet for all of the integrated CS curricula, most of the CS practices were
found within lessons that used programming, either within Scratch, robotics, or online data science
environments. Despite the practices being CS practices, rather than programming practices, they
were typically taught in the context of programming.

4.3 Non-Programming CS Concepts Taught in Curricula

4.3.1 Frequency of Non-Programming Concepts Taught in Integrated Lessons. In the 519 lessons,
most did not address non-programming concepts, at least not at nearly the same rate as program-
ming concepts or practices. Based on the distribution of scores, we categorized the frequency of
sub-concepts as most frequent (> 10%), infrequent (5-9%), and least frequent (< 5%; see Table 4).
All of the most frequent sub-concepts, devices, hardware and software, and culture, were taught at
the introductory level (i.e., by Grade 2). This distribution is not necessarily unexpected given that a
third of the curricula are for students younger than age 8, which is Grade 2.

The least frequently addressed non-programming CS concept was networks and the Internet.
Fewer than 1% of lessons included the sub-concepts at each level of instruction, which is unsurprising
given that learning about networks is not typically the goal of integrated computing lessons. Notably,
troubleshooting and storage at the intermediate level (by Grade 5) and network communication and
organization at the advanced level (by Grade 8) were not taught in any of the lessons. Overall, the
advanced levels (by Grade 8) of non-programming concepts were rarely taught in the integrated

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:16 L. E. Margulieux et al.

Table 4. Frequency of Non-Programming Concepts Taught in Integrated Lessons

Concept Subconcept Level Count %
Devices By Grade 5. Intermediate 33 6.4
By Grade 8. Advanced 1 02
Hardware and Software By Grade 5. Intermediate 7 1.3
Computing By Grade 8. Advanced 2 0.4
Systems By Grade 2. Introductory 30 5.8
Troubleshooting By Grade 5. Intermediate 0 0.0
By Grade 8. Advanced 1 02
Network Communication and By Grade 2 Introduct.C)ry 5 06
o By Grade 5. Intermediate 2 0.4
Networks and Organization By Grade 8. Advanced 0 0.0
the Internet By Grade 2. Introductory 2 0.4
Cybersecurity By Grade 5. Intermediate 1 02
By Grade 8. Advanced 1 02
By Grade 2. Introductory 17 33
Collection By Grade 5. Intermediate 15 29
By Grade 8. Advanced 10 1.9
By Grade 2. Introductory 5 1.0
Storage By Grade 5. Intermediate 0 00
. By Grade 8. Advanced 2 0.4
Data and Analysis By Grade 2. Introductory 32 6.2
Visualization and By Grade 5. Intermediate 27 5.2
Transformation By Grade 8. Advanced 18 3.5
By Grade 2. Introductory 26 5.0
Inference and Models By Grade 5. Intermediate 29 5.6
By Grade 8. Advanced 22 4.2
Culture By Grade 5. Intermediate 30 5.8
By Grade 8. Advanced 8 1.5
By Grade 2. Introductory 1 21
Impacts of Social Interactions By Grade 5. Intermediate 18 35
Computing By Grade 8. Advanced 4 08
By Grade 2. Introductory 8 1.5
Safety, Law, and Ethics By Grade 5. Intermediate 5 1.0
By Grade 8. Advanced 3 06

Dark green indicates most frequent (>10%) use and green indicates less frequent (5-9%) use.

curricula, likely due to the majority of the curricula being developed for younger children. Curricula
for older students, especially in lower secondary/middle school (i.e., Bootstrap, CS First, MIT Ethics,
and YouCubed Data Science), included more non-programming concepts than other curricula.

4.3.2 Extent of Non-Programming Concept Taught in Integrated Computing Curricula. The results
showed that the breadth and depth of non-programming concept integration varied depending on
the curriculum. A few CS curricula addressed multiple non-programming concepts throughout
the lessons, such as data science lessons (i.e., Bootstrap and Youcubed), all CS First curricula, and
CS+Earth. For instance, all five CS First curricula emphasized the impacts of computing, especially
how computing technology has impacted our daily lives and ways for social interactions, while also

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:17

introducing how computing devices operate or how data are collected and interpreted. These CS
First lessons provide many real-world examples, the history of CS, and the impacts on our culture
and the industry.

The depth of integration of non-programming computing concepts was also affected by the
topic of the curriculum. A few curricula that had an intensive integration of non-programming
concepts were centered around data science (e.g., Bootstrap-Data Science, CS+Data, Youcubed-Data
Science) and ethics (e.g., MIT Al Ethics Education). For instance, the concepts about data collection,
visualization and transformation, and inferences and models were intensively integrated into the
lessons in Youcubed-Data Science (100%), Bootstrap-Data Science curricula (93%), and MIT Al Ethics
Education (63%) curricula. In other curricula, the data and analysis concept was rarely addressed.

Other curricula took a more targeted approach, focusing on a narrower range of concepts.
Particularly, curricula that focus on programming concepts and CS practices typically briefly
introduce non-programming concepts at the beginning (e.g., CSinSF K-2 CS Curriculum-Red and
Yellow, CAL Scratch Jr.) or toward the end of the curriculum (e.g., ECforALL-Act 2, CS+Data). For
example, the first few lessons of CAL Scratch Jr. and the CSinSF K-2 Red and Yellow curricula
introduced computers and mobile devices, and later lessons focused on programming concepts
and CS practices. Robotic-based curricula, unsurprisingly, emphasized the concepts of computing
systems, and many lessons discussed how a computing device works, such as an explanation of how
hardware and software work together as a computing system. For example, CAL KIBO, which used
the KIBO robot, focused on devices and hardware and software concepts, which were continuously
addressed across the curriculum. However, these sub-concepts were the only non-programming
concepts introduced.

4.4 Crosscutting Findings across Frameworks

The research team examined patterns of data across the three frameworks to determine how
programming concepts, CS practices, and non-programming CS concepts are taught together. Based
on this examination, we found no consistent patterns across the frameworks to report. For example,
we identified that curricula that use robotics to program consistently include non-programming
concepts about devices and hardware, as would be expected. However, the devices and hardware
sub-concepts are also frequently taught in other non-robotics curricula, so this trend is not unique.
In addition, we considered the patterns across curricula designers identified in Section 4.1.2 for
the extent of instruction on programming concepts to examine whether they matched patterns in
other frameworks. Again, we found no consistent results. For the practices and non-programming
frameworks, we found no similar patterns, even within curriculum designers, leaving nothing to
report.

5 Discussion
5.1 Central Contributions to Integrated Computing

The primary goal of this analysis was to explore which CS concepts and practices are taught
in integrated CS curricula at the primary and lower secondary (i.e., K-8) levels and the depth
of computing instruction. For this analysis, the researchers were particularly interested in how
these curricula prepare students for later, standalone introductory computing and programming
courses. However, we also hope that this analysis contributes to the larger discussion of how CS
can be integrated into other disciplines and a better understanding of computational literacy for all
students, not only those pursuing CS education.

There were two main differences in selection criteria between a previous analysis of programming
concepts taught in integrated CS [20] and the current analysis. First, the previous analysis required
lessons to have non-CS learning objectives, while the current analysis required lessons to have CS

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:18 L. E. Margulieux et al.

learning objectives. In addition, the previous analysis had no minimum time frame for lessons, so it
included mostly single or week-long lessons, while the current analysis required at least five hours
of instruction.

For these reasons (i.e., more focus on CS learning and a longer time frame), we expected that
lessons in the current analysis would include more programming concepts than those in the
previous analysis, but that is not what we found. Instead, most concepts were taught at about the
same relative frequency. As in the previous analysis, multimedia components (objects, properties,
and movement), events, string outputs, for loops, and functions were commonly found in the
current analysis. Similarly, inputs, conditionals, and operators were uncommon in both analyses.
The only category that changed in relative frequency was variables but not in the expected direction.
Variables were much more common in the previous analysis, similar in frequency to string outputs
and for loops, than in the current analysis, in which they were similar in frequency to conditionals
and operators. This difference might be due to the math- and science-based learning objectives that
made variables useful in the lessons included in the previous analysis.

Based on these findings, we agree with the previous analysis’ conclusion that integrated CS
activities give students experience creating multimedia and animations but not necessarily au-
tomating information processing, except for some relatively basic concepts (i.e., using for loops and
calling functions [20]). While we agree that in the absence of CS learning objectives, this pattern is
not inherently problematic. However, it might be problematic when integrated CS curricula are
expected to prepare students for standalone CS courses, especially programming. Many of the
concepts taught in the integrated curricula are not those taught in introductory programming
courses, except basic concepts like sequences, algorithms, string outputs, for loops, and calling
pre-defined functions. Thus, it is important that the teachers of introductory programming courses
do not expect students who have engaged in integrated curricula to have experience with variables,
conditionals, operators, and defining functions. More importantly, CS teachers should not expect
students to think of programming as a way to automate problem-solving, though that is often
the process underlying programming instruction [20]. On the other hand, integrated CS is often
students’ first experience with programming, and this level of engagement with concepts and prac-
tices might be the most appropriate, especially at early ages. Thus, our primary recommendation is
not to change the curricula but instead to not overestimate the prior knowledge of students in later
CS courses.

Some people would argue that the goal of integrated computing is not to teach programming,
or at least not primarily to teach programming (e.g., [12, 30, 46]. However, the current analysis
found that these analyzed curricula introduced relatively few CS practices and non-programming
concepts as well. Thus, the primary goal of these curricula does not seem to be teaching CS practices
beyond the context of programming nor non-programming concepts, at least not those identified
by the K-12 CS Framework. If one were to argue that the goal of integrated computing was to
teach about computing more broadly than programming, like to teach about data and analysis, that
argument is also not well-supported by these data, at least beyond the data science curricula.

The CS practices best represented in the curricula reflected social practices, i.e., practice 1.1 about
including the unique perspectives of others, practice 2.1 about cultivating working relationships,
and practice 7.2 about documenting solutions for an intended audience. These practices are aligned
with other socio-emotional learning objectives in the classroom, especially in early grades where
the development of personal character, emotional intelligence, and social skills is often explicitly
included. Thus, their application to the development of computational products and collaborations
can reinforce these objectives and practices, which was a deliberate goal of the K-12 CS Framework
[7]. The K-12 CS Framework also aimed to reinforce objectives related to pattern recognition,
problem-solving, representation, and sequencing [7]. The integrated curricula achieved basic

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:19

practices related to these objectives about 30% of the time (i.e., practice 3.1 about identifying
computational problems, practice 4.1 about extracting common features, and practice 5.2-3 about
creating computational artifacts/representations). The more advanced CS practices, such as those
related to developing and using abstracts, would be difficult to apply without developing more
computationally complex products than were typical in the analyzed curricula.

The lack of non-programming CS concepts in these lessons is unsurprising given that many of
those concepts are domain-specific to computing, such as networks, and would not easily fit into
non-CS instruction. However, integrated computing curricula do provide opportunities for students
to learn digital citizenship and computational literacy skills that would serve them well, whether
they decide to pursue standalone CS classes or not. For example, concepts from the Impact of
Computing or Networks and the Internet could be addressed by teaching students about responsible
computing practices in the face of cybersecurity threats and the ethical development of artificial
intelligence for societal benefit. These non-programming CS concepts are particularly well-suited
for younger students to grasp through unplugged activities. This approach supports students’
computational literacy and could make the learning experience more engaging and comprehensive.

5.1.1 Discussion of Programming Concept Instruction in Integrated Computing. From the analysis
of the extent to which programming concepts are taught, we found three patterns of concept use
across curricula: (1) curricula that were limited in concepts by the programming paradigm (i.e.,
robotics or Scratch Jr) and emphasized unguided application of few concepts, (2) curricula that
prioritized learning a small set of concepts and creating new programs with them, situationally
branching out to other concepts, and (3) curricula that consistently used a wide range of concepts,
focusing on using or modifying existing programs. These patterns represent an arguably necessary
tradeoff in integrated computing curricula, that the number of concepts taught is inversely related
to the depth at which they are taught, given limited time for CS instruction. Depending on the
goals of instruction and constraints within the classroom, any of these patterns could provide a
viable strategy for integrating computing in non-CS instruction. For example, the pattern that uses
unguided exploration is likely the best choice for a classroom of five-year-olds that aims to foster
CS identity, introduce a new medium for self-expression, and is flexible in the disciplinary learning
objectives achieved. In this case, the limited number of CS concepts taught is not consequential
to the goals of the instruction. However, for older students who have already had regular CS
experiences and whose teacher feels pressure to prepare them for standardized testing, the latter
two patterns would be more appropriate.

In the first pattern, limiting the problem-solving space through a programming paradigm, such
as programmable robots or Scratch Jr, provides a narrow problem-solving space that affords more
unguided application. Thus, if minimally-guided activities and student exploration are the goal,
such as in a guided discovery learning paradigm (e.g., [1]), then this pattern is a viable strategy. This
pattern, however, did not introduce many concepts, and given the paradigms, most of the concepts
were for animating robots or sprites. Thus, few of the programming concepts introduced in these
curricula were those that would be taught in an introductory programming course. Given that they
were also taught to the youngest students, this pattern is likely developmentally appropriate [41]. A
similar paradigm that is for older learners but was not represented in our database is task-specific
languages [12], which are languages with narrow functionality designed to accomplish a single
task. They are similarly designed to allow students to explore deeply within a constrained problem-
solving space, albeit their goal is typically to avoid the need to develop general programming
skill [12].

In the authors’ experience, school districts and teachers are becoming aware of how programming
paradigms affect student learning. They value the constrained problem-solving space of paradigms

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:20 L. E. Margulieux et al.

like programmable robots or Scratch/Scratch Jr to both scaffold student learning and facilitate
teacher development. However, as students advance to more computing-centric courses, they
are also recognizing that these paradigms can limit students’ engagement with programming
concepts. Some districts are now focusing on the vertical alignment of computing instruction as
students progress from primary to secondary education, which typically involves switching from
integrated computing to standalone computing. Integrated computing curricula creators, thus,
could help practitioners by suggesting how their learning objectives and paradigms could align
with computing-centric curricula. For example, creators could include a unit about the progression
from Scratch Jr to Scratch or Scratch to Snap!. Such a unit could highlight the affordances of more
advanced concepts, such as how Scratch affords the creation of variables and how Snap! affords
other data storage and handling opportunities, which are relevant to computing as well as advanced
science or math objectives.

The second pattern provides more instruction on programming concepts while still providing
opportunities for student creation in more structured tasks. Consistently using the same concepts
throughout a curriculum, such as multimedia concepts or functions, allows students to repeatedly
practice using those concepts. Building upon these recurring concepts, the curricula introduced a
wider range of concepts more shallowly. Similar to the first pattern, the recurring concepts taught
in many of these curricula focused on animation. In contrast to the first pattern, these curricula also
include exposure to concepts focused on information processing, like variables, conditionals, and
operators. Thus, this pattern allows students to experience how solving a problem with computing
is different than solving a problem with other tools.

In the third pattern, students applied a variety of concepts consistently through Use and Modify
levels of engagement. In this pattern, students had more experience with concepts that would be
taught in introductory programming courses, but they less often practiced creating programs and,
thus, the procedural knowledge of how to create programs. Given that the student is likely to use
a different programming paradigm in introductory programming than in integrated computing
curricula, this lack of procedural practice might not be problematic. Like the second pattern,
students could experience how problems are solved with computing, which might prepare them
conceptually, if not procedurally, for later computing courses.

5.2 Limitations and Future Work

Future work would be needed to compare these patterns and their effect on later CS education. The
current analysis’ goal was to examine the curricula itself, not their effects on students. Though all
of these patterns seem like viable strategies for integrating CS, they might have different effects
on students in terms of encouraging students to pursue standalone CS courses or improving their
performance or experience in those courses. For example, in the first two patterns, the process of
unguided application or Creating programs might help students normalize the process of receiving
errors and fixing bugs, helping them overcome those challenges. This effect would be significant
because errors and bugs often reduce novices’ self-efficacy and their persistence in computing
education (e.g., [3, 22]). In addition, in the third pattern, exploring how to automate information
processing might encourage students to learn more about problem-solving through programming,
even if they lack the procedural knowledge to implement their ideas.

Future work could also explore other instructional design frameworks for integrated CS. The
researchers had expected curricula to include more features of project-based learning, which
anchors instruction around a single, large, (semi-)authentic problem [2]. However, in many of the
curricula, such as those created by ECforALL, CS+, and Everyday Computing, individual lessons
were set in different contexts (i.e., they gave students a different Scratch starter project at the start
of most lessons) rather than building additional features into a single context. Given that lessons

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

Intent and Extent: Computer Science Concepts and Practices 35:21

were 45-75 minutes long, building upon a single project over multiple lessons might allow students
to explore more concepts and practices or explore them in more depth. If the integrated context lent
itself to a project-based approach, one effective instructional design model for this strategy could
be the Four Components of Instructional Design model, which is specifically for complex learning
in which knowledge, skills, and attitudes are developed simultaneously [43], like in integrated CS.
This well-researched model explains how to support students through four components: learning
tasks, part-task practice, supportive information, and procedural information [43]. It and other
instructional design models and frameworks for complex learning should be applied when creating
integrated computing curricula.

The current analysis focused on what was taught but not how it was taught. Because the unit of
analysis in this study was the lesson, we did not have in-depth information about instructional
approaches to individual activities, such as how CS concepts were introduced. A more detailed
analysis of the content and activities within the lessons would be needed to examine how new
concepts are introduced to students. For example, such an analysis could explore whether instruction
follows the K-5 learning trajectories [32, 34] and how students build upon prior knowledge or
build prerequisite knowledge to learn more advanced concepts. In addition, such an analysis could
explore whether instruction applies the principles of semantic waves [21, 45] and how teachers can
make analogies with everyday knowledge to develop technical knowledge. This type of analysis,
while valuable, would address different research questions than those posed in this study.

Despite much work still needing to be done, the current analysis contributes to our understanding
of the current role of integrated CS curricula in computing education. It is critical that these curricula
not overload the domain in which they are integrated, either in terms of time spent on CS content or
in terms of teacher CS knowledge and skill required. Either would result in the curricula not being
adopted. Still, many CS educators might be surprised by the limited CS concepts and practices taught
in integrated CS and should be cautious about their expectations for students’ prior knowledge. Of
course, this caution applies to educators of all domains, especially in the transition from primary
to secondary school in which learning goals often shift from giving students experiences within
domains to formally teaching concepts, as students’ developmental capabilities increase. The authors
hope that the current analysis provides evidence-based information about which CS concepts are
taught in integrated curricula and to what extent so that researchers and educators can better
understand how to support students in CS education.

References

[1] Arthur J. Baroody, David J. Purpura, Michael D. Eiland, and Erin E. Reid. 2015. The impact of highly and mini-
mally guided discovery instruction on promoting the learning of reasoning strategies for basic add-1 and doubles
combinations. Early Childhood Research Quarterly 30 (2015), 93-105.

[2] Brigid J. S. Barron, Daniel L. Schwartz, Nancy J. Vye, Allison Moore, Anthony Petrosino, Linda Zech, and John D.
Bransford. 2014. Doing with understanding: Lessons from research on problem-and project-based learning. In Learning
Through Problem Solving. Psychology Press, 271-311.

[3] Jens Bennedsen and Michael E. Caspersen. 2005. Revealing the programming process. In Proceedings of the 36th
SIGCSE Technical Symposium on Computer Science Education. 186-190.

[4] Marina Umaschi Bers. 2019. Coding as another language: A pedagogical approach for teaching computer science in
early childhood. Journal of Computers in Education 6, 4 (2019), 499-528.

[5] Thomas Brush, Anne Ottenbreit-Leftwich, Kyungbin Kwon, and Michael Karlin. 2019. Implementing socially rele-
vant problem-based computer science curriculum at the elementary level: Students’ computer science knowledge
and teachers’ implementation needs. In Proceedings of the Society for Information Technology & Teacher Education
International Conference. Association for the Advancement of Computing in Education (AACE), 2257-2266.

[6] Lautaro Cabrera, Diane Jass Ketelhut, Kelly Mills, Heather Killen, Merijke Coenraad, Virginia L. Byrne, and Jandelyn
Dawn Plane. 2023. Designing a framework for teachers’ integration of computational thinking into elementary science.
Journal of Research in Science Teaching (2023).

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

35:22 L. E. Margulieux et al.

(7]
(8]

(9]

(10]

(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]
(19]

[20]

[26]
[27]

(28]

K-12 Computer Science Framework Steering Committee. 2016. K-12 Computer Science Framework. 1-36. Retrieved
from https://k12cs.org/

Louise P. Flannery, Brian Silverman, Elizabeth R. Kazakoff, Marina Umaschi Bers, Paula Bonta, and Mitchel Resnick.
2013. Designing ScratchJr: Support for early childhood learning through computer programming. In Proceedings of
the 12th International Conference on Interaction Design and Children. 1-10.

Diana Franklin, Charlotte Hill, Hilary Dwyer, Ashley Iveland, Alexandria Killian, and Danielle Harlow. 2015. Getting
started in teaching and researching computer science in the elementary classroom. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education. 552-557.

Pawel Grabarczyk, Sebastian Mateos Nicolajsen, and Claus Brabrand. 2022. On the effect of onboarding comput-
ing students without programming-confidence or-experience. In Proceedings of the 22nd Koli Calling International
Conference on Computing Education Research. 1-8.

Meize Guo and Anne Ottenbreit-Leftwich. 2020. Exploring the K-12 computer science curriculum standards in the US.
In Proceedings of the 15th Workshop on Primary and Secondary Computing Education. 1-6.

Mark Guzdial and Tamara Shreiner. 2021. Integrating computing through task-specific programming for disciplinary
relevance: Considerations and examples. Computational Thinking in Education (2021), 172-190.

Fredrik Heintz, Linda Mannila, and Tommy Farnqvist. 2016. A review of models for introducing computational
thinking, computer science and computing in K-12 education. In Proceedings of the IEEE Frontiers in Education
Conference (FIE ’16). 1-9. DOI: https://doi.org/10.1109/FIE.2016.7757410

Maya Israel and Todd Lash. 2020. From classroom lessons to exploratory learning progressions: Mathematics+
computational thinking. Interactive Learning Environments 28, 3 (2020), 362-382.

Maya Israel, Ruohan Liu, Wei Yan, Heather Sherwood, Wendy Martin, Cheri Fancsali, Edgar Rivera-Cash, and
Alexandra Adair. 2022. Understanding barriers to school-wide computational thinking integration at the elementary
grades: Lessons from three schools. In Computational Thinking in PreK-5: Empirical Evidence for Integration and Future
Directions. ACM, New York, NY, 64-71.

Yasmin B. Kafai and Chris Proctor. 2022. A revaluation of computational thinking in K-12 education: Moving toward
computational literacies. Educational Researcher 51, 2 (2022), 146-151.

Maria Kallia and Quintin Cutts. 2021. Re-examining inequalities in computer science participation from a Bourdieusian
sociological perspective. In Proceedings of the 17th ACM Conference on International Computing Education Research.
379-392.

Irene Lee, Fred Martin, Jill Denner, Bob Coulter, Walter Allan, Jeri Erickson, Joyce Malyn-Smith, and Linda Werner.
2011. Computational thinking for youth in practice. ACM Inroads 2, 1 (2011), 32-37.

Tom Liam Lynch, Gerald Ardito, and Pam Amendola. 2020. Integrating Computer Science across the Core: Strategies for
k-12 Districts. CRC Press.

Lauren Margulieux, Miranda C. Parker, Gozde Cetin Uzun, and Jonathan D. Cohen. 2023. Levels of programming
concepts used in computing integration activities across disciplines. Journal of Technology and Teacher Education 31, 2
(2023), 167-202.

Karl Maton. 2019. Semantic waves: Context, complexity and academic discourse. In Accessing Academic Discourse.
Routledge, 59-85.

Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie Murphy, Beth Simon, Lynda Thomas, and Carol Zander.
2008. Debugging: A review of the literature from an educational perspective. Computer Science Education 18, 2
(2008), 67-92.

Mary L. McHugh. 2012. Interrater reliability: The kappa statistic. Biochemia Medica 22, 3 (2012), 276-282.

Elena Novak and Javed I. Khan. 2022. A research-practice partnership approach for co-designing a culturally responsive
computer science curriculum for upper elementary students. TechTrends 66, 3 (2022), 527-538.

Michiyo Oda, Yoko Noborimoto, and Tatsuya Horita. 2022. Analysis of K-12 computer science curricula from the
perspective of a competency-based approach. In Proceedings of the Society for Information Technology & Teacher
Education International Conference. Association for the Advancement of Computing in Education (AACE), 75-79.
Zehra Ozturk, Caitlin McMunn Dooley, and Meghan Welch. 2018. Finding the hook: Computer science education in
elementary contexts. Journal of Research on Technology in Education 50, 2 (2018), 149-163.

Miranda C. Parker and Leigh Ann DeLyser. 2017. Concepts and practices: Designing and developing a modern k-12 cs
framework. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education. 453-458.
Miranda C. Parker, Amber Solomon, Brianna Pritchett, David A. Illingworth, Lauren E. Marguilieux, and Mark Guzdial.
2018. Socioeconomic status and computer science achievement: Spatial ability as a mediating variable in a novel
model of understanding. In Proceedings of the 2018 ACM Conference on International Computing Education Research.
97-105.

[29] John T Paxton, Rockford J Ross, and] Denbigh Starkey. 1994. A methodology for teaching an integrated computer

science curriculum. ACM SIGCSE Bulletin 26, 1 (1994), 1-5.

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

https://k12cs.org/
https://doi.org/10.1109/FIE.2016.7757410

Intent and Extent: Computer Science Concepts and Practices 35:23

[30] Burkhard Priemer, Katja Eilerts, Andreas Filler, Niels Pinkwart, Bettina Rosken-Winter, Ridiger Tiemann, and Annette
Upmeier Zu Belzen. 2020. A framework to foster problem-solving in STEM and computing education. Research in
Science & Technological Education 38, 1 (2020), 105-130.

[31] Jake A. Qualls and Linda B. Sherrell. 2010. Why computational thinking should be integrated into the curriculum.
Journal of Computing Sciences in Colleges 25, 5 (2010), 66-71.

[32] Kathryn M. Rich, T. Andrew Binkowski, Carla Strickland, and Diana Franklin. 2018. Decomposition: A K-8 computa-
tional thinking learning trajectory. In Proceedings of the 2018 ACM Conference on International Computing Education
Research. 124-132.

[33] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, and Diana Franklin. 2019b. A K-8 debugging learning
trajectory derived from research literature. In Proceedings of the 50th ACM Technical Symposium on Computer Science
Education. 745-751.

[34] Kathryn M. Rich, Carla Strickland, T. Andrew Binkowski, Cheryl Moran, and Diana Franklin. 2017. K-8 learning
trajectories derived from research literature: Sequence, repetition, conditionals. In Proceedings of the 2017 ACM
Conference on International Computing Education Research. 182-190.

[35] Peter J. Rich, Samuel F. Browning, McKay Perkins, Timothy Shoop, Emily Yoshikawa, and Olga M. Belikov. 2019a.
Coding in K-8: International trends in teaching elementary/primary computing. TechTrends 63 (2019), 311-329.

[36] Anthony Robins. 2010. Learning edge momentum: A new account of outcomes in CS1. Computer Science Education 20,
1(2010), 37-71.

[37] Jean Salac, Cathy Thomas, Chloe Butler, Ashley Sanchez, and Diana Franklin. 2020. TIPP & SEE: A learning strategy
to guide students through use-modify scratch activities. In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education. 79-85.

[38] Rafi Santo, Sara Vogel, and Dixie Ching. 2019. CS for What? Diverse Visions of Computer Science Education in Practice.
CSforALL.

[39] Umar Shehzad, Jody E. Clarke-Midura, Kimberly Beck, Jessica F. Shumway, and Mimi M. Recker. 2023. Rethinking
integrated computer science instruction: A cross-context and expansive approach in elementary classrooms. In
Proceedings of the American Educational Research Association’s Annual Meeting (AERA 23). 1.

[40] Carla Strickland, Andrea Ramirez-Salgado, Lauren Weisberg, LaToya Chandler, Jeanne Di Domenico, Elizabeth M.
Lehman, and Maya Israel. 2023. Designing an equity-centered framework and crosswalk for integrated elementary
computer science curriculum and instruction. Journal of Computer Science Integration 6, 1 (2023), 1-16.

[41] Carla Strickland, Kathryn M. Rich, Donna Eatinger, Todd Lash, Andy Isaacs, Maya Israel, and Diana Franklin. 2021.
Action fractions: The design and pilot of an integrated math+ CS elementary curriculum based on learning trajectories.
In Proceedings of the 52nd ACM Technical Symposium on Computer Science Education. 1149-1155.

[42] Amanda Sullivan. 2021. Supporting girls’ computational thinking skillsets: Why early exposure is critical to success.
In Teaching Computational Thinking and Coding to Young Children. IGI Global, 216-235.

[43] Jeroen]J. G. Van Merriénboer. 2019. The Four-Component Instructional Design Model. Maastricht University.

[44] Sara Vogel, Rafi Santo, and Dixie Ching. 2017. Visions of computer science education: Unpacking arguments for and
projected impacts of CS4All initiatives. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer
Science Education. 609-614.

[45] Jane Waite, Karl Maton, Paul Curzon, and Lucinda Tuttiett. 2019. Unplugged computing and semantic waves:
Analysing crazy characters. In Proceedings of the 2019 Conference on United Kingdom & Ireland Computing Education
Research. 1-7.

[46] Changzhao Wang, Ji Shen, and Jie Chao. 2022. Integrating computational thinking in STEM education: A literature
review. International Journal of Science and Mathematics Education 20, 8 (2022), 1949-1972.

[47] Jeannette M. Wing. 2006. Computational thinking. Communications of the ACM 49, 3 (2006), 33-35.

Received 10 November 2023; revised 1 May 2024; accepted 2 May 2024

ACM Transactions on Computing Education, Vol. 24, No. 3, Article 35. Publication date: August 2024.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Expanding CS Education and Integrated CS
	2.2 K-12 CS Framework
	2.3 The State of Integrated Computing in K-8 Schools

	3 Method
	3.1 Search and Inclusion Criteria
	3.2 Unit of Analysis and Scorers
	3.3 Framework Development and Scoring Training and Procedure

	4 Results
	4.1 Programming Concepts Taught in Curricula
	4.2 CS Practices Taught in Curricula
	4.3 Non-Programming CS Concepts Taught in Curricula
	4.4 Crosscutting Findings across Frameworks

	5 Discussion
	5.1 Central Contributions to Integrated Computing
	5.2 Limitations and Future Work

	References

